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  Abstract—Wide-area backup protection (WABP) refers to the 

identification of the faulted line amongst candidate lines by using 

sparse PMU measurements. This letter proposes a technique for 

reducing the computational complexity of WABP methods that 

employ the superimposed-circuit concept. A proposition is 

presented and proved to justify that the system of equations 

pertaining to every candidate line can be directly obtained from 

the bus impedance matrix of the pre-fault power system. This is 

in contrast with existing WABP methods requiring the 

establishment of as many distinct bus impedance matrices as the 

number of candidate lines in the power system. The applicability 

and effectiveness of the proposed technique are verified by 

conducting more than 20,000 simulations on the IEEE 39-bus test 

system. 
 

Index Terms—Bus impedance matrix, nodal injections, 

superimposed circuit, wide area backup protection (WABP). 
 

I. INTRODUCTION 

NADEQUACY of local data in providing a holistic picture 

of the system state along with measurement inaccuracies 

due to transient responses of instrument transformers are root 

causes of local protection failures [1]. The proliferation of 

phasor measurement units (PMUs) has paved the way for 

wide-area backup protection (WABP) as a complementary 

means for addressing shortcomings of local protections [2]. 

This enhances the protection system’s reliability, thus 

facilitating the operation of the power system against faults. 

A prerequisite for applying superimposed-based WABP 
methods is that the pre-fault and post-fault circuits have the 

same bus impedance matrix [2-4]. This can easily be realized 

by removing the faulted line from the circuit and replacing it 

by suitable current sources before and after the fault onset. To 

identify the faulted line, the replacement procedure is carried 

out for all candidate lines. A system of equations is derived for 

each case relating the measurements to the candidate line 

under study. The sum of squared residuals (SoSR) is calculated 

for the developed system of equations. The candidate line with 

the least SoSR is identified as the faulted line [2-4]. 

If l denotes the number of lines in a power system, WABP 
methods introduced in [2-4] require the calculation of l distinct 

bus impedance matrices upon any changes in the power 

system’s topology/operating point. Given the dynamic nature 

of power systems, this translates to a continuous need for 

calculating and updating of l coefficient matrices, which can 

be highly demanding for large-scale power systems.   

This letter asserts that the coefficient matrix corresponding 

to every candidate line can be directly calculated from the bus 

impedance matrix of the pre-fault power system, irrespective 

of the faulted line, fault type, and fault location. A proposition 

is presented with analytical proof justifying the validity of the 

proposed technique. This removes the need for numerous 

modifications of the bus impedance matrix w.r.t the candidate 
lines under study. Extensive simulations are conducted to 

confirm that the proposed technique reduces the computational 

burden without impacting the success rate of WABP.  

II. WABP BASED ON THE SUPERIMPOSED CIRCUIT CONCEPT 

 Let us assume line i-j in a power system is faulted. Figs 

1(a) and 1(b) show the pre-fault and post-fault circuits of this 

power system with N buses. The differences between the 

voltage and current phasors following the fault can be 

attributed to the corresponding voltages and currents in the 

superimposed circuit shown in Fig. 1(c). The topology of the 

superimposed circuit is independent of the fault location on 
the line, yet different from that of the pre-fault circuit as line i-

j is excluded from the former. Let ∆𝐼𝑖 and ∆𝐼𝑗 refer to the 

superimposed nodal injections at buses i and j, respectively, as 

the only non-zero injections in the superimposed circuit of 

Fig. 1(c). Thus, the superimposed voltage at an arbitrary bus q 

can be obtained from 

 ∆𝑉𝑞 = 𝑍𝑞𝑖∆𝐼𝑖 + 𝑍𝑞𝑗∆𝐼𝑗 (1) 

where 𝑍𝑞𝑖 is the entry in the q-th row and i-th column of the 

bus impedance matrix. Let ∆𝐽𝑢𝑤 denote the sending-end 

superimposed current of line u-w. It can be easily shown that 

 ∆𝐽𝑢𝑤 = 𝐶𝑢𝑤,𝑖∆𝐼𝑖 + 𝐶𝑢𝑤,𝑗∆𝐼𝑗 (2) 

where the derivation of 𝐶𝑢𝑤,𝑘 is detailed in [3]. Every voltage 

and current measurements provided by PMUs can be 
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Fig. 1. (a) Pre-fault circuit. (b) Post-fault circuit. (c) Superimposed circuit 

with line i-j removed. (c) Superimposed circuit with line i-j connected. 
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substituted in (1) and (2), respectively, to form an equation in ∆𝐼𝑖 and ∆𝐼𝑗. These equations together form an overdetermined 

system of equations as below  

 𝒎 = 𝑯[∆𝐼𝑖∆𝐼𝑗] + 𝜺 (3) 

where m and H are the measurement vector and the coefficient 

matrix [4]. The vector 𝜺 also stands for measurement errors.  

The residuals of a system of equations are defined as the 

discrepancy between the measured quantities and their 

corresponding estimations [5]. The sum of squared residuals 

for (3) can be calculated from the closed-form solution below  

 𝑆𝑜𝑆𝑅 = 𝒎∗𝑺∗𝑺𝒎 (4) 

where 𝑺 = (𝑰 − (𝑯∗𝑹−𝟏𝑯)−1𝑯∗𝑹−𝟏) [5]. The asterisk refers 

to the conjugate transpose of the matrix/vector. Besides, R and 

I denote the covariance matrix of measurement errors and the 
identity matrix of appropriate size, respectively.  

To form (3), it is assumed that line i-j is the faulted line; a 

hypothesis whose truth is unknown upon receiving PMU data. 

Nonetheless, if this hypothesis is true, the SoSR corresponding 

to (3) will be quite negligible (ideally zero if measurements 

were error-free). This feature has been employed in several 

research works to identify the faulted line [2-4]. In doing so, 

(3) is built for every candidate line and (4) is calculated for 

each. The line corresponding to the smallest SoSR is identified 

as the faulted line. It is worth noting that (3) remains 

functional even if the faulted line is a double-circuit line. The 
reason is that the whole faulted line can still be modelled by 

proper current sources from the viewpoint of the remainder of 

the power system. As a result, the SoSR index can still 

pinpoint the faulted line regardless of whether it is single- or 

double-circuit. However, a PMU at one of the faulted line 

terminals is necessary if we are to determine which of the two 

circuits is faulted [6].  

III. REDUCING COMPUTATIONAL COMPLEXITY 

To determine which candidate line is faulted, (3) is built 

for every candidate line to obtain the associated SoSR [3]. This 

requires the removal of the candidate line from the pre-fault 

circuit to calculate the entities of the corresponding coefficient 

matrix H. If there are l candidate lines in the system, H must 

be obtained for l different circuits that differ from one another 

in the presence/absence of the candidate line. This letter 

asserts that H can be directly built from the pre-fault circuit 

for all candidate lines, with no modifications w.r.t the 

candidate line under study. The argument follows from the 

proposition below (proof in Appendix A): 
Proposition: Consider the response of the circuit of Fig. 

1(c) for given nodal injections ∆𝐼𝑖 and ∆𝐼𝑗 at buses i and j, 

respectively. There are unique injections ∆𝐼𝑖′ and  ∆𝐼𝑗′ that 

produce the same response in the circuit of Fig. 1(d) if applied 

respectively at buses i and j of that circuit.  

The converse of the above proposition is also true. For any 

response in the circuit of Fig. 1(d) resulting from non-zero 

injections ∆𝐼𝑖′ and  ∆𝐼𝑗′, there are unique ∆𝐼𝑖 and ∆𝐼𝑗 that will 

produce the same response in the circuit of Fig. 1(c). 

It can be concluded from the above proposition and its 

converse that any response that can be achieved for either of 

the two circuits is achievable for the other one. A conditional 

statement that follows from this is that if the SoSR for the 

circuit of Fig. 1(c) is zero, the SoSR for the circuit of Fig. 1(d) 

will be zero, as well. The converse of this conditional 

statement is also true. The reason is that the SoSR being zero 

means the observed measurements could be the response of 

the superimposed circuit for which (3) has been built [4]. 

Therefore, we assert that building H based upon the pre-fault 
circuit can reduce the computational complexity while 

maintaining the capability of indicating the faulted line. 

IV. PERFORMANCE EVALUATION 

The performance of the proposed technique is evaluated by 

conducting extensive simulations on the IEEE 39-bus test 

system. Buses 3, 5, 8, 11, 14, 16, 19, 23, 25, 27, 29 and 39 are 

equipped with PMUs. The real PMU model of [7] is used to 

extract the phasors of generated time-domain waveforms in 
PowerFactory following a wide variety of short-circuit faults.  

To validate the capability of the proposed technique in 

identifying the faulted line, an arbitrary 1-ph-g fault at 95% of 

line 17-18 is investigated for up to 300 ms following the fault 

onset. The fault distance is also estimated using the closed-

form solution proposed in [4] by obtaining the superimposed 

currents and voltages of the faulted line from (3), (A2), and 

(A3). Fig. 2 shows the SoSRs calculated for the faulted line, 

and the fault distance estimation using the proposed technique 

and the method proposed in [4]. As expected, the SoSRs 

calculated by both methods are quite similar with a difference 

in the order of 10−6, which correctly identify the faulted line. 

The estimated fault distance on the line is practically the same.  
Now, the general performance of the proposed technique is 

examined and compared with that of other methods for various 

fault types and locations on every line. To compare the 

sensitivity of WABP methods to measurement and parameter 

Fig. 2. SoSR and estimated fault distance using different methods. 

 
TABLE I 

COMPARISON BETWEEN DIFFERENT WABP METHODS 
 

Error Type Measurement Error Line Parameter Error 

Error Range (%) ±0 ±4 ±8 ±0 ±4 ±8 

FLISR 

(%) 

Proposed 99.88 99.03 98.49 99.88 97.29 94.22 

[3] 99.93 99.15 98.47 99.93 97.59 93.75 

[4] 99.43 99.26 98.83 99.43 97.73 92.92 

AFLE  

(%) 

Proposed 0.63 0.96 1.21 0.63 1.41 2.11 

[3] 0.65 1.00 1.11 0.65 1.11 2.01 

[4] 0.67 1.01 1.48 0.67 1.02 3.23 
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errors, these quantities are assumed to have errors with normal 

distribution with mean zero. Measurement errors account for 

different sources of errors such as instrument transformers 
error, phasor estimation, and measurement noises [8]. The 

error ranges are reported based upon the three-sigma criterion 

[4].  Table I summarizes the results obtained from 20,000 

simulated cases, in terms of faulted-line identification success 

rate (FLISR) and average fault location error (AFLE). Table II 

shows the method’s performance for different fault 

resistances. The minor difference in SoSRs and estimated 

nodal currents in the presence of parameter/measurement error 

and different fault resistances do not noticeably affect 

WABP’s success rate nor the accuracy of fault location. 

The computational burden of WABP by the methods 
investigated can be divided into two parts, namely building H 

and (3) for different candidate lines and calculating the SoSRs 

for the developed systems of equations. On average, the first 

part takes around 25 ms by the methods in [3-4], which is 

reduced to 12 ms using the proposed technique. The second 

part is identical in all methods and takes around 5 ms for the 

IEEE 39-bus system with 34 candidate lines. Thus, the 

proposed technique in this paper reduces the whole 

computational burden by about 40%. As detailed in Appendix 

B, the computation time of WABP by the proposed technique 

can be presented by “Big O Notation” as 𝑶(5𝑁𝑚2), where 𝑁𝑚 

is the number of measurements. The constant scalar 5 can be 

dropped in big O notation for a very large 𝑁𝑚. 

V. CONCLUSION 

This letter proposes a technique to reduce the 
computational complexity of wide-area backup protection 

(WABP) methods that are based upon the superimposed 

circuit concept. A proposition is put forward and proved to 

demonstrate that there is a one-to-one equivalence between the 

responses of the superimposed circuit with and without the 

faulted line. This removes the need for calculating as many 

bus impedance matrices as the number of candidate lines in 

the system to identify the faulted line. The proposed technique 

limits the foregoing requirement to merely calculating the bus 

impedance matrix of the pre-fault power system. Extensive 

simulations conducted confirm that the proposed technique 
can reduce the computational burden without impacting the 

success rate of WABP. The reduced computational burden 

offered by the proposed technique, along with other merits of 

superimposed-circuit-based WABP methods such as 

adaptability with the sparsity of PMUs and communication 

latencies, increase the chances of the uptake of such methods 

by system operators. 

APPENDIX A: MATHEMATICAL PROOF OF THE PROPOSITION  

Let us assume that the two non-zero nodal injections ∆𝐼𝑖 

and ∆𝐼𝑗 result in superimposed voltages ∆𝑉1, ∆𝑉2, … , ∆𝑉𝑁  in 

the circuit of Fig. 1(c). Now, let us reorder buses as i, j, 1, …, 
N. The admittance matrix of the circuit of Fig. 1(c) after this 

reordering is denoted by 𝒀. By partitioning 𝒀, the nodal 

equations for this circuit can be written as below 

 

[  
   ∆𝐼𝑖∆𝐼𝑗—0⋮0 ]  

   = [ 𝑨2×2———𝑪(𝑁−2)×2 
||||
𝑩2×(𝑁−2)—————𝑫(𝑁−2)×(𝑁−2)  ]⏞                𝒀

[  
   
∆𝑉𝑖∆𝑉𝑗—∆𝑉1⋮∆𝑉𝑁]  

     (A1) 

In virtue of the invertibility of the nodal admittance matrix 

[9], the superimposed voltages ∆𝑉𝑖 and ∆𝑉𝑗  can be uniquely 

calculated from (1) as follows 

 [∆𝑉𝑖∆𝑉𝑗] = [𝑍𝑖𝑖   𝑍𝑖𝑗   𝑍𝑖𝑗𝑍𝑗𝑗] [∆𝐼𝑖∆𝐼𝑗] (A2) 

Let 𝑧𝑙 and 𝑦𝑙 denote the series impedance and shunt 

admittance of line i-j, which can be accurately calculated from 

the distributed parameter model of line i-j. Now let us define 

nodal injections ∆𝐼𝑖′ and  ∆𝐼𝑗′ as below  

 [∆𝐼𝑖′∆𝐼𝑗′] = [1𝑧𝑙 + 𝑦𝑙2−1𝑧𝑙    −1𝑧𝑙1𝑧𝑙 + 𝑦𝑙2 ] [𝑍𝑖𝑖   𝑍𝑖𝑗   𝑍𝑖𝑗𝑍𝑗𝑗] [∆𝐼𝑖∆𝐼𝑗] + [∆𝐼𝑖∆𝐼𝑗] (A3) 

One can conclude from (A1)-(A3) that  

 [∆𝐼𝑖′∆𝐼𝑗′] = ([1𝑧𝑙 + 𝑦𝑙2−1𝑧𝑙    −1𝑧𝑙1𝑧𝑙 + 𝑦𝑙2 ] + 𝑨)
⏞              𝑨′ [∆𝑉𝑖∆𝑉𝑗] + 𝑩 [∆𝑉1⋮∆𝑉𝑁]  (A4) 

Combining (A4) with the lower part of (A1) gives 

 

[  
   ∆𝐼𝑖

′∆𝐼𝑗′—0⋮0 ]  
   = [ 𝑨′2×2———𝑪(𝑁−2)×2 

||||
𝑩2×(𝑁−2)—————𝑫(𝑁−2)×(𝑁−2)  ]⏞                𝒀′

[  
   
∆𝑉𝑖∆𝑉𝑗—∆𝑉1⋮∆𝑉𝑁]  

     (A5) 

The only difference between the circuits of Figs 1(c) and 
1(d) is that line i-j does not exist in the former but in the latter. 

It can be confirmed that the matrix 𝒀′ is the admittance matrix 

of the circuit of Fig. 1(d) in which the buses are reordered as i, 

j, 1, …, N. Since the shunt/series elements of line i-j are only 

connected to buses i and j, the submatrices 𝑩, 𝑪, and 𝑫 in 𝒀 

and 𝒀′ are identical. Accounting for these elements, 𝑨 needs to 

be replaced by 𝑨′ to form the admittance matrix of the circuit 

of Fig. 1(d). Therefore, (A5) implies that injecting ∆𝐼𝑖′ and  ∆𝐼𝑗′ 
in the circuit of Fig. 1(d), results in the same superimposed 
voltages as those in the circuit of Fig. 1(c).  

The voltage response equivalence between the two circuits 

guarantees that the superimposed branch currents in both 

circuits are identical. This is because identical lines will carry 

the same currents if subjected to the same terminal voltages. 

This ends the proof. The converse of the Proposition can be 

proved in a similar way, as well. 

TABLE II 

SENSITIVITY OF THE PROPOSED METHOD TO FAULT RESISTANCE 
 

Fault Resistance 0 Ω 5 Ω 10 Ω 15 Ω 25 Ω 

FLISR (%) 99.88 99.82 99.63 99.47 99.34 

AFLE (%) 0.63 0.65 0.67 0.71 0.74 
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APPENDIX B: ANALYSIS OF THE COMPUTATION TIME 

 The computation time of WABP using the proposed 

technique for every candidate line includes the time needed to 

build the matrix 𝑯 related to the candidate lines and the 

calculation time for the SoSR of the line. Let 𝑁𝑚 denote the 

number of measurements. The big O notation of the 

computation time of the method represents the asymptotic 

curve that refers to the computation complexity with a very 

large 𝑁𝑚 [10]. As detailed in [3], three multiplications are 

needed to calculate every entry of 𝑯. Therefore, 𝑇𝐻  can be 

represented as 𝑶(6𝑁𝑚) for all 2𝑁𝑚 entries in 𝑯. 

Big O notation for multiplication of a 𝑛 × 𝑝 matrix to a 𝑝 × 𝑞 

matrix is 𝑶(𝑛𝑝𝑞) [10]. Accordingly, Table B1 shows the 

big O notation of SoSR calculations in detailed steps. The 

terms 𝑂(𝑁𝑚2) dominate the 𝑂(𝑁𝑚) ones, and thus, the total 

computation time can be represented as 𝑶(5𝑁𝑚2) for every 

candidate line. The constant scalar 5 can be dropped in big O 

notation for a very large 𝑁𝑚. 
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TABLE B1 

BIG O NOTATION REPRESENTATION FOR SOSR CALCULATION  
 

Operation Big O notation 𝒀𝟏2×𝑁𝑚 = 𝑯2×𝑁𝑚∗ 𝑹𝑁𝑚×𝑁𝑚−𝟏  𝑂(2𝑁𝑚2) 𝒀𝟐2×2 = (𝒀𝟏2×𝑁𝑚 𝑯𝑁𝑚×2)−1 𝑂(4𝑁𝑚) 𝒀𝟑𝑁𝑚×2 = 𝑯𝑁𝑚×2 𝒀𝟐2×2 𝑂(4𝑁𝑚) 𝑺𝑁𝑚×𝑁𝑚 = 𝑰 − 𝒀𝟑𝑁𝑚×2 𝒀𝟏2×𝑁𝑚  𝑂(2𝑁𝑚2) 𝒀𝟒𝑁𝑚×1 = 𝑺𝑁𝑚×𝑁𝑚𝒎𝑁𝑚×1 𝑂(𝑁𝑚2) 𝑆𝑜𝑆𝑅 = 𝒀𝟒1×𝑁𝑚∗ 𝒀𝟒𝑁𝑚×1 𝑂(𝑁𝑚) 
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