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KRONECKER POSITIVITY AND 2-MODULAR

REPRESENTATION THEORY

C. BESSENRODT, C. BOWMAN, AND L. SUTTON

Abstract. This paper consists of two prongs. Firstly, we prove that any
Specht module labelled by a 2-separated partition is semisimple and we com-
pletely determine its decomposition as a direct sum of graded simple modules.
Secondly, we apply these results and other modular representation theoretic
techniques on the study of Kronecker coefficients and hence verify Saxl’s con-
jecture for several large new families of partitions. In particular, we verify
Saxl’s conjecture for all irreducible characters of Sn which are of 2-height
zero.

Introduction

This paper brings together, for the first time, the two oldest open problems in
the representation theory of the symmetric groups and their quiver Hecke algebras.
The first problem is to understand the structure of Specht modules and the second
is to describe the decomposition of a tensor product of two Specht modules — the
Kronecker problem.

Kronecker positivity. The Kronecker problem is not only one of the central open
problems in the classical representation theory of the symmetric groups, but it is
also one of the definitive open problems in algebraic combinatorics as identified by
Richard Stanley in [Sta00]. The problem of deciding the positivity of Kronecker
coefficients arose in recent times also in quantum information theory [Kly04,CM06,
CHM07,CDW12] and Kronecker coefficients have subsequently been used to study
entanglement entropy [CSW18].

A new benchmark for the Kronecker positivity problem is a conjecture of Heide,
Saxl, Tiep and Zalesskii [HSTZ13] that was inspired by their investigation of the
square of the Steinberg character for simple groups of Lie type. It says that for
any n �= 2, 4, 9 there is always a complex irreducible character of Sn whose square
contains all irreducible characters of Sn as constituents. For n a triangular number,
an explicit candidate was suggested by Saxl in 2012: Let ρ := ρ(k) = (k, k− 1, k −
2, k − 3, . . . , 2, 1) denote the kth staircase partition. Phrased in terms of modules,
Saxl’s conjecture states that all simple modules appear in the tensor square of the
simple CSn-module DC(ρ). In other words, we have that

DC(ρ)⊗DC(ρ) =
⊕

λ

g(ρ, ρ, λ)DC(λ)
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with g(ρ, ρ, λ) �= 0 for all partitions λ of n. This conjecture has been studied by
algebraists, probabilists, and complexity theorists [Bes18, Ike15, LS17,PPV16] yet
remains to be proved in general. Positivity of the Kronecker coefficient g(ρ, ρ, λ)
has been verified for hooks and two-row partitions when n is sufficiently large in
[PPV16], and then for arbitrary n and λ a hook in [Ike15,Bes18] or a double-hook
partition (i.e., when the Durfee size is 2) in [Bes18], and for any λ comparable to ρ
in dominance order in [Ike15].

This paper begins with the observation that the kSn-module Dk(ρ) is projec-
tive over a field k of characteristic p = 2, or equivalently, that the character to
the Specht module DC(ρ) = SC(ρ) is the character ξρ associated to a projective
indecomposable kSn-module (via its integral lift to characteristic 0). Therefore,
the tensor square of Dk(ρ) is again a projective module, and the square of ξρ is the
character to a projective module. This allows us to bring to bear the tools of mod-
ular and graded representation theory on the study of the Kronecker coefficients.
In particular, we deduce that if Dk(λ) = Sk(λ) is a simple Specht module, then
all constituents of the projective cover of Dk(λ) must also appear in Saxl’s tensor-
square. For example, using this property for the trivial simple module Dk((n))
of Sn at characteristic 2 gives all characters of odd degree as constituents in the
Saxl square; more generally, we will detect all irreducible characters of 2-height 0
as constituents. Our aim is to understand the columns of the 2-modular graded
decomposition matrix which are labelled by simple Specht modules and to utilise
these results towards Saxl’s conjecture.

Modular representation theory. The classification of simple Specht modules
for symmetric groups and their Hecke algebras has been a massive undertaking
involving over 30 years of work [Jam78, JM96, JM97, JM99, Fay04, Fay05, JLM06,
Lyl07,FL09,Fay10,FL13], with some conjectural cases for e = 2 and p �= 2 still to
be verified. The pursuit of a description of semisimple and decomposable Specht
modules is similarly old [Jam78] and yet has proven a much more difficult nut to
crack. The decomposable Specht modules labelled by hook partitions were charac-
terised by Murphy and Speyer [Mur80,Spe14]; the graded decomposition numbers
of these Specht modules were calculated by Chuang, Miyachi, and Tan [CMT04];
the first examples of decomposable Specht modules labelled by non-hook partitions
were given by Dodge and Fayers [DF12]; Donkin and Geranios very recently unified
and extended these results to certain “framed staircase” partitions [DG18] which
we will discuss (within the wider context of “2-separated” partitions) below. It
is worth emphasising that for e > 2, all Specht modules are indecomposable and
therefore questions of decomposability and (non-simple) semisimplicity are inher-
ently 2-modular problems.

For HC
−1(n), we show that any Specht module labelled by a 2-separated partition

is semisimple and we completely determine its decomposition as a sum of graded
simple modules. Our proof makes heavy use of recent results in the graded repre-
sentation theory of Hecke and rational Cherednik algebras. We shall denote the
quantisations of the Specht and simple modules by Sk

q(λ) and Dk
q(λ) respectively

over k. We completely determine the rows of the graded decomposition matrix
of HC

−1(n) labelled by 2-separated partitions; this serves as a first approximation
to our goal and subsumes and generalises the results on decomposability and de-
composition numbers of Specht modules for hook partitions (belonging to blocks
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of small 2-core) [Spe14,CMT04], and results on decomposition numbers of Specht
modules in blocks of enormous 2-cores [JM96].

Graded decomposition numbers of semisimple Specht modules. The par-
titions of interest to us (for both Saxl’s conjecture and our decomposability classi-
fication) are the 2-separated partitions. Such partitions are obtained by taking a
staircase partition, τ , and adding 2 copies of a partition λ to the right of τ and 2
copies of a partition μ to the bottom of τ in such a way that λ and μ do not touch
(except perhaps diagonally). Such partitions, denoted τλμ , can be pictured as in
Figure 1.

+2λ

+
2
μ

=

Figure 1. A 2-separated partition τλμ (see Definition 1.6)

Notice that if the weight of a block is small compared to the size of the core,
then all partitions in that block are 2-separated. We emphasise that the size of
the staircase ρ(k) in the following statement is immaterial (provided that k + 1 �

ℓ(λ) + ℓ(μT ), where ℓ(λ) denotes the length of the partition λ), and so we simply
write τ := ρ(k). For those interested in the extra graded structure, we refer the
reader to the full statement in Corollary 4.2.

Theorem A. Let τλμ denote a 2-separated partition of n.

The HC
−1(n)-module SC

−1(τ
λ
μ ) is semisimple and decomposes as a direct sum of

simples as follows

SC

−1(τ
λ
μ ) =

⊕

ν

c(νT , λT , μ)DC

−1(τ
ν
∅),

where c(νT , λT , μ) is the Littlewood–Richardson coefficient labelled by this triple of
partitions.

In particular, there exist many blocks of HC
−1(n) (those with large cores) for

which all Specht modules in the block are semisimple. In [DF12] Dodge and Fayers
remark that “every known example of a decomposable Specht module is labelled by
a 2-separated partition” and “it is interesting to speculate whether the 2-separated
condition is necessary for a Specht module to be decomposable”. In fact in Section
6 we show that their speculation is not true by exhibiting two infinite families of
decomposable Specht modules obtained by “inflating” the smallest decomposable
Specht module (indexed by (3, 12)).

Theorem A implies that all known examples of decomposable Specht modules for
Sn are obtained by reduction modulo p = 2 from decomposable semisimple Specht
modules for HC

−1(n).
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Applications to Kronecker coefficients. We now discuss the results and in-
sights which 2-modular representation theory affords us in the study of Kronecker
coefficients. We verify the positivity of the Kronecker coefficients in Saxl’s con-
jecture for a large new class of partitions, and propose conjectural strengthened
and generalised versions of Saxl’s original conjecture. Our first main theorem on
Kronecker coefficients is as follows:

Theorem B. Let λ ⊢ n = k(k+1)/2 such that χλ is of 2-height 0. Then g(ρ, ρ, λ) >
0. In particular, all χλ of odd degree are constituents of the Saxl square.

Figure 2. Examples of partitions which label 2-height 0 charac-
ters for S28 and S36 (and therefore label constituents of Saxl’s
tensor square by Theorem B). There are 672 and 1417 such char-
acters for these groups, respectively. A combinatorial construction
of all such partitions (for arbitrary n ∈ N) is given in Subsection
1.4.

We now shift focus to the Kronecker coefficients labelled by 2-separated parti-
tions. In what follows, we shall write g(ρ, ρ, τλμ ) for the Kronecker coefficient la-
belled by a staircase ρ of size n = k(k+1)/2 for some k ∈ N and some 2-separated
partition τλμ of n; in other words, we do not encumber the notation by explicitly
recording the size of the staircases involved.

Theorem C. For (α, β) a k-Carter–Saxl pair (as in Theorem 5.10) we have that

g(ρ, ρ, α) � k. In particular, all framed staircase partitions τ
(a)

(1b)
appear in the Saxl

square.

We do not recall the definition of a k-Carter–Saxl pair here, but rather discuss
some examples and consequences of Theorem B. In particular, Theorem B implies
that every 2-block contains a wealth of constituents of the Saxl square SC(ρ) ⊗
SC(ρ) which can be deduced using our techniques. Carter–Saxl pairs cut across
hook partitions, partitions of arbitrarily large Durfee size, symmetric and non-
symmetric partitions, partitions from arbitrary blocks, and across the full range
of the dominance order. (In fact, the only common trait of these partitions is
that they label semisimple Specht modules for HC

−1(n).) We shall illustrate below
that the property of being a Carter–Saxl pair is actually very easy to work with
diagrammatically. For example, the above theorem includes the infinite family of
“framed staircases” as some of the simplest examples: these are partitions which
interpolate hooks and staircases. More explicitly, these are the partitions of the

form α = τ
(a)

(1b)
. These can be pictured as in Figure 3 below.

We wish to provide bounds on the Kronecker coefficients: the maximal possible
values obtained by Kronecker products are studied in [PPV16], and the Kronecker
products whose coefficients are all as small as possible (namely all 0 or 1) are
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Figure 3. Some examples of framed staircases: α = τ
(13)
(18) , τ

(9)
(16),

τ
(7)
(15), and τ = ρ(9) are all partitions of n = 45. Up to conjugation,

there are 35 framed staircase partitions of n = 45. The classifica-
tion of decomposable Specht modules labelled by framed staircases
is the main result of [DG18]. In Theorem 5.5 we prove Saxl’s con-
jecture for all framed staircase partitions. The key ingredient in

our proof is that (τ
(a)

(1b)
, τ

(a+b)
∅ ) is a 1-Carter–Saxl pair for a, b ∈ N.

classified in [BB17]. For constituents to partitions of depth at most 4, explicit
formulae for their multiplicity in squares were provided by Saxl in 1987, and later
work by Zisser and Vallejo, respectively. For the Kronecker coefficients studied here,
the easiest (and well known) non-trivial case is g(ρ(k), ρ(k), (n − 1, 1)) = k − 1,
so the Kronecker coefficients are even unbounded; this also holds for the other
families corresponding to partitions of small depth. Lower bounds coming from
character values on a specific class were obtained by Pak and Panova in [PP17],
where also the asymptotic behaviour of the multiplicity of special constituents is
studied. Theorem B allows us to provide explicit lower bounds on the Kronecker
coefficients g(ρ(k), ρ(k), λ) for new infinite families of Saxl constituents, where again
the multiplicities are unbounded.

We now provide some examples of more complicated Carter–Saxl pairs. For
n = 78, if we first focus on the (unique) block of weight w = 6 we find 7 constituents
in this block labelled by framed staircases as well as the Carter–Saxl pairs given
(up to conjugation) in Figure 4 below.

Figure 4. More examples of coefficients g(ρ, ρ, τλμ ) > 0. These
belong to the block of weight 6 for the symmetric group of rank
78. We have that each of τλμ belongs to a Carter–Saxl pair of the

form (τλμ , τ
(3,2,1)
∅ ).

Finally, we propose two extensions of Saxl’s conjecture based on its modular
representation theoretic interpretation. The first conjecture reduces the problem to
the case of 2-regular partitions, but at the expense of working in the more difficult
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modular setting. We remark that towards Saxl’s conjecture over C, it has already
been verified that for any 2-regular partition λ of n = k(k + 1)/2 the Kronecker
coefficient g(ρ(k), ρ(k), λ) is positive [Ike15], and so it is natural to hope that this
can be extended to positive characteristic.

Strengthened Saxl Conjecture. Let k be a field of characteristic 2. We have
that

dimk

(
HomSn

(
Dk(ρ(k))⊗Dk(ρ(k)),Dk(λ)

))
> 0

for any 2-regular partition λ of n = k(k + 1)/2. Equivalently: Saxl’s 2-modular
tensor square contains all indecomposable projective modules as direct summands
with positive multiplicity.

What could be a suitable candidate for arbitrary n, not just triangular numbers?

Generalised Saxl Conjecture. For n ∈ N there exists a symmetric p-core λ for
some p � n such that DC(λ)⊗DC(λ) contains all simple CSn-modules with positive
multiplicity.

While this sounds reasonable, in fact, for larger n it hardly restricts the search
for a good candidate as almost any partition of n is then a p-core for some p � n.
So as a guide towards finding a simple module DC(λ) whose tensor square contains
all simples, one would try to find a suitable symmetric p-core for a small prime p.

1. The Hecke algebra

Let k be a commutative integral domain. We let Sn denote the symmetric group
on n letters, with presentation

Sn = 〈s1, . . . , sn−1 | sisi+1si = si+1sisi+1, s
2
i = 1, sisj = sjsi for |i− j| > 1〉.

We are interested in the representation theory (over k) of symmetric groups and
their deformations. Given q ∈ k, we define the Hecke algebra Hk

q (n) to be the
unital associative k-algebra with generators T1, T2, , . . . , Tn−1 and relations

(Ti − q)(Ti + 1) = 0 TiTj = TjTi, TiTi+1Ti = Ti+1TiTi+1

for |i−j| > 1. We let e ∈ N be the smallest integer such that 1+q+q2+· · ·+qe−1 = 0
or set e = ∞ if no such integer exists. If k is a field of characteristic p and p = e ,
then Hk

q (n) is isomorphic to kSn.
We define a composition, λ, of n to be a finite sequence of non-negative integers

(λ1, λ2, . . .) whose sum, |λ| = λ1 + λ2 + . . . , equals n. If the sequence (λ1, λ2, . . .)
is weakly decreasing, we say that λ is a partition; we denote the set of all partitions
of n by Pn. The number of non-zero parts of a partition, λ, is called its length,
ℓ(λ); the size of the largest part is called the width, w(λ) = λ1. Given λ ∈ Pn, its
Young diagram [λ] is defined to be the configuration of nodes,

[λ] = {(r, c) | 1 ≤ r ≤ ℓ(λ), 1 � c � λr}.

The conjugate partition, λT , is the partition obtained by interchanging the rows
and columns of λ; when λ = λT , the partition λ is said to be symmetric. Given a
node (r, c) ∈ [λ] we define the content to be ct(r, c) = c− r and the (e-)residue to be
the value of ct(r, c) modulo e. We now recall the dominance ordering on partitions.
Let λ, μ be partitions. We write λ � μ if

∑

1�i�k

λi �
∑

1�i�k

μi for all k � 1.
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If λ � μ and λ �= μ we write λ � μ. For λ, ν partitions such that λ ⊆ ν, we define
the skew diagram, denoted [ν \ λ] := [ν] \ [λ], to be the set difference between the
Young diagrams of λ and ν.

Given λ ∈ Pn, we define a tableau of shape λ to be a filling of the nodes of
the Young diagram of λ with the numbers {1, . . . , n}. We define a standard tableau

to be a tableau in which the entries increase along both the rows and columns of
each component. We let Std(λ) denote the set of all standard tableaux of shape
λ ∈ Pn. We extend this to (standard) skew tableaux of shape ν \ λ in the obvious
fashion. Given t ∈ Std(λ), we set Shape(t) = λ. Given 1 � k � n, we let t↓{1,...,k}
be the subtableau of t whose entries belong to the set {1, . . . , k}. We write t � s if
t↓{1,...,k} � s↓{1,...,k} for all 1 � k � n and refer to this as the dominance order on

Std(λ).
We let tλ and tλ denote the most and least dominant tableaux respectively. We

let wλ ∈ Sn be the permutation such that wλt
λ = tλ. For example, w(3,2,1) =

(2, 4)(3, 6) and

t(3,2,1) =
1 2 3

4 5

6

t(3,2,1) =
1 4 6

2 5

3

.

Definition 1.1. Given λ a partition of n, we set Sλ = Sλ1
×Sλ2

. . . � Sn and
we set

xλ =
∑

w∈Sλ

Tw yλ =
∑

w∈Sλ

(−q)ℓ(w)Tw

and we define the Specht module, Sk
q(λ), to be the left Hk

q (n)-module

Sk

q(λ) := Hk

q (n)yλTwλ
xλ.

Remark 1.2. Letting k = C and specialising q = 1 we have that Hk
q (n) is isomorphic

to CSn. In this case, we drop the subscript on the Specht modules and we have
that

{SC(λ) | λ ∈ Pn}

provide a complete set of non-isomorphic simple CSn-modules. We let χλ denote
the character of the complex irreducible module SC(λ).

1.1. Modular representation theory. Let k be a field and q ∈ k. The group
algebra of the symmetric group kSn is a semisimple algebra if and only if k is a
field of characteristic p > n. By a result of Dipper and James, the Hecke algebra
of the symmetric group is a non-semisimple algebra if q is a primitive eth root of
unity for some e � n or q = 1 and k is a field of characteristic p � n. We shall now
recall the basics of the non-semisimple representation theory of these algebras.

Modular representation theory seeks to deconstruct the non-semisimple repre-
sentations of an algebra in terms of their simple constituents. To this end, we
define the radical of a finite-dimensional A-module M , denoted rad(M), to be the
smallest submodule of M such that the corresponding quotient is semisimple. We
then let rad2M = rad(radM) and inductively define the radical series, radiM , of

M by radi+1M = rad(radiM). We have a finite chain

M ⊃ rad(M) ⊃ rad2(M) ⊃ · · · ⊃ radi(M) ⊃ radi+1(M) ⊃ · · · ⊃ rads(M) = 0.

In the non-semisimple case, the Specht modules are no longer simple but they
continue to play an important role in the representation theory of Hk

q (n) as we
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shall now see. We say that a partition λ = (λ1, λ2, . . . , λℓ) is e-regular if there is
no 1 � i � ℓ such that λi = λi+1 = · · · = λi+e−1 > 0. We let Re

n denote the set of
all e-regular partitions of n. Occasionally, we will also use the notation λ ⊢e n in
place of λ ∈ Re

n. For k an arbitrary field, we have that

(1.1) {Dk

q(μ) | D
k

q(μ) = Sk

q(μ)/rad(S
k

q(μ)), μ ∈ R
e
n}

provides a full set of non-isomorphic simple Hk
q (n)-modules. Of course, the radical

of a Specht module is not easy to compute! The passage between the Specht and
simple modules is recorded in the decomposition matrix,

(dkλμ)λ∈Pn
μ∈Re

n

dkλμ = [Sk

q(λ) : D
k

q(μ)],

where [Sk
q(λ) : Dk

q(μ)] denotes the multiplicity of Dk
q(μ) as a composition factor

of Sk
q(λ). This matrix is uni-triangular with respect to the dominance ordering on

Pn. We have already seen in equation (1.1) that every column of the decomposition
matrix contains an entry equal to 1; namely if μ ∈ Re

n then dμ,μ = 1. We now recall
James’ regularisation theorem, which states that every row of the decomposition
matrix contains an entry equal to 1 (and identifies this entry).

λ =

♠

♦

♣

♥

R(λ) = ♣ ♥

♠ ♦

Figure 5. The partition λ = τ
(1)
(12)(4), its 2-regularisation R(λ)

Example 1.3. We picture a partition λ and its 2-regularisation R(λ) in Figure 5.
We have highlighted which nodes are moved and to where they have been moved.

We define the (e-)ladder number of a node (r, c) ∈ [λ] to be l(r, c) = r+ c(e− 1).
The ith ladder of λ is defined to be the set

Li = {(r, c) ∈ N
2 | l(r, c) = i} ∩ [λ].

The e-regularisation of λ is the partition R(λ) obtained by moving all of the nodes
of λ as high along their ladders as possible. When q = −1, each ladder of λ is a
complete north-east to south-westerly diagonal in [λ]. In particular, when e = 2 the
partition R(λ) is obtained from λ by sliding nodes as high along their south-west
to north-easterly diagonals as possible.

Theorem 1.4 (James’ regularisation theorem). Let λ be a partition of n and k be
an arbitrary field. We have that [Sk

q(λ) : Dk
q(μ)] is equal to 1 if μ = R(λ) and is

zero unless μ � R(λ).
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1.2. Brauer–Humphrey’s reciprocity. Given λ an e-regular partition andDk
q(λ)

the corresponding simple Hk
q (n)-module, we let Pk

q(λ) denote its projective cover.

Brauer–Humphrey’s reciprocity states that Pk
q(μ) has a Specht filtration,

0 = S1 ⊂ S2 ⊂ · · · ⊂ Sz = Pk

q(μ)

such that for each 1 � r � z, we have Sr/Sr−1
∼= Sk

q(λ) for some λ ∈ Pn dependent

on 1 � r � z and such that the multiplicity, [Pk
q(μ) : Sk

q(λ)], in this filtration is
given by

(1.2) [Pk

q(μ) : S
k

q(λ)] = [Sk

q(λ) : D
k

q(μ)].

In other words, the λth column of the decomposition matrix determines the mul-
tiplicities in a Specht filtration of Pk

q(λ). This will be a key observation for our
applications to Kronecker coefficients in Section 5.

1.3. 2-blocks. We first recall the block-structure of Hecke algebras in (quantum)
characteristic e = 2 (which will be the main case of interest in this paper). Through-
out this section e = 2 and k can be taken to be an arbitrary field (although we are
mainly interested in the cases when k = C or k is of characteristic p = 2). The al-
gebra Hk

−1(n) decomposes as a direct sum of primitive 2-sided ideals, called blocks.
All questions concerning modular representation theory break-down block-by-block
according to this decomposition: in particular each simple/Specht module belongs
to a unique block.

The rim of the Young diagram of λ ⊢ n is the collection of nodes R[λ] = {(r, c) ∈
[λ] | (r+ 1, c+ 1) �∈ [λ]}. Given (r, c) ∈ [λ], we define the associated rim-hook to be
the set of nodes h(r, c) = {(i, j) ∈ R[λ] | r � i, c � j}. If |h(r, c)| = e ∈ N, then we
refer to h as a removable e-hook; if e = 2 we refer to h(r, c) as a removable domino.
Removing h(r, c) from [λ] gives the Young diagram [λ]\h(r, c) of a partition of n−e.
It is easy to see that a partition has no removable dominoes if and only if it is of the
form ρ(k) = (k, k−1, k−2, . . . , 2, 1) for some k � 0, in which case we say that it is a
2-core. We let core(λ) denote the 2-core partition obtained by successively removing
all removable dominoes from λ (this defines a unique partition). The number of
dominoes removed from λ is referred to as the weight of the partition λ and is
denoted w(λ). Given k, n ∈ N0, we define Bk(n) = {λ ∈ Pn | core(λ) = ρ(k)} to
be the corresponding combinatorial 2-block. The set Pn decomposes as the disjoint
union of the non-empty Bk(n). We note that it makes sense to speak of the weight

of a 2-block since any two partitions in the same 2-block necessarily have the same
weight. Two simple Hk

−1(n)-modules (or irreducible characters of CSn) belong
to the same 2-block if and only if their labelling partitions belong to the same
combinatorial 2-block (the same is true of Specht modules).

Example 1.5. The partition (9, 8, 5, 32, 2, 15) has 4 removable dominoes: two (2)-
dominoes {(2, 7), (2, 8)} and {(3, 4), (3, 5)} and two (12)-dominoes {(4, 3), (5, 3)}
and {(10, 1), (11, 1)}. One can continue to successively remove such dominoes until
one is left with the 2-core ρ(5) = (5, 4, 3, 2, 1) as depicted on the left-hand-side of
Figure 6.

Definition 1.6. Let w1, w2 ∈ N0 be arbitrary and λ ∈ Pw1
and μ ∈ Pw2

such
that λT

1 + μ1 � k + 1. We let τλμ denote the partition

τλμ = (ρ(k) + 2μT )T + 2λ.
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Figure 6. The partitions τ
(2,2,1)
(3,1,1) and τ

(32,2,12)
∅ for ρ = ρ(5)

We say that any partition, τλμ , of this form is 2-separated.

Remark 1.7. We note that 2-separated partitions appear across all 2-blocks of the
Hecke algebra. If the weight of a block is small compared to the size of the core,
then all partitions in that block are 2-separated.

Remark 1.8. While the name “2-separated” may seem odd to some readers, it is
motivated by the form this partition takes on a 2-abacus. In [JM96] these partitions
are referred to as “2-quotient separated”.

1.4. Characters of 2-height zero. We now wish to discuss the defect groups of
2-blocks of symmetric groups and their characters of 2-height zero (see [JK] for
background and more details). Write n = 2a1 + . . .+ 2as where a1 > . . . > as � 0;
we set s(n) = s. For m ∈ N, let m2 be the largest 2-power dividing m. Then
(n!)2 = 2n−s(n) is the size of a Sylow 2-subgroup of Sn. Let B be a 2-block of
Sn of weight w; then a defect group of B is isomorphic to a Sylow 2-subgroup of
S2w, and thus is of cardinality 22w−s(w); the number d(B) = 2w − s(w) is called
the defect of B.

Example 1.9. The five 2-blocks ofS36 are indexed by the 2-cores ∅, ρ(3), ρ(4), ρ(7)
and ρ(8). These blocks are of weight 18, 15, 13, 4, and 0 respectively. Since 18 =
24 + 2, the 2-block B of weight 18 has defect d(B) = 34.

We now recall the important notion of 2-height 0 characters and simple modules.
First we recall the fact that the dimension of any simple module Dk(λ) or SC(μ)
belonging to a 2-block B of the symmetric group Sn is divisible by 2n−s(n)−d(B).
Such a module is said to be of 2-height 0 (or just height 0 if the prime p = 2 is fixed
in the context) if this 2-power is the largest 2-power dividing its dimension. We
also say that the character χμ associated to the Specht module SC(μ) is a 2-height

0 character (or just height 0 character if the prime p = 2 is fixed).
For the 2-block B, we set

IrrC0 (B) = {χλ | χλ is a height 0 character of B}.

Generalising an earlier result of Macdonald on characters of odd degree, a combina-
torial description for the partition labels of height 0 characters was given in terms
of the so-called 2-core tower by Olsson (see [O76, O93]). A new characterisation
was recently given in [GMT18, Section 3.2], again generalising an earlier version for
the principal 2-block. This says that a partition λ in a 2-block B = Bk(n) of weight
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w = 2w1 + . . .+ 2ws(w) , where w1 > . . . > ws(w) ≥ 0, labels a height 0 character if
and only if there is a sequence

λ = λ(0) ⊃ λ(1) ⊃ · · · ⊃ λ(s(w)− 1) ⊃ λ(s(w)) = ρk

of partitions such that λ(i− 1) \ λ(i) is a 2wi rim-hook for i = 1, . . . , s(w).
A formula for the number k0(B) of height 0 characters in a 2-block of weight

w was already given by Olsson [O76], and was also deduced from the description
above in [GMT18]. With B and w given as above, we have

k0(B) =

s(w)
∏

j=1

2wj+1.

Since we get this number for each 2-block, the set of height 0 characters χμ for Sn

constitutes quite a large class of irreducible characters.

Example 1.10. The irreducible characters of height 0 belonging to the principal
2-block of Sn are precisely the characters of odd degree.

Example 1.11. The partitions (9, 8, 3, 23, 12), (9, 6, 5, 23, 12) ⊢ 28 and the parti-
tions (9, 6, 53, 4, 12) (10, 7, 43, 3, 22) ⊢ 36 all label 2-height zero characters. These
partitions are depicted in Figure 2 in such a manner as to illustrate their combina-
torial construction via adding rim hooks (detailed above).

Example 1.12. The five 2-blocks of S36, their weights w, the 2-adic expansions of
2w, and the number of height 0 characters in the 2-block are recorded in the table
below.

2-core weight w 2w k0(B)
∅ 18 25 + 22 27

ρ(3) 15 24 + 23 + 22 + 2 210

ρ(4) 13 24 + 23 + 2 28

ρ(7) 4 23 23

ρ(8) 0 − 1

In particular, there are in total 1417 height 0 characters in 2-blocks of S36, amongst
which there are 128 of odd degree.

The following theorem will be one of the key results we use later on. It says
that while there are many complex characters of height 0, there is only one simple
module Dk(λ) of height 0 in each 2-block.

Theorem 1.13 ([KOW12, Theorem 1.4]). Let k be a field of characteristic 2. For

any 2-block B of weight w of the symmetric group Sn, the module Dk(τ
(w)
∅ ) is the

unique simple kSn-module in B of height 0.

2. KLR algebras and coloured tableaux

In this section, we assume q is a primitive eth root of unity. Given n ∈ N and
an indeterminate t we define the quantum integers and quantum factorials

[n]t =
1 + t2 + t4 · · ·+ t2n−2

tn−1
[n]t! = [1]t[2]t . . . [n]t

and given μ ∈ Pn a partition of length ℓ, we set

[μ]t! = [μ1]t![μ2]t! . . . [μℓ]t!.
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We now define the quantum binomial coefficients to be
[
a

b

]

t

:=
[a]t!

[b]t![a− b]t!
,

for all a � b � 0. The motivating observation for studying Hecke algebras is the
following. Let k be a field of characteristic p and let q ∈ k be an element of
order e = p: then Hk

q (n) is isomorphic to kSn. This gives us a way of factorising
representation theoretic questions into two steps: firstly specialise the quantum
parameter q to be a pth root of unity (in C and compatibly in k) and study the non-
semisimple algebra HC

q (n); then reduce modulo p by studying Hk
q (n) = HZ

q (n)⊗Z k.
This allows us to factorise the problem of understanding decomposition matrices
as follows,

(2.1) [Sk

q(λ) : D
k

q(μ)] = [SC

q (λ) : D
C

q (ν)]× [DC

q (ν)⊗Z k : Dk

q(μ)].

On the right-hand side of the equality we have two matrices: the first is the decom-

position matrix for HC
q (n) and the second is known as “James’ adjustment matrix”.

Therefore understanding the decomposition matrix of HC
q (n) serves as a first step

toward understanding the decomposition matrix of kSn.
We now recall the manner in which the grading can be incorporated into the pic-

ture and its immense power in understanding the decomposition matrix for HC
q (n)

(and hence, by equation (2.1) gives us a method for attacking the problem of cal-
culating decomposition numbers for symmetric groups). Let t be an indeterminate
over Z. The following theorem provides us with a Z-graded presentation (which we
record with respect to the indeterminate t) of the Hecke algebra.

Theorem 2.1 ([BK09a,KL09,Rou08a]). The Hecke algebra Hk
q (n) admits a graded

presentation with generators

{e(i) | i = (i1, . . . , in) ∈ (Z/eZ)n} ∪ {y1, . . . , yn} ∪ {ψ1, . . . , ψn−1},(2.2)

subject to a list of relations given in [BK09a, Main Theorem]. The Z-grading on
Hk

q (n) is given by

deg(e(i)) = 0, deg(yr) = 2, deg(ψre(i)) =

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

−2 if ir = ir+1,

1 if ir = ir+1 ± 1 & e �= 2,

2 if ir = ir+1 ± 1 & e = 2,

0 otherwise.

The importance of Theorem 2.1 is that it allows to consider an extra, richer
graded structure on the Specht modules. We now recall the definition of this grad-
ing on the tableau basis of the Specht module. Let λ ∈ Pn and t ∈ Std(λ). We let
t−1(k) denote the node in t containing the integer k ∈ {1, . . . , n}. Given 1 � k � n,
we letAt(k), (respectivelyRt(k)) denote the set of all addable res(t

−1(k))-nodes (re-
spectively all removable res(t−1(k))-nodes) of the partition Shape(t↓{1,...,k}) which

are above t−1(k), i.e. those in an earlier row. Let λ ∈ Pn and t ∈ Std(λ). We
define the degree of t as follows:

deg(t) =

n∑

k=1

(|At(k)| − |Rt(k)|) .

Given t ∈ Std(λ) we define the residue sequence of t as follows:

res(t) = (res(t−1(1)), res(t−1(2)), . . . , res(t−1(n))) ∈ (Z/eZ)n
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and we write e(t) := e(res(t)) ∈ Hk
q (n). Let t be an indeterminate over N0. If

M = ⊕z∈ZMz is a free graded k-module, then its graded dimension is the Laurent
polynomial

Dimt(M) =
∑

k∈Z

(dimk Mk)t
k.

If M is a graded Hk
q (n)-module and k ∈ Z, define M〈k〉 to be the same module

with (M〈k〉)i = Mi−k for all i ∈ Z. We call this a degree shift by k. The graded
dimensions of Specht modules admit a combinatorial description as follows:

Theorem 2.2 ([BKW11]). The Specht module Sk
q(λ) is a free Z-graded k-module

with basis {e(t)ψt | t ∈ Std(λ)} and where deg(ψt) = tdeg(t).

Of course, this theorem gives us an added level of graded structure to consider:
the graded decomposition numbers of symmetric groups and their Hecke algebras.
By Theorem 2.2, we obtain a grading on the module Dq(μ) = Sq(λ)/rad(Sq(λ)).
We define the graded decomposition number to be the polynomial

(2.3) dkλ,μ(t) =
∑

k∈Z

[Sk

q(λ) : D
k

q(μ)〈k〉]t
k

which records the composition multiplicity of each simple module and its relevant
degree shift. In particular upon specialisation t → 1 the polynomials of equation
(2.3) specialise to be the usual decomposition numbers. While one might expect
this grading to increase the level of difficulty of our question, we find that by keeping
track of this extra grading information we are rewarded with an incredibly powerful
algorithm for understanding the decomposition numbers of HC

q (n).
Equation (2.1) hints that we could first study the decomposition numbers of

HC
q (n) as an intermediary first step toward understanding the decomposition num-

bers of symmetric groups in positive characteristic. In fact, this approach has been
incredibly successful: Lascoux, Leclerc and Thibon provided an iterative algorithm
for understanding the graded decomposition numbers of HC

q (n) in [LLT96]. We now
provide an elementary tableau-theoretic re-interpretation of this algorithm (using
the work of Kleshchev and Nash [KN10]).

2.1. Coloured tableaux. We now recast ideas from [KN10] in terms of orbits of
tableaux which we encode as “coloured tableaux”. This “colouring” comes from
the observation that each idempotent truncation of a Specht module, e(i)Sq(μ),
has a homogeneous basis indexed by the t ∈ Std(λ) such that res(t) = i ∈ (Z/eZ)n,
by Theorem 2.2. We now develop these ideas further.

Let λ a partition of n and μ a composition of n. We define a Young tableau of

shape λ and weight μ to be a filling of the nodes of λ with the entries

1, . . . , 1
︸ ︷︷ ︸

μ1

, 2, . . . , 2
︸ ︷︷ ︸

μ2

, . . . , ℓ, . . . , ℓ
︸ ︷︷ ︸

μℓ

.

We say that a tableau is row standard if the entries are weakly increasing along the
rows of λ; we denote the set of such tableaux by RStd(λ, μ). We say that the Young
tableau is semistandard if the entries are weakly increasing along the rows and are
strictly increasing along the columns of λ; we denote the set of such tableaux by
SStd(λ, μ).
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Definition 2.3. Given μ ⊢e n, we let Lad(μ) denote the composition ν such that

νi = ♯{(r, c) ∈ μ | l(r, c) = i},

where we have that ν1 = 0 by definition. We define a semistandard coloured
tableaux, S, to be a semistandard tableau of weight Lad(μ) such that the entry
of any node is congruent to its residue. We denote the set of all such tableaux of
shape λ by CStd(λ, μ) ⊆ SStd(λ,Lad(μ)). We let Lμ denote the unique element of
CStd(μ, μ). We set e(μ) = e(res(Lμ)) ∈ Hk

q (n).

Example 2.4. For q = −1, e = 2 and μ = (6), (5, 1), (4, 2), we have that Lad(μ)
is equal to (0, 1, 1, 1, 1, 1, 1), (0, 1, 2, 1, 1, 1) and (0, 1, 2, 2, 1) respectively. All semi-
standard coloured tableaux (up to conjugation) for the principal 2-block of Hk

−1(6)
are listed in the table below.

CStd(λ, μ) 6 5, 1 4, 2

6 2 3 4 5 6 7 ∗ ∗

5, 1
2 3 4 5 6
7

2 3 4 5 6
3

∗

4, 2
2 3 4 7
5 6

2 3 4 5
3 6

2 3 4 5
3 4

4, 12
2 5 6 7
3
4

2 3 4 7
5
6

2 3 4 5
3
6

2 3 4 5
3
4

32
2 3 4
5 6 7

∗
2 3 4
3 4 5

The importance of coloured semistandard tableaux of weight μ is that they
encode an SLad(μ)-orbit of standard Young tableaux; we shall now make this idea
more precise. Given a composition ν and c � 1, we set [ν]c = ν1+ν2+ · · ·+νc ∈ N.
Let μ be an e-regular partition and let s be a standard Young tableau of shape λ
such that the residue sequence of s is given by

0,−1,−1, . . . ,−1
︸ ︷︷ ︸

νe+1 times

,−2,−2, . . . ,−2
︸ ︷︷ ︸

νe+2 times

,−3,−3, . . . ,−3
︸ ︷︷ ︸

νe+3 times

, . . .

for ν = (0, . . . , 0, 1, νe+1, . . . , νℓ) = Lad(μ); we refer to such an s as a ladder tableau

of ladder weight μ. Then define μ(s) to be the coloured tableau obtained from s by
replacing each entry i for [Lad(μ)]c−1 < i � [Lad(μ)]c in s by the entry c for c � 1.

We identify a coloured semistandard Young tableau, S, of weight μ with the set
of standard Young tableaux, [S]μ = {p | μ(p) = S}. Given S ∈ SStd(λ, μ) we let
pλ ∈ [S]μ denote the unique most dominant tableau in [S]μ.
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Example 2.5. Continuing with Example 2.4, we let S ∈ CStd((4, 12), (4, 2)) de-
picted above. We have that

⎡

⎣

2 3 4 5
3
4

⎤

⎦

μ

=

⎧

⎨

⎩

1 2 4 6
3
5

,
1 3 4 6
2
5

,
1 3 5 6
2
4

,
1 2 5 6
3
4

⎫

⎬

⎭

as an orbit of standard tableaux (which we have coloured in order to facilitate
comparison).

For μ ∈ Re
n, we let Lμ be the unique element of CStd(μ, μ).

Proposition 2.6. We have that

Dimt(e(μ)Sq(μ)) = Dimt(e(μ)Dq(μ)) =
∑

t∈Lμ

tdeg(t) = [Lad(μ)]t!.

Proof. We have that e(μ)Sq(λ) = 0 for any λ�μ (by definition of the ladder tableau)
and so the first and second equalities hold by Theorem 1.4 and the definition of
the ladder tableau as an orbit. The final equality is not difficult, but is explicitly
proven in [KN10, Lemma 3.4]. �

By the above, the orbit sum
∑

t∈Lμ tdeg(t) is invariant under the bar map inter-

changing t ↔ t−1 and so we keep track of this by formally setting deg(Lμ) = 0. We
now provide a general definition of the degree of a coloured tableau which allows
us to calculate the graded characters of weight spaces of Specht modules in terms
of coloured tableaux. Let (a, b) ∈ λ ∈ Pn be a node of residue i ∈ Z/eZ and
μ ∈ Re

n, S ∈ CStd(λ, μ). We let AS(a, b) denote the set of all addable i-nodes of
the partition

λ ∩ {(r, c) | S(r, c) � l(a, b)}

which are above (a, b) ∈ λ. We let RS(a, b) denote the set of all removable i-nodes
of the partition

λ ∩ {(r, c) | S(r, c) < l(a, b)}

which are above (a, b) ∈ λ. We then define the degree of the node (a, b) ∈ λ to be
|AS(a, b)|− |RS(a, b)|. We define deg(S) to be the sum over the degrees of all nodes
(a, b) ∈ λ.

We have seen that the tableaux of CStd(λ, μ) are simply the orbits of tableaux
from Std(λ) with a given residue sequence. Therefore, by comparing the degree
function for coloured tableaux with that of standard tableaux we obtain

(2.4) Dimt(e(μ)Sq(λ)) = [Lad(μ)]t!
∑

S∈CStd(λ,μ)

tdeg(S).

And so coloured standard tableaux provide a combinatorial description of the
ladder-weight multiplicity as defined in [KN10, Section 3.3].

Example 2.7. Continuing with S ∈ CStd((4, 12), (4, 2)) in Example 2.5, we have
that

RS(a, b) = ∅ for all (a, b) ∈ (4, 12) and AS(a, b) =

{

{(2, 2)} if (a, b) = (3, 1),

∅ otherwise,

and therefore

degS(a, b) =

{

1 if (a, b) = (3, 1),

0 otherwise.
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Therefore deg(S) = 1. The four distinct standard tableaux s ∈ [S](4,2) are depicted
in Example 2.5; these four tableaux are obtained from each other by permuting the
pairs 2, 3 in the third ladder and the pairs 4, 5 in the fourth ladder. We have that
∑

s∈S

tdeg(s) = t3+2t+ t−1 = t× (t+ t−1)2 = deg(S)× [2]t![2]t! = deg(S)× [Lad(μ)]t!.

With our new tableaux theoretic combinatorics in place, we can recast the (LLT)
algorithm from [KN10, Section 4] in this combinatorial setting.

Example 2.8. We record the graded degrees of the coloured tableaux appearing in
Example 2.4 and their conjugates (which are not pictured). Notice that conjugation
does not preserve the degrees of tableaux.

6 5, 1 4, 2
6 1 ∗ ∗
5, 1 t 1 ∗
4, 2 1 t 1
4, 12 2t t2 t
32 t ∗ t
23 t2 ∗ t2

3, 13 2t2 t t2

22, 12 t3 t2 t3

2, 14 t2 t3 ∗
16 t3 ∗ ∗

We are almost ready to restate the LLT algorithm in terms of our combinatorics,
we simply require two observations about the graded structure of the Hecke algebra.
The first is almost trivial, but the proof of the latter depends on incredibly deep
geometric or categorical insights.

Theorem 2.9 ([BK09b, Theorem 4.18]). For λ ∈ Pn and μ ∈ Re
n, the polynomial

Dimt(e(μ)D
k
q(λ)) is bar-invariant (i.e., fixed under interchanging t and t−1).

Theorem 2.10 ([VV99]). Let k = C. For λ ∈ Pn and μ ∈ Re
n with μ �= λ,

dλ,μ(t) ∈ tN0[t].

Rearranging [KN10, Theorem 3.8] in terms of our coloured tableaux, we ob-
tain the following relationships between coloured tableaux, simple characters, and
graded decomposition numbers:

Proposition 2.11. For λ ∈ Pn and μ ∈ Re
n we have that

Dimt(e(μ)S
k(λ))

=
∑

S∈CStd(λ,μ)

tdeg(S)[Lad(μ)]t! ∈ N0[t, t
−1] and Dimt(e(μ)D

k

q(λ)) ∈ N0[t+ t−1].

Moreover, the following hold:

(i) if CStd(λ, μ) = ∅, then dλ,μ(t) = 0 and Dimt(e(μ)D
k
q(λ)) = 0;

(ii) we have Dimt(e(μ)S
k
q(μ))) = Dimt(e(μ)D

k
q(μ)) = [Lad(μ)]t!;

(iii) we have that, for λ ∈ Re
n,

Dimt(e(μ)D
k

q(λ)) + dλ,μ(t)[Lad(μ)]t!

=
∑

S∈CStd(λ,μ)

tdeg(S)[Lad(μ)]t!−
∑

λ�ν�μ

Dimt(e(μ)D
k

q(ν))dλ,ν(t).
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Now we set k = C. The right-hand side of the equation in Proposition 2.11(iii) is
calculated by induction along the dominance ordering. Any polynomial in N0[t, t

−1]
can be written uniquely as the sum of a bar-invariant polynomial from N0[t, t

−1]
and a polynomial from tN0[t]. Putting together Theorems 2.9 and 2.10 we deduce
that the left-hand-side is uniquely determined by the right-hand-side and induction
on the dominance order.

Example 2.12. We continue with Example 2.4. Using the equation in Proposition
2.11(iii), we obtain the first 5 rows of the graded decomposition matrix of the
principal block of HC

−1(6) and
1

[Lad(μ)]t!
Dimt(e(μ)Dq(λ)) as follows:

6 5, 1 4, 2
6 1 ∗ ∗
5, 1 t 1 ∗
4, 2 ∗ t 1
4, 12 t t2 t
32 ∗ ∗ t
23 ∗ ∗ t2

3, 13 t2 t t2

22, 12 ∗ t2 t3

2, 14 t2 t3 ∗
16 t3 ∗ ∗

6 5, 1 4, 2
6 1 ∗ ∗
5, 1 ∗ 1 ∗
4, 2 1 ∗ 1

Notice that if we multiply these two matrices together we obtain the matrix from
Example 2.8. The remaining entries of the table can be deduced by applying the
sign automorphism to the Specht modules (although this automorphism is not of
degree zero and so the entries will differ by a degree shift). Comparing with the
table in Example 2.8, we observe that the entry in the row labelled by (4, 2) and
column labelled by (6) is bar-invariant in Example 2.8 and so does not contribute
to the decomposition matrix, but instead contributes a vector in the simple module
D−1(4, 2). Then in the row labelled by (4, 12) we see another discrepancy between
the two tables: this is because D−1(4, 2) is a composition factor of S−1(4, 1

2) and
so it contributes to the sum in Proposition 2.11(iii).

We are now ready to provide new upper bounds for (graded) decomposition
numbers in terms of our coloured tableaux.

Theorem 2.13. For λ ∈ Pn and μ ∈ Re
n and k an arbitrary field, we have that

[Sk

q(λ) : D
k

q(μ)〈k〉] � |{S | S ∈ CStd(λ, μ), deg(S) = k}|

for k ∈ Z and in particular, dkλ,μ � |CStd(λ, μ)|.

Proof. It is immediate from equation (2.4) that

[Sk

q(λ) : D
k

q(μ)〈k〉] � [Lad(μ)]t!× |{S | S ∈ CStd(λ, μ), deg(S) = k}|

and indeed this is just rephrasing a classical observation due to Gordon James. The
new observation is that by Proposition 2.11, we know that [Lad(μ)]t! divides both

Dimt(e(μ)(S
k

q(λ)) Dimt(e(μ)(D
k

q(μ)))

and the result follows by induction on the dominance ordering and the equation in
Proposition 2.11(iii). In more detail, our base case for induction is when μ = λ
mentioned above. Now, by Proposition 2.11(iii) and our inductive assumption, the



KRONECKER POSITIVITY AND 2-MODULAR REPRESENTATIONS 1041

result holds for all ν such that μ ⊲ ν ⊲ λ. Putting this together with Proposition
2.11(ii), we deduce that [Lad(μ)]t! divides Dimt(e(μ)D

k
q(λ)) as required. �

Example 2.14. If p = 2 then the graded decomposition matrix of kS6 is given by
the table in Example 2.8. In other words, the bounds of Theorem 2.13 are sharp.

Remark 2.15. The inductive approach to calculating decomposition numbers of
HC

q (n) highlighted in the equation in Proposition 2.11(iii) above is used in the
arXiv appendix to this paper to prove decomposability of an infinite family of
Specht modules. In Section 4 the above algorithm will not work (as the set of 2-
separated partitions is not saturated in the dominance order). However, we provide
an analogous algorithm for calculating 2-separated decomposition numbers using
“2-dilated” coloured tableaux.

3. The Cherednik algebra and a simple criterion for semisimplicity

of a Specht module

The group Sn acts on the algebra, C〈x1, . . . , xn, y1, . . . yn〉, of polynomials in
2n non-commuting variables. The rational Cherednik algebra Hq(Sn) is a quotient
of the semidirect product algebra C〈x1, . . . , xn, y1, . . . , yn〉 ⋊ Sn by commutation
relations in the x’s and y’s that are similar to those of the Weyl algebra but involve
an error term in CSn (see [EG02, Section 1] for the full list of relations). In
particular, these relations tell us that the x’s commute with each other and so
do the y’s. The algebra Hq(Sn) has three distinguished subalgebras: C[y] :=
C[y1, . . . , yn], C[x] := C[x1, . . . , xn], and the group algebra CSn. The PBW theorem
[EG02, Theorem 1.3] asserts that multiplication gives a vector space isomorphism

C[x]⊗ CSn ⊗ C[y]
∼=
−→ Hq(Sn)

called the triangular decomposition of Hq(Sn), by analogy with the triangular de-
composition of the universal enveloping algebra of a semisimple Lie algebra. We
define the category Oq(Sn) to be the full subcategory consisting of all finitely gen-
erated Hq(Sn)-modules on which y1, . . . , yn act locally nilpotently. The category
Oq(Sn) is a highest weight category with respect to the poset (Pn,�). The stan-
dard modules are constructed as follows. Extend the action of Sn on SC(λ) to
an action of C[y] ⋊Sn by letting y1, . . . , yn act by 0. The algebra C[y] ⋊Sn is a
subalgebra of Hq(Sn) and we define the Weyl modules,

Δ(λ) := Ind
Hq(Sn)

C[y]⋊Sn
SC(λ) := Hq(Sn)⊗C[y]⋊Sn

SC(λ) = C[x]⊗ SC(λ),

where the last equality is only as C[x]-modules and follows from the triangular
decomposition. We let L(λ) denote the unique irreducible quotient of Δ(λ). In
[RSVV16, Theorem 7.4.] (see also [Los16, Web13]) it is shown that Oq(Sn) is
standard Koszul. We do not recall the definition of a standard Koszul algebra here,
but merely the following useful proposition. The following proposition is proven in
[BGS96, Proposition 2.4.1] in the generality of all Koszul algebras.

Proposition 3.1. For λ, μ ∈ Pn we have that

[Δ(λ) : L(μ)〈i〉] = dimk HomHq(Sn)(radi(Δ
C(λ)), LC(μ)).

Proof. By [BGS96, Corollary 2.3.3], any Koszul algebra is quadratic. Therefore,
since Δ(λ)/rad(Δ(λ)) = L(λ) is simple and concentrated in degree zero, the radical
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filtration of Δ(λ) coincides with the grading filtration of Δ(λ) by [BGS96, Propo-
sition 2.4.1]. �

Now, there exists an exact functor (the Knizhnik–Zamolodchikov functor) relat-
ing the module categories of Cherednik and Hecke algebras,

KZ : Oq(Sn) −→ HC

q (n)-mod.

A construction of this functor is given in [GGOR03], here we will only need the
fact (from [GGOR03, Section 6]) that

(3.1) KZ(Δ(λ)) = SC

q (λ), KZ(L(λ)) =

{

DC
q (λ) if λ is e-regular,

0 otherwise.

This allows us to prove the following criterion for decomposability of Specht mod-
ules, denoted SC

q (λ), for the Hecke algebra HC
q (n).

Theorem 3.2. Fix λ ∈ Pn. Suppose that for all e-regular partitions μ, we have
that

(3.2) [SC

q (λ) : D
C

q (μ)] = aμt
p(λ)

for some fixed p(λ) = z ∈ N (independent of μ) and some scalars aμ ∈ N. It follows
that the Specht module SC

q (λ) is semisimple.

Proof. Throughout the proof, we let λ ∈ Pn be an arbitrary partition. For an
e-regular partition μ ∈ Pn, we have that

[Δ(λ) : L(μ)〈k〉] = [KZ(Δ(λ)) : KZ(L(μ)〈k〉)] = [SC

q (λ) : D
C

q (μ)〈k〉]

by equation (3.1). Putting together Proposition 3.1 and our assumption in equation
(3.2), we have that

[radi(Δ(λ)) : L(μ)] = 0

for μ any e-regular partition and any i �= z. Therefore

KZ(radi(Δ(λ)) =

{⊕

μ aμD
C
q (μ)〈z〉 for i = z,

0 otherwise.

Therefore

KZ(Δ(λ)) = KZ(radz(Δ(λ))) =
⊕

μ

aμD
C

q (μ)〈z〉,

and the result follows. �

Remark 3.3. We have seen the grading and radical structure of standard Oq(Sn)-
modules are intimately related. It is unknown as to whether or not the Schur
functor preserves this property. Thus Theorem 3.2 represents all that is currently
known about the relationship between the grading and radical structure on Specht
modules for HC

q (n).

Remark 3.4. For the reader unfamiliar with Cherednik algebras, one can also deduce
the results of this section using the language of quiver Schur algebras and appealing
to [SW11].
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4. The Hecke algebra and 2-separated partitions

Throughout this section, we shall consider the representation theory of the Hecke
algebra HC

−1(n) as a first approximation to the 2-modular representation theory
of symmetric groups. We focus on the Specht modules labelled by 2-separated
partitions. We shall prove that these modules are semisimple and decompose them
as a direct sum of graded simple modules.

Theorem 4.1. We set τ := τ (k). We have that

Dimt

(
e
(
τα∅

)
SC

−1(τ
λ
μ )

)
=

∣
∣SStd(λT ∪ μ, αT )

∣
∣× [αT ]t!

2 × [k]t!× t|μ|.(4.1)

Before embarking on the proof, we note the following immediate corollaries.

Corollary 4.2. We have that

Dimt

(
e
(
τα∅

)
SC

−1(τ
λ
μ )

)
= t|μ|

∑

ν

c
(
νT , λT , μ

)
Dimt

(
e
(
τα∅

)
DC

−1(τ
ν
∅)

)
.(4.2)

Therefore, as an HC
−1(n)-module, any Specht module labelled by a 2-separated par-

tition is semisimple and decomposes as follows

SC

−1(τ
λ
μ ) =

⊕

ν

c
(
νT , λT , μ

)
DC

−1

(
τν∅

)
〈|μ|〉 .(4.3)

In particular, the Specht HC
−1(n)-module SC

−1(τ
λ
μ ) is simple if and only if λ or μ is

equal to ∅.

Proof. We first note that the composition factors of SC
−1(τ

λ
μ ) are all of the form

DC
−1(τ

ν
∅) and so we need only consider 2-quotient separated partitions for the re-

mainder of the proof. To see this, assume that λ, μ ∈ Bk(n) and that λ is 2-quotient
separated, but μ is not. The partition μ must have at least k+ 2 complete ladders
(as it is not 2-separated) and so ℓ(μ) � ℓ(R(μ)) � k + 2. On the other hand, λ is
2-quotient separated and so it has at most k+1 complete ladders, ℓ(R(λ)) � k+1.
Now, ℓ(μ) > ℓ(R(λ)) implies that μ �⊲ R(λ). The result follows from Theorem 1.4.

As in Section 2, it suffices to restrict our attention to the dimensions of “weight
spaces” given by the ladder tableaux for 2-regular partitions (in other words, we
consider the dimensions of e

(
τα∅

)
SC
−1(τ

λ
μ )). We further note that, if μ = ∅, then

|μ| = 0 and therefore the character of e
(
τα∅

)
SC
−1(τ

ν
∅), given in equation (4.1), is

bar-invariant for all α and ν; this implies that SC
−1(τ

ν
∅) = DC

−1(τ
ν
∅) by Theorem

2.10. In particular, we note that

Dimt

(
e
(
τα∅

)
SC

−1

(
τα∅

))
= Dimt

(
e
(
τα∅

)
DC

−1

(
τα∅

))
= [Lad(τα∅)]t! = [αT ]t!

2 × [k]t!

as an obvious special case of equation (4.1), using Proposition 2.11(ii). For an
arbitrary 2-separated simple module, this implies that

Dimt

(
e
(
τα∅

)
SC

−1

(
τν∅

))
= Dimt

(
e
(
τα∅

)
DC

−1

(
τν∅

))

= | SStd(νT , αT )| ×Dimt

(
e
(
τα∅

)
DC

−1

(
τα∅

))
.

Finally, we have that

| SStd(λT ∪ μ, αT )| =
∑

ν

c
(
νT , λT , μ

)
| SStd(νT , αT )|

by the definition of the Littlewood–Richardson coefficients, hence equation (4.2)
holds. Equation (4.3) follows immediately by induction on the dominance ordering
(as in the LLT algorithm of Subsection 2.1). �
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Proof of Theorem 4.1. We let τ := τ (k) and we assume for notational purposes
that k is even; the k odd case is identical except that the residues 0 and 1 must
be transposed. We let w = |α| = |λ| + |μ|. Given s ∈ Std(τλμ ), we have that

res(s) = res(Lτ
α
∅) if and only if s = t ◦ u where

res(t) = (01, 12, 03, 14, . . . , 1k) res(u)

= (0, 0, . . . , 0
︸ ︷︷ ︸

αT
1 times

, 1, 1, . . . , 1
︸ ︷︷ ︸

αT
1 times

) ◦ (0, 0, . . . , 0
︸ ︷︷ ︸

αT
2 times

, 1, 1, . . . , 1
︸ ︷︷ ︸

αT
2 times

) ◦ · · · ,

and we let Stdα(τ
λ
μ \τ ) denote the set of all tableaux u ∈ Std(τλμ \τ ) of the required

residue sequence. We have that deg(
∑

t∈Lτ tdeg(t)) = [k]t!. All that remains is to
show that

(4.4)
∑

s∈Stdα(τλ
μ \τ)

tdeg(s) =
∣
∣SStd

(
λT ∪ μ, αT

)∣
∣× [αT ]2t × t|μ|.

Given an integer j ∈ {1, 2, . . . , 2w} we have that there exists a unique corresponding
integer a(j) ∈ {1, . . . , w} such that

1 + 2

a(j)−1
∑

i=1

|αT
i | � j � 1 + 2

a(j)
∑

i=1

|αT
i |;

these integers will record the weight of the semistandard tableaux in the statement
of equation (4.4). Namely, we record a skew-tableau s by placing both the usual
entry j ∈ {1, 2, . . . , 2w} but we also add a subscript a(j). An example is depicted on
the left-hand side of Figure 7. Recall that we can think of the partition τλμ as being

obtained by adding (2)-dominoes to the right of τ and (12)-dominoes to the bottom
of τ in an intuitive fashion demonstrated in Figure 6. Take the partition τ and add
a total of αT

1 nodes of residue 0; the resulting partition has precisely αT
1 addable

1-nodes X1, . . . , Xα1
: namely, those which belong to the (2)- and (12)-dominoes

containing the nodes X1, . . . , Xα1
. Repeating this observation as necessary, we

deduce that any two nodes in the same domino of a tableau s ∈ Stdα(τ
λ
μ \ τ ) have

the same subscript. Furthermore, we note that the fact that the residue sequence
is of the form

(0, 0, . . . , 0
︸ ︷︷ ︸

αT
1 times

, 1, 1, . . . , 1
︸ ︷︷ ︸

αT
1 times

) ◦ (0, 0, . . . , 0
︸ ︷︷ ︸

αT
2 times

, 1, 1, . . . , 1
︸ ︷︷ ︸

αT
2 times

) ◦ · · ·

implies that no two (2)-dominoes of the same subscript can be added in the same
row and no two (12)-dominoes of the same subscript can be added in the same
column. Therefore we obtain a well-defined map

ϕ : Stdα
(
τλμ \ τ

)
�−→ SStd

(
λT ∪ μ, αT

)

given by scaling the sizes of all the dominoes by 1/2, conjugating λ, and recording
only the subscripts (i.e., deleting the integers {1, . . . , 2w}). An example is depicted
in Figure 7.

All that remains to show is that

(4.5)
∑

{s|ϕ(s)=S}

tdeg(s) = [αT ]t!
2 × t|μ|
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11 101 122 162

21 61 112 152

51 91

31

71

132

142

183

203

41

81

173

193

Figure 7. A (32, 2, 12)-decorated standard tableau of shape

τ
(2,2,1)
(3,1,1) \ τ and the corresponding element of SStd((3, 2) ∪

(3, 1, 1), (5, 3, 2)). The associated sequence of partitions (as in

equation (4.6)) is τ ⊂ τ
(13)
(2) ⊂ τ

(22,1)
(2,1) ⊂ τ

(22,1)
(3,12) .

for any S ∈ SStd(λT ∪ μ, αT ). The set {s | ϕ(s) = S} consists of an orbit

Sα1
×Sα1

×Sα2
×Sα2

× . . .

of standard tableaux. In other words, s, t are such ϕ(s) = ϕ(t) if and only if
they differ by permuting nodes whose subscripts and residues are both matching.
Therefore, we have that

∑

{s|ϕ(s)=S}

1deg(s) =
(
αT
1 !α

T
2 ! . . .

)2
=

(
[αT ]t!

2
)
|t=1,

and so the ungraded version of equation (4.5) follows.
It remains to consider the grading. We first cut the diagram of any 2-separated

partition τλμ into four regions by drawing a vertical line immediately after the

μ1th column of τλμ and a horizontal line immediately below the λT
1 th row. An

example is depicted in Figure 8. We label the three of the four quarters of the
diagram X := X(τλμ ), Y := Y (τλμ ), and Z := Z(τλμ ) as suggested in Figure 8. The

intersection of τλμ with the region Y is equal to the staircase partition of width

ρ1 − μ1 − λT
1 ; we set ρY := [τλμ ] ∩ Y .

We shall calculate the left-hand-side of equation (4.5) by peeling off a row of α
at a time, in a manner which we now make precise. Fix α ∈ Pn a partition and
set ℓ = ℓ(αT ) and S ∈ SStd(λT ∪ μ, αT ). We define

μ
(i)
j = |{(j, c) ∈ μ | S(j, c) � i}}| λ

(i)
j = |{(r, j) ∈ λ | S(r, j) � i}|
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X

Z

Y

Figure 8. Dividing the partition τλμ into regions X := X(τλμ ),

Y := Y (τλμ ) and Z := Z(τλμ ). In this case ρY is the copy of the
partition (4, 3, 2, 1) in region Y .

for 1 � i � ℓ(α). We set μ(i) = (μ
(i)
1 , . . . , μ

(i)
ℓ ) and λ(i) = (λ

(i)
1 , . . . , λ

(i)
ℓ ). We

consider the associated sequence of partitions

(4.6) τ = τ
λ(0)
μ(0) ⊆ τ

λ(1)
μ(1) ⊆ τ

λ(2)
μ(2) · · · ⊆ τ

λ(ℓ)
μ(ℓ) = τλμ ,

an example is given in Figure 7. Setting αT = (a1, . . . , aℓ), we will show that
∑

s∈Std(am)(τ
λ(m)

μ(m)
\τ

λ(m−1)

μ(m−1)
)

tdeg(s) = [am]t!
2 × t|μ(m)|−|μ(m−1)|,

and hence deduce the result. Clearly we can calculate the degree contribution of
the node (r, c) to the tableau

s ∈ Std(am)(τ
λ(m)
μ(m) \ τ

λ(m−1)
μ(m−1) )

by considering the addable/removable nodes above (r, c) from the regions

Xm := X(τ
λ(m)
μ(m) ) Ym := Y (τ

λ(m)
μ(m) ) Zm := Z(τ

λ(m)
μ(m) )

separately. We let degXm
(r, c), degYm

(r, c) and degZm
(r, c) denote these respective

contributions. We first consider the contribution from Ym. By definition, the sum
total

degYm
(s) =

∑

1�k�2m

degYm
s−1(k)

is independent of the tableau s ∈ Std(τ
λ(m)
μ(m) \τ

λ(m−1)
μ(m−1) ). For ρYm

a staircase partition

of p(p+ 1)/2, we have that

|Rem0(ρYm
)| = 0 |Rem1(ρYm

)| = p |Add0(ρYm
)| = p+ 1 |Add1(ρYm

)| = 0.
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Therefore degYm
(s) is equal to the number of (12)-bricks in region Xm ∩ τ

λ(m)
μ(m) \

τ
λ(m−1)
μ(m−1) . In other words degYm

(s) = |μ(m)| − |μ(m− 1)|.

Finally, it remains to prove that

(4.7)
∑

s∈Std(am)(τ
λ(m)

μ(m)
\τ

λ(m−1)

μ(m−1)
)

tdegXm∪Zm
(s) = [am]t!

2.

We set Stdm := Std(ρ(am) \ ρ(am − 1)). It is easy to see that

∑

s∈Std(am)(τ
λ(m)

μ(m)
\τ

λ(m−1)

μ(m−1)
)

tdegXm∪Zm
(s) =

(
∑

s∈Stdm

tdeg(s)

)

×

(
∑

s∈Stdm

tdeg(s)

)

,

where the first/second multiplicand on the right-hand-side counts the contribution
of all the residue 0-boxes/1-boxes respectively. We set �j = (j, am+1− j) ∈ ρ(am)
for 1 � j � am. We have that

∑

1�j�am

{s∈Stdm|s−1(am)=�j}

tdeg(s) =
∑

t∈Stdm−1

1�j�am

tam−j × t1−j × tdeg(t)

=
∑

1�j�am

tam+1−2j [am − 1]t!

which is equal to [am]t!. Here the first equality follows by considering both the
degree of the node s−1(am) (which is equal to 1− j) and the resulting shift to the
degrees of each of the (am− j) nodes below s−1(am). The second equality holds by
induction. Therefore the result follows. �

5. Kronecker coefficients and Saxl’s conjecture

Let λ, μ, ν be partitions of n. For the remainder of the paper, we will let Dk(λ)
denote the unquantised simple kSn-module. We define the Kronecker coefficients
g(λ, μ, ν) to be the coefficients in the expansion

DC(λ)⊗DC(μ) =
⊕

ν⊢n

g(λ, μ, ν)DC(ν).

We now recall Saxl’s conjecture concerning the positivity of these coefficients. We
let χλ denote the complex irreducible Sn-character to the partition λ of n, i.e., the
character of the Specht module SC(λ).

Saxl’s conjecture. Let n = k(k+ 1)/2 and ρ = (k, k − 1, . . . , 2, 1). For all λ ⊢ n,
the multiplicity of χλ in the Kronecker product χρ · χρ is strictly positive.

In [HSTZ13], Heide, Saxl, Tiep and Zalesski verified that for almost all finite
simple groups of Lie type the square of the Steinberg character contains all irre-
ducible characters as constituents. They also conjectured that for all alternating
groups there is some irreducible character with this property. For symmetric groups
Sn to triangular numbers n, Saxl then suggested the candidate χρ as stated above.
Saxl’s conjecture has been attacked by algebraists and complexity theorists using
a variety of combinatorial and probabilistic methods [Bes18, Ike15, LS17, PPV16].
From our perspective, a particularly useful result is the following.

Theorem 5.1 ([Ike15, Theorem 2.1]). Let n = k(k+1)/2 and ρ = (k, k−1, . . . , 2, 1).
If λ is a partition of n such that λ � ρ or λ � ρ, then g(ρ, ρ, λ) > 0.
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We let k be a field of characteristic 2. We keep the notation ρ = ρ(k) and
n = k(k + 1)/2, and we note that Dk(ρ) = Sk(ρ) = Pk(ρ) is a simple projective
kSn-module. Therefore its tensor square is also projective and decomposes as a
direct sum of indecomposable projective modules labelled by 2-regular partitions;
we let G(ρ, ρ, ν) denote the corresponding coefficients as follows

(5.1) Dk(ρ)⊗Dk(ρ) =
⊕

ν⊢2n

G(ρ, ρ, ν)Pk(ν).

Equivalently, on the level of complex characters we have for the irreducible character
χρ the decomposition of its square into characters ξν to projective indecomposable
modules (i.e., to integral lifts of the projective modules at characteristic 2):

(χρ)2 =
⊕

ν⊢2n

G(ρ, ρ, ν) ξν.

We wish to pass information back and forth between the 2-modular coefficients
G(λ, μ, ν) and the Kronecker coefficients g(λ, μ, ν) in order to make headway on
Saxl’s conjecture. The following observation is immediate

(5.2) g(ρ, ρ, λ) =
∑

ν

G(ρ, ρ, ν)dλ,ν.

We first want to explain how to apply this to obtain positivity for new classes
of Kronecker coefficients. Recall from Subsection 1.3 that the 2-blocks of Sn are
parameterized by the common 2-core of the partitions labelling the simple modules
in characteristic 2 and the Specht modules in the block, together with the weight.
Further recall from Subsection 1.1 that the decomposition matrix for each block
is unitriangular with respect to the dominance ordering. In particular, the most

dominant partition, τ
(w)
∅ , in a given 2-block of weight w labels a Specht module

with simple reduction mod 2. Ikenmeyer’s result implies that SC(τ
(w)
∅ ) appears with

positive multiplicity; therefore Sk(τ
(w)
∅ ) appears as a subquotient of some projective

kSn-module; by maximality we know that the only projective containing Sk(τ
(w)
∅ )

as a subquotient is, in fact, P k(τ
(w)
∅ ) itself. Thus P k(τ

(w)
∅ ) appears as a direct

summand in equation (5.1) and so G(ρ, ρ, τ
(w)
∅ ) > 0.

Hence, any non-zero entry of the first column (labelled by τ
(w)
∅ ) of the 2-decomposition

matrix of any 2-block corresponds to a non-zero Kronecker coefficient. This allows
us to verify Kronecker positivity in Saxl’s conjecture for two new infinite families
of partitions:

Theorem 5.2. Let n = k(k+1)/2, ρ = ρ(k) and λ ⊢ n such that χλ is of height 0.
Then g(ρ, ρ, λ) > 0. In particular, all χλ of odd degree are constituents of the Saxl
square.

Proof. Let B be the 2-block of Sn to which χλ belongs. Because χλ is a character
of height 0, the modulo 2 reduction Sk(λ) must have a composition factor of height
zero and this composition factor must appear with odd multiplicity (simply by
comparing the dimensions, see Subsection 1.4). By Theorem 1.13, the 2-block B

contains a unique simple module D = Dk(μ) of height 0, with μ = τ
(w)
∅ = τ + (2w)

the most dominant partition belonging to the block. The discussion preceding the
theorem now implies

g(ρ, ρ, λ) ≥ dλ,τ+(2w) > 0. �
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Since we get the large number k0(B) of height 0 irreducible characters for each
2-block B, this constitutes quite a large class of constituents in the Saxl square.

Example 5.3. We have already seen (in Example 1.12) that the block B3(36)
contains 1024 height 0 characters, which all appear in Saxl’s tensor square.

Example 5.4. We consider the partition λ = (9, 8, 3, 2, 2, 2, 1, 1) ⊢ 28. This is the
first of the four partitions pictured in Figure 2. In this case, the desired positivity
of g(ρ(7), ρ(7), λ) cannot be deduced using the available non-vanishing criteria in
the literature [Bes18,PPV16], and λ is incomparable to ρ in the dominance order,
so [Ike15] does not apply. The character χλ belongs to the 2-block of weight w = 11
and 2-core ρ(3), and it is of height 0. Instead of computing the degree explicitly,
this can also be seen by applying one of the combinatorial descriptions for labels
of height 0 characters, e.g., the one due to [GMT18] recalled in Subsection 1.4.
Finally, referring forward in this paper: we remark that (9, 8, 3, 2, 2, 2, 1, 1) is not
2-separated. Thus Theorem 5.2 provides us with constituents of the Saxl square
that cannot be deduced using any other results in the literature.

For the second new family, we will also need to apply our new results on Specht
modules for the Hecke algebra.

Theorem 5.5. For τ
(m)

(1ℓ)
any framed staircase partition of n = k(k+1)/2, we have

that g(ρ, ρ, τ
(m)

(1ℓ)
) > 0.

Proof. Let w = ℓ +m be the weight of the 2-block B to which τ
(m)

(1ℓ)
belongs. We

have that τ
(w)
∅ is the most dominant partition in B and so the corresponding Specht

module is simple. Now

[Sk

−1(τ
(m)

(1ℓ)
) : Dk

−1(τ
(w)
∅ )] � [SC

−1(τ
(m)

(1ℓ)
) : DC

−1(τ
(w)
∅ )] = c((1w), (1m), (1ℓ)) = 1 > 0

and so the result follows by the discussion above. �

For reasons that will soon become apparent, we now recall Carter’s criterion
explicitly.

Theorem 5.6 ([JM99]). We let k be a field of characteristic 2. Let λ = (λ1, λ2, . . . , λℓ)
be a partition. Then the Specht module Sk(λ) is simple if and only if one of the
following conditions holds:

(i) λi − λi+1 ≡ −1 modulo 2ℓ2(λi+1−λi+2) for all i � 1;
(ii) the transpose partition, λT , satisfies (i);
(iii) λ = (2, 2),

where here ℓ2(k) is the least non-negative integer such that k < 2ℓ2(k). We say that
any partition as in (i) satisfies Carter’s criterion.

Example 5.7. The most dominant partition, τ
(w)
∅ , in a 2-block of weight w satisfies

Carter’s criterion.

Example 5.8. In a 2-block of weight w = m(m+1)/2, we find the partition τ
ρ(m)
∅

that satisfies Carter’s criterion.

If λ is a 2-regular partition, then all the rows of λ are of distinct length. It
immediately follows that λ � ρ and therefore g(ρ, ρ, λ) > 0. If furthermore the
partition λ satisfies Carter’s criterion, then by equation (1.2) we have that Pk(λ) is
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the unique projective module in which Sk(λ) appears as a composition factor of a
Specht filtration. Putting these two statements together (in light of equation (5.2))
we obtain the following.

Proposition 5.9. Let n = k(k + 1)/2 and α ⊢ n. If α satisfies Carter’s criterion,
then we have that G(ρ(k), ρ(k), α) > 0.

The following result is immediate by equation (5.2). It is the key to all of our
results on Kronecker positivity (as it relates this problem to that of determining
the positivity of modular decomposition numbers) and vastly generalises Theorem
5.5.

Theorem 5.10. Let n = k(k + 1)/2 and α ⊢ n. If there exists some β satisfying
Carter’s criterion such that dα,β = m > 0, then g(ρ(k), ρ(k), α) � m. We refer to
such a pair (α, β) as an m-Carter–Saxl pair.

We are now ready to use the results of Sections 3 and 4 toward the Kronecker
problem.

Theorem 5.11. Let w = k(k+ 1)/2, n = w(2w+ 1) and τ = ρ(2w− 1). Then for
λ, μ any pair such that c(ρ(k), λT , μ) > 0 we have that

g(ρ(2w), ρ(2w), τλμ ) � c(ρ(k), λT , μ) > 0.

Proof. Clearly, ρ(2w) is a partition of n = w(2w + 1). We restrict our attention
to the block B of weight w in kSn with 2-core τ = ρ(2w − 1). For ν = ρ(k),
the partition τν∅ belongs to this block, and it satisfies Carter’s criterion. Note that

c(ρ(k), λT , μ) > 0 implies that |λ|+ |μ| = w, and τλμ also belongs to B. Finally, we
have that

[Sk

−1(τ
λ
μ ) : D

k

−1(τ
ν
∅)] � [SC

−1(τ
λ
μ ) : D

C

−1(τ
ν
∅)] = c(ρ(k), λT , μ) > 0,

and the result follows from Theorem 5.10. �

We remark that none of the partitions above are covered by existing results in
the literature. It is clear that they are not hooks or double-hooks and providing
that neither λ or μ is the empty partition, then these partitions are not comparable
with ρ(2w) in the dominance order (as τλμ is both wider and longer that ρ(2w)).

An explicit new infinite family with unbounded Kronecker coefficients is given
in the following corollary.

Corollary 5.12. For w = k(k + 1)/2, n = w(2w + 1) and τ = ρ(2w− 1), we have
that

g(ρ(2w), ρ(2w), τ
ρ(k−1)
(k−1,1)) � k − 1.

Proof. We have
c(ρ(k), ρ(k − 1), (k − 1, 1)) = k − 1,

from which the result follows from Theorem 5.11. �

Example 5.13. In particular, for w = k(k+1)/2, g(ρ(2w), ρ(2w), τλμ ) > 0 for λ, μ

any pair such that λ + μT = ρ(k). Examples of such partitions τλμ are pictured in
Figure 4.

Example 5.14. Let n = 210 and consider the 2-block of weight 20 with 2-core
ρ(19). There exist 35 Carter–Saxl pairs belonging to pairs (λ, μ) such that λ+ μT

is equal to either (10) or (4, 3, 2, 1). There are many more Carter–Saxl pairs in this
block.
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Finally, we conclude this section by remarking that we have only used positiv-
ity of decomposition numbers for the Hecke algebra over C. These are the easiest
decomposition numbers to calculate, but only provide lower bounds for the decom-
position numbers of symmetric groups.

6. More semisimple decomposable Specht modules

Semisimplicity and decomposability of Specht modules has long been a sub-
ject of major interest: the highlight being the recent progress on the classification
of simple Specht modules for symmetric groups and their Hecke algebras [FL13,
Jam78, JLM06, JM99, Fay05, JM96, Lyl07, JM97, Fay04, FL09, Fay10]. Progress to-
wards understanding the wider family of semi-simple and decomposable modules
has been snail-like in comparison [Mur80,Spe14,CMT04,DF12,Rou08b,FS16] and
reserved solely to near-hook partitions. All examples of decomposable Specht mod-
ules discovered to date have been labelled by 2-separated partitions. Our Theorem
A proves that for any 2-separated partition, the corresponding Specht module for
the algebra HC

−1(n) is decomposable. It is natural to ask whether the converse is

true: are all decomposable Specht modules for HC
−1(n) and more generally Hk

−1(n)
indexed by 2-separated partitions?. In [DF12, Section 8.2], Dodge and Fayers asked
exactly this question for the symmetric group with char k = 2. In this section, we
provide counterexamples to this question for the Hecke algebra.

6.1. Two new infinite families of decomposable Specht modules. Given
k ∈ N and l ∈ 2N+1, we define αk ⊢ (k+2)2− 4 and βl ⊢ (l+2)2− 2, respectively,
to be the partitions

αk = ((k + 2)k, k2), βl = (l + 3, (l + 2)l−1, l2, 1).

For example, the Young diagrams of the partitions α5 and β5, along with their
residues, are drawn as follows:

[α5] = 0 1 0 1 0 1 0

1 0 1 0 1 0 1

0 1 0 1 0 1 0

1 0 1 0 1 0 1

0 1 0 1 0 1 0

1 0 1 0 1

0 1 0 1 0

[β5] = 0 1 0 1 0 1 0 1

1 0 1 0 1 0 1

0 1 0 1 0 1 0

1 0 1 0 1 0 1

0 1 0 1 0 1 0

1 0 1 0 1

0 1 0 1 0

1

In the arXiv appendix to this paper, we prove that

SC

−1(α[k]) and SC

−1(β[l])

are decomposable for all k � 1 and odd l ≥ 1. The graded composition factors of
these modules for 1 � k, l � 5 can be computed with the Hecke package in GAP
(and shown to be concentrated in one degree). Thus decomposability and semisim-
plicity can be deduced from Theorem 3.2. These provide the first examples of de-
composable Specht modules indexed by partitions which are not 2-separated. Thus,
while our Theorem A provides the largest family of decomposable (and semisimple)
Specht modules discovered to date, it is worth noting that our list is not exhaustive.
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In the arXiv Appendix, we show that both Specht modules have a direct sum-
mand equal to a (different) simple Specht module. Namely,

SC

−1((k + 4)k) ∼= DC

−1(2k + 3, 2k + 1, 2k − 1, . . . , 9, 7, 5) is a direct summand of

SC

−1(α[k]).

The proof of decomposability is not difficult, but it does involve twenty pages of
extensive calculations. The basic idea is to (1) show that

HomHC

−1(n)
(SC

−1((k + 4)k),SC

−1(α[k])) �= 0

using results on semistandard homomorphisms and (2) prove that

[SC

−1(α[k]) : D
C

−1(2k + 3, 2k + 1, 2k − 1, . . . , 9, 7, 5)] � 1

by counting corresponding coloured tableaux. One hence deduces that this simple
composition factor occurs exactly once as a composition factor but in both the head
and the socle of SC

−1(α[k]), and thus is a direct summand. We refer the reader to
the arXiv appendix for more details.

Conjecture 6.1. For k ∈ N, we set C(αk) = (2k + 3, 2k + 1, 2k − 1, . . . , 9, 7, 5).
Then we expect that

SC

−1 (αk) = DC

−1 (R(αk)) 〈w (αk) /2〉 ⊕DC

−1 (C(αk)) 〈w (αk) /2〉 .

By 1-induction, we conjecture the direct sum decomposition of SC
−1(β[l]).

Conjecture 6.2. For l ∈ 2N+1, we set C(βl) = (2l+3, 2l+1, 2l−1, . . . , 9, 7, 6, 1).
Then we expect that

SC

−1 (βl) = DC

−1 (R(βl)) 〈w (βl) /2〉 ⊕DC

−1 (C(βl)) 〈w (βl) /2〉 .

6.2. Other decomposable Specht modules. We are indebted to Matt Fayers
for sharing the following examples (which he discovered by computer) after we
posited that the two families in Subsection 6.1 might be the only counterexamples
to the quantised version of his question [DF12, Section 8.2].

Figure 9. More partitions labelling semisimple Specht modules.
The graded composition factors of these modules can be computed
with the Hecke package in GAP (and shown to be concentrated in
one degree). Thus decomposability and semisimplicity are deduced
from Theorem 3.2.

We hope that the examples in Figure 9 serve as inspiration for further work
towards a classification of semisimple Specht modules. Several more examples can
be obtained from those in Figure 9 by i-induction for i = 0, 1 (analogously to
Subsection 6.1) namely: (8, 7, 62, 42, 2, 1), (73, 63, 3) and (8, 73, 62, 4, 1). Finally we
have one partition which breaks the mould: (6, 53, 3, 1) which is the only partition
in this section not equal to its own conjugate.
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6.3. Patterns. The examples of Subsections 6.1 and 6.2 do share several striking
similarities. Firstly, all the examples in Subsections 6.1 and 6.2 have a direct
summand which is isomorphic to a simple Specht module. Secondly, all those of
Subsection 6.2 decompose as a direct sum of simples concentrated in one degree
and so are semisimple by Theorem 3.2. We conjecture this is also true of the
infinite families in Theorem 3.2. It is interesting to speculate whether the converse
of Theorem 3.2 is also true: is semisimplicity of a Specht module equivalent to its
composition factors being focused in one degree?
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