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Abstract

Purpose of Review We assess the current understanding of the

state and behaviour of aerosols under pre-industrial conditions

and the importance for climate.

Recent Findings Studies show that the magnitude of an-

thropogenic aerosol radiative forcing over the industrial

period calculated by climate models is strongly affected

by the abundance and properties of aerosols in the pre-

industrial atmosphere. The low concentration of aerosol

particles under relatively pristine conditions means that

global mean cloud albedo may have been twice as sensi-

tive to changes in natural aerosol emissions under pre-

industrial conditions compared to present-day conditions.

Consequently, the discovery of new aerosol formation

processes and revisions to aerosol emissions have large

effects on simulated historical aerosol radiative forcing.

Summary We review what is known about the microphys-

ical, chemical, and radiative properties of aerosols in the

pre-industrial atmosphere and the processes that control

them. Aerosol properties were controlled by a combina-

tion of natural emissions, modification of the natural

emissions by human activities such as land-use change,

and anthropogenic emissions from biofuel combustion

and early industrial processes. Although aerosol concen-

trations were lower in the pre-industrial atmosphere than

today, model simulations show that relatively high aerosol

concentrations could have been maintained over continen-

tal regions due to biogenically controlled new particle

formation and wildfires. Despite the importance of pre-

industrial aerosols for historical climate change, the rele-

vant processes and emissions are given relatively little

consideration in climate models, and there have been very

few attempts to evaluate them. Consequently, we have

very low confidence in the ability of models to simulate

the aerosol conditions that form the baseline for historical

climate simulations. Nevertheless, it is clear that the

1850s should be regarded as an early industrial reference

period, and the aerosol forcing calculated from this period

is smaller than the forcing since 1750. Improvements in

historical reconstructions of natural and early anthropo-

genic emissions, exploitation of new Earth system

models, and a deeper understanding and evaluation of

the controlling processes are key aspects to reducing un-

certainties in future.
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Introduction

The radiative energy balance of the planet is sensitive to the

amount, size, and chemical properties of atmospheric aerosol

particles from natural [1, 2] and anthropogenic sources.

Changes in anthropogenic emissions over the industrial period

have significantly altered the abundance and properties of aero-

sols and caused a change in radiative energy balance, or radiative

forcing, which is estimated to lie between near 0 and −2 W m−2

[3]. This large uncertainty in forcing significantly limits our un-

derstanding of historical climate change and the reliability with

which we can make climate change projections [4, 5].

The abundance, properties, and distribution of aerosols in

the pre-industrial (PI) atmosphere are important for climate

for two reasons. Firstly, the PI is the reference period used in

climate models for calculating the radiative forcing caused by

anthropogenic activities, and uncertainty in the aerosol refer-

ence state substantially affects the magnitude of the calculated

forcing [6, 7]. Secondly, it has been suggested that the global

mean climate sensitivity may depend on the sea-surface tem-

perature pattern [8–11], which to a large degree will be con-

trolled by the very uncertain distribution of natural aerosols.

There is insufficient observational evidence to accurately

define the state of atmospheric aerosols in the PI, so wemostly

rely on estimates from global climate model simulations.With

such a lack of observational constraint on models, it is impor-

tant for simulations to be based on reliable information about

aerosol and precursor gas emissions, as well as a comprehen-

sive understanding of aerosol chemical and physical processes

in the natural atmosphere.

The uncertainty in model simulations of PI aerosols may

not make a large contribution to the calculated forcing uncer-

tainty associated with aerosol-radiation interactions [3, 12]

because the magnitude of the forcing depends approximately

linearly on the aerosol load [13] (so the perturbation calculated

by the model is not strongly dependent on the reference state).

However, the radiative forcing caused by aerosol-induced

changes in cloud albedo depends on fractional changes in

cloud droplet number concentrations according to

ΔA

A
≈
ΔN

N

1� Að Þ

3A

where A is cloud albedo and N is droplet number concen-

tration [14, 15]. The consequence of this dependence is that

aerosol-cloud forcing over the industrial period is particularly

sensitive to cloud droplet concentrations (and hence aerosol

concentrations) under PI conditions when concentrations were

low. The impact of this high sensitivity has been demonstrated

in global models [6, 7, 16], showing up as a large sensitivity of

anthropogenic radiative forcing to the emissions of natural

aerosols and precursors. The high sensitivity also means that

variations in PI climate, normally attributed to volcanic and

solar effects [17], will also be affected by variability in tropo-

spheric aerosols. Although the above equation represents only

one potential effect of aerosols on cloud microphysics and

structure [18], studies show that other radiatively important

cloud properties such as cloud top height, liquid water content,

and cloud fraction also depend non-linearly on aerosol con-

centrations [19], with the steepest changes in these properties

often occurring under the low-aerosol conditions that typified

the PI.

The high sensitivity of forcing to droplet and aerosol con-

centrations in the PI may explain why some climate models

prescribe a minimum droplet concentration. This practice has

a large effect on the calculated forcing [20] and will probably

have a large bearing on the climate sensitivity of a model that

is tuned to reproduce historical temperatures [21]. The prac-

tice of tuning models in this way shows that it is important to

develop a fundamental understanding of PI aerosols so that we

can build models based on a sound physical understanding.

Most interest currently focuses on the effect of aerosols on

atmospheric radiation and warm clouds, but there are signifi-

cant open questions about how ice-nucleating particles may

have changed over the industrial period. Ice-nucleating parti-

cles are predominantly natural dusts, sea spray, and biological

particles [22, 23], although anthropogenic material may con-

tribute [24]. In general, ice-nucleating particle concentrations

depend most strongly on the concentrations of large

(>0.5 μm) particles [25], which have changed less than small-

er more numerous particles over the industrial period [26].

Our understanding of global ice-nucleating particles in terms

of particular aerosol components is only just emerging, so we

do not attempt to review the PI state of such particles here.

It is important to define what is meant by “pre-indus-

trial” and how it relates to other commonly used reference

periods in climate science [27]. The Industrial Revolution

started in the UK around the 1780s [28], and the mid-

1700s was a period of major changes in agriculture, in-

dustry, and population, which led to steep rises in pollut-

ant emissions, albeit with large regional variations.

However, the mid-1700s are not a reference for pre-

human atmospheric conditions [29] because global popu-

lation was already around 800 million, so land use will

already have been modified by human activity [30], which

will have affected natural emissions from vegetation and

introduced aerosol pollution from biofuel combustion

[31]. In fact, ice core records of air pollution predate the

Industrial Revolution by centuries [32]. The 1850s are

commonly used as the starting point for climate model

simulations, probably because it marks the start of the

instrumental temperature record [33]. However, by 1850,

aerosol emissions were locally already significantly above

1750 levels, and 1850 is normally considered to be the

start of the second Industrial Revolution. Oddly, 1750 has

been used as the reference for climate model calculations
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of radiative forcing in the context of IPCC [3], but 1850 is

used as the reference for starting model simulations. The

Anthropocene is another definition of global environmen-

tal change [34], but the current definition is not very rel-

evant to aerosol pollution and radiative forcing.

The definition of pre-industrial affects the PI to present-day

aerosol radiative forcing that is calculated. In one study, the

aerosol-cloud radiative forcing was estimated to be

−1.42 W m−2 with a 1750 reference and −1.30 W m−2 with

an 1850 reference [6]. It was also shown that about 46% of the

aerosol-cloud forcing uncertainty could be attributed to anthro-

pogenic emissions with an 1850 reference but only 34% with a

1750 reference, showing that the small anthropogenic emis-

sions in 1850 contribute to the uncertainty in the calculated

forcing. The differences in emissions between 1750 and 1850

are likely to be an underestimate because they neglect many of

the additional factors described in later sections of this review.

Very few studies have focused on simulating and eval-

uating the aerosol properties in the PI period. Climate

models simulate PI aerosols as part of their historical sim-

ulations, usually using a common set of emissions for

either 1750 [31] or in the period 1850–1870 [35].

However, even with common emissions, differences be-

tween the models result in a very large range of simulated

PI aerosol states. This range is important because it affects

the multi-model range of simulated aerosol-cloud forcings

over the industrial period by 15–60% [7]. An estimate of

the PI aerosol state is also required in studies that use

satellite observations to estimate anthropogenic radiative

forcing [36]. This approach relies on using observations

of aerosol optical depth under present-day clean atmo-

spheric conditions or making assumptions about how nat-

ural aerosols contribute to aerosol optical depth at differ-

ent wavelengths, although the extrapolation back to PI

conditions may be unreliable [37]. Furthermore, given

the large spatio-temporal heterogeneity in PI aerosol

abundance [38], it is not appropriate to define a single

PI aerosol reference.

In this review, we describe recent developments in our

understanding of aerosols in the PI atmosphere. Although

stratospheric aerosols and perturbations to them are an impor-

tant aspect of the planetary energy balance in the PI [17, 39],

we focus on aerosols in the troposphere because of the rapid

changes in our understanding of their properties. We summa-

rise key developments in our understanding of the physical

and chemical processes of relevance to natural PI-like envi-

ronments as well as the remaining open questions. There is a

lack of dedicated studies of PI aerosols fromwhich the aerosol

properties can be defined. We therefore include in our review

our best assessment of global PI aerosol properties based on

our ownmodel simulations, which also includes an analysis of

over 20 sources of uncertainty related to emissions as well as

microphysical and chemical processes.

Measurements of Pre-industrial Aerosols

There are two ways to estimate the state of aerosols in the PI

frommeasurements—either from analysis of aerosol chemical

components in ice cores and sediments or by attempting to

deduce the properties based on observations of the unpolluted

present-day atmosphere. In this section, we briefly review

these approaches and what they tell us about PI aerosols.

Some limited information about the abundance and season-

ality of aerosols in the PI can be obtained from ice cores. The

short atmospheric lifetime of aerosols means that ice core

record changes in concentrations that are representative of

small regions [40] or perhaps hemispheric scales if the aero-

sols were pervasive, such as in the Industrial Revolution

[41–44]. Commonly analysed ice core aerosol components

include black carbon, dust, sulphate, and salt ions (e.g. Ca,

K, Na, Mg, and Cl). Some source identification is feasible by

analysing other chemical species, such as levoglucosan as a

tracer for biomass burning [45], methanesulfonic acid (MSA)

for marine biogenic dimethyl sulphide emissions [46, 47], and

electric conductivity measurements of acidity for volcanic ac-

tivity [48, 49].

It is more difficult to estimate atmospheric aerosol concen-

trations from ice core records than non-reactive greenhouse

gas concentrations, such as carbon dioxide, which can be

measured directly as the gas mixing ratio inside trapped bub-

bles [50]. An estimate of PI atmospheric aerosol mass concen-

trations requires a lot more information, including the local

water deposition rate. Furthermore, aerosol transport to re-

mote locations is episodic and controlled by poorly under-

stood chemical transformation and removal processes [51].

These factors make it difficult to relate aerosol concentrations

in ice to those that existed in the PI atmosphere, especially

since regional meteorology may have been different in the PI

[40]. An additional fundamental limitation of ice core records

is that they do not record several properties of aerosols most

relevant to climate (notably number concentrations of cloud

condensation nuclei and particle size distributions).

Measurements of the size of insoluble aerosol particles using

electron microscopy [52, 53] is a possibility for future studies

of PI aerosols, but studies using these techniques are still rare

in the literature.

Ice core records from Europe, Greenland, and Antarctica

show that sea-salt deposition has remained fairly constant over

the industrial period [40, 54, 55]. In contrast, MSA was re-

gionally up to a factor two higher in the PI [40, 56, 57], which

has been attributed to changes in Arctic sea-ice cover, greater

biological productivity in the colder PI, and possibly changes

in gas phase chemistry [40]. Such trends are not accounted for

in emission inventories used in global models [31], but model

simulations suggest that increases of dimethyl sulphide emis-

sions by 50–100%would have a substantial effect on regional

aerosols, clouds, and radiative forcing [6, 58, 59]. Ammonium

Curr Clim Change Rep (2017) 3:1–15 3



concentrations increased in the industrial period but with very

different temporal changes, and there are multi-decadal varia-

tions in the PI that are most likely driven by natural processes

[40]. Ice cores show higher black carbon aerosol concentra-

tions from fires in the seventeenth to nineteenth centuries,

peaking around the mid-nineteenth century [60, 61], a pattern

also seen in the charcoal record [62, 63].

Very few modelling studies have attempted to reconstruct

PI aerosols from ice core records. Most comparisons focus on

longer timescales, such as those within the Paleoclimate

Modelling Intercomparison Project [64]. Atmospheric dust

concentrations have received the most attention [65, 66], with

studies suggesting large changes in atmospheric dust in re-

sponse to vegetation changes. Atmospheric black carbon con-

centrations have been compared with those inferred from a

sediment core and deposited black carbon in snow at the D4

Greenland ice core site [67] and Hamilton et al. [68] compared

northern hemisphere ice core black carbon concentrations

with those from fire modelling simulations, suggesting that

atmospheric concentrations of black carbon in the PI are

strongly dependent on the assumptions made about fire

emissions.

An alternative approach is to estimate PI aerosol properties

using a model to identify present-day atmospheric conditions

that resemble the PI. In terms of cloud condensation nuclei

(CCN) concentrations, it is estimated that up to 12% of today’s

Earth’s surface could be representative of the PI [38], with

greater occurrences in single months (see Fig. 1). The occur-

rence of PI-like conditions for other aerosol properties is likely

to be different. Most of the PI-like locations for CCN are

marine and located in the southern hemisphere, but such re-

gions also occur in some boreal regions. Currently, there is

limited overlap of the identified pristine regions with the avail-

ability of aerosol measurements [69], especially in terrestrial

environments. However, an analysis of baseline aerosol mea-

surement stations in the Global Atmosphere Watch network

[26] shows that aerosols over the remote islands of American

Samoa and Amsterdam Island may still resemble PI condi-

tions, which could provide opportunities to make PI-like aero-

sol and precursor gas measurements from established research

facilities.

Clean background conditions are often identified in ambi-

ent measurements by filtering them to remove signatures of air

pollution. Tracers of pollution include black carbon [70], car-

bon monoxide [71], and aerosol number concentrations [72,

73]. However, a wide range of threshold values is used: for

example, black carbon concentrations in the range of 14.2 to

70 ng m−3 have been applied [70, 74–77]. Although such

approaches can detect “clean air”, none of these tracers is

unique to air pollution (e.g. black carbon from natural fires)

and it is incorrect to associate the cleanest air with natural

conditions. In agreement with our previous study [38], we

show below that some PI regions may have had quite high

aerosol concentrations. Therefore, it remains unclear how PI

aerosol conditions can be detected just using measurements.

Aerosol Emissions in the Pre-industrial

Aerosol emissions in the PI would have been influenced by

three factors: (i) natural emissions and natural variability in

these emissions; (ii) anthropogenic modification of natural

emissions compared to present-day conditions caused by fac-

tors like climate change and modification of natural land cover

by anthropogenic land-use change; and (iii) anthropogenic

emissions, whether from pre-industrial domestic and agricul-

tural practices (for a 1750 reference) or also including early

industrial processes (for an 1850 reference).

Natural aerosol emissions, processes, and their coupling to

the Earth system were reviewed in Carslaw et al. [2]. In that

review, the potential effect of changes in emissions on 2100

climate was estimated, although we now know that natural

emissions in the PI are also important for understanding his-

torical climate [6]. Natural emissions include wind-blown sea

spray, soil and desert dust, smoke particles from wildland

fires, biogenic organic compounds that are oxidised to form

secondary organic aerosol, and sulphate aerosol from various

sulphur compounds emitted by volcanic activity and marine

phytoplankton. All of these natural emissions show natural

variability on a wide range of timescales as well as strong

coupling to biogeochemical cycles [78], so we cannot assume

they were the same in the PI as now, or the same in 1750 as in

1850. There is also large uncertainty in the emissions, which

have been shown to significantly affect the PI aerosol concen-

trations and radiative forcing [16].

Human modification of natural land cover over the indus-

trial period is known to affect aerosols, trace gases, and cli-

mate [79], but the magnitude of these changes already in the

period 1750 to 1850 is not well understood. Current estimates

of PI land-cover fractions [80, 81] range from very little hu-

man land use outside ofWestern Europe and Southeast Asia in

the HYDE 3.1 land-use dataset [30] to extensive human land

use across Eurasia, India, Southeast Asia, Central and

Northeast America, and Africa in the KK10 dataset [82].

This uncertainty makes it difficult to define truly natural emis-

sions. For example, recent fire modelling incorporating differ-

ent land-cover scenarios estimates that CCN number concen-

trations could be a factor 1.6–2.7 times higher in the PI than

previously thought [68], with important consequences for an-

thropogenic aerosol radiative forcing.

Anthropogenic emissions in the PI cannot be neglected.

Biofuel combustion for cooking and heat was a large source

of PI aerosol pollution in Asia and Europe, and by 1850, the

emissions could have been as much as 41% of present-day

levels [83]. Furthermore, up to half of the global black carbon

burden could be from biofuel emissions from 1850 to 1890
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[84]. Earlier, dirtier fuels also released more pollutants to the

atmosphere than later more refined fuels, altering emission

factors (grams pollutant per kilogram fuel burnt) over time

[85].

Processes Controlling Pre-industrial Aerosols

The amount of aerosol in the PI atmosphere is clearly deter-

mined by the emissions. However, it is now realised that the

behaviour of the PI aerosol system is likely to have been

different to today in many regions. Therefore, we cannot pre-

dict climate-relevant aerosol properties in the PI based solely

on relative emissions or chemical concentrations in ice cores.

Global Earth system models with detailed treatments of aero-

sol microphysics and chemistry can help to define the aerosol

properties [86–90].

A clear demonstration of how the aerosol system has

changed is the study of Spracklen and Rap [91] who showed

that the existence of anthropogenic aerosols in the northern

hemisphere has halved the sensitivity of cloud albedo to

changes in natural aerosol emissions. So, in the PI atmo-

sphere, aerosols, clouds, and planetary radiation balance

would have been much more sensitive to fluctuations in nat-

ural emissions than today.

Approximately half of today’s CCN originate from new

particle formation via gas-to-particle conversion or “nucle-

ation”, and up to 80% in some regions [92]. Nucleation is

therefore a key process to include in Earth system models that

aim to simulate PI aerosols. Rates of nucleation and subse-

quent condensational growth to CCN size will have been

different in the PI because they depend strongly on the con-

centrations of trace gases such as sulphuric acid and ammonia

[93] as well as the surface area of existing aerosols, which

scavenge condensing vapours and nuclei [94]. The fraction

of nucleated particles that grow to CCN size will have been

higher in some places (due to lower probability of loss) but

lower in others (due to lower abundance of condensable va-

pours). At present, the relative effects of these factors are not

completely understood even for the present-day atmosphere.

Based on our current understanding of nucleation, we can

begin to build a picture of how PI aerosol processes differed

from the present day. We know that nucleation is caused by

extremely low volatility vapours such as sulphuric acid and

highly oxidised organic compounds [93, 95–97], bases like

amines and ammonia [93, 98, 99], and ions [93, 100]. The

main factor controlling nucleation will be large changes in

sulphuric acid vapour concentrations in polluted regions.

Since anthropogenic sulphuric acid emissions are roughly

constant over the year while biogenic emissions (of both or-

ganics and sulphur) are strongly peaked in summer, we spec-

ulate that PI aerosol likely had a stronger seasonal cycle in

number concentration than the present day [97]. There is not

yet enough information to determine how other trace gases

and ions may have shaped PI aerosols. The second major

factor is the lower sink of nucleating vapours in the PI.

Gordon et al. [101] showed that this can allow nucleation of

biogenic vapours [100] to increase substantially in the PI,

providing a “nucleation buffering” mechanism that raises PI

aerosol concentrations above the level that might be expected

based on the generally lower emissions. A third factor is that

the volatility of biogenic nucleating vapours depends on

Fig. 1 Identification of regions in which cloud condensation nucleus

(CCN) concentrations at cloud base (∼915 hPa) are similar in the

present day and in the PI. Colours show the number of days per month

on which PI and present-day CCN concentrations differ by no more than

±20%. The stippling shows regions where the sensitivities of PI and

present-day CCN to 28 model parameters are similar (r2 ≥ 0.9) in that

grid cell. From Hamilton et al. [38]

Curr Clim Change Rep (2017) 3:1–15 5



which species were involved in the oxidation steps (ozone,

OH, HO2, and NO3) as well as the concentrations of NOx

(ref [102]), which have been strongly affected by anthropo-

genic activities [103, 104]. This will have affected not just

nucleation but also all aerosol chemistry and trends [105].

Changes in the properties of aerosols cannot be considered

separately from the changes they induce in clouds. Higher

aerosol concentrations lead to smaller cloud droplets and a

possible local- to regional-scale suppression of precipitation

formation, which is the major loss process of aerosols [106,

107]. There is potential for a feedback in which enhanced

aerosol removal in the clean PI further suppresses aerosol

concentrations [108, 109], although many other factors need

to be considered in regional cloud systems [18]. None of these

processes has been explored in any depth in connection with

the PI aerosol state.

What Did Pre-industrial Aerosols Look Like?

Global models provide the only way to estimate the micro-

physical properties of PI aerosols that are relevant to climate,

although more could be done to evaluate some aspects of the

models against measurements described earlier.

To provide some idea what global aerosols looked like and

how uncertain they are, we have analysed a large set of model

simulations of the HadGEMvn8.4 climate model [110] using

1850 emissions (so, according to the discussion above, the

reference for many climate model simulations, but with a

small amount of pollution that was not present in 1750). The

simulations were run for a single year of 2008 meteorology so

do not account for any poorly understood changes in meteo-

rology since 1850. Natural emissions are the same as used in

previous published studies [6, 31, 111]. The small anthropo-

genic emissions for 1850 were taken from the Atmospheric

Chemistry and Climate Model Intercomparison Project [35].

Following the statistical approach described in previous stud-

ies [111, 112], an ensemble of 235 simulations was generated

to sample 26 uncertainties in all the aerosol emissions and

most of the processes. Then, for each output of interest in each

model grid box, a statistical emulator model was constructed

to define how the output varies with respect to the 26-

dimensional parameter uncertainty space, allowing a full his-

togram of the output uncertainty to be obtained given the

parametric uncertainty of the model.

Figure 2 shows the global distribution of aerosol optical

depth and several in situ aerosol properties in the boundary

layer: CCN number concentrations, total particle number con-

centrations (particles larger than 3 nm diameter), and black

carbon mass concentrations. We also show the uncertainty in

these quantities (as the standard deviation) as well as the ratio

to present-day conditions. These ratios are themselves uncer-

tain because of the uncertainty in 1850 and present-day

aerosols, so we show examples of the ratio uncertainty in

Fig. 3. Table 1 summarises average aerosol properties over

selected marine and land regions, which are shown in Fig. 4.

One result of our simulations and earlier studies [38] is that

PI aerosol concentrations over terrestrial regions were proba-

bly higher than those over the ocean. Some of the land/ocean

contrast over Europe and eastern N America is due to early

industrial emissions. However, comparison with Fig. 1 of ref.

[38], which used 1750 emissions, shows that much of the

elevated aerosol concentration over land is due to natural ter-

restrial aerosol sources [38], which will include wildfires and

biogenically driven new particle formation in these simula-

tions [97]. Our simulations therefore suggest that aerosol con-

centrations would not have been the same over land and ocean

as has been assumed for pre-human environments [29]. And

certainly by 1850, it is clear that early industrial activity over

Europe and eastern North America will have significantly

raised aerosol concentrations.

Over northern hemisphere ocean regions, CCN concentra-

tions in 1850 were in the range 50–100 cm−3, with an uncer-

tainty of 10–30 cm−3. These are about 50–70% of present-day

concentrations. Over continental land regions, CCN concen-

trations peak at about 900 cm−3 in regions affected by fires and

early industrial pollution, but most continental regions have

concentrations in the range 100–300 cm−3 except in high-

latitude boreal regions where they are lower. Asia stands out

as a region in which PI CCN concentrations were consider-

ably lower than today—typically 20–40% of present-day

concentrations.

Figure 3 shows how uncertain the ratio of PI to present-day

CCN concentrations is at a central N American location. The

mean PI to present-day CCN ratio is about 0.5, but the lower

and upper 95% confidence intervals lie at 0.35 and 0.75. This

means that the uncertainty in the aerosol model has a very

substantial effect on our ability to determine how much

CCN concentrations have changed over the industrial period.

Black carbon mass concentrations are predicted to be much

more similar in the PI and present day than is the case for

CCN. Over much of the northern hemisphere, black carbon

concentrations in the PI are estimated to be about 80% of

present-day values but can exceed present-day values in loca-

tions with high early-industrial emissions. Black carbon con-

centrations also generally have higher uncertainty (a standard

deviation about 50% of the mean), which reflects the large

uncertainty in emissions. The ratio of PI to present-day con-

centrations is also more uncertain; for example, Fig. 3 shows

that the 95% confidence intervals of the ratio lie at 0.55 and

0.95.

Figure 5 shows the vertical profile of total particle number

concentration (all particles greater than 3 nm diameter) and of

CCN concentrations for a few locations around the world. The

striking feature of these profiles is that PI and present-day

concentrations are very similar above about 4 km altitude.
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Fig. 2 Model calculations of annual mean pre-industrial (1850) aerosol

properties: aerosol optical depth (550 nm), cloud condensation nucleus

number concentrations at approximate cloud-base altitude of 890 hPa,

total particle concentration for particles larger than 3 nm diameter at

cloud base, and black carbon mass concentrations at cloud base. For

each variable, the panel on the left shows the mean value and the

central panel shows the standard deviation, given the parametric

uncertainty in the model. The panel on the right shows the ratio of the

mean pre-industrial value to the mean present-day value

Curr Clim Change Rep (2017) 3:1–15 7



At these altitudes, almost all aerosols originate from nucle-

ation [92], which, in these simulations, is a binary sulphuric

acid-water mechanism [113] that produces present-day parti-

cle concentrations in good agreement with observations. The

insensitivity of free tropospheric aerosols to changes in emis-

sions since the PI is expected based on what we know about

the buffering of CCN concentrations in nucleation-dominated

environments, although the effects of other species like organ-

ic compounds and ammonia [93, 97] are yet to be determined.

Size distributions of aerosol change substantially between

present-day and the PI (Fig. 6). Natural fire emissions are

assumed to have a larger mode diameter than fossil fuel emis-

sions, so there is a tendency towards smaller and more numer-

ous particles in the present day than the PI. In Germany, this

explains the downward shift in the diameter of the largest

mode, but the nucleation mode is higher in the pre-industrial

atmosphere, presumably due to the lower condensation sink.

This is not true elsewhere, suggesting that the reduced

Fig. 3 Uncertainty in the ratio of PI to present-day (PD) aerosol

properties in boreal Canada (see map in Fig. 4) caused by the

parametric uncertainty in the aerosol model. Each plot shows a

histogram of the ratio PI/PD. Concentrations are for approximate cloud-

base altitude of 890 hPa. The red vertical line is the mean of the

distribution and the blue lines are the 95% confidence intervals

Table 1 Modelled aerosol properties in the PI and present day (PD): aerosol optical depth (AOD), CCN concentration at 0.2% supersaturation,

concentration of particles larger than 3 nm diameter (N3), and black carbon mass concentrations. The values are annual averages over the 11 regions in

Fig. 4. The three columns give the mean, the standard deviation from the uncertainty in the model (σ), and the ratio of the PI to present-day (PI/PD)

AOD CCN0.2%/cm
−3 N3/cm

−3 Black carbon/μg m−3

Region Mean σ PI/PD Mean σ PI/PD Mean σ PI/PD Mean σ PI/PD

R1 N Pacific Ocean (O) 0.16 0.06 0.73 71 18 0.55 184 45 0.22 0.01 0.01 0.50

R2 Pacific off California (O) 0.09 0.03 0.84 108 21 0.57 339 97 0.28 0.02 0.01 0.65

R3 E Canada (L) 0.10 0.03 0.64 122 32 0.53 250 92 0.26 0.06 0.03 1.35

R4 Pacific off S America (O) 0.09 0.03 0.94 93 17 0.65 373 99 0.75 0.004 0.002 0.29

R5 N Atlantic (O) 0.15 0.06 0.83 92 19 0.67 225 65 0.29 0.02 0.01 1.58

R6 N Atlantic off WAfrica (O) 0.18 0.06 0.89 130 22 0.73 348 79 0.57 0.03 0.01 1.00

R7 Arctic Ocean (O) 0.14 0.05 0.78 88 23 0.60 192 74 0.38 0.03 0.02 1.25

R8 Europe 0.17 0.05 0.68 252 60 0.68 1116 547 0.33 0.15 0.08 1.45

R9 Atlantic off SWAfrica (O) 0.14 0.05 0.76 170 34 0.72 352 65 0.65 0.09 0.05 0.53

R10 Indian Ocean (O) 0.17 0.05 0.53 368 74 0.41 1085 324 0.41 0.20 0.08 0.34

R11 China (L) 0.10 0.03 0.24 243 57 0.21 775 337 0.15 0.15 0.08 0.17
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condensation sink in the PI is accompanied by a reduction in

condensable vapour concentrations.

Figure 7 shows how different model processes and emis-

sions contribute to the uncertainty in pre-industrial aerosol

optical depth (AOD), CCN, and total number concentration

in the 11 regions in Fig. 4. This analysis provides some indi-

cation of where improved knowledge will help to reduce mod-

el uncertainty. Causes of uncertainty vary spatially, as we have

previously seen for present-day properties [111]. For AOD,

the sea-spray emissions are the largest source of uncertainty in

nearly all regions and completely dominate the uncertainty for

oceanic regions. For the land-based regions such as eastern

Canada and Europe, the biomass-burning emissions, the as-

sumed accumulation mode width, the biogenic secondary

aerosol formation from volatile organic compounds

(BVOC_SOA), and the accumulation mode dry deposition

velocity also make significant contributions to the pre-

industrial AOD uncertainty. Dust emissions make a relatively

small contribution to AOD uncertainty (less than 10–15% of

total uncertainty) in the regions we have examined.

For CCN, the contributions to uncertainty are much more

spatially varied, with many parameters having a large effect in

at least one region. Over many oceanic regions, the sea spray

aerosol emissions are the largest contributor, and for land-

based regions, it is the carbonaceous residential emissions,

the carbonaceous biomass-burning emissions (and the as-

sumed particle diameter) that have the largest effect. We also

see that the accumulation mode dry deposition velocity scale

factor is a large contributor to the uncertainty across all

regions.

For the total particle number concentration, the main con-

tributions to uncertainty are reasonably similar across the re-

gions. The boundary layer nucleation rate coefficient is the

most important factor in nearly all regions. Also, the pH of

cloud droplets, the mode diameter of new sub-grid sulphate

particles, the diameter of emitted biomass-burning particles,

and the dimethyl sulphide emissions each show large contri-

butions within individual regions.

The main contributors to uncertainty in the PI are not the

same as those for present-day conditions (plots not shown, but

earlier studies are not greatly different [111]). The implication

is that efforts to reduce uncertainty in present-day aerosol

models will not directly translate into a reduced uncertainty

in models of PI aerosols.

Our understanding of aerosol emissions and processes is

still changing rapidly. In order to improve models of PI aero-

sols, we need to improve our understanding of processes that

we already know to be uncertain, as outlined above, but also

identify new aerosol processes or emissions that may be defi-

cient or incomplete. A good example of such a new process,

Fig. 5 Model calculations of pre-

industrial and present-day area-

averaged aerosol vertical profiles

over China, India, central African

biomass-burning area, the North

Atlantic, central Europe, boreal

Canada, and the South Atlantic.

Annual means of the total particle

concentration (particles larger

than 3 nm diameter) and CCN.

Concentrations are for ambient

temperature and pressure

Fig. 4 Map of regions analysed in Table 1 and Fig. 7
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not reflected in the model simulations above, is pure biogenic

nucleation [100], which could increase PI CCN concentra-

tions by 4–19% [101]. These changes are comparable to the

standard deviations in CCN concentrations caused by 26 other

processes and emissions so would constitute a significant

change to the model. Other nucleation mechanisms, like those

involving iodine oxides [114–116], are also likely to have a

larger relative effect on CCN in the PI atmosphere than today.

A second example is the likelihood that emissions from fires

in the PI were much higher than previously assumed [68].

Fig. 7 Causes of uncertainty in pre-industrial annual mean aerosol

optical depth, CCN number concentration, and total particle number

concentrations for the regions shown in Fig. 4. The colours from top to

bottom follow the same order in the key. Where the fraction of variance is

less than 100%, the remainder is caused by interactions between

parameters

Fig. 6 Model calculations of pre-

industrial area-averaged annual

mean aerosol size distribution for

China, India, central African

biomass-burning area, the North

Atlantic, central Europe, boreal

Canada, and the South Atlantic
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Again, this structural change to the model would increase

CCN and black carbon concentrations by over a factor of

two over some northern hemisphere regions. The net effect

of such missing processes is yet to be explored, but based on

these studies, we can expect it to have a substantial effect on

calculated radiative forcings.

Open Questions and Future Research

The community needs to settle on a reliable and useful defi-

nition of “pre-industrial” aerosols. As we have described in

this review, human activity was already perturbing the land

and atmosphere from before the 1700s, and by 1850, early

industrial emissions had already significantly affected aero-

sols in parts of the northern hemisphere, especially around

the Atlantic. Many of the important factors affecting aerosols,

as summarised in this review, are not considered in current

climate model simulations, so it is not clear whether current

definitions of pre-industrial are appropriate for aerosols [27].

Certainly, 1850 should be considered as “early industrial”, and

the pre-industrial to present-day aerosol forcing is slightly

lower when 1850 is used compared to using 1750 [6].

Although early anthropogenic emissions were low, the PI

aerosol system was very susceptible to small changes [6].

We need to understand better how early changes in land use

and land cover affected emissions and how much the aerosol

system was perturbed by early industrial emissions. The sub-

stantial spatial variability in these changes could be very im-

portant depending on how the emissions ultimately affect sen-

sitive CCN concentrations in cloudy regions.

Natural aerosol emissions are a major source of uncertainty

in PI aerosols [6], and we cannot assume they were the same

as today because of natural variability and the effects of hu-

man activity on land use and natural processes. To improve

models, we need to develop a fundamental understanding of

natural Earth system processes that control the key emissions

such as dimethyl sulphide, marine organic emissions, and

fires. Earth system model developments are needed to explore

the biogeochemical cycles involving aerosols [78] as well as

the biosphere’s response to climate change, which will have

altered the emissions [2].

It is well understood that solar and volcanic radiative forc-

ings were a major factor controlling PI climate variability [17].

However, variations in natural aerosols in the troposphere

(such as through changes in fire emissions) should also be

considered as a potential driver of climate variability in the

PI because the aerosol-cloud system was more susceptible to

small perturbations in emissions than it is today. To address

this problem, we need to develop a much better understanding

of variability in natural systems by building robust Earth sys-

tem models.

There is a clear need to more fully explore the range of

aerosol properties across multiple models because this has a

direct bearing on the spread of multi-model ensembles in the

Coupled Model Intercomparison Project (CMIP) that feeds

into IPCC assessments. As shown by Wilcox et al. [7], there

is scant information available on PI aerosols from CMIP5.

The AerchemMIP project [117] provides an opportunity for

such an analysis. It will also be important to establish the

extent to which PI aerosol properties directly affect modelled

aerosol-cloud forcings, or whether artificial restrictions on

cloud drop concentrations [20] remove some of the sensitivity.

The lack of direct measurements of aerosol properties with

global coverage and under different meteorological conditions

makes models very reliant on a sound understanding of aero-

sol physical and chemical processes, which were probably

different in the PI compared to today. Developments in all of

these model components are needed. As shown by Gordon

et al. [101], progress is being made in exploiting well-

designed chamber measurements to understand the mecha-

nism of particle nucleation under PI conditions. However, a

much deeper knowledge of PI gas phase and aerosol chemis-

try is needed to refine our understanding of these and other

aerosol processes.

There is scope to make more use of ice core records to

evaluate Earth system models and extract new information

about PI aerosol chemistry and distribution. This analysis is

necessary because records suggest natural PI aerosols were

not the same as today. We need more model analyses of

existing data as well as novel ways of extracting more aerosol

information from cores. A particular challenge will be to relate

point measurements to regional aerosol emissions and pro-

cesses [40].

The change in ice-nucleating particle concentrations and

the effect on cloud glaciation and planetary radiative balance

remain essentially completely open. Progress is being made

by including species-specific ice-nucleating particles in global

models [118–120] so that they can be simulated based on

changing aerosol emissions. However, our overall understand-

ing of ice-nucleating particles is still evolving [22, 23], and it

is not known how the specific ice-active components may

have been different in the PI.

In addition to understanding the properties of aerosols in

the PI, we also need to understand how they interacted with

clouds to affect cloud physical properties, precipitation, and

planetary energy balance. In particular, we need to understand

whether low aerosol concentrations in the PI affected aerosol

removal and hence fed back on the aerosol number concen-

trations. These processes are currently poorly handled in most

global models. Cloudy regions with aerosol number concen-

trations occasionally close to PI conditions can be found in

today’s atmosphere [38] and could be studied as analogues.

Finally, as our understanding of PI aerosols improves, we

need to assess their effects on atmospheric dynamics and
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climate sensitivity. It is known that monsoons and the position

of the ITCZ respond to hemispheric-scale forcing from volca-

nic and anthropogenic aerosols [121, 122]. Changes in PI

aerosols against a baseline of fairly low concentrations could

have substantial regional radiative effects. These may affect

the distribution of ocean heat during the spin up of climate

models and thereby affect the whole historical simulation [39]

and the model’s climate sensitivity [8–10].

Conclusions

It is clear that progress is being made on understanding the state

and behaviour of aerosols in the PI. However, at present, parts

of the problem are being studied in isolation (e.g. nucleation

[101]). Given the complex interactions in the aerosol system,

the interactions of aerosols with clouds [18], and with the wider

Earth system [2, 78], it is essential to build and evaluate more

complete models with a focus on the PI. The current generation

of Earth systemmodels provides a good basis for such research.

As we develop these models further, we need to be aware that

the climate may be very sensitive to model errors [6], neglected

processes [101], and emissions [68]. Improvement in the real-

ism of the models may also require the inclusion of some com-

plex physical and chemical processes, which will be difficult to

verify against present-day measurements [101].

The study of PI aerosols has been a relatively neglected area

of climate science, withmost effort being directed to understand-

ing historical changes since the PI era [104, 123] even though

the starting point for these simulations has not been well defined

[6, 7]. The development of more sophisticated models provides

an opportunity to understand the PI aerosol system better, al-

though the evaluation of the models will be very challenging.

Acknowledgements We are grateful for funding from the NERC

GASSP project (NE/J024252/1), the National Centre for Atmospheric

Science, the European Union BACCHUS project under Grant

Agreement 603445 and CRESCENDO project under grant 641816. The

model simulations and analysis were performed on ARC1 (the high-

performance computing facilities at the University of Leeds), the

ARCHER UK National Supercomputing Service (project allocation

n02-FREEPPE and Archer Leadership Project allocation n02-CCPPE),

and the JASMIN service. DSH and LAR would like to thank the Natural

Environment Research Council and Met Office for funding their PhD

projects. KSC is currently a Royal Society Wolfson Merit Award holder.

Compliance with Ethical Standards

Conflict of Interest On behalf of all authors, the corresponding author

states that there is no conflict of interest.

Open Access This article is distributed under the terms of the Creative

Commons At t r ibut ion 4 .0 In te rna t ional License (h t tp : / /

creativecommons.org/licenses/by/4.0/), which permits unrestricted use,

distribution, and reproduction in any medium, provided you give appro-

priate credit to the original author(s) and the source, provide a link to the

Creative Commons license, and indicate if changes were made.

References

1. Satheesha SK, Krishna MK. Radiative effects of natural aerosols:

a review. Atmos Environ. 2005;39(11):2089–110.

2. Carslaw KS, Boucher O, Spracklen DV, Mann GW, Rae JGL,

Woodward S, et al. A review of natural aerosol interactions and

feedbacks within the Earth system. Atmos Chem Phys. 2010;10:

1701–37.

3. Boucher O, Randall D, Artaxo P, Bretherton C, Feingold G,

Forster P, et al. Clouds and aerosols. In: Stocker TF, Qin D,

Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia

Y, BexV,Midgley PM, editors. Climate change 2013: the physical

science basis contribution of Working Group I to the Fifth

Assessment Report of the Intergovernmental Panel on Climate

Change. Cambridge, United Kingdom and New York, NY,

USA: Cambridge University Press; 2013. p. 571.

4. Andreae MO, Jones CD, Cox PM. Strong present-day aerosol

cooling implies a hot future. Nature. 2005;435(7046):1187–90.

5. Seinfeld JH, Bretherton C, Carslaw KS, Coe H, DeMott PJ,

Dunlea EJ, et al. Improving our fundamental understanding of

the role of aerosol-cloud interactions in the climate system. Proc

Natl Acad Sci U S A. 2016;113(21):5781–90.

6. Carslaw KS, Lee LA, Reddington CL, Pringle KJ, Rap A, Forster

PM, et al. Large contribution of natural aerosols to uncertainty in

indirect forcing. Nature. 2013;503(7474):67–71.

7. Wilcox LJ, Highwood EJ, Booth BBB, Carslaw KS. Quantifying

sources of inter-model diversity in the cloud albedo effect.

Geophys Res Lett. 2015;42:1568–75.

8. Andrews T, Gregory JM, Webb MJ. The dependence of radiative

forcing and feedback on evolving patterns of surface temperature

change in climate models. J Clim. 2015;28(4):1630–48.

9. Gregory JM, Andrews T, Good P. The inconstancy of the transient

climate response parameter under increasing CO2. Philos Trans A

2015;373

10. Armour KC, Bitz CM, Roe GH. Time-varying climate sensitivity

from regional feedbacks. J Clim. 2013;26(13):4518–34.

11. Knutti R, Rugenstein MAA. Feedbacks, climate sensitivity and

the limits of linear models. Philos Trans A. 2015;373.

12. Haywood JM, Shine KP. The effect of anthropogenic sulfate and

soot aerosol on the clear sky planetary radiation budget. Geophys

Res Lett. 1995;22(5):603–6.

13. Rap A, Scott CE, Spracklen DV, Bellouin N, Forster PM, Carslaw

KS, et al. Natural aerosol direct and indirect radiative effects.

Geophys Res Lett. 2013;40(12):3297–301.

14. Twomey S. The influence of pollution of the shortwave albedo of

clouds. J Atmos Sci. 1977;34:1149–52.

15. Platnick S, Twomey S. Determining the susceptibility of cloud

albedo to changes in droplet concentration with the advanced very

high resolution radiometer. J Appl Meteorol. 1994;33:334–47.

16. Schmidt A, Carslaw KS,MannGW, Rap A, Pringle KJ, Spracklen

DV, et al. Importance of tropospheric volcanic aerosol for indirect

radiative forcing of climate. Atmos Chem Phys. 2012;12(16):

7321–39.

17. Shindell DT, Schmidt GA, Miller RL, Mann ME. Volcanic and

solar forcing of climate change during the preindustrial era. J

Clim. 2003;16:4094–107.

18. Stevens B, Feingold G. Untangling aerosol effects on clouds and

precipitation in a buffered system. Nature. 2009;461(7264):607–

13.

19. Koren I, Dagan G, Altaratz O. From aerosol-limited to invigora-

tion of warm convective clouds. Science (New York, NY).

2014;344(6188):1–5.

20. Hoose C, Kristjánsson JE, Iversen T, Kirkevåg A, Seland Ø,

Gettelman A. Constraining cloud droplet number concentration

12 Curr Clim Change Rep (2017) 3:1–15



in GCMs suppresses the aerosol indirect effect. Geophys Res Lett.

2009;36(12):L12807.

21. Hourdin F, Mauritsen T, Gettelman A, Golaz J-C, Balaji V, Duan

Q, et al. The art and science of climate model tuning. Bulletin of

the AmericanMeteorological Society. 2016 Jul 29;BAMS–D–15–

00135.1.

22. Hoose C,Möhler O. Heterogeneous ice nucleation on atmospheric

aerosols: a review of results from laboratory experiments. Atmos

Chem Phys. 2012;12(20):9817–54.

23. Murray BJ, O’Sullivan D, Atkinson JD, WebbME. Ice nucleation

by particles immersed in supercooled cloud droplets. Chem Soc

Rev. 2012;41(19):6519–54.

24. Szyrmer W, Zawadzki I. Biogenic and anthropogenic sources of

ice-forming nuclei: a review. Bull Am Meteorol Soc. 1997;78:

209–28.

25. DeMott PJ, Prenni AJ, Liu X, Kreidenweis SM, Petters MD,

Twohy CH, et al. Predicting global atmospheric ice nuclei distri-

butions and their impacts on climate. Proc Natl Acad Sci U S A.

2010;107(25):11217–22.

26. Hamilton DS. Natural aerosols and climate: understanding the

unpolluted atmosphere to better understand the impacts of pollu-

tion. Weather. 2015;70(9):264–8.

27. Hawkins E, Ortega P, Suckling E, Schurer A, Hegerl G, Jones P,

et al. Estimating changes in global temperature since the pre-

industrial period. Bulletin of the American Meteorological

Society. 2017 Jan 24;in press:BAMS–D–16–0007.1.

28. Hobsbawm EJ. The age of revolution. London: Weidenfeld and

Nicolson; 1962.

29. Andreae MO. Aerosols before pol lu t ion. Science.

2007;315(5808):50–1.

30. Goldewijk KK, Beusen A, Van Drecht G, De Vos M. The HYDE

3.1 spatially explicit database of human-induced global land-use

change over the past 12,000 years. Glob Ecol Biogeogr.

2011;20(1):73–86.

31. Dentener F, Kinne S, Bond T, Boucher O, Cofala J, Generoso S,

et al. Emissions of primary aerosol and precursor gases in the years

2000 and 1750 prescribed data-sets for AeroCom. Atmos Chem

Phys. 2006;6:4321–44.

32. Uglietti C, Gabrielli P, Cooke CA, Vallelonga P, Thompson LG.

Widespread pollution of the South American atmosphere predates

the industrial revolution by 240 y. Proc Natl Acad Sci U S A.

2015;112(8):2349–54.

33. Jones PD, New M, Parker DE, Martin S, Rigor IG. Surface air

temperature and its changes over the past 150 years. RevGeophys.

1999;37(2):173–99.

34. Walker M, Gibbard P, Lowe J. Comment on “When did the

Anthropocene begin? A mid-twentieth century boundary is

stratigraphically optimal” by Jan Zalasiewicz et al. (2015),

Quaternary International, 383, 196–203. Quat Int. 2015;383:

204–7.

35. Lamarque J-F, Bond TC, Eyring V, Granier C, Heil A, Klimont Z,

et al. Historical (1850–2000) gridded anthropogenic and biomass

burning emissions of reactive gases and aerosols: methodology

and application. Atmos Chem Phys. 2010;10(15):7017–39.

36. Bellouin N, Quaas J, Morcrette J-J, Boucher O. Estimates of aero-

sol radiative forcing from the MACC re-analysis. Atmos Chem

Phys. 2013;13(4):2045–62.

37. Penner JE, Xu L, Wang M. Satellite methods underestimate indi-

rect climate forcing by aerosols. Proc Natl Acad Sci U S A.

2011;108(33):13404–8.

38. HamiltonDS, Lee LA, Pringle KJ, Reddington CL, Spracklen DV,

Carslaw KS. Occurrence of pristine aerosol environments on a

polluted planet. Proc Natl Acad Sci U S A. 2014;111(52):

18466–71.

39. Gregory JM, Bi D, Collier MA, Dix MR, Hirst AC, Hu A, et al.

Climate models without preindustrial volcanic forcing

underestimate historical ocean thermal expansion. Geophys Res

Lett. 2013;40(8):1600–4.

40. Beaudon E, Moore JC, Martma T, Pohjola VA, Van DeWal RSW,

Kohler J, et al. Lomonosovfonna and Holtedahlfonna ice cores

reveal east–west disparities of the Spitsbergen environment since

AD 1700. J Glaciol. 2013;59(218):1069–83.

41. Doscher A, Gaggeler HW, Schotterer U, Schwikowski MI. A 130

years deposition record of sulfate, nitrate and chloride from a high-

alpine glacier. Water Air Soil Pollut. 1995;85:603–9.

42. Schwikowski M, Doscher A, Gaggeler HW, Schotterer U.

Anthropogenic versus natural sources of atmospheric sulphate

from an alpine ice core. Tellus Ser B Chem Phys Meteorol.

1999;51(5):938–51.

43. Fischer H, Wagenbach D, Kipfstuhl J. Sulfate and nitrate firn

concentrations on the Greenland ice sheet: 1. Large-scale geo-

graphical deposition changes. J Geophys Res. 1998;103(D17):

21,927–34.

44. Dixon D, Mayewski PA, Kaspari S, Kreutz K, Hamilton GS,

Maasch K, et al. A 200-year sulfate record from sixteen

Antarctic ice cores and associations with southern ocean sea ice

extent. Ann Glaciol. 2005;41(1):155–66.

45. Simoneit BRT, Schauer JJ, Nolte CG, Oros DR, Elias VO, Fraser

MP, et al. Levoglucosan, a tracer for cellulose in biomass burning

and atmospheric particles. Atmos Environ. 1999;33:173–82.

46. Legrand M, Pasteur EC. Methane sulfonic acid to non-sea-salt

surfate ratio in coastal Antarctic aerosol and surface snow. J

Geophys Res. 1998;103:10991–1006.

47. Mulvaney R, Pasteur EC, Peel DA, Saltzman ES, Whung P-Y.

The ratio of MSA to non-sea-salt sulphate in Antarctic peninsula

ice cores. Tellus B. 1992;44(4):295–303.

48. Taylor K, Alley R, Fiacco J, Grootes P, Lamorey G, Mayewski P,

et al. Ice-core dating and chetnistry by direct-current electrical

conductivity. J Glaciol. 1992;38(130):325–32.

49. Hammer CU. Acidity of polar ice cores in relation to absolute

dating, past volcanism, and radio-echoes. J Glaciol. 1980;25(93):

359–72.

50. Friedli H, Lötscher H, Oeschger H, Siegenthaler U, Stauffer B. Ice

core record of the 13C/12C ratio of atmospheric CO2 in the past

two centuries. Nature. 1986;324(6094):237–8.

51. Browse J, Carslaw KS, Arnold SR, Pringle K, Boucher O. The

scavenging processes controlling the seasonal cycle in Arctic sul-

phate and black carbon aerosol. Atmos Chem Phys. 2012;12(15):

6775–98.

52. Ellis A, Edwards R, Saunders M, Chakrabarty RK, Subramanian

R, Van Riessen A, et al. Characterizing black carbon in rain and

ice cores using coupled tangential flow filtration and transmission

electron microscopy. Atmospheric Measurement Techniques.

2015;8(9):3959–69.

53. Murr LE, Esquivel EV, Bang JJ, De la Rosa G, Gardea-Torresdey

JL. Chemistry and nanoparticulate compositions of a 10,000 year-

old ice core melt water. Water Res. 2004;38(19):4282–96.

54. Mahowald NM, Lamarque JF, Tie XX, Wolff E. Sea-salt aerosol

response to climate change: last glacial maximum, preindustrial,

and doubled carbon dioxide climates. Journal of Geophysical

Research Atmospheres. 2006;111(5):1–11.

55. De Angelis M, Steffensen JP, Legrand M, Clausen H, Hammer C.

Primary aerosol (sea salt and soil dust) deposited in Greenland ice

during the last climatic cycle: comparison with east Antarctic re-

cords. Journal of Geophysical Research: Oceans. 1997;102(C12):

26681–898.

56. Whung PY, Saltzman ES, SpencerMJ,Mayewski PA, Gundestrup

N. Two-hundred-year record of biogenic sulfur in a south

Greenland ice core (20D). J Geophys Res. 1994;99(D1):1147–56.

57. Legrand M, Hammer C, De Angelis M, Savarino J, Delmas R,

Clausen H, et al. Sulfur-containing species (methanesulfonate and

SO4) over the last climatic cycle in the Greenland Ice Core Project

Curr Clim Change Rep (2017) 3:1–15 13



(central Greenland) ice core. Journal of Geophysical Research:

Oceans. 1997;102(C12):26663–79.

58. Korhonen H, Carslaw KS, Spracklen DV, Mann GW, Woodhouse

MT. Influence of oceanic dimethyl sulfide emissions on cloud

condensation nuclei concentrations and seasonality over the re-

mote Southern Hemisphere oceans: a global model study. J

Geophys Res. 2008;113(D15):D15204.

59. Woodhouse MT, Mann GW, Carslaw KS, Boucher O. Sensitivity

of cloud condensation nuclei to regional changes in dimethyl-

sulphide emissions. Atmos Chem Phys. 2013;13(5):2723–33.

60. Rubino M, D’Onofrio A, Seki O, Bendle JA. Ice-core records of

biomass burning. The Anthropocene Review. 2015;3(2):140–62.

61. Wang Z, Chappellaz J, Park K, Mak JE. Large variations in

Southern Hemisphere biomass burning during the last 650 years.

Science (New York, NY). 2010;330(6011):1663–6.

62. Marlon JR, Kelly R, Daniau A-L, Vannière B, Power MJ, Bartlein

P, et al. Reconstructions of biomass burning from sediment char-

coal records to improve data-model comparisons. Biogeosciences.

2016;13(22):3225–44.

63. Marlon JR, Bartlein PJ, Carcaillet C, Gavin DG, Harrison SP,

Higuera PE, et al. Climate and human influences on global bio-

mass burning over the past twomillennia. Nat Geosci. 2008;1(10):

697–702.

64. Braconnot P, Harrison SP, Kageyama M, Bartlein PJ, Masson-

Delmotte V, Abe-Ouchi A, et al. Evaluation of climate models

using palaeoclimatic data. Nat Clim Chang. 2012;2(6):417–24.

65. Mahowald NM, Muhs DR, Levis S, Rasch PJ, Yoshioka M,

Zender CS, et al. Change in atmospheric mineral aerosols in re-

sponse to climate: last glacial period, preindustrial, modern, and

doubled carbon dioxide climates. J Geophys Res. 2006;111:

D10202.

66. Sudarchikova N, Mikolajewicz U, Timmreck C, O’Donnell D,

Schurgers G, Sein D, et al. Modelling of mineral dust for intergla-

cial and glacial climate conditions with a focus on Antarctica.

Clim Past. 2015;11(5):765–79.

67. Skeie RB, Berntsen T, Myhre G, Pedersen CA, Ström J, Gerland

S, et al. Black carbon in the atmosphere and snow, from pre-

industrial times until present. Atmos Chem Phys. 2011;11(14):

6809–36.

68. Hamilton DS, Hantson S, Scott CE, Kaplan JO, Pringle KJ,

Nieradzik LP, et al. Anthropogenic aerosol radiative forcing high-

ly sensitive to pre-industrial fire emissions. Submitted. 2016;

69. Reddington CL, Carslaw KS, Stier P, Schutgens N, Coe H, Liu D,

et al. The Global Aerosol Synthesis and Science Project (GASSP):

measurements and modelling to reduce uncertainty. Bulletin of the

American Meteorological Society. 2016;submitted.

70. O’Dowd C, Ceburnis D, Ovadnevaite J, Vaishya A, Rinaldi M,

Facchini MC. Do anthropogenic, continental or coastal aerosol

sources impact on a marine aerosol signature at Mace Head?

Atmos Chem Phys. 2014;14(19):10687–704.

71. Clarke A, Kapustin V. Hemispheric aerosol vertical profiles: an-

thropogenic impacts on optical depth and cloud nuclei. Science

(New York, NY). 2010;329(5998):1488–92.

72. Heintzenberg J, Bigg EK. Tropospheric transport of trace sub-

stances in the southern hemisphere. Tellus B. 1990;42:355–63.

73. Fiebig M, Hirdman D, Lunder CR, Ogren JA, Solberg S, Stohl A,

et al. Annual cycle of Antarctic baseline aerosol: controlled by

photooxidation-limited aerosol formation. Atmos Chem Phys.

2014;14(6):3083–93.

74. Yoon YJ, Ceburnis D, Cavalli F, Jourdan O, Putaud JP, Facchini

MC, et al. Seasonal characteristics of the physicochemical proper-

ties of North Atlantic marine atmospheric aerosols. J Geophys

Res. 2007;112(D4):D04206.

75. Cooke WF, Jennings SG, Spain TG. Black carbon measurements

at Mace Head, 1989-1996. J Geophys Res. 1997;102(D21):

25339–46.

76. Cavalli F, Facchini MC, Decesari S, Mircea M, Emblico L, Fuzzi

S, et al. Advances in characterization of size-resolved organic

matter in marine aerosol over the North Atlantic. Journal of

Geophysical Research D: Atmospheres. 2004;109(24):1–14.

77. Pohl K, Cantwell M, Herckes P, Lohmann R. Black carbon con-

centrations and sources in the marine boundary layer of the trop-

ical Atlantic Ocean using four methodologies. Atmos Chem Phys.

2014;14(14):7431–43.

78. Mahowald N. Aerosol indirect effect on biogeochemical cycles

and climate. Science. 2011;4(7):794–6.

79. Heald CL, Spracklen DV. Land use change impacts on air quality

and climate. Chem Rev. 2015;115(10):4476–96.

80. Ellis EC, Klein Goldewijk K, Siebert S, Lightman D, Ramankutty

N. Anthropogenic transformation of the biomes, 1700 to 2000.

Glob Ecol Biogeogr. 2010;19:589–606.

81. Ellis EC, Kaplan JO, Fuller DQ, Vavrus S, Klein Goldewijk K,

Verburg PH. Used planet: a global history. Proc Natl Acad Sci U S

A. 2013;110(20):7978–85.

82. Kaplan JO, Krumhardt KM, Ellis EC, RuddimanWF, Lemmen C,

Klein GK. Holocene carbon emissions as a result of anthropogenic

land cover change. The Holocene. 2010;21(5):775–91.

83. Fernandes SD, Trautmann NM, Streets DG, Roden CA, Bond TC.

Global biofuel use, 1850-2000. Global Biogeochem Cycles. 2007

30;21(2).

84. Bond TC, Bhardwaj E, Dong R, Jogani R, Jung S, Roden C, et al.

Historical emissions of black and organic carbon aerosol from

energy-related combustion, 1850-2000. Global Biogeochem

Cycles. 2007; 30:21(2).

85. Junker C, Liousse C. A global emission inventory of carbona-

ceous aerosol from historic records of fossil fuel and biofuel con-

sumption for the period. Atmos Chem Phys. 2008;8:1195–207.

86. Spracklen DV, Pringle KJ, Carslaw KS, Chipperfield MP, Mann

GW. A global off-line model of size-resolved aerosol microphys-

ics: I. Model development and prediction of aerosol properties.

Atmos Chem Phys. 2005;5:2227–52.

87. Yu F, Luo G, Bates TS, Anderson B, Clarke A, Kapustin V, et al.

Spatial distributions of particle number concentrations in the glob-

al troposphere: simulations, observations, and implications for nu-

cleation mechanisms. J Geophys Res. 2010;115(D17):D17205.

88. Ghan SJ, Schwartz SE. Aerosol properties and processes: a path

from field and laboratory measurements to global climate models.

Bull Am Meteorol Soc. 2007;88(7):1059–83.

89. Adams PJ, Seinfeld JH. Predicting global aerosol size distributions

in general circulation models. J Geophys Res. 2002;107(D19):

4370.

90. Stier P, Feichter J, Kinne S, Kloster S, Vignati E, Wilson J, et al.

The aerosol-climate model ECHAM5-HAM. Atmos Chem Phys.

2005;5:1125–56.

91. Spracklen DV, Rap A. Natural aerosol-climate feedbacks sup-

pressed by anthropogenic aerosol. Geophys Res Lett.

2013;40(19):5316–9.

92. Merikanto J, SpracklenDV,MannGW, Pickering SJ, CarslawKS.

Impact of nucleation on global CCN. Atmos Chem Phys. 2009;9:

8601–16.

93. Kirkby J, Curtius J, Almeida J, Dunne E, Duplissy J, Ehrhart S,

et al. Role of sulphuric acid, ammonia and galactic cosmic rays in

atmospheric aerosol nucleation. Nature. 2011;476(7361):429–33.

94. Pierce JR, Adams PJ. Efficiency of cloud condensation nuclei

formation from ultrafine particles. Atmos Chem Phys. 2007;7:

1367–79.

95. Benson DR, Young L-H, Kameel FR, Lee S-H. Laboratory-

measured nucleation rates of sulfuric acid and water binary homo-

geneous nucleation from the SO2 + OH reaction. Geophys Res

Lett. 2008;35(11):L11801.

96. Metzger A, Verheggen B, Dommen J, Duplissy J, Prevot ASH,

Weingartner E, et al. Evidence for the role of organics in aerosol

14 Curr Clim Change Rep (2017) 3:1–15



particle formation under atmospheric conditions. Proc Natl Acad

Sci U S A. 2010;107(15):6646–51.

97. Riccobono F, Schobesberger S, Scott CE, Dommen J, Ortega IK,

Rondo L, et al. Oxidation products of biogenic emissions contrib-

ute to nucleation of atmospheric particles. Science. 2014;344:12–

5.

98. Almeida J, Schobesberger S, Kürten A, Ortega IK, Kupiainen-

Määttä O, Praplan AP, et al. Molecular understanding of sulphuric

acid-amine particle nucleation in the atmosphere. Nature.

2013;502(7471):359–63.

99. Chen M, TitcombeM, Jiang J, Jen C, Kuang C, Fischer ML, et al.

Acid-base chemical reaction model for nucleation rates in the pol-

luted atmospheric boundary layer. Proc Natl Acad Sci U S A.

2012;109(46):18713–8.

100. Kirkby J, Duplissy J, Sengupta K, Frege C, GordonH,Williamson

C, et al. Ion-induced nucleation of pure biogenic particles. Nature.

2016;533(7604):521–6.

101. Gordon H, Sengupta K, Rap A, Duplissy J, Frege C, Williamson

C. Reduced anthropogenic aerosol radiative forcing caused by

biogenic new particle formation. Proceedings of the National

Academy of Sciences of the United States of America. 2016;In

press.

102. Jokinen T, Berndt T, Makkonen R, Kerminen V-M, Junninen H,

Paasonen P, et al. Production of extremely low volatile organic

compounds from biogenic emissions: measured yields and atmo-

spheric implications. Proc Natl Acad Sci U S A. 2015;112(23):

7123–8.

103. Naik V, Voulgarakis A, Fiore AM, Horowitz LW, Lamarque J-F,

Lin M, et al. Preindustrial to present-day changes in tropospheric

hydroxyl radical and methane lifetime from the Atmospheric

Chemistry and Climate Model Intercomparison Project

(ACCMIP). Atmos Chem Phys. 2013;13(10):5277–98.

104. Young PJ, Archibald AT, Bowman KW, Lamarque J-F, Naik V,

Stevenson DS, et al. Pre-industrial to end 21st century projections

of tropospheric ozone from the Atmospheric Chemistry and

Climate Model Intercomparison Project (ACCMIP). Atmos

Chem Phys. 2013;13(4):2063–90.

105. Tsigaridis K, Krol M, Dentener FJ, Balkanski Y, Lathiere J,

Metzger S, et al. Change in global aerosol composition since pre-

industrial times. Atmos Chem Phys. 2006;6:5143–62.

106. Ferek RJ, Garrett T, Hobbs PV, Strader S, Johnson D, Taylor JP,

et al. Drizzle suppression in ship tracks. J Atmos Sci. 2000;57:

2707–28.

107. Rosenfeld D. Suppression of rain and snow by urban and indus-

trial air pollution. Science. 2000;287:1793–6.

108. Baker MB, Charlson RJ. Bistability of CCN concentrations and

thermodynamics in the cloud-topped boundary layer. Nature.

1990;345:142–4.

109. Berner AH, Bretherton CS, Wood R, Muhlbauer A. Marine

boundary layer cloud regimes and POC formation in a CRM

coupled to a bulk aerosol scheme. Atmos Chem Phys.

2013;13(24):12549–72.

110. Yoshioka M, Regayre L, Pringle KJ, Mann GW, Sexton DMH,

Johnson CE, et al. Perturbed parameter ensembles of the

HadGEM-UKCA composition-climate model to explore aerosol

and radiative forcing uncertainty. Journal of Advances in Earth

Systems. 2016;in–prep.

111. Lee LA, Pringle KJ, Reddington CL,MannGW, Stier P, Spracklen

DV, et al. Themagnitude and causes of uncertainty in global model

simulations of cloud condensation nuclei. Atmos Chem Phys.

2013;13(17):8879–914.

112. Lee LA, Carslaw KS, Pringle KJ, Mann GW, Spracklen DV.

Emulation of a complex global aerosol model to quantify sensi-

tivity to uncertain parameters. Atmos Chem Phys. 2011;11(23):

12253–73.

113. Vehkamäki H, Kulmala M, Napari I, Lehtinen KEJ, Timmreck C,

Noppel M, et al. An improved parameterization for sulfuric acid–

water nucleation rates for tropospheric and stratospheric condi-

tions. J Geophys Res. 2002;107(D22):4622.

114. O’Dowd CD, Jimenez JL, Bahreini R, Flagan RC, Seinfeld JH,

Hameri J, et al. Marine aerosol formation from biogenic iodine

emissions. Nature. 2002;417:632–6.

115. Hoffmann T, O’Dowd CD, Seinfeld JH. Iodine oxide homoge-

neous nucleation: an explanation for coastal new particle produc-

tion. Geophys Res Lett. 2001;28(10):1949–52.

116. Sipilä M, Sarnela N, Jokinen T, Henschel H, Junninen H,

Kontkanen J, et al. Molecular-scale evidence of aerosol particle

formation via sequential addition of HIO3. Nature. 2016;31:4–6.

117. Collins WJ, Lamarque J-F, Schulz M, Boucher O, Eyring V,

Hegglin MI, et al. AerChemMIP: quantifying the effects of chem-

istry and aerosols in CMIP6. Geoscientific Model Development

Discussions. 2016;(July):1–28.

118. Hoose C, Kristjánsson JE, Chen J-P, Hazra A. A classical-theory-

based parameterization of heterogeneous ice nucleation bymineral

dust, soot, and biological particles in a global climate model. J

Atmos Sci. 2010;67(8):2483–503.

119. Wilson TW, Ladino LA, Alpert PA, Breckels MN, Brooks IM,

Browse J, et al. A marine biogenic source of atmospheric ice-

nucleating particles. Nature. 2015;525(7568):234–8.

120. Atkinson JD, Murray BJ, Woodhouse MT, Whale TF, Baustian

KJ, Carslaw KS, et al. The importance of feldspar for ice nucle-

ation by mineral dust in mixed-phase clouds. Nature.

2013;498(7454):355–8.

121. Ridley HE, Asmerom Y, Baldini JUL, Breitenbach SFM, Aquino

VV, Prufer KM, et al. Aerosol forcing of the position of the inter-

tropical convergence zone since AD 1550. Nat Geosci. 2015;8:

195–200.

122. Bollasina MA, Ming Y, Ramaswamy V. Anthropogenic aerosols

and the summer monsoon. Science. 2011;334:502–5.

123. Lamarque J-F, Shindell DT, Josse B, Young PJ, Cionni I, EyringV,

et al. The Atmospheric Chemistry and Climate Model

Intercomparison Project (ACCMIP): overview and description of

models, simulations and climate diagnostics. Geosci Model Dev.

2013;6(1):179–206.

Curr Clim Change Rep (2017) 3:1–15 15


	Aerosols in the Pre-industrial Atmosphere
	Abstract
	Abstract
	Abstract
	Introduction
	Measurements of Pre-industrial Aerosols
	Aerosol Emissions in the Pre-industrial
	Processes Controlling Pre-industrial Aerosols
	What Did Pre-industrial Aerosols Look Like?
	Open Questions and Future Research
	Conclusions
	References


