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Abstract 16 

Railway tracks undergo plastic settlement when subject to repeated train loading.  This 17 

occurs differentially along the track rather than in a uniform manner, and the profile is a key 18 

parameter when scheduling track maintenance operations.  Therefore this paper presents a 19 

novel numerical approach to predict track irregularity evolution.  The model combines 20 

empirical settlement laws with finite element theory, where the track-ground structure is 21 

modelled explicitly, and multi-body train-track interaction is considered.  The stresses 22 

induced by rolling stock are solved using a hybrid frequency-wavenumber and time-space 23 

approach, considering non-linear track-soil material behaviour.  It has several novelties: 1) 24 

after every load passage, the track profile is updated before applying the next load, meaning 25 

the train-track interaction is constantly evolving; 2) new empirical settlement laws are 26 

derived that account for evolving train-track forces and track profiles; 3) fully 3D stress fields 27 

in the track and ground are considered.  First the model is described, before validating its 28 

prediction of track geometry evolution, captured from track recording vehicles.  Next, it’s 29 

used to show that modelling error is introduced if the geometry isn’t updated frequently 30 

(e.g. after every load passage).  Finally, a parametric study shows track subgrade material 31 

properties have a marked effect on track settlement. 32 

 33 

1. Introduction 34 

Under every axle passage, railway tracks experience a small amount of permanent 35 

deformation (Li et al., 2015).  Due to dynamic loading and varying track support conditions 36 

along the track, successive axle passage lead to long-term non-uninform (aka differential) 37 

settlement (Fröhling, 1998).  These changes in track level over a given distance define the 38 

track geometry.  Track geometry can deteriorate rapidly once differential settlement starts 39 



 

 

to occur, because degradation induces higher train-track dynamic interaction forces, thus 40 

leading to further track settlement.   41 

Track quality measurement is typically performed by a track recording car and a variety of 42 

metrics can be used to define a track quality index (TQI) (Yan and Corman, 2020).  Different 43 

countries have developed and implemented TQI’s in different ways, however, the standard 44 

deviation (SD) of vertical track geometry over a given distance is widely used (Neuhold et al., 45 

2020).  The higher the SD value, the lower quality of the track. When the SD of the track 46 

geometry reaches a threshold limit value, maintenance action is required. 47 

Tamping is a common track maintenance activity used to correct vertical track geometry 48 

faults for wavelengths within a certain range (for example, between 3-25 m (Esveld, 2001), 49 

or 3-35m (Network Rail, 2015)).  When the variation in geometry exceeds a threshold limit, 50 

corrective tamping restores it to an acceptable value, thus helping to extend the track life 51 

between full track reconstructions.  Rather than wait until a SD threshold value is reached 52 

and then perform emergency maintenance, common practise is to attempt to predict the 53 

future date when maintenance is required.  Then it can be planned, resulting in minimal line 54 

disruption.  To predict these maintenance schedule dates, most commonly, on existing lines, 55 

historical changes in track geometry at a given location are extrapolated into the future to 56 

determine degradation (Lee et al., 2020).  However, this approach is challenging for cases 57 

where significant changes are made to the track or rolling stock.  In such situations, 58 

historical data is unlikely to be representative of future behaviour.  For example: 59 

 New track construction.  In this case historical geometry records don’t exist. 60 

 The changing of rolling stock characteristics.  For example, raising line speed, 61 

increased freight-passenger traffic ratios, and deploying new rolling stock.  In these 62 

cases, the changes in vehicle-track dynamics will lead to different dynamic stress 63 

fields in the track.  Therefore the settlement rate may be different from historical. 64 

 The changing of track characteristics.  For example, new track designs, adding new 65 

track components, and renewing the track/subgrade.  In these cases the dynamic 66 

stiffness and strength characteristics of the track may lead to settlement rates that 67 

differ from historical. 68 

There are two main modelling approaches to predict track settlement: constitutive and 69 

empirical.  Models based on constitutive relationships attempt to simulate the physical 70 

behaviour of materials, using for example, yield criterions, flow rules and hardening rules 71 

(Dahlberg, 2001; Indraratna et al., 2012; Suiker and de Borst, 2003).  These can be 72 

implemented within a finite element model, however the discrete element method (DEM) 73 

can also be used to simulate local deformations and heterogeneous particle displacements 74 

(Guo et al., 2020; Saussine et al., 2006).  Considering the FE approach, an implementation in 75 

3D made in a commercial FE software combining with an elasto-plastic constitutive model 76 

was presented by (Shih et al., 2019) to calculate differential settlement in ballasted tracks.  77 

A constitutive model integrated with an iterative procedure was developed in (Li et al., 78 

2016) to compute differential track settlement accounting for longitudinal variations in load 79 

and track characteristics.  However, a challenge with such constitutive models is that they 80 

often require input parameters related to the ballast and subgrade that are difficult to 81 

measure/quantify.  Further, they are often computationally intensive, thus making the 82 

prediction of long-term differential settlement due to dynamic train loads challenging (Chen 83 

and McDowell, 2016; Shan et al., 2017).  84 



 

 

An alternative approach for settlement modelling is to use empirical settlement equations. 85 

Several models, see for example (Indraratna and Nimbalkar, 2013; ORE, 1970; Sato, 1995; 86 

Shenton, 1985), have been developed for the prediction of ballast settlement under cyclic 87 

loading.  These typically identify empirical parameters using cyclic triaxial test data, 88 

reduced-scale models (Menan Hasnayn et al., 2017; Yu et al., 2019), or in situ 89 

measurements.  Similarly, empirical parameters for the prediction of subgrade settlement 90 

have been obtained by conducting laboratory tests on different soil conditions to investigate 91 

plastic deformation under repeated load applications (Li, 1994; Li and Selig, 1996; Liu and 92 

Xiao, 2010).  Compared with constitutive modelling, the published results achieved using 93 

empirical models are similar in accuracy to constitutive ones, however only depend upon a 94 

minimal number of input parameters that are usually relatively straightforward to 95 

determine (Ramos et al., 2020). 96 

However, one drawback of the existing empirical models presented in the literature is that 97 

they assume the ballast and subgrade materials are subject to cyclic loads of equivalent 98 

magnitudes.  This is not the case in real life, because track irregularities evolve with each 99 

axle passage.  Therefore, for each subsequent passage, the train-track dynamic interaction 100 

forces, the distribution of stresses within the track layers, and ultimately the induced 101 

settlement is different.  Further, in real life, most tracks are subject to mixed types of rolling 102 

stock (e.g. freight and passenger), running together on a timetable.  In such situations, 103 

where the simulation of multiple vehicles is required, it is challenging to use the current 104 

forms of empirical settlement equations, because the dynamic loads are different for each 105 

vehicle. 106 

A key input to constitutive and empirical settlement models are stresses induced in both 107 

ballast and subgrade.  These stresses are often calculated using a numerical mode.  One 108 

example of using numerical modelling combined with empirical settlement laws is 109 

presented by Sayeed and Shahin (Sayeed and Shahin, 2018).  Settlement is calculated in 110 

both the ballast and subgrade, using a 3D finite element approach to compute the 111 

deviatoric stress, considering the effect of a moving dynamic train load.  However, the track 112 

geometry profile is not updated after subsequent axle passages.  Instead an empirical 113 

settlement law is used to extrapolate its change, based upon the results of the initial train 114 

passage.  This is a drawback because changes in the track geometry influence the train-track 115 

interaction forces, which are closely linked to track unevenness (Burrow et al., 2017).  116 

Therefore, under certain circumstances, this approach may under-predict the deterioration 117 

of track geometry. 118 

Alternatively, methodologies have been proposed to predict differential track settlement 119 

considering train-track dynamic interaction, accounting for the evolution of track geometry 120 

irregularities.  For example, Zuada Coelho (Zuada Coelho et al., 2021) introduces a 121 

methodology to predict track settlement considering the effect of traffic changes, but at the 122 

network scale.  The corresponding forces due to the dynamic deformation during train 123 

operation are computed, however not every axle passage is considered.  Alternatively, Guo 124 

and Zhai (Guo and Zhai, 2018) apply an iterative method to estimate the long-term 125 

settlement of ballastless track, considering the evolution of differential settlement in the 126 

subgrade.  An empirical model for subgrade settlement is proposed.  The deviatoric stress 127 

exerted on the surface of subgrade is combined with an exponential attenuation equation.  128 

Further, Nielsen and Li  (Nielsen and Li, 2018) propose a numerical method based on an 129 

iterative approach combined with an empirical model to predict the deterioration of track 130 



 

 

geometry due to differential settlement.  The foundation is modelled using a beam-on-131 

elastic-foundation approach (i.e. springs and dampers).  Grossoni  (Grossoni et al., 2021) 132 

presents a semi-analytical approach based on an investigation of material behaviour under 133 

cyclic loading combined with a train-track interaction model, that allows for the estimation 134 

of differential ballast settlement due to evolving track roughness.  Plastic settlement is 135 

modelled at each loading cycle as a function of the vertical stress. 136 

A common strategy in the aforementioned approaches is to model the track using springs 137 

and dashpots, and then solve in the time domain.  Although this provides some advantages, 138 

it doesn’t allow for the calculation of 3D dynamic stress fields in the track and the subgrade.  139 

Deviatoric stress is one of the most influential parameters on permanent deformation 140 

(Indraratna et al., 2010; Li and Selig, 1996) and therefore is closely linked to differential 141 

settlement.  Although deviatoric stresses can be calculated in 2D, which is acceptable for 142 

certain engineering applications, when considering wave propagation problems, 3D 143 

modelling provides highest accuracy (Arcos et al., 2021; Xu et al., 2015).  Therefore for 144 

railway applications that require accurate stress wave simulation (e.g. ground-borne 145 

vibration and critical velocity) the calculation of 3D fields has become standard practise. 146 

In an attempt to address these challenges, this paper first proposes several recommended 147 

characteristics to calculate differential railway track settlements.  Then a practical 148 

implementation of these characteristics is shown by developing a novel numerical approach 149 

capable of considering 3D stress fields, evolving track geometry and train-track interaction 150 

forces.  The model is based on a FEM-PML (Finite Element Method with Perfectly Matched 151 

Layers) approach, solved in a hybrid manner, across both frequency-wavenumber and time-152 

space domains.  Train-track interaction, vehicle dynamics and 3D stress field propagation 153 

are modelled explicitly.  After every load passage, the vertical track irregularities along the 154 

track length are updated, and the train-track dynamic interaction force and the distribution 155 

of dynamic stress are recalculated as a consequence.  By taking advantage of a mixed 156 

frequency-wavenumber, time-space domain approach, the computational efficiency of the 157 

implementation is high, and thus allows the differential settlement to be updated after 158 

every train axle passage, even when using solid elements to capture 3D stress fields.  159 

Further, to maximise accuracy for heavy and fast moving axle loads, the non-linear stiffness 160 

characteristics of both the granular track and subgrade materials are accounted for. 161 

 162 

2. Characteristics of a differential settlement prediction model 163 

Long-term track geometry changes are important for predicting future maintenance 164 

schedules, particularly automated tamping.  Therefore any numerical model should be able 165 

to predict differential settlement for the wavelength range over which tamping is effective, 166 

and the timeline until the next tamping cycle should be scheduled.  The forecasting of long-167 

term track settlement is challenging, involving numerous variables such as train-track 168 

interaction, an evolving track profile and non-linear soil behaviour.  Further, when 169 

considering a large number of load passages, small inaccuracies at each iteration are 170 

magnified and can greatly affect the final predicted settlement. Thus, for a numerical 171 

approach attempting to do this, the following are important to consider: 172 

1. Calculation of 3D stress fields in the track and ground. This is important because 173 

deviatoric stress is an influential parameter on settlement  174 



 

 

2. Calculation of train-track interaction forces.  The dynamic forces caused by the interaction 175 

between track geometry irregularities and rolling stock are a key source of differential 176 

settlement on plain line.  The degradation of track geometry results in higher train-track 177 

dynamic interaction forces which effect on the distribution of the stresses, and thus further 178 

track settlement (Bian et al., 2015). 179 

3. Simulation of the evolution of train-track interaction forces.  Track geometry degrades 180 

after train passages, meaning future train passages are likely to generate different 181 

deviatoric stresses and differential settlement, compared to previous trains.  This is 182 

particularly important when modelling a line with mixed rolling stock. 183 

4. Simulation of the evolution of track-subgrade settlement laws.  Track settlement rate is 184 

dependent upon the settlements from ballast and subgrade layers induced by previous axle 185 

loads.  Considering the dynamic forces exerted on the track change as the track geometry 186 

evolves, the settlement relationship should consider this. 187 

These characteristics can be achieved using different modelling approaches.  For example, a 188 

direct approach can be used where non-linear soil behaviour is modelled directly.  189 

Alternatively, an indirect approach can be used, where the ground stress fields are 190 

estimated using an equivalent linear approach, and then the stress fields used to compute 191 

settlement using empirical laws.  Although the first approach is more exact from the 192 

theoretical viewpoint, its application requires significant computational resources and the 193 

estimation of many input parameters to accurately define non-linear soil behaviour. 194 

Therefore, with the aim of acting as a practical tool for engineering purposes, the second 195 

strategy is preferred. 196 

3. Numerical modelling overview 197 

A variety of numerical simulation approaches can be used to meet the characteristics 198 

mentioned above, however the criteria imply that the problem should be modelled in 3D, 199 

consider vehicle dynamics and train-track interaction, and be able to update the track 200 

geometry after an arbitrary number of loads with arbitrary magnitude.  To achieve these 201 

objectives, this paper proposes a novel, 2-step coupled modelling strategy, solved in a 202 

hybrid manner, across both time-space and frequency-wavenumber domains.  The two 203 

primary steps are as shown in Figure 1:  204 

Step A: Calculates the 3D elastodynamic response of the track-ground system in the 205 

frequency-wavenumber domain.  The geo-static stresses and the moving load transfer 206 

function that accounts for soil stiffness non-linearity are computed.  The 3D stress fields, 207 

which include quasi-static and dynamic components, are then calculated in terms of 208 

wavenumber and frequency.  This part is only computed once for each moving speed of 209 

vehicle being considered.  Also, the matrices for train and track compliance required for 210 

train-track dynamic interaction are computed.  These various pre-calculated fields then 211 

allow Step B to be computed in an efficient manner for every axle passage.   212 

Step B: Calculates the differential track settlement using a combination of time and 213 

frequency domain methods.  The train-track dynamic interaction force, the deviator stress 214 

and the settlement in the track and ground are calculated.  The total deviator stress includes 215 

quasi-static stress, dynamic stress and geo-static stress.  After every load passage the track 216 

irregularity profile is updated and thus the new train-track dynamic force is recalculated.  217 



 

 

These steps are repeated until the defined number of load cycles or threshold geometry 218 

criteria is reached. 219 

 220 

 221 

Figure 1. Model overview 222 

 223 

4. Numerical model description 224 

4.1.1. General formulation 225 

The wavenumber finite element method (aka two-and-a-half dimension approach) is a 226 

computationally efficient method for the solution of three-dimensional domains.  Two 227 

dimensions are solved via finite element theory while the third is solved analytically.  It is 228 

therefore well-suited for 3D structures that can be approximated as having invariant 229 

geometry and material properties in one direction (e.g. railways, highways and tunnels).  An 230 

example discretisation of the track-ground structure using the developed mesh generator is 231 

illustrated in Figure 2.  This cross-section remains invariable in the longitudinal direction of 232 

the track, however the loading is 3D and the track-ground response is calculated in 3D.  The 233 

interactions between different interfaces/layers are modelled accounting for the continuity 234 

of displacements and equilibrium of stresses along each subdomain interface (François et 235 

al., 2010). 236 



 

 

 237 

Figure 2. Infinite and invariant structure in the x direction 238 

Assuming the structure is linear and elastic, the equations of motion can be solved in the 239 

wavenumber-frequency domain.  A double Fourier transform is used to transform all 240 

variables into the wavenumber-frequency domain in terms of the moving direction of the 241 

train (x direction) and time (t). 242 

Following a general finite element formulation, the following equilibrium equation 243 

represents any point in the 3D domain: 244 ∫ 𝛿𝜀𝜎 ⅆ𝑉 + ∫ 𝛿𝑢𝜌 𝜕2𝑢𝑖(𝑥, 𝑡)𝜕𝑡2 ⅆ𝑉𝑉 = ∫𝛿𝑢𝑝ⅆ𝑆𝑆𝑉  
(1) 

where 𝛿𝜀 is the virtual strain field; 𝜎 is the stress field; 𝛿𝑢 is the virtual displacement field; 𝑢 245 

is the displacement field; 𝜌 is the mass density; and 𝑝 is the applied load. 246 

Eq. (1) can be rewritten in terms of nodal variables because the untransformed domain 247 

cross-section is discretised into finite elements.  Then, considering Parseval’s theorem 248 

(Hardy and Littlewood, n.d.), the concept of virtual work is applied to the transform domain.  249 

The functions of the Fourier images of x and t are defined as wavenumber and frequency 250 

denoted by 𝑘𝑥 and 𝜔, respectively.  Therefore, in the transformed domain, the virtual work 251 

of the internal stresses and inertial forces is: 252 ∫𝛿𝜀𝜎 ⅆ𝑉𝑉 = ∫ 𝛿𝑢𝑛𝑇(−𝑘𝑥, 𝜔)∫ ∫𝐵𝑇(−𝑘𝑥)𝐷𝐵(𝑘𝑥) ⅆ𝑦 ⅆ𝑧𝑢𝑛(𝑘𝑥, 𝜔) ⅆ𝑘𝑥𝑦𝑧𝑘𝑥  (2) 

∫ 𝛿𝑢𝜌 𝜕2𝑢(𝑥, 𝑡)𝜕𝑡2 ⅆ𝑉 = −𝜔2 ∫ 𝛿𝑢𝑛𝑇(−𝑘𝑥, 𝜔)∫ ∫𝑁𝑇𝜌𝑁 ⅆ𝑦 ⅆ𝑧𝑢𝑛(𝑘𝑥, 𝜔) ⅆ𝑘𝑥𝑦𝑧𝑘𝑥𝑉  
(3) 

where 𝐵 is the matrix containing the derivatives of the finite element shape functions; 𝐷 is 253 

the elasticity matrix; 𝑁 is the shape function matrix; and 𝑢𝑛 is the nodal displacement vector 254 

in the transformed domain. 255 

Taking advantage of the finite element discretisation on the YZ plane and considering a 256 

coordinate ‘S’ parallel to the edge the element where traction is applied, the virtual work 257 

induced by the load is: 258 ∫𝛿𝑢𝑝 ⅆ𝑆𝑆 = ∫ 𝛿𝑢𝑛𝑇(−𝑘𝑥, 𝜔)∫𝑁𝑇𝑝(𝑘𝑥, 𝜔) ⅆ𝑠 ⅆ𝑘𝑥 =𝑠 ∫ 𝛿𝑢𝑛𝑇(−𝑘𝑥)𝑝𝑛(𝑘𝑥, 𝜔)𝑘𝑥 ⅆ𝑘𝑥𝑘𝑥  (4) 

Then, substituting Eqs. (2)-(4) into Eq. (1), the equilibrium of each finite element in the YZ 259 

plane is: 260 



 

 

(∫ ∫ 𝐵𝑇(−𝑘𝑥)𝐷𝐵(𝑘𝑥) ⅆ𝑦 ⅆ𝑧−𝜔2 ∫ ∫𝑁𝑇𝜌𝑁 ⅆ𝑦 ⅆ𝑧𝑦𝑧𝑦𝑧 )𝑢𝑛(𝑘𝑥, 𝜔) = 𝑝𝑛(𝑘𝑥, 𝜔) 
(5) 

Considering classic finite element notation, the stiffness [𝐾] and mass [𝑀] matrices are: 261 [𝐾] = ∫ ∫𝐵𝑇(−𝑘𝑥)𝐷𝐵(𝑘𝑥) ⅆ𝑦 ⅆ𝑧𝑦𝑧  (6) 

[𝑀] = ∫ ∫𝑁𝑇𝜌𝑁 ⅆ𝑦 ⅆ𝑧𝑦𝑧  (7) 

The matrix [𝐵] is derived from the differential operator matrix [𝐿] and the shape function 262 

matrix [𝑁].  The longitudinal direction x is transformed into the wavenumber domain, 263 

meaning the derivatives in direction x, represented by 𝑘𝑥, are computed analytically. 264 

[𝐿] =
[  
   
 𝑖𝑘𝑥 0 0 𝜕𝜕𝑦 0 𝜕𝜕𝑧0 𝜕𝜕𝑦 0 𝑖𝑘𝑥 𝜕𝜕𝑧 00 0 𝜕𝜕𝑧 0 𝜕𝜕𝑦 𝑖𝑘𝑥]  

   
 𝑇

 
(8) 

In terms of damping, a hysteretic damping model is implemented in the frequency domain 265 

method via a complex stiffness.  The stiffness matrix [𝐾] can be divided into several sub-266 

matrices, independent of the wavenumber (𝑘𝑥) and frequency (𝜔) to improve the 267 

computation effort.  After separating the numerical and analytical derivatives, Eq. (5) is 268 

defined as: 269 ([𝐾1] + 𝑖𝑘𝑥[𝐾2] + 𝑘𝑥2[𝐾3] − 𝜔2[𝑀]){𝑢𝑛} = {𝑝𝑛} 
(9) 

Assuming the system is symmetrical along its centreline, discretisation can be implemented 270 

considering only half of the domain.  After solving the global system of equations, the 271 

displacements in the transformed domain require a double inverse Fourier transform in 272 

order to obtain a solution in the space-time domain.  273 

4.1.2. Sleeper elements 274 

The 2.5D method assumes invariant geometry in the direction of train passage.  Although 275 

the approximation of discrete sleepers using an equivalent continuous formulation gives 276 

acceptable results for the frequency range of study (Knothe and Wu, 1998), to maximise 277 

accuracy an anisotropic constitutive material model is used to account for discrepancies in 278 

bending stiffness. 279 

To do so, the approach proposed by Alves Costa et al. (Alves Costa et al., 2010) and 280 

Karlstrom and Bostrom (Karlström and Boström, 2006) is used.  The sleepers are modelled 281 

as continuous and orthotropic elements, where the physical properties of the sleepers are 282 

used in the cross-section.  To do so, in the longitudinal plane, the stiffness is set as close to 283 

zero.  Therefore, the elasticity matrix [𝐷]𝑠𝑙𝑒𝑒𝑝𝑒𝑟−1  used to simulate the sleeper elements is: 284 



 

 

[𝐷]𝑠𝑙𝑒𝑒𝑝𝑒𝑟−1 =

[  
   
   
   
  1𝐸𝑥 −𝜈𝑥𝑘𝐸𝑘 −𝜈𝑥𝑘𝐸𝑘 0 0 0−𝜈𝑥𝑘𝐸𝑥 1𝐸𝑥 −𝜈𝑘𝑘𝐸𝑘 0 0 0−𝜈𝑥𝑘𝐸𝑥 −𝜈𝑘𝑘𝐸𝑘 1𝐸𝑥 0 0 00 0 0 1𝐺𝑥𝑘 0 00 0 0 0 1𝐺𝑘𝑘 00 0 0 0 0 1𝐺𝑥𝑘]  

   
   
   
  
 

(10) 

 𝐺𝑘𝑘 = 𝐸𝑘2(1+𝜈𝑘𝑘)  
 

(11) 

where 𝐸𝑘 is the Young’s modulus of the sleepers in the isotropic YZ plane; 𝜈𝑘𝑘 is Poisson’s 285 

ratio of the sleeper in the isotropic YZ plane; 𝐺𝑘𝑘 is the shear modulus in the isotropic YZ 286 

plane; 𝐸𝑥 is Young’s modulus of the sleepers in the track direction; 𝜈𝑥𝑘 is Poisson’s ratio of 287 

the sleeper in the track direction; and 𝐺𝑥𝑘 is the shear modulus in the track direction. 288 

4.1.3. Rail and rail pad elements 289 

The rails are Euler-Bernoulli beams supported by rail pads which are modelled as springs 290 

and dampers connected to the sleeper, as illustrated in Figure 3.  Since the beam is defined 291 

in the longitudinal direction of the track, the system of equations can be analytically 292 

computed in the frequency-wavenumber domain without numerical discretisation and 293 

integration, using: 294 

([𝐾1𝑟𝑎𝑖𝑙𝑝𝑎𝑑] + 𝑘𝑥4[𝐾2𝑟𝑎𝑖𝑙] − 𝜔2[𝑀𝑟𝑎𝑖𝑙]){𝑢𝑛} = {𝑝𝑛}  (12) 

[𝐾1𝑟𝑎𝑖𝑙𝑝𝑎𝑑] = [ 𝑘𝑝∗ −𝑘𝑝∗−𝑘𝑝∗ 𝑘𝑝∗ ] 
(13) 

[𝐾2𝑟𝑎𝑖𝑙] = [𝐸𝐼𝑟 00 0] (14) 

[𝑀𝑟𝑎𝑖𝑙] = [𝑚𝑟 00 0] (15) 

where 𝐸𝐼𝑟 is the bending stiffness of the rail; 𝑚𝑟 is the mass per unit length of the rail; and 295 𝑘𝑝∗  is the complex stiffness of the rail pad taking rail pad’s damping into account. In this 296 

case, 𝑘𝑝∗ = 𝑘𝑝 + 𝑖𝜔𝑐𝑝, where 𝑘𝑝 is the stiffness of the rail pad and 𝑐𝑝 is the viscous damping 297 

factor of the rail pad; {𝑢𝑛} is the vectors that collect the vertical displacements of the rail 298 

and rail pad or sleeper components. 299 

 300 

Figure 3. Rail-sleeper connection 301 



 

 

Taking into account the global system of equations, the rail pad stiffness in [𝐾1𝑟𝑎𝑖𝑙𝑝𝑎𝑑] and 302 

the rail mass per unit length in [𝑀𝑟𝑎𝑖𝑙] can be assembled with the matrices [𝐾1] and [𝑀] in 303 

Eq. (9) respectively.  The imaginary part of the matrix [𝐾1𝑟𝑎𝑖𝑙𝑝𝑎𝑑] is collected in order to form 304 

a damping matrix defined as [𝐶].  After assembling the element stiffness matrices, the 305 

generalised 2.5D finite element equilibrium equation is given by: 306 ([𝐾1] + 𝑖𝑘𝑥[𝐾2] + 𝑘𝑥2[𝐾3] + 𝑘𝑥4[𝐾4] + 𝑖𝜔[𝐶] − 𝜔2[𝑀]){𝑢𝑛(𝑘𝑥, 𝜔)} = {𝑝𝑛(𝑘𝑥, 𝜔)} 

  
(16) 

4.1.4. Perfectly matched layers 307 

The excitation induced by the passage of the train can be decomposed into two main 308 

components: (i) quasi-static load, resulting from the weight of the train; (ii) dynamic load, 309 

due to the dynamic interaction between the wheel and the rail.  In comparison to the quasi-310 

static load (at speeds below critical velocity), dynamic loading generates propagating waves 311 

in the ground and thus high performance absorbing boundaries are needed to prevent 312 

domain boundary reflections.  Perfectly matched layers consist of layers of elements with 313 

identical material properties to the region of the domain they bound. Each sub-layer within 314 

the PML domain acts to dampen outgoing waves, and therefore the combined effect of 315 

multiple sub-layers is an efficient way to maximise performance.  An example setup is 316 

shown in Figure 4, where the cross section of the 2.5D model is discretised into finite 317 

elements and bounded by adding external layers that are formed by PML’s.  The waves 318 

impinging the boundary between each domain are described by the 2.5D FEM and the 2.5D 319 

PML.  The PML mesh is 1m thick and divided into 6 sub-layers.  320 

 321 

 322 

Figure 4. Representative half-track model with PML 323 

The x coordinate is transformed to the wavenumber domain, and thus only the coordinates 324 

y and z are stretched by the PML in the complex domain.  To allow for the absorption of 325 

waves inside the PML domain, the same differential equations used in the FEM domain are 326 

modified by considering stretched coordinates �̃� and �̃�: 327 �̃� = ∫ 𝜆𝑦(𝑦) ⅆ𝑦𝑦
0  

(17) 

�̃� = ∫ 𝜆𝑧(𝑧) ⅆ𝑧𝑧
0  

(18) 

The non-zero complex valued stretching functions in the y direction (𝜆𝑦) and in the z 328 

direction (𝜆𝑧) are defined using functions: 329 



 

 

𝜆𝑦(𝑦) = 2𝜋|𝑘| 𝑦𝐻𝑦 − 𝑖 𝑘0𝑘 ( 𝑦𝐻𝑦)2
 

(19) 

𝜆𝑧(𝑧) = 2𝜋|𝑘| 𝑧𝐻𝑧 − 𝑖 𝑘0𝑘 ( 𝑦𝐻𝑧)2
 

(20) 

where 𝑘0 is a constant (e.g. Lopes et al. (Lopes et al., 2014) recommend 𝑘0 = 20); 𝐻𝑦 is the 330 

thickness of the PML in the y direction; 𝐻𝑧 is the thickness of the PML in z direction; and 𝑘 is 331 

the effective wavenumber for waves propagating along the cross-section, which is given by: 332 

𝑘 = √(𝜔𝐶𝑠)2 − 𝑘𝑥2 
(21) 

where 𝐶𝑠 is the velocity of shear wave.  333 

The coordinates 𝑦 and 𝑧 in the equilibrium equation are replaced by �̃� and �̃� respectively.  334 

The partial derivatives with respect to �̃� and �̃� are expressed using the following 335 

relationships: 336 𝜕𝜕�̃� = 1𝜆𝑦(𝑦) 𝜕𝜕𝑦 
(22) 𝜕𝜕�̃� = 1𝜆𝑧(𝑧) 𝜕𝜕𝑧 
(23) 

Since the solution within the PML domain satisfies the same differential equation as in the 337 

2.5D domain, the stiffness and mass matrices for the PML region can be derived from Eq. (6) 338 

and Eq. (7) respectively.  The differential operator [𝐿∗] is given by: 339 

[𝐿∗] =
[  
   
 𝑖𝑘𝑥 0 0 1𝜆𝑦(𝑦) 𝜕𝜕𝑦 0 1𝜆𝑧(𝑧) 𝜕𝜕𝑧  0 1𝜆𝑦(𝑦) 𝜕𝜕𝑦 0 𝑖𝑘1 1𝜆𝑧(𝑧) 𝜕𝜕𝑧  00 0 1𝜆𝑧(𝑧) 𝜕𝜕𝑧  0 1𝜆𝑦(𝑦) 𝜕𝜕𝑦 𝑖𝑘𝑥 ]  

   
 𝑇

 
(24) 

Due to the frequency dependence of the stretching functions inside the PML domain, the 340 

equilibrium condition after assembling the equations of each individual element is: 341 ([𝐾𝐹𝐸𝑀𝑔𝑙𝑜𝑏𝑎𝑙(𝑘x)] + [𝐾𝑃𝑀𝐿𝑔𝑙𝑜𝑏𝑎𝑙(𝑘x, 𝜔)] − 𝜔2([𝑀𝐹𝐸𝑀𝑔𝑙𝑜𝑏𝑎𝑙] + [𝑀𝑃𝑀𝐿𝑔𝑙𝑜𝑏𝑎𝑙(𝑘x, 𝜔)])) {𝑢𝑛(𝑘𝑥 , 𝜔)} = {𝑝𝑛(𝑘𝑥 , 𝜔)}  (25) 

where [𝐾𝐹𝐸𝑀𝑔𝑙𝑜𝑏𝑎𝑙] and [𝐾𝑃𝑀𝐿𝑔𝑙𝑜𝑏𝑎𝑙] are the global stiffness matrices of the FEM and PML 342 

domains respectively, and [𝑀𝐹𝐸𝑀𝑔𝑙𝑜𝑏𝑎𝑙] and [𝑀𝑃𝑀𝐿𝑔𝑙𝑜𝑏𝑎𝑙] are the mass matrices of the FEM and 343 

PML domains respectively.  344 

4.1.5. Soil stiffness non-linearity 345 

When train speed is high and/or axle loads are heavy, large strains can be induced in the 346 

soil, and thus the probability of non-linear stiffness behaviour increases (Dong et al., 2019; 347 

Shih et al., 2017).  This behaviour effects stress wave generation and propagation, and thus 348 

settlement, meaning it is important to capture.   349 

The typical stress-strain behaviour of track and ground during cyclic loading can be 350 

described by a nonlinear hysteretic loop (Hardin and Drnevich, 1972).  This causes the soil 351 

stiffness to decrease and the damping ratio to increase as strain increases.  To assess non-352 

linear behaviour in the frequency domain while minimising computational demand, an 353 



 

 

equivalent linear approach is used.  The shear modulus reduction curve and the damping 354 

ratio are based on an empirical equation proposed by (Ishibashi and Zhang, 1993) which 355 

requires cyclic shear strain amplitude (𝛾𝑒𝑓𝑓 in this case), mean effective confining pressure 356 

and the soil’s plasticity index as inputs.  Regarding the embankment material, the 357 

relationship proposed by (Rollins et al., 2020a) is used. 358 

An iterative procedure based on the effective octahedral shear strain is used to update the 359 

properties of each element until agreement between the material properties and strain-360 

adjusted properties is achieved.  This implementation can be summarised in the following 361 

steps: 362 

1. Start calculation assuming low strain properties for all elements 363 

2. Use Eq. (26) to compute the effective octahedral shear strain from strain time histories 364 

and select the maximum value for each element 365 

3. Use the maximum values of the effective octahedral shear strain with stiffness-strain 366 

relationship and damping-strain relationship curves (e.g. Figure 9) to compute new 367 

equivalent linear values, and update the stiffness and the damping of each element in 368 

anticipation of the next iteration.  Note that for unbounded soil regions, PML elements 369 

are updated using the properties from the closest elements within the intersecting FE 370 

domain 371 

4. Repeat steps 2-3 until the differences between both the shear modulus and damping in 372 

successive iterations fall below 3% for all elements (Alves Costa et al., 2010) 373 

As the model is used to calculate 3D stress fields, the effective octahedral shear strain is 374 

computed as: 375 

𝛾𝑒𝑓𝑓 = 𝛼 13 √(𝜀𝑥 − 𝜀𝑦)2 + (𝜀𝑥 − 𝜀𝑧)2 + (𝜀𝑦 − 𝜀𝑧)2 + 6(𝛾𝑥𝑦2 + 𝛾𝑥𝑧2 + 𝛾𝑦𝑧2 )  
(26) 

where 𝛼 is 0.65 (as typically used in seismic analysis); 𝜀𝑥, 𝜀𝑦 and 𝜀𝑧 are the strains in three 376 

directions; and 𝛾𝑥𝑦, 𝛾𝑥𝑧 and 𝛾𝑦𝑧 are the corresponding shear strains.  The non-linear 377 

calculation procedure is performed during Step A and the strain-adjusted material 378 

properties are passed to Step B for settlement calculation. 379 

 380 

4.2. Train-track interaction 381 

Accurately simulating vehicle dynamics and train-track interaction is vital for differential 382 

settlement prediction.  This is because it is the interaction between wheel and rail that 383 

induces differing dynamic forces along the track, that create track-ground stresses, which in 384 

turn govern settlement.  To simulate this, vehicle-track interaction is solved using a 385 

compliance procedure formulated in a moving frame of reference, subject to a moving train 386 

(Colaço et al., 2016; Costa et al., 2012).  As vertical differential settlement is the parameter 387 

under investigation, only vertical dynamics are considered.   388 

4.2.1. Vehicle model 389 

The equilibrium equations for the vehicle and the track are formulated separately.  Then the 390 

interaction forces between these two structural systems are calculated respecting 391 

equilibrium conditions and displacement compatibility at the connecting points.  Assuming 392 



 

 

perfect contact between train and track, any temporal instant for all connection points 393 

between the wheel and the rail is fulfilled by: 394 𝑢𝑐,𝑖 = 𝑢𝑟 (𝑡 = 𝑥−𝑎𝑖𝑣0 ) + 𝑢𝑖𝑟𝑟 (𝑡 + 𝑎𝑖𝑣0) + 𝑃𝑑𝑦𝑛,𝑖(𝑡)𝑘𝐻   
(27) 

where 𝑢𝑟 is the vertical displacement of the rail; 𝑢𝑐,𝑖is the vertical displacement at the 395 

contact point 𝑖; 𝑎𝑖 is the location of the contact point 𝑖; 𝑣0 is the moving speed of the 396 

vehicle; 𝑡 is the time; 𝑢𝑖𝑟𝑟  is the vertical track irregularity; 𝑃𝑑𝑦𝑛,𝑖 is the dynamic interaction 397 

load at the contact point 𝑖; and 𝑘𝐻 is the Hertzian stiffness. 398 

 399 

Figure 5. Multi-body vehicle model  400 

A rigid multi-body vehicle model with two levels of suspension, as proposed by Zhai and Cai 401 

(Zhai and Cai, 1997) is considered (Figure 5).  Since the analysis is performed in the 402 

frequency domain, Eq. (27) can be formed in the frequency domain using the 403 

transformation of the unevenness track for that domain.  Therefore, the dynamic 404 

interaction forces in the frequency domain are:  405 {𝐹𝑑𝑦𝑛(Ω)} = −([𝑉] + [𝑉𝐻] + [𝑇])−1{𝛥𝑢(𝛺)}  
(28) 

{𝛥𝑢(𝛺)} = 𝛿𝑢{𝑏(𝛺)} 
(29) 

𝑏(𝛺)𝑖 = 𝑒𝑖2𝜋𝜆 𝑎𝑖 (30) 

𝑇(Ω) =  12𝜋 ∫ 𝑢𝑐𝐺(𝑘𝑥, 𝜔)ⅆ𝑘𝑥+∞
−∞  

(31) 

𝑉𝐻 = 1𝑘𝐻 
(32) 

𝑉(𝛺) = [𝑍]([𝐾𝑣] − 𝛺2[𝑀𝑣]) 
−1[𝑍]𝑇 

(33) 

where Ω is the driving frequency, defined by Ω =  2𝜋𝜆 𝑣0; 𝑇 is the flexibility term of the track 406 

compliance; 𝑉 is the flexibility term of the vehicle compliance; 𝑉𝐻 is the contact flexibility 407 

matrix; 𝑍 is a constant matrix, 𝑀𝑣  is the vehicle mass matrix and 𝐾𝑣 is the vehicle stiffness. 408 

The mass and stiffness matrices of the vehicle system with primary and secondary 409 

suspensions are given in the Appendix. 410 



 

 

Regarding the Hertzian stiffness, since the dynamic portion of the contact force is typically 411 

substantially less than the static action (weight of the train per wheel), the contact stiffness 412 

can be linearised considering only the portion of the force P corresponding to the 413 

distribution of the weight of the train per wheel (Sheng et al., 2003; Wu and Thompson, 414 

2001). Therefore, a linearization procedure can be adopted, in which only the dead load 415 

transmitted by the wheelset is taken into account (Kouroussis et al., 2014). The linearised 416 

(Hertzian) contact stiffness is defined as: 417 𝑘𝐻 = 32𝐺 𝑃01 3⁄  
(34) 

where 𝑃0 is the static load transmitted by the wheel to the rail; and 𝐺 is the contact constant 418 

depending on the radius and geometry of the wheel, and rail bearing surface.  419 

4.2.2. Track irregularities 420 

The geometric irregularity of the track can be defined using either a synthetic profile or from 421 

data gathered by an in-service measurement vehicle.  Track irregularities can be described 422 

using power spectral density (PSD) as a function of spatial frequency, of which there are 423 

various formulations.  The formulation used in this work is based on the Federal Railway 424 

Administration (FRA) which divides the track into different classes for the quantification of 425 

track unevenness (Federal Railroad Administration, 1980). 426 

In contrast to artificial track irregularities, measured irregularity profiles can also be used for 427 

simulating dynamic excitation.  The raw signals from measurement are band-pass filtered to 428 

obtain signal wavelengths within the interested range.  In addition, the signals are 429 

proceeded using a transformation from the space domain into the spatial frequency 430 

domain, since the analysis is conducted in the frequency domain.  Instead of using the 431 

Fourier Transform, it is necessary to take into account the discrete nature of the digital 432 

signals.  Therefore, a Discrete Fourier Transform is applied (Cooley and Tukey, 2019) to deal 433 

with the domain transformation process of the measured track irregularity profile.  434 

 435 

4.3. Permanent strain and settlement models 436 

4.3.1. Ballast settlement 437 

The ballast settlement model is inspired by the ORE-type formulation (ORE, 1970) which 438 

depends upon the number of loading cycles, deviator stress and ballast porosity.  The 439 

empirical constants are adjusted to improve the fit with the experimental data generated by 440 

(Abadi et al., 2016). Figure 6 shows curve fits from the proposed equation and the 441 

experimental data in the settlement rate, against the logarithm of the number of load 442 

cycles.  It should be noted that the permanent strain during the first cycles is removed to 443 

avoid any effects due to the initial rapid rearrangement of ballast particles during lab 444 

testing. The proposed equation shows a strong fit with the experimental data.   445 

A key advantage of using an iterative modelling approach is that the differential settlement 446 

and track profile can be updated after every load passage.  However, this requires that the 447 

deviatoric stress must also be recalculated after every passage.  Further, the equation must 448 

be able to compute settlement for varying scenarios, including: 449 



 

 

1. The case of newly constructed or renewed/tamped track, where the ballast has only  450 

experienced minimal loading 451 

2. The case of existing ballast, where the ballast has previously been compacted under 452 

a large volume of traffic 453 

Considering these factors and the need to regularly update the track profile, an alternative 454 

form of the ORE settlement equation is required, that is able to account for the settlement 455 

of previous axle passages in its calculation.  Therefore a modified permanent strain 456 

equation, computed at every iterative step is proposed: 457 

 458 ∆𝜀𝑝_𝑏,𝑖 = 0.375(𝜎𝑑_𝑏,𝑖)2× [(1 + 0.4 𝑙𝑜𝑔10((ⅆ𝑁 ∙ 𝑖) + 𝑁𝑙𝑏))− (1 + 0.4 𝑙𝑜𝑔10((ⅆ𝑁 ∙ (𝑖 − 1)) + 𝑁𝑙𝑏))] 
The corresponding settlement is then: 

(35) 

∆𝑆𝑏,𝑖 =  ∑∆𝜀𝑝_𝑏,𝑖𝑗 ∙ ℎ𝑗𝑘
𝑗=1  

(36) 

where ∆𝜀𝑝_𝑏,𝑖 is ballast permanent strain increment; 𝑖 is iterative step; 𝜎𝑑_𝑏,𝑖 is ballast 459 

dynamic deviatoric stress relevant to traffic load (in MPa); 𝑁𝑙𝑏 is the number of load cycles 460 

after the last ballast renewal/tamping;  ∆𝑆𝑏,𝑖 is ballast settlement increment; ℎ𝑗  is the 461 

thickness of each layer; 𝑘 is number of sublayers.  ⅆ𝑁 is the frequency of load application, 462 

for example where ⅆ𝑁 = 1 indicates every load passage is simulated, and ⅆ𝑁 = 1000 463 

indicates every 1000th load passage is simulated. 464 

 465 

Figure 6. Comparison of proposed ballast settlement model with experimental data 466 

4.3.2. Subgrade settlement 467 

The subgrade settlement equation is a modified version of that proposed by Li and Selig (Li 468 

and Selig, 1996).  Similar to the approach for calculating ballast settlement, it is modified to 469 

take into account the evolution of dynamic stress and to allow for the simulation of both 470 

newly constructed track and existing subgrade.  The proposed, modified permanent strain 471 

increment and settlement increment at each iterative step are: 472 



 

 

∆𝜀𝑝_𝑠,𝑖 = 𝑎100(𝜎𝑑_𝑠,𝑖𝜎𝑠 )𝑚 [((ⅆ𝑁 ∙ 𝑖) + 𝑁𝑙𝑠)𝑏 − ((ⅆ𝑁 ∙ (𝑖 − 1)) + 𝑁𝑙𝑠)𝑏] 
 

(37) 

∆𝑆𝑠,𝑖 =  ∑∆𝜀𝑝_𝑠,𝑖𝑗 ∙ ℎ𝑗𝑘
𝑗=1  

(38) 

where ∆𝜀𝑝_𝑠,𝑖 is subgrade permanent strain increment; 𝜎𝑑_𝑠,𝑖 is subgrade dynamic deviatoric 473 

stress relevant to traffic load (in Pa); 𝜎𝑠 is soil compressive strength (in Pa); 𝑁𝑙𝑠 is the 474 

number of load cycles after the last subgrade replacement; ∆𝑆𝑠,𝑖 is subgrade settlement 475 

increment; and 𝑎, 𝑚, and 𝑏 are material parameters given in Table 1. 476 

Table 1 Settlement parameters a, b, and m for various subgrade soil types (Li and Selig, 1996) 477 

Material 

parameter 

High-plasticity 

clay (CH) 

Low-plasticity 

clay (CL) 

High-plasticity 

silt (MH) 

Low-plasticity 

silt (ML) 

a 1.20 1.10 0.84 0.64 

b 0.18 0.16 0.13 0.10 

m 2.40 2.00 2.00 1.70 

 478 

Figure 7 illustrates example settlement rates for three different cases.  Figure 7(a) is the 479 

case of new track construction (newly placed ballast and soft subgrade) where a soft 480 

subgrade provides higher settlement than the ballast in the years after construction.  481 

Alternatively, Figure 7(b) is where the track has been compacted under several years of 482 

traffic loading, but the ballast has recently been renewed.  In this case the ballast settlement 483 

exceeds the subgrade, particularly in the initial period after tamping.  The third case, as seen 484 

in Figure 7(c), shows when the ballast and subgrade have both been in place for many years.  485 

The deformation rates of both ballast and subgrade increase slowly with increased load 486 

passages.  487 

 488 



 

 

 489 

 490 

Figure 7. Ballast, subgrade, and total track settlement: (a) a newly constructed track (b) an existing track following tamping 491 
and (c) an existing track that has not recently been tamped 492 

4.3.3. Geostatic stress 493 

In addition to the stresses induced by quasi-static and dynamic loads, the stress field due to 494 

geostatic loading is also included in the settlement calculation.  The vertical stress at a given 495 

location is calculated from the mass of the overlying material: 496 𝜎𝑉 = 𝜌𝑔ℎ𝑧  
(39) 

where 𝜎𝑉 is the vertical stress; 𝜌 is the density of the overlying material; g is gravity; and ℎ𝑧 497 

is the vertical distance from the monitored point to the free surface. 498 

Considering an unsaturated soil, the total stress is equal to the effective stress due to the 499 

absence of pore water pressure.  The effective horizontal stress is approximated as a 500 

proportion of the effective vertical stress: 501 𝜎𝐻′ = 𝐾0′𝜎𝑉′  
(40) 𝜎𝐻′𝜎𝑉′ = 𝐾𝑜′ = 𝜐1−𝜐  
(41) 

where 𝐾0′ is the coefficient of lateral stress (varying between 0 and 1.0).  502 



 

 

 503 

Figure 8. Geostatic stresses at the track centre 504 

To check the accuracy of the geostatic stress calculation in the 2.5D model, geostatic 505 

stresses were calculated in the track, at the location of settlement computation.  The results 506 

are compared with results from a 3D model, simulated using commercial FE software 507 

ABAQUS (Figure 8).  The result is a strong fit. 508 

Considering the stress field in 3D, the deviatoric stress is dependent on the sum of squares 509 

of the differences of the principal stresses: 510 𝜎𝑑 = √12 × √(𝜎1 − 𝜎2)2 + (𝜎2 − 𝜎3)2 + (𝜎3 − 𝜎1)2  
(42) 

where 𝜎1, 𝜎2 and 𝜎3 are the components of the principal stresses.  Note that the total 511 

deviatoric stress includes the geo-static, quasi-static and dynamic stress components. It is 512 

calculated every 0.2m along track length (in the train passage direction) and at vertical 513 

depth intervals of 0.25m. 514 

 515 

4.4. Detailed solution procedure 516 

The previous sections outlined the general modelling strategy and key considerations.  This 517 

section describes how they fit together to form the overall modelling methodology.  Firstly, 518 

considering the two-step modelling approach (Figure 1), the sub-steps for the 519 

implementation of Step A are: 520 

1. Calculate the geostatic stresses over the cross-section of the track structure 521 

2. Determine the strain-adjusted material properties, considering non-linear material 522 

stiffness, due to quasi-static loading, using the 2.5D FEM-PML method 523 

3. Compute the moving quasi-static and dynamic load transfer functions  524 

4. Calculate the 3D stresses based on a unit load in the wavenumber-frequency domain 525 

5. Compute the matrices of track compliance and train compliance  526 

Step A only requires computation once, and when complete, the sub-steps for Step B are: 527 

1. Calculate the train-track dynamic interaction forces based on the track irregularity 528 

profile and multi-body vehicle 529 



 

 

2. Calculate the dynamic stresses along the entire track length.  The calculation is 530 

performed in the wavenumber-frequency domain and then transformed to obtain 531 

the 3D dynamic stress fields in the time-space domain 532 

3. Use the quasi-static, geostatic, and dynamic stresses to compute the deviatoric 533 

stress (𝜎𝑑) using Eq. (42) 534 

4. Compute the permanent strain increments and the settlement increments in ballast 535 

and subgrade layers according to Eqs. (35) and (37) respectively 536 

5. Obtain the differential track settlement over the entire track length 537 

6. Update the track geometry irregularity and perform a domain transformation to 538 

convert the updated signal into the spatial frequency domain 539 

7. Return to step 1 and repeat the subsequent steps using the updated track geometry 540 

irregularity 541 

8. Stop when threshold reached (e.g. total cycles or standard deviation threshold) 542 

 543 

5. Model validation 544 

The following describes three validations confirming model accuracy.  Firstly the dynamic 545 

track-ground calculation is validated, followed by the train-track interaction forces, and 546 

finally differential settlement. 547 

5.1. Validation case 1: Track-ground dynamics and non-linearity 548 

Case 1 is used to validate the model’s ability to simulate track-ground dynamics and non-549 

linear behaviour using an iterative linear equivalent procedure.  The validation is performed 550 

using data from the case of a soft soil site at Ledsgard, Sweden (Madshus and Kaynia, 2000).  551 

This site experienced large deflections under the passage of X2000 trains shortly after 552 

opening, attributed to critical velocity effects (Connolly et al., 2020; Connolly and Costa, 553 

2020), leading to soil non-linearity.  554 

Regarding the material properties at the site, the UIC60 rail is continuously supported by 555 

railpads with a stiffness of 255x106 N/m2 and a damping coefficient of 22.5x103 Ns/m2.  The 556 

sleepers are simulated using the aforementioned anisotropic constitutive model, with a 557 

Young’s modulus of 30GPa.  The low-strain soil properties are based on field test results and 558 

shown in Table 2.  The experimental data for organic clay is taken from (Alves Costa et al., 559 

2010). Embankment material properties are based on experimental data from (Dyvik and 560 

Kaynia, 2018).  Figure 9(a) and (b) show the shear modulus reduction and damping ratio 561 

curves obtained using the empirical equations proposed by (Rollins et al., 2020b) for the 562 

embankment, and (Ishibashi and Zhang, 1993) for the other soil layers.  Train loading 563 

information is available in (Dong et al., 2019). 564 

Table 2. Small-strain properties at Ledsgard 565 

Layer Thickness 

(m) 
Density 

(kg/m
3

) 

P-wave speed 

(m/s) 
S-wave speed 

(m/s) 
Damping 

ratio 

Embankment 1.2 1800 210 340 0.04 
Dry crust 1.1 1500 63 500 0.04 
Organic clay 3.5 1260 41 500 0.02 
Clay 1 4.5 1475 60 1500 0.05 
Clay 2 6.0 1475 87 1500 0.05 



 

 

Clay 3 30.0 1475 100 1500 0.05 

 566 

 567 

 568 

Figure 9. Non-linear soil characteristics (a) shear modulus reduction curves (b) damping ratio 569 

The 3D track-ground displacement contour for a 70km/h train is illustrated in Figure 10.  The 570 

deflection contours are visible and show the response propagating from the rail into 571 

supporting track-ground structure. Figure 11(a) and (b) show the examples of time histories 572 

of displacements calculated with and without considering non-linear effects, and compared 573 

with the field data for speeds of 70 km/h and 140 km/h, respectively.  It can be seen that 574 

the results predicted by the non-linear simulation are a significantly better fit than the linear 575 

simulation.  This is consistent with the works of (Dong et al., 2019) and (Alves Costa et al., 576 

2010), and confirms the model’s ability to simulate the non-linear part of the response.  577 

Figure 11(c) compares the peak upward and downward displacements between the field 578 

data, the linear simulation and the non-linear simulation for speeds ranging from 70 to 205 579 

km/h.  The comparison reveals that the results from a non-linear formulation are again a 580 

closer match with the field data.  Therefore, it can be concluded that the model is capable of 581 

accurately calculating railway track deflections, regardless of whether the strain levels 582 

induce non-linear behaviour or not. 583 

 584 



 

 

 585 

Figure 10. 3D track-ground deflection profile (slice along track centreline) 586 

 587 

 588 

Figure 11. Measured and simulated time histories of track displacements for different train speeds (Southbound): (a) speed 589 
= 70km/h (b) speed = 140km/h (c) peak displacements versus train speeds 590 



 

 

5.2. Validation case 2: Train-track interaction 591 

Case 2 is used to validate the frequency-wavenumber domain solution method for train-592 

track interaction.  This is important for accurately calculating the forces that lead to the 593 

stresses in the track-subgrade.  The validation is performed using an artificial track 594 

irregularity profile defined by FRA (Federal Railroad Administration, 1980) Class 5 for 595 

wavelengths in the range  3 < 𝜆 ≤ 25 𝑚. The model of train-track dynamic interaction in the 596 

frequency domain is validated against an equivalent time domain FE model (Thompson, 597 

2008) solved using an implicit integration scheme.  The time domain model is governed by: 598 𝐹𝑑𝑦𝑛 = 𝑖𝜔𝑟𝑌𝑟𝑌𝑟+𝑌𝑤+𝑌𝑐  (43) 

𝑌𝑟 = 𝑖𝜔𝑢𝑚𝑎𝑥𝐹𝑠𝑡𝑎  
(44) 

𝑌𝑤 = −𝑖𝜔𝑀𝑤 
(45) 

𝑌𝑐 = 𝑖𝜔𝑘𝐻 
(46) 

where 𝑖𝜔𝑟 is the roughness velocity amplitude; 𝑌𝑟 is the vertical rail mobility; 𝑌𝑤 is the 599 

wheel mobility; 𝑌𝑐 is the contact spring mobility; 𝑢𝑚𝑎𝑥  is the maximum displacement due to 600 

static load; 𝐹𝑠𝑡𝑎 is the static load; and 𝑀𝑤 is the wheelset mass. 601 

The validation is a simplified 2D model of a railway track as shown in Figure 12.  The rail is 602 

represented using an infinite Euler-Bernoulli beam supported by a single continuous elastic 603 

layer.  It has the following material properties: Young's modulus 𝐸 = 2.1𝑥1011
 𝑁/𝑚2; second 604 

moment of area 𝐼 = 30.55𝑥10−6 𝑚4; cross section area 𝐴 = 0.00763 𝑚2; density 𝜌 =605 7850 𝑘𝑔/𝑚3; and support stiffness 𝑠 = 1𝑥108
 𝑁/𝑚2.  A single axle vehicle travels across the 606 

structure at speed of 150 km/h, with wheel mass 𝑀𝑤 = 2003 𝑘𝑔.   The load on the wheel 607 

(from weight of the vehicle) is 195 𝑘𝑁.  608 

 609 

 610 

Figure 12. Simplified 2D train-track interaction problem 611 

Figure 13 shows a comparison of displacement time histories between the time domain 612 

model and the frequency domain model.  It should be noted that the displacements are only 613 

due to the dynamic load and not combined with the quasi-static load.  A good match of the 614 

results confirms the accuracy of the train-track dynamic interaction model. 615 



 

 

 616 

Figure 13. A comparison of displacement time histories due to dynamic loading  617 

 618 

5.3. Validation case 3: Differential settlement 619 

Case 3 is used to validate the model’s ability to compute the evolution of vertical track 620 

geometry with increasing axle passages.  Historical track geometry data, from a track section 621 

in the UK, is used for comparison.  The data was collected using a track recording vehicle, 622 

and the standard deviation of the vertical track irregularity profile over a 200m track length 623 

is considered.  Considering an aim of the model is to predict tamping intervals, only 624 

wavelengths in the 3-25m range are considered. 625 

The site investigation data was collated and the properties of the track and subgrade are 626 

shown in Table 3. The subgrade is ML soil type (silt) with a shear strength of 25 kPa.  The soil 627 

strength parameters a, b and m for the subgrade settlement equation are 0.64, 0.10, and 628 

1.7 respectively.  The site was specifically selected to have minimal freight traffic, thus 629 

reducing the variation in rolling-stock types.  The dominant train properties are based upon 630 

the British Rail Class 390 Pendolino as shown in Table 4. Regarding the traffic condition, the 631 

line speed is 201 km/h with annual tonnage of 37 million gross tonnes (MGT), 98% of which 632 

is passenger.  Over a year period, track geometry was measured on 04-01-2017, 26-04-2017, 633 

16-08-2017, and 16-12-2017, and no tamping took place between these dates.  634 

Table 3. Ballasted track properties 635 

Component Parameter Value 

UIC 60 Rail (single rail) 

 

 

 

Height (m) 0.172 

Length in transversal direction (m) 0.015 

Section area (m2) 7.677x103 

Moment of Inertia y-y (m4) 3.038x10-5 

Moment of Inertia z-z (m4) 0.512x10-5 

Young's modulus (Pa) 2.11x1011 

Density (kg/m3) 7850 

Poisson's ratio 0.3 

Hysteric damping coefficient 0.01 

Railpad (spring element) Continuous stiffness (N/m) 255x106 

Viscous damping (Ns2/m) 22.5x103 



 

 

Component Parameter Value 

Sleeper (G44) Height (m) 0.2 

Length in transversal direction (m) 2.5 

Sleeper spacing (m)  0.65 

Young's modulus (Pa) 3x1010 

Density (kg/m3) 2500 

Poisson's ratio 0.2 

Hysteric damping coefficient 0.01 

Ballast Height (m) 0.3 

Length in transversal direction (m) 2.8 

Young's modulus (Pa) 97x106 

Density (kg/m3) 1591 

Poisson's ratio 0.12 

Hysteric damping coefficient 0.061 

Sub-ballast Height (m) 0.5 

Length in transversal direction (m) 3.5 

Young's modulus (Pa) 212x106 

Density (kg/m3) 1913 

Poisson's ratio 0.3 

Hysteric damping coefficient 0.054 

Subgrade  Young's modulus (Pa) 60x106 

Density (kg/m3) 2000 

Poisson's ratio 0.35 

Hysteric damping coefficient 0.03 

 636 

Table 4. Pendolino (Class 390) parameters 637 

Parameter Value 

Axle spacing (m) 2.7 

Bogie spacing (m) 17 

Car body mass (kg) 475x102 

Car body pitching moment of inertia (kg.m2) 206x104 

Bogie mass (kg) 2325 

Wheelset mass (kg) 1750 

Bogie pitching moment of inertia (kg.m2) 3000 

Primary suspension stiffness (Nm-1) 258x103 

Primary suspension viscous damping (Nsm-1) 4250 

Secondary suspension stiffness (Nm-1) 410x103 

Secondary suspension viscous damping (Nsm-1) 200x102 

 638 

The initial vertical track profile, measured on 04-01-2017 was used as the starting geometry.  639 

The model then simulated and updated the track geometry profile, after every individual 640 

load passage, based upon expected MGT.  Over the course of almost a year, the evolving 641 

track geometry profiles are shown in Figure 14.  The predicted profile for the final track 642 

recording is also shown and compared against the numerical simulation.  It is seen that the 643 

amplitudes are closely matched in phase and amplitude.  There are some discrepancies, 644 

however these are most likely due to varying track-ground material properties along the 645 



 

 

track section, which are difficult to capture from a single-point site investigation, and the 646 

fact that the true traffic was not 100% Pendolino rolling stock. 647 

 648 

Figure 14. Vertical track profile.  Predicted profile vs field data 649 

Figure 15 compares the recorded and predicted evolution of geometry SD at the site.  The 650 

rectangular markers are the real geometry SD from the recording car, and the red marker is 651 

the SD of the initial vertical track profile.  The blue solid line is the predicted geometry SD 652 

updated after every load cycle during simulation. Compared to the real data, it is seen that 653 

the predicted geometry SD curve is a strong match to the recording data.  This result, 654 

combined with the results in Figure 14, shows the strong ability of the model to accurately 655 

predict differential settlement and standard deviation evolution.  656 

 657 

Figure 15. Evolution of standard deviation with time. Predicted values vs field data 658 

 659 

6. Analysis 660 

The validated model is used to perform 2 analyses.  First it is used to analyse the effect of 661 

the frequency of updating track geometry on differential settlement.  Three cases are 662 

simulated: updating it after every axle passage, updating after every 10 passages, and also 663 

after every 100 passages.  Secondly, the model is used to investigate the role of settlement 664 



 

 

parameters in the subgrade settlement model.  Four cases are simulated: a low-plasticity silt 665 

(ML), a high-plasticity silt (MH), a low-plasticity clay (CL), and a high-plasticity clay (CH).  666 

Prior to the analyses the model input properties are defined. 667 

 668 

6.1. Model properties 669 

Figure 16 shows the finite element mesh used for the numerical analysis.  The 670 

characteristics of the rails, rail pads, sleepers, ballast and sub-ballast are the same as 671 

described in Table 3.  Two different subgrades are considered, with their geotechnical 672 

properties shown in Table 5.  They are chosen to represent a stiff and soft soil respectively, 673 

with Young’s modulus being their only differentiating parameter.  The vehicle is a Pendolino 674 

train travelling at 201 km/h, with properties shown in Table 4.  675 

 676 

Figure 16. Finite element mesh 677 

Table 5 Subgrade properties 678 

Parameter Soil case 1 Soil case 2 

Young's modulus (Pa) 120x106 60x106 

Density (kg/m3) 2000 2000 

Poisson's ratio 0.3 0.3 

Hysteric damping coefficient 0.03 0.03 

Primary wave speed (m/s) 284 201 

Secondary wave speed (m/s) 152 107 

 679 

6.2. Track irregularity  680 

A synthetic irregularity profile is used, where the irregularities are generated using a PSD 681 

function, where the spatial frequency is 𝑘𝑥 = 2𝜋𝜆𝑖𝑟𝑟, and 𝜆𝑖𝑟𝑟 represents the wavelength of the 682 

irregularity.  The formulation is based on FRA (Federal Railroad Administration, 1980) and 683 

has the following form: 684 



 

 

𝑆𝑛(𝑘𝑥) =  𝐴𝑘32(𝑘𝑥2 + 𝑘22)𝑘𝑥4(𝑘𝑥2 + 𝑘32)  
(47) 

where 𝐴 is a roughness constant, while 𝑘2 𝑎𝑛ⅆ 𝑘3 spatial frequency constants.  685 

After computing the PSD, the amplitude of unevenness in terms of the spatial frequency is: 686 𝛿𝑢𝑗 = (√2𝑆𝑛 (𝑘𝑥𝑗)∆𝑘𝑥)𝑒−𝑖𝜃𝑗   
(48) 

where ∆𝑘𝑥 is the resolution retained for the spatial frequency, and 𝜃 is phase angle, taken 687 

as a random variable with uniform distribution in the range 0 to 2π.  688 

Since the track quality is defined using SD over distance along track, the initial track profile 689 

in terms of position x is obtained using: 690 𝑢𝑖𝑟𝑟(𝑥) =  ∑ 𝛿𝑢𝑗𝑒𝑖𝑘𝑥𝑗𝑥𝑁𝑗=1   
(49) 

 691 

6.3. Influence of updating the track geometry after each axle load  692 

To understand how frequently the track geometry profile requires updating between load 693 

passage simulations, the two subgrade cases are subject to 100,000 axle loads.  The 694 

simulations are performed with three different values of: dN=1, 10 and 100.  This means the 695 

track irregularity profile, train-track dynamic interaction forces, and deviatoric stresses are 696 

updated every 1, 10, and 100 load passages until the total number of passages is reached.  697 

In practical terms, considering an initial track geometry, dN=100 means that all profile 698 

changes due to the next 100 axle loads are not explicitly modelled.  Instead, after 100 cycles, 699 

the model attempts to update the profile considering the cumulative change due to the 700 

previous 100 cycles.   701 

The number of loading applications after the last renewal of ballast and subgrade, 702 𝑁𝑙𝑏 and 𝑁𝑙𝑠, are equal to zero, representing the case of newly constructed track that has 703 

only experienced minimal traffic loading.  Both subgrade soils are silty sand, with material 704 

parameters (a, m, b) given in Table 1. 705 

The initial track irregularity profile is artificially generated using the PSD function defined by 706 

FRA, considering 40 frequencies, and is shown in Figure 17.  In order to represent a new 707 

track, constructed to tight tolerances and prior to significant train loading, the value of 708 

parameter A is set as 0.29x10-8 m2-rad/m.   709 

 710 

Figure 17. Initial track irregularity profile 711 

 712 



 

 

Considering Soil case 1 (high stiffness soil), Figure 18(a) shows the change in geometry 713 

standard deviation versus load cycles, for dN=1, dN=10, and dN=100.  After 100k cycles, it is 714 

seen that dN = 1 results in the highest standard deviation, while dN=100 results in the track 715 

geometry with lowest standard deviation.  The discrepancy between using dN=10 rather 716 

than dN=1 is 2.17%, while the discrepancy between using dN=100 rather than dN=1 is 717 

3.62%.   718 

Similar findings are true for Soil case 2 (lower stiffness soil), however the effect is more 719 

pronounced, as shown in Figure 18(b).  dN=1 results in the highest standard deviation, while 720 

dN=100 results in the lowest.  The discrepancy between using dN=10 rather than dN=1 is 721 

32.07%, while the discrepancy between using dN=100 rather than dN=1 is 65.43%.   722 

These findings indicate that it is important to update the track geometry profile as 723 

frequently as possible, and ideally after every load passage.  Although this implies increased 724 

computational effort, if not adhered to, then the full effect of train-track interaction on 725 

differential settlement is not captured.  This is particularly true for softer soils where the 726 

effect is amplified. 727 

 728 

 729 

Figure 18. Track geometry evolution versus profile update frequency: (a) high stiffness subgrade; (b) low stiffness subgrade 730 

 731 

6.4. Influence of subgrade material properties  732 

The subgrade material model is characterised by: 1) elastodynamic properties, that describe 733 

the propagation of stress fields, and 2) settlement properties that describe how these stress 734 



 

 

fields result in settlement.  To understand the relation between these properties, a 735 

sensitivity analysis is performed by changing the Young’s modulus and also the settlement 736 

parameters (a, b and m).  The two Young’s modulus properties are shown in Table 5, while 737 

the four settlement combinations are shown in Table 1.  It should be noted that the 738 

sensitivity analysis was performed to understand the relationship between parameters, 739 

rather than to attempt to simulate any specific soil types.  740 

Figure 19 shows the change in geometry standard deviation versus load cycles, for changing 741 

settlement parameters: ML, MH, CL, CH, and for the stiff and soft soils.  Considering Soil 742 

case 1 (stiff), the standard deviation for a ML soil is 0.149mm.  For the other soil types, the 743 

standard deviation increases by 4.09%, 7.84% and 16.49% for MH, CL and CH respectively.  744 

Similar is true for Soil case 2 (soft), where the same soil types cause increases of 4.74%, 745 

8.38% and 20.66% respectively.  Therefore it can be concluded that the higher the clay 746 

content in the soil, the larger the settlement.  However, although the settlement 747 

parameters have a marked difference on track geometry, the difference between the soft 748 

and stiff soil is even greater.  The soft soil has a significantly higher standard deviation for all 749 

settlement parameters, which shows the importance of subgrade stiffness on track 750 

performance. 751 

 752 

Figure 19. Track geometry evolution for varying subgrade properties 753 

It is seen that both elastodynamic and settlement properties significantly influence on the 754 

evaluation of track geometry profile and deterioration.  These properties are directly 755 

relevant to different soil types.  However, there are still a number of influential variables 756 

that affect the track and the vehicle.  Therefore, design charts can possibly be developed 757 

after performing more analyses.  758 

 759 

7. Conclusions 760 

Track geometry is an important parameter for scheduling track maintenance operations.  761 

Therefore this paper presents a novel numerical approach, capable of predicting track 762 



 

 

irregularity evolution for a wide range of situations.  It has the following novel 763 

characteristics: 764 

1. It’s solved using a mixed frequency-wavenumber and time-space approach.  This 765 

optimised solution procedure then allows for the track geometry profile to be 766 

updated after every load passage 767 

2. The track and ground are fully coupled and modelled explicitly. This allows for 3D 768 

stress fields to be computed, which are important for accurate settlement 769 

calculation 770 

3. The effect of strain on track and ground material properties is accounted for using an 771 

iterative equivalent linear approach 772 

4. Modified settlement laws are used that can account for the differing forces induced 773 

due to evolving track profiles 774 

Three aspects of the model are validated.  These are its ability to accurately simulate track 775 

deflections and non-linearity, its ability to model train-track interaction, and its ability to 776 

predict future changes in vertical track profile.  The validated model is then used to 777 

investigate the influence of updating the track geometry after each axle load on the 778 

differential settlement prediction.  This confirms the importance of updating the track 779 

geometry profile as frequently as possible, particularly for softer soils.  In addition, the 780 

effect of changing the elastodynamic and settlement properties of the subgrade are 781 

investigated.  It is shown that stiffer soils give rise to markedly reduced settlement, thus 782 

highlighting the need for well-constructed track subgrade. 783 
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  964 

Appendix. Vehicle mass and stiffness matrices 965 

Mass and stiffness matrices of the vehicle system: 966 

[𝑍] = [0000
0000

0000
0000

0000
0000

1000
0100

0010
0001] (50) 

[𝑀𝑣] =
[  
   
   
 𝑀𝑐000000000

0𝐽𝑐00000000

00𝑀𝑏0000000

000𝐽𝑏000000

0000𝑀𝑏00000

00000𝐽𝑏0000

000000𝑀𝑤000

0000000𝑀𝑤00

00000000𝑀𝑤0

000000000𝑀𝑤]  
   
   
 
 

(51) 

[𝐾𝑣] =
[  
   
   
 2𝐾𝑠0−𝐾𝑠0−𝐾𝑠00000

02𝐾𝑠 ∙ 𝑙𝑏2−𝐾𝑠 ∙ 𝑙𝑏0𝐾𝑠 ∙ 𝑙𝑏00000

−𝐾𝑠−𝐾𝑠 ∙ 𝑙𝑏𝐾𝑠 + 2𝐾𝑝000−𝐾𝑝−𝐾𝑝00

0002𝐾𝑝 ∙ 𝑙𝑤200−𝐾𝑝 ∙ 𝑙𝑤𝐾𝑝 ∙ 𝑙𝑤00

−𝐾𝑠𝐾𝑠 ∙ 𝑙𝑏00𝐾𝑠 + 2𝐾𝑝000−𝐾𝑝−𝐾𝑝

000002𝐾𝑝 ∙ 𝑙𝑤200−𝐾𝑝 ∙ 𝑙𝑤𝐾𝑝 ∙ 𝑙𝑤

00−𝐾𝑝−𝐾𝑝 ∙ 𝑙𝑤00𝐾𝑝000

00−𝐾𝑝𝐾𝑝 ∙ 𝑙𝑤000𝐾𝑝00

0000−𝐾𝑝−𝐾𝑝 ∙ 𝑙𝑤00𝐾𝑝0

0000−𝐾𝑝𝐾𝑝 ∙ 𝑙𝑤000𝐾𝑝 ]  
   
   
 
 

(52) 

where 𝑀𝑐 is mass of the car box; 𝑀𝑏 is mass of the bogie; 𝑀𝑤 is mass of the wheelset; 𝐽𝑏 is 967 

the rotation inertia of the car body; 𝐾𝑝 is the complex stiffness of the primary suspension; 968 𝐾𝑠 is the complex stiffness of the secondary suspension; 𝑙𝑏 is half the distance between the 969 

bogie's centre of gravity; and 𝑙𝑤 is half the wheelbase that shares the same bogie. 𝐾𝑝 and 970 𝐾𝑠 are defined as: 971 𝐾𝑝 = 𝑘𝑝𝑟𝑖 + 𝑖𝜔𝑐𝑝𝑟𝑖 (53) 

𝐾𝑠 = 𝑘𝑠𝑒𝑐 + 𝑖𝜔𝑐𝑠𝑒𝑐 
(54) 

where 𝑘𝑝𝑟𝑖 is the spring stiffness of the primary suspension; 𝑘𝑠𝑒𝑐 is the spring stiffness of 972 

the secondary suspension; 𝑐𝑝𝑟𝑖 is the viscous damping of the primary suspension; and 𝑘𝑠𝑒𝑐 is 973 

the viscous damping of the secondary suspension. 974 

 975 

 976 


