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Abstract This study aims to identify model parameters describing atmospheric conditions such as

wind shear and cloud condensation nuclei (CCN) concentration, which lead to large uncertainties in the

prediction of deep convective clouds. In an idealized setup of a cloud-resolving model including a

two-moment microphysics scheme we use the approach of statistical emulation to allow for a Monte

Carlo sampling of the parameter space, which enables a comprehensive sensitivity analysis. We analyze

the impact of six uncertain input parameters on cloud properties (vertically integrated content of six

hydrometeor classes), precipitation, and the size distribution of hail. Furthermore, we investigate whether

the sensitivities are robust for different trigger mechanisms of convection. We find that the uncertainties

of most cloud and precipitation outputs are dominated by the uncertainty in the temperature profile and

the CCN concentration while the contributions of other input parameters to the uncertainties may vary.

The temperature profile is also an important factor in determining the size distribution of surface hail. We

also notice that the sensitivities of cloud water and hail to the CCN concentration depend on environmental

conditions. Our results show that depending on the choice of the trigger mechanism, the contribution of

the input parameters to the uncertainty varies, which means that studies with different trigger mechanisms

might not be comparable. Overall, the emulator approach appears to be a powerful tool for the analysis of

complex weather prediction models in an idealized setup.

Plain Language Summary Severe hailstorms have a large damage potential and cause harm

to buildings and crops, for instance. However, important processes for the prediction of hailstorms are

insufficiently represented in weather forecast models. This study examines the impact of environmental

conditions on hailstorms and identifies sources of uncertainty in their prediction. We find that the

temperature and the aerosol load of the atmosphere greatly influence the simulation of hailstorms.

Especially, the prediction of the size of the hailstones is affected by changes of the temperature.

1. Introduction

Severe convective storms are frequently associated with heavy precipitation, strong wind gusts and hail

often lead to serious damage to buildings, infrastructure, and crops. For example, on 27 and 28 July 2013,

Germanywas hit by two severe supercells (Kunz et al., 2018) causing insured losses of USD 3.8 billion (SwissRe,

2014). Thus, the modeling and prediction of severe storms and deep convective clouds are key areas of inter-

est in atmospheric research. It is also prerequisite to better understand how changes in the environmental

conditions feedback into the dynamics and microphysics of deep convective clouds.

Wind shear is an important parameter controlling the organizational form of convective systems; therefore,

its impact on deep convection has been examined over several decades (Dennis & Kumjian, 2017; Schlesinger,

1978; Weisman & Klemp, 1984; Weisman & Rotunno, 2000). For instance, Dennis and Kumjian (2017) find that

an increased deep-layer shear elongates the storm’s updraft downshear, leading to an increased volume of

the hail growth zone in combination with longer residence times, thus increasing the resulting hail mass. In

recent years, many studies have been published regarding the sensitivity of deep convective clouds to the

concentration of cloud condensation nuclei (CCN) and aerosol load (Cui et al., 2011; Fan et al., 2013; Khain

et al., 2011; Morrison, 2012; Noppel et al., 2010; Rosenfeld et al., 2008; Tao et al., 2007, 2012; Yang et al., 2017).
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For example, Tao et al. (2007) compared three storms observed during measurement campaigns for clean

and polluted aerosol conditions. They found that compared to the low CCN concentration setups, rain is sup-

pressed in the early stages of the storm for the high CCN cases. However, in themature stage of the cloud the

effect of the CCN varies between suppression and enhancement of rain depending on themodeled storm. In

an idealized study, Morrison (2012) examined the effect of small perturbations of microphysical and thermo-

dynamical processes in addition to the effect of CCN concentration on deep convective clouds. They showed

that in general polluted conditions lead to a weakening of the convection, whereas only small changes are

visible for the domain-mean accumulated precipitation. Moreover, they claimed that the effect of the CCN

concentration clearly depends on additional perturbations: For example, turning off the hail initiation leads

to an invigoration of convection for polluted conditions. Overall, the general outcome of these studies is not

consistent, and research is still ongoing.

Several studies investigated the effect of not only one but two parameters on deep convection. Lee et al.

(2008), for example, examined the effect of CCN concentrations in convective clouds for different environ-

mental conditions in terms of changingwind shear and convective available potential energy (CAPE), and Fan

et al. (2009) investigated the sensitivities to the wind shear and the CCN concentration. Moreover, large and

well-defined perturbations were usually used in most of those studies to trigger deep convection at specific

locations and without the need of long spin-up times in idealized model setups. For instance, Morrison et al.

(2009) examined the impact ofmicrophysics parameterizations on themodeling of squall lines by implement-

ing anellipsoidal positive temperatureperturbation, also referred to aswarmbubble (WB), to trigger the initial

convective cell. Similarly, Adams-Selin et al. (2013), who investigated the impact of the graupel parameteriza-

tion on the development of bow echos, triggered convection by a prescribed cold pool (CP). Both Chen and

Lin (2005) and Storer et al. (2010) analyzed among other things the effect of CAPE on convection. Whereas in

Chen and Lin (2005) the convection is generated by a mountain ridge, Storer et al. (2010) inserted a WB.

The above-mentioned publications indicate that several parameters affect the formation and dynamics of

deep convective clouds and the corresponding in-cloud processes. In addition, as each study is confined

to a single trigger mechanism and comparable studies have been performed for several triggers separately

from each other, the results for different trigger mechanisms have not been directly compared. Here we

conduct a comprehensive sensitivity study using high-resolution model simulations with a sophisticated

microphysics scheme to determine the effects of six parameters and environmental conditions including the

vertical temperature profile and the wind shear on deep convection. Our work aims to identify the environ-

mental conditions that lead to large uncertainties in the prediction of deep convective clouds. We focus on

the prediction of integrated hydrometeor mass, precipitation, and the size distribution of hail. Furthermore,

we investigate whether the sensitivities are robust for different trigger mechanisms of deep convection by

triggering convection either with a WB, a CP, or orography. In an idealized setup of a cloud resolving model

we modify the selected input parameters to examine their impact on the model output.

The straightforward approach for analyzing the sensitivity of themodel output to changes in the input param-

eters is to vary a chosen parameter in a given range while the other parameters are kept constant. This

so-called one-at-a-time (OAT) analysis can give insight into problems where only the effect of a single model

input is of interest. However, our goal is to identify not only the effect of each input parameter independently,

but also to assess the amount of interactions that are happening between those parameters not captured

by one-at-a-time analyses. Furthermore, an additional objective is to examine the relative contribution of the

input parameters to the uncertainty of the output. Therefore, we make use of statistical emulation (O’Hagan,

2004; 2006) and variance-based sensitivity analysis (Saltelli, 2008), where the uncertainty of the output is

decomposed into the contributions of the individual model input parameters but by also considering their

interactions. The applicability of this approach for complex atmospheric models was demonstrated in L. A.

Lee et al. (2011, 2013) where this method was successfully applied to determine the sensitivity of a global

aerosol model to uncertain parameters. Of most relevance to the present study, Johnson et al. (2015) used

statistical emulation to quantify the sensitivity of convective cloud properties to aerosol concentrations and

microphysical processes. They found that overall the parameters corresponding to the concentration of the

Aitken and accumulation aerosol modes and the collection efficiency of droplets by graupel had the largest

impact on the output uncertainty of the cloud properties, whereas the parameters describing ice properties

were only of minor importance. Furthermore, themain contributors to the uncertainty varied when only sub-

domains of the parameter space were examined, indicating that different cloud regimes can have different

sensitivities to the parameters considered.
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Figure 1. Triggers of deep convection used in this study. (a) Ellipsoidal warm bubble with a temperature perturbation of

ΔT = 2 K and a horizontal radius of Rhor = 10 km. (b) Cylindrical cold pool with a temperature perturbation of ΔT = −8 K

and a radius of Rhor = 20 km. (c) Bell-shaped mountain ridge with a height of 3, 000m and a half width of 25 km.

Themodel setup and the input parameters are described in section 2 followed by an explanation of themeth-

ods of statistical emulation and variance-based sensitivity analysis in section 3. The results of the sensitivity

analysis and further analyses are presented in section 4. In section 5we summarize and conclude our findings.

2. Model Setup

For this studywe use the COSMO (Consortium for Small-ScaleModeling)model (Baldauf et al., 2011; Schättler

et al., 2016) developed by Deutscher Wetterdienst and the COSMO consortium. It is a limited-area numerical

weather prediction model, which is nonhydrostatic and compressible. We run COSMO in an idealized setup

with 700 × 500 grid points where the horizontal resolution is 1 km and consequently convection is explicitly

resolved. The domain extends to a height of 23 km resolved by 64 vertical levels. Furthermore, we use open

boundary conditions, the radiation scheme is switched off, and the Coriolis force is neglected in the simula-

tions. The initial temperature and humidity profiles are taken from Weisman and Klemp (1982), hereinafter

referred to as WK, to maintain atmospheric conditions that favor the development of deep convection. The

maximum specific humidity qv0 according to WK is set to a value of 12 g/kg at the lowest level. The vertical

profile of thewind speed is chosen to be similar to Figure 3b ofWeisman and Rotunno (2000), where they pre-

sented the hodograph for quarter-circle shear. We also use the two-moment mixed-phase bulk microphysics

scheme by Seifert and Beheng (Seifert & Beheng, 2006a), which predicts both the mass mixing ratios and the

number densities of six hydrometeor classes, namely, cloud droplets, rain, cloud ice, snow, graupel, and hail.

In this study the results are generated and compared for three different trigger mechanisms to initiate deep

convection: a WB, a CP, and bell-shapedmountain ridge. Cross sections of the trigger mechanisms are shown

in Figure 1.

First, the frequently used approach of a WB is employed (Figure 1a). As in WK the maximum temperature

excess ΔT lies between 2 K and 5 K and is located in the center of the bubble. The perturbation decreases

toward the edges following a cos2 function. The vertical extent of the WB is fixed at Rz = 1, 400 m whereas

the horizontal radius is varied between Rhor = 5 km and Rhor = 15 km. At model initialization the bubble is

released at a distance ofΔx = 80 km from themodel boundary to the west and at a distance ofΔy = 200 km

from the boundary to the south where it ascends and triggers convection.

Second, we use a CP as the trigger mechanism, illustrated in Figure 1b. It is a negative temperature pertur-

bation in the shape of a cylinder, which is placed on the ground and reaches a height of z = 3, 000 m. The

strongest temperature contrast is found at the bottom of the cylinder and the difference in temperature

to the ambient air decreases linearly with increasing height. Within the CP the conditions are horizontally

homogeneous. The simulations are initialized with the CP located at the same position as the WB.

The third trigger mechanism is a bell-shapedmountain ridge, which extends from the northern to the south-

ern boundary of the domain (Figure 1c). Its height and half width range between 2,000 and 5,000m and 5

and 50 km, respectively. The center of the ridge is situated at a distance of Δx = 200 km from the bound-

ary to the west and a distance of Δy = 200 km from the boundary to the south. As the directional wind
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Table 1

OverviewOver the Uncertain Input Parameters and Their Ranges

Input Min Max Units

CCN concentration 100 4,000 cm−3

INP concentration 0.01 10 Factor

Wind shear (Fshear) 0 1 Scaling factor

Potential temperature at the ground 295 302 K

𝜃0 (WK profile)

Temperature perturbationΔT (WB) 2 5 K

Temperature perturbationΔT (CP) −10 −6 K

Height of ridge (Oro) 2,000 5,000 m

Radius of warm bubble Rhor, WB 5 15 km

Radius of cold pool Rhor, CP 10 30 km

Half width of ridge (Oro) 5 50 km

Note. CCN = cloud condensation nuclei; CP = cold pool; WB = warm bubble; INP =

ice-nucleating particles; WK =Weisman and Klemp (1982).

shear in the lower atmosphere is altered during the simulations, the angle between the axis of the crest and

a north-to-south axis is coupled to the directional shear. This means that the orientation of the crest varies

between a north-to-south axis and a north-west-to-south-east axis depending on the wind direction in the

lower troposphere in order to guarantee for a roughly perpendicular flowover themountain ridge. In contrast

to the thermal triggers, the ridge constantly produces small clouds right above the crest, which reduce the

comparability to the WB setup and the CP setup. Therefore, a larger domain of 1,200 km × 500 km is used to

give room to the orography. For the analysis, the western part of the domain containing the ridge is removed

and only an area of 700 km × 500 km located in the east is considered. All simulations are run for 5 hr with a

time step of Δt = 6 s. Before the evaluation period 1 hr of spin up is run for the WB and CP setups, whereas

for the orography case a 5-hr spin-up is required to allow for more persistent convective development. Note

that the excluded initial development of the cell differs for each trigger mechanism.

2.1. Input Parameters

A set of six input parameters is defined describing different regimes of atmospheric conditions. This set con-

sists of the CCN concentration, the concentration of ice-nucleating particles (INP), the directional wind shear,

and the surface potential temperature 𝜃0 determining the WK temperature profile. We also perturb the mag-

nitude of the temperature, the radius of the WB and the CP, whereas in the orography case the height and

the half width of the mountain ridge are perturbed. An overview over the chosen input parameters and their

ranges is given in Table 1, along with a detailed description of each parameter in the following sections.

2.1.1. CCN Concentration

CCN play an essential role in the activation of cloud droplets. Thus, from the early stage of cumulus cloud for-

mation to the dissipation, the CCN concentration influences the development and dynamics as well as the

microphysics (Cui et al., 2006, 2011; Fan et al., 2013; Khain et al., 2011; Morrison, 2012; Noppel et al., 2010;

Rosenfeld et al., 2008; Seifert & Beheng, 2006b; Tao et al., 2012). A cloud droplet nucleation scheme based

on grid-scale supersaturation and empirical power law activation spectra is implemented in COSMO using

lookup tables introduced by Segal and Khain (2006). Furthermore, the aerosol is assumed to have the largest

concentration in the lowest 2 km above the ground, followed by an exponential decrease toward higher alti-

tudes with a scale height of 1 km. In this study, the maximum CCN concentration is varied between 100 and

4,000 cm−3, which corresponds to a change frommaritime to polluted conditions.

2.1.2. Concentration of INP

Similar to CCN, the INP are particles that support the formation of cloud ice (Houze, 1993) and therefore pri-

marily affect the number of ice particles in the cloud. Here a scaling factor is applied to the INP concentration

for three microphysical processes: the deposition nucleation of cloud ice, the immersion freezing of cloud

droplets, and the freezing of raindrops. In the case of the formation of cloud ice, the heterogeneous nucle-

ation scheme of ice fromHuffman and Vali (1973) is used in the simulations. For the freezing of cloud droplets

and raindrops, a stochastical model is implemented in the two-moment scheme (Seifert & Beheng, 2006a)

following the measurements of Bigg (1953). The values for the parameters were taken from Pruppacher and
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Klett (1997). For the simulations in our study, we multiply the INP concentration in each of these three pro-

cesses by the same scaling factor, which we vary from 0.01 to 10 on a logarithmic scale. This range is chosen

according to DeMott et al. (2010) to represent measurements of different field campaigns.

2.1.3. Wind Shear

In general, wind shear describes the difference in wind velocity and wind direction between two heights and

thus characterizes thewindfieldof theenvironment in theembedded layer.Herewe focusondirectional shear

associated with streamwise vorticity as this is most important for the organization of convection. The vertical

profile of velocity is not varied between the simulations. We introduce the factor Fshear, which determines the

vertical profile of the wind directionWD according to

WD(z) =

{
270∘ − Fshear ⋅ 90

∘ +
Fshear⋅90

∘

6000m
⋅ z , z ≤ 6, 000mAMSL,

270∘ , z> 6, 000mAMSL,
(1)

where Fshear ∈ [0; 1]. For example, Fshear = 0 representswesterlywindat all heights, and themaximumvalueof

Fshear = 1 indicates southerlywindnear theground,whichgradually turns into awesterlywindwith increasing

height.

2.1.4. Potential Temperature

TheWKprofile of the potential temperature used in our study provides atmospheric conditions favoring deep

convection and is calculated as

𝜃(z) =

⎧
⎪⎨⎪⎩

𝜃0 +
(
𝜃tr − 𝜃0

) ( z

ztr

) 5

4
, z ≤ ztr,

𝜃tr ⋅ exp
[

g

cpTtr

(
z − ztr

)]
, z > ztr,

(2)

with the potential temperature at the tropopause 𝜃tr = 343 K, the height of the tropopause ztr = 12 km, the

gravity acceleration g = 9.80665m∕s2, the specific heat of dry air cp = 1, 005 J⋅kg−1 ⋅K−1 and the temperature

at the tropopause Ttr = 213 K. The near-surface potential temperature 𝜃0 is initially set to 300 K (Weisman &

Klemp, 1982) but in this study 𝜃0 is varied between 295 K and 302 K in order to simulate different atmospheric

conditions. This variation of the vertical temperature profile with constant surface humidity of 12 g/kg results

in a change of the CAPE from 1, 048 to 1, 410 J/kg.

2.1.5. WB and CP Characteristics

The thermal triggers, WB and CP, are characterized by a temperature perturbation ΔT and a radius Rhor. The

temperature perturbation describes the maximum initial deviation between the core temperature of the WB

or the CP and the ambient air. In the WB setup, ΔT ranges from 2K (Weisman & Klemp, 1982) to 5 K (Brooks,

1992). For the CP setupΔT is set to approximately−8 K (Adams-Selin et al., 2013;Weisman et al., 1997) varying

between−10 K and−6 K. The radius Rhor specifying the horizontal extent of the thermally perturbed air mass

ranges from 5 to 15 km for theWB and from 10 to 30 km for the CP. Varying the temperature perturbation and

the radius leads to different buoyancy gradients of the initial perturbation, which is ameasure of the strength

of the trigger.

2.1.6. Height and Half Width of Ridge

While theWB and the CP are defined by a temperature perturbation and a radius, the ridge is characterized by

the height and the half width. The height ranges between 2,000 and 5,000m; hence, it is similar to the height

of the Alps and the Rocky Mountains. The half width specifies the horizontal extent from the center of the

mountain ridge to its edge in x direction at an elevation equal to half of the maximum height. In this study,

the half width is varied between 5 and 50 km representing both steep and extensive mountains.

3. Statistical Methods

We perform a global sensitivity analysis to identify contributions to the uncertainty in model outputs from

both individual parameters and interactionsbetween them. This is possibleby variance-based sensitivity anal-

ysis (Saltelli, 2008) through which the output uncertainty is decomposed into the contributions of the model

inputs and their interactions. To infer thosemeasures, the variance-based approach requires a comprehensive

sampling of themodel output over the whole parameter uncertainty space defined by our parameter ranges

given in Table 1. The necessary output is often produced by Monte Carlo simulations (Saltelli, 2008). As the

COSMO model used here is a complex numerical weather prediction (NWP) model with high computational

cost, the data for the sensitivity analysis cannot be generated using a Monte Carlo approach in a reasonable

time for this model, and therefore, an alternative method is needed. Here we adopt the approach of statisti-

cal emulation to enable dense sampling of model output over the parameter uncertainty (Oakley & O’Hagan,
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2004; O’Hagan, 2004). The idea behind emulation is to build a surrogate model using training data that rep-

resents the relationship between a particular model output and a set of uncertain inputs. This means that

an emulator is able to estimate a specific model output for new input combinations without having to run

full model simulations. Due to its low computational cost, the required data for the variance-based sensitivity

analysis can easily be produced by the emulator. To construct emulators for different model outputs over the

parameter uncertainty, a number of well-spaced input combinations are selected from within the parame-

ter uncertainty space. Outputs from the COSMO simulations with these selected parameters are used to train

the emulator, these are referred to as training runs (Johnson et al., 2015). After evaluation of the model out-

put, we use Gaussian process emulation to construct the surrogate model for each model output of interest

independently. Once they are validated (Bastos &O’Hagan, 2009), the emulators can be used to generate out-

put across the whole parameter space, as needed for the variance-based sensitivity analysis. In the following

sections we describe this procedure in more detail.

3.1. Experiment Design

We require the emulator to predict themodel outputwith acceptable accuracy; thus, sufficient input informa-

tion via the training runs is needed. On the one hand, features of the output might get lost and thus cannot

be reproduced by the emulator if there are too few training runs. On the other hand, if there are too many

training runs, the emulator might reproduce the output almost perfectly, but a lot of computational time is

needed, which is impractical. Loeppky et al. (2009) suggested a data set of n = 10d training runs to obtain

reliable results, where d is the number of uncertain input parameters (here d = 6). However, the number

can be increased if the accuracy of the first result is not as high as expected. Here we raise the number to

n = 15d in order to add information while keeping the computational effort feasible. We require the emu-

lator to predict the model output across the whole multidimensional parameter uncertainty space, and so

our training data simulations must have good coverage of this space and be well-spaced throughout it. To

achieve this, the “maximin Latin hypercube sampling” (Morris & Mitchell, 1995) is applied to place the input

combinations within the parameter space for the training runs. This algorithm maximizes the minimum dis-

tance between the input combinations for the training runs and thus ensures good coverage of the parameter

uncertainty space.

3.2. Gaussian Process Emulation

A Gaussian process is a generalization of the Gaussian distribution and the multivariate Gaussian distribu-

tion to an infinite number of variables (Rasmussen, 2004). Similar to the mean and the variance of a normal

distribution such a process is defined by a mean function m(x) and a covariance structure V(x, x′), where

x =
(
x1,… , x6

)
is an input combination within the defined parameter uncertainty. The mean function is

specified by

m(x) = h(x)T𝜷, (3)

where h(x) contains known regression functions of x and 𝜷 consists of unknown coefficients. The regression

functions are arbitrary; however, they should be chosen such that they reflect prior beliefs about the form of

the emulator (Johnson et al., 2015; Oakley & O’Hagan, 2004). Here we assume a linear trend. The covariance

structure is given by

V(x, x′) = 𝜎2c(x, x′), (4)

where 𝜎2 is an unknown scale parameter and the function c(x, x′) a correlation function. The correlation func-

tion is designed to decrease as |x − x′| increases and furthermore c(x, x) = 1 has to be valid. Here we chose

the Matérn correlation structure

cMatern(r) =
21−𝜈

Γ(𝜈)

(√
2𝜈r

l

)𝜈

K𝜈

(√
2𝜈r

l

)
, (5)

with positive parameters 𝜈 and l, Gamma function Γ(𝜈), and amodified Bessel function K𝜈 . TheMatérn choice

leads to a stationary and isotropic covariance function since it only depends on r = |x− x′| and thus is invari-

ant to rigid motions (Rasmussen & Williams, 2006). This specification of the mean function and covariance

structure leads to additional parameters such as v and l being introduced.Wehave noprior information about

these so-called hyperparameters; hence, they are estimated from the training data. This is done by optimizing

the marginal likelihood, which is the probability of the data given the hyperparameters (Rasmussen, 2004;

Rasmussen & Williams, 2006). To construct the emulator, these prior specifications of the Gaussian process

are updated through a Bayesian statistical framework using the information in the training runs to produce a
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Figure 2. (a) Emulator predictions of the maximum amount of hail at the ground with 95% confidence intervals versus

the model output (cold pool setup). Outliers are depicted in red. (b) Same as (a) but with expanded training data. For

comparison the same points as in (a) are depicted in red.

posterior Gaussian process specification that has an updatedmean and covariance specification conditioned

on the training data. The updated posterior mean and covariance take the following form (Johnson et al.,

2015; O’Hagan, 2004)

m∗(x) = h(x)T𝛽 + c(x)TC−1
(
y − HT𝛽

)
(6)

and

V∗(x, x′) = 𝜎̂2c∗(x, x′)

= 𝜎̂2
[
c(x, x′) − c(x)TC−1c(x′) (7)

+
[
h(x) − HC−1c(x)

]T [
HC−1HT

]−1 [
h(x′) − HC−1c(x′)

]]
,

where

C =

⎛
⎜⎜⎜⎜⎝

c(x1, x1) c(x1, x2) … c(x1, xn)

c(x2, x1) c(x2, x2) … c(x2, xn)

⋮ ⋮ ⋱ ⋮

c(xn, x1) c(xn, x2) … c(xn, xn)

⎞
⎟⎟⎟⎟⎠
,

H =
(
h(x1),h(x2),… ,h(xn)

)
,

𝛽 =
[
HC−1HT

]−1
HC−1y,

𝜎̂2 =
yT

(
C−1H

(
HTC−1H

)−1
HTC−1

)
y

n − q − 2
.

A detailed derivation and additional information regarding statistical emulation can be found in O’Hagan

(2004, 2006) and Johnson et al. (2015).

3.3. Validation

Once an emulator is built, it is necessary to evaluate it to determine whether it produces an accurate esti-

mation of the model at points in the parameter space that were not originally included in the training data.

Therefore, we perform 45 additional model runs whose input combinations are also generated by the max-

imin Latin hypercube algorithm to cover the parameter space (validation data). Emulator predictions at these

points can be plotted against the COSMOmodel output, and if the emulator is a reasonable representation of

themodel these points should follow the 45∘ line (line of equality). Moreover, 95% confidence bounds on the

emulator predictions can be obtained from the Gaussian process posterior specification of the emulator. We

consider an emulator to be valid if the errors in prediction are reasonably small (points lie close to the line of

equality) and if the 95% confidence bound on the emulator prediction crosses the line of equality for at least

95% of the validation points. Figure 2a shows this validation plot for the maximum amount of accumulated

hail at the ground observed at a grid point in the CP setup.

In general the points follow the line of equality, but as 95%of the validation points should contain the COSMO

output within the 95% confidence interval on the emulator prediction, only two to three outliers are accept-

able in a set of 45 validation runs. For this example, there are four outliers marked in red, which exceeds the
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allowedamountof twoand thus theemulator is not validatedhere. To address this, 10newpoints are added to

the initial Latin hypercube sampling and the gained information from these extra simulations is used to com-

plement the information contained in the training data. New emulators are fitted for this extended training

data (Figure 2b). For clarity the same points including their confidence bounds are depicted in red. The addi-

tional information in the training data improved the emulator fit as the number of outliers is clearly reduced

in Figure 2b compared to Figure 2a. Awide range of diagnostics is available to validate Gaussian process emu-

lators such as quantile-quantile plots and individual prediction errors, which can be plotted against the index

of the simulation, the model output or input parameters to detect possible correlations (Bastos & O’Hagan,

2009). For our emulators all of the mentioned measures (not shown) indicate that, similar to Figure 2b, there

are a small number of outliers with larger errors than the threshold mentioned in Bastos & O’Hagan, 2009

(2009; not shown). However, based on the increase of the prediction accuracy through including the addi-

tional training runs and the lack of systematic errors in the results of the above-mentioned validationmethods

we consider all emulators as validated.

Finally, we assess the robustness of the emulators in order to rule out potential dependencies of the result

on the choice of the training data. To do this, we take a random sample of 45 new validation runs from the

original training data and swap out this sample from the training set, replacing it with the original validation

data. Although this new training data does not guarantee for a well-spaced coverage of the parameter space

as two different Latin hypercube samplings aremixed, it is still used to build another emulator. This is done for

a total sum of 10 random samples leading to a set of independent emulators describing the same conditions.

The results of these emulators and the original one are compared and as no structural changes in the results

emerge. Hence, we find that the emulators are robust to changes in the training data.

3.4. Variance-Based Sensitivity Analysis

When running a model or emulator with different combinations of d different input parameters, it is com-

mon to induce an uncertainty in the output’s value, which can be quantified as a variance. The goal of the

variance-based sensitivity analysis is to decompose this output variance into different contribution sources

related to the input parameters that were varied. This decomposition of the variance includes not only contri-

butions fromeachparameter individually but also contributions from interactions between twoormore input

parameters. Assuming independence between the input parameters, this decomposition can be written as

(Oakley & O’Hagan, 2004)

V =

d∑
i=1

Vi +
∑
i<j

Vij + … + V1…p, (8)

where Vi are contributions from each parameter. Termswithmore than one index indicate contributions from

parameter interactions, where the number of indices corresponds with the number of interacting parame-

ters. Vij are contributions from two interacting parameters, while V1…p describes the contribution from all

considered parameters interacting with each other. Here we use the extended Fourier amplitude sensitiv-

ity test (FAST) introduced by Saltelli et al. (1999) to generate this variance decomposition. The concept of

FAST is a transformation to 1-D Fourier space such that the d-dimensional input space can be explored by a

monodimensional curve. This has the advantage that along the path all input parameters change simultane-

ously, which means that FAST offers a global sensitivity analysis. In order to gain a space-filling curve and to

avoid possible overlap with upper frequencies, a sample size of several thousands of runs is desirable (Saltelli

et al., 1999). As this amount of simulations is not feasible with the conservative approach of running the full

NWPmodel, the emulators are necessary to simulate the required model output. We compute the sensitivity

measures of the FAST approach using the statistical software R (R Core Team, 2017) and the R package “sensi-

tivity” (Pujol et al., 2017). We obtain the so-calledmain effect Si of each input parameter i by normalizing the

calculated individual variance contribution of the parameter Vi with the overall variance V in the output

Si =
Vi

V
, (9)

which is a measure of the contribution of input i to the output variance. Hence, the main effect shows the

percentage by which the output variance could be decreased if there was no uncertainty in the input i. Fur-

thermore, the total effect index STi generated by this method includes all terms that are linked to input i, that

is, both individual contribution and interaction terms. The total effect is given by STi = 1 −
V∼i

V
, where V∼i

denotes all terms of equation (8) that do not include contributions from input parameter i. As the total effect
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Figure 3. Cross sections of the cloud at different time steps. (a, b) Horizontal cross section at a height of z = 5, 000m for

(a) 2 hr and (b) 6 hr after the start of the simulation. (c) Vertical cross section at y = 219 km for 2 hr after the start of the

simulation. The colors denote the different hydrometeors (dark blue = QC: cloud water; light blue = QR: rain; red = QH:

hail; purple = QG: graupel; green = QS: snow; yellow = QI: ice), and the dashed line in (a) denotes the location of the

vertical cross section of (c). The arrows illustrate the wind field.

includesboth individual and interaction contributions and the individual contributions are accessible through

the main effect, the interaction effect SIi can be determined by SIi = STi − Si giving an indication of howmuch

input parameter i interacts with other parameters.

3.5. Output Variables for the Construction of Emulators

Many aspects are of interest when analyzing the sensitivities of clouds and hail formation to different condi-

tions. We focus on variables that describe the properties of the clouds, precipitation, and the size distribution

of hail. The hydrometeors are analyzed as the vertically integrated content of each particle class (cloud water,

graupel, hail, ice, rain, and snow). The spatial and temporal mean is taken over the grid points showing

hydrometeor concentrations larger than 0 kg/m3 and all time steps, which results in a single value for each

particle class for every simulation. Regarding the precipitation, we consider area-mean accumulated precipi-

tation and precipitation rate, both for total precipitation and hail. Instead of the spatial and temporal means,

themaximumvaluesof theseoutput variables areused for the analysis here, except for theprecipitationof hail

where both themean and themaximum value are evaluated, in order to concentrate on the extremes of pre-

cipitation, which have a large impact on the ground.Moreover, the size distribution of hailstones reaching the

ground is of interest. In the two-moment scheme of Seifert and Beheng (2006a) a generalized Γ distribution

is implemented for the distributions of hydrometeors:

dN

dx
= N0x

𝜈 exp (−𝜆x𝜇) , (10)

where N is the number density, x is the particle mass, and 𝜈 and 𝜇 are the shape parameters of the assumed

distribution. Following the standard definition of the hail class in COSMO, we use 𝜇 = 0.333333 and 𝜈 = 1.0

in this study. The coefficients N0 and 𝜆 are given by gamma distributions of the number and mass density,

respectively (Seifert & Beheng, 2006a). Via a conversion from mass x to particle diameter D, the term
dN

dx
can

be transformed to
dN

dD
, and thus, a measure for the number of particles per diameter is available. Emulators

are constructed for the number density N(D) at 13 fixed diameters for the spatiotemporal mean of the size

distribution of hail at the ground.

4. Results
4.1. Cloud Structure

A short overview of the typical development and the structure of the simulated clouds is given in this section

using the WB setup as an example.
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Figure 4. Bar plot of the main effect for vertically integrated hydrometeor masses and precipitation of cloudy grid

points when (a) a warm bubble, (b) a cold pool, and (c) a mountain ridge is used as trigger mechanism. CCN = cloud

condensation nuclei; CP = cold pool; INP = ice-nucleating particles; WB = warm bubble.

TheWB initiates a single cell that develops further. After 2 hr the storm has split into two cells (Figure 3a). The

updraft regions contain graupel, hail, and cloud water; graupel is also present in larger areas outside of the

updrafts. After 6 hr, the convective cells have moved to the east but have developed into a curved structure

extending in the y direction similar to squall lines (Figure 3b). In the vertical cross section after 2 hr (Figure 3c)

graupel and hail appear at all heights of the cloud, whereas ice is found in the anvil near the tropopause and

cloud water is foundmainly between z = 2, 000m and z = 6, 000m. Rain, graupel, and hail reach the ground

as precipitation.

4.2. Sensitivity Analysis Using the Predefined Parameter Space

To distinguish the contributions of the input parameters to the uncertainty of the model outputs, we have

performed a variance-based sensitivity analysis where the input parameters are varied according to Table 1.

Figure 4 shows stacked bar charts of the calculated main effects—the contributions from the individual

parameters to the overall output uncertainty—for the mean integrated hydrometeors and the outputs

characterizing the precipitation.

If the main effect percentages in a bar do not add up to 100%, this means that further contributions of inter-

acting parameters can be found. Comparing the overall appearance of Figures 4a–4c, we find that the sum

of the main effects reaches 80% for most output variables in the WB and the CP setups, whereas in the orog-

raphy setup only a few bars reach this percentage. Hence, large parts of the uncertainty in the WB and CP

output can be explained by the individual parameters, whereas interaction effects contribute substantially to

the output uncertainty in the orography setup. This implies that the input parameters are interactingmore to

jointly affect the uncertainty compared to the thermal trigger setups. A possible explanation for this is that in

the simulations the bell-shaped mountain may trigger several cells along the ridge simultaneously forming
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a complex system where the parameters are interacting more compared to the initial single cell triggered in

the WB and CP setups.

Looking at the mean of the vertically integrated hydrometeor masses in Figures 4a–4c, we find that for all

three trigger mechanisms the potential temperature 𝜃0 contributes significantly to the uncertainty of these

variables. In the WB and CP setups, 𝜃0 is the largest source of uncertainty for the integrated contents of ice

and graupel. In the orography setup 𝜃0 adds 31% to the output uncertainty of the integrated graupel con-

tent and between 12% and 29% to the other variables. Via equation (2) 𝜃0 directly determines CAPE. CAPE is

transformed into kinetic energy of ascending air parcels, such that it affects the updraft velocity and thus the

storm organization. In addition, 𝜃0 is a controlling factor of the moisture availability. Consequently, it acts as

source of uncertainty for the integrated masses of the hydrometeors. The CCN concentration has a consider-

able main effect of 30–35% for the integrated cloud water and the integrated hail content in the WB and CP

setups. The effect on the remaining hydrometeor species is less than 20%. In contrast, the main effect of the

CCN concentration is less than 1% for the integrated cloud water and less than 11% for the other hydrome-

teors in the orography setup. In the WB setup and in the CP setup, the uncertainty of the INP concentration

takes an effect only on the integrated snow, graupel, and hail content, where the contribution reaches up to

27% for the integrated hail content in the WB setup. In the orography setup the INP concentration adds less

than 2% for all integrated hydrometeors.

In theWB and CP setups the percentage of themain effect of the wind shear is rather small for the integrated

hydrometeor masses, except for the integrated snow and rain contents where there are larger contributions

reaching as high as 61% for the rain content in the WB setup. This relates to the impact of the wind shear

on the convectively generated CP and the connected evaporation rate of rain, as discussed, for example, by

Weisman and Klemp (1982) and Weisman et al. (1997). Furthermore, snow and rain are advected in COSMO

for high-resolution simulations (Doms & Baldauf, 2015), and thus, they are directly affected by variations of

the wind field. In the orography setup, the uncertainty contribution of the wind shear is comparable for all

hydrometeor species varying between 37% for the integrated graupel content and 21% for the rain content.

The contribution of the trigger characteristics to the uncertainties varies for each trigger mechanism. In the

WB setup neither the temperature perturbationΔT nor the radius of theWB Rhor have a noteworthy contribu-

tion to the overall uncertainty for all condensates. In the CP setup the initial size of the CP affects the results

more clearly by adding about 14% to the uncertainty of the integrated cloud water, graupel, and rain con-

tents. However, the contribution of the temperature perturbation is hardly visible. In the orography setup the

properties of the mountain ridge explain in combination approximately the same amount of uncertainty as

thewind shear, whereas the halfwidth ismore important than theheight. Horizontal cross sections of the cells

reveal that their initial size barely depends on the radius of the WB, whereas a large radius of the CP leads to

an extensive initial cell (not shown). Thus, uncertainty in the CP radius has an increased impact on the output

uncertainty compared to the WB setup. Furthermore, several cells are triggered along the ridge in the orog-

raphy setup compared to single cells in the WB and CP setups, which further adds to the differences in the

results found for each trigger mechanisms.

For the precipitation variables the main effects in the WB setup and in the CP setup show a similar behavior

where the uncertainty contributions from 𝜃0, the CCN concentration and the INP concentration dominate the

overall uncertainties. Themaineffect of𝜃0 is below30%except for the total precipitationwhere it is above45%

in both setups. The contribution of the CCN concentration varies between 4% for the total precipitation and

31%for themean amount of hail at the ground in theWB setup,whereas it varies between 18%and 48% in the

CP setup. Further, the INP concentration accounts for about 6–33%of the overall uncertainty. Compared to 𝜃0,

CCN concentration, and INP concentration, the remaining input parameters have only minor contributions.

In the orography setup 𝜃0 does not contribute; however, there are additional contributions from the wind

shear and the half width of themountain ridge. Thus, the output uncertainties are composed of 11–50%CCN

concentration, up to 14% INP concentration, 10–26%wind shear, and 20–30% half width of the ridge. These

results lead to the conclusion that the properties of the orography lead to greater uncertainty in the output

of the precipitation variables than the properties of the thermal perturbations.

Our findings are in good agreement with the work of Fan et al. (2013), Yang et al. (2017), and Lee et al. (2008).

Fan et al. (2013) observed changes of 25% of the anvil expansion due to changes in the CCN concentration

and Yang et al. (2017) found clear differences in the vertically integrated condensate mixing ratio such as an

increase of ice from 6 to 18 g/kg for increasing CCN. Furthermore, the CAPE, thus the potential temperature
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Table 2

Changes of the Parameter Ranges of the Uncertain Input Parameters when Related to

Forecast Errors

input min max units

wind shear (Fshear) 0.3333 0.6666 scaling factor

𝜃0 (WK profile) 299 301 K

height of ridge (Oro) 3000 4000 m

half width of ridge (Oro) 26500 28500 m

profile, and the wind shear were identified by Lee et al. (2008) to affect the amount of cloud condensate and

precipitation.

4.3. Sensitivity Analysis Related to Typical Forecast Errors

So far we considered the whole predefined parameter space (cf. Table 1) for our analysis, which was chosen

to cover a wide range of atmospheric conditions. For example, the potential temperature was varied over a

range of 7 K. By definition the main effect indicates how much the variance in the output could be reduced

if the input parameter was known exactly (Johnson et al., 2015). However, the forecast of the temperature is

typically more accurate. Therefore, we now relate the parameter space used for the sensitivity analysis to the

typical forecast errors of the NWPmodel COSMO in an operational setup for Central Europe. Table 2 gives an

overview of the adapted input parameter ranges.

The ranges of wind shear and 𝜃0 are derived from their root mean square errors of the COSMO prediction

for different lead times. The ranges for the height and the half width of the mountain ridge are estimated as

the maximum change of terrain that is not resolved by the model grid. These new ranges are then centered

around the central value of the original parameter ranges. The remaining input parameters such as CCN and

INP concentrations are not part of the operationalmodel forecast, and thus, their ranges cannot be restrained

bymodel errors. Nevertheless, the trigger characteristics of theWB and the CP represent values used in other

studies (Adams-Selin et al., 2013; Brooks, 1992; Brooks & Wilhelmson, 1992; James et al., 2006). Also, the cho-

sen ranges of CCN and INP concentrations are found throughout Europe (Boose et al., 2016; Bougiatioti et

al., 2009). The sensitivity analysis is run again using the same emulators with the parameter ranges given in

Table 2. The results are shown in Figure 5. As the possible parameter range is now reduced to average forecast

or resolution errors the overall composition of the bar plots changes. Particularly, the main effect of 𝜃0, which

strongly affected most outputs in Figure 4 is considerably reduced.

In the WB setup (Figure 5a) the highest contribution of the potential temperature is found for the integrated

graupel content where it reaches up to 14% compared to values of about 80%when the full parameter range

was used. For all other variables the contribution is less than that. Thus, other input parameters emerge to

explain the output variance. For the integrated condensates the CCN concentration is responsible for more

than 40% of the uncertainty except for the graupel content. Furthermore, the INP concentration adds about

35%to theoutput uncertainty of the integratedhail, graupel, and snowcontents being the largest contributor

for the snow content. Noticeable uncertainty contributions of more than 30% from the initial temperature

perturbation of the bubble and the wind shear can be found for the integrated graupel and rain contents,

respectively. Regarding theprecipitationvariables, theWBcharacteristics and thewind shear areonlyofminor

importance, instead the overall uncertainty is dominatedby theCCNand INP concentrations. For the variables

describing precipitation of hail, the CCN concentration contributes at least 49% of the uncertainty, whereas

for the total precipitation the INP concentration is themajor contributor (up to 48%). Additionally, the sum of

the main effect is larger, which means that less interaction occurs.

In the CP setup (Figure 5b) the effect of 𝜃0 is clearly reduced compared to when the original parameter range

was used. Instead, the variance of all of the integrated hydrometeors is dominated by the main effects of the

CCN and INP concentrations and the radius of the CP. In contrast, the variance in the precipitation variables

hardly depends on the uncertainty in the radius of the initial CP. For these variables it is the CCN and INP

concentrations that contribute most to the overall output uncertainty.

In the orography setup the impact of the potential temperature is not reduced as much as in the WB and

CP setups. Nevertheless, the CCN concentration is the largest uncertainty source varying between 19% and

80% except for the integrated cloud water and ice content where it is less than 3%. This negligible contribu-
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Figure 5. Bar plot of the main effect for vertically integrated hydrometeor masses and precipitation of cloudy grid

points using (a) a warm bubble, (b) a cold pool, and (c) orography as trigger mechanism when the parameter space is

restrained by mean forecast errors. (d) Interaction effect of the hydrometeors in the orography setup using the original

parameter ranges. CCN = cloud condensation nuclei; CP = cold pool; INP = ice-nucleating particles; WB = warm bubble.

tion from the CCN concentration to the output uncertainty of cloud water stands out as both WB setup and

CP setup show opposite results. An additional analysis reveals that the contribution from the CCN concen-

tration is increased if the clouds over the ridge are included (not shown). Thus, the uncertainty in the CCN

concentrationmainly affects the cloudwater during the formationof the cloudover the ridge,while its impact

is reduced further downwind. For the precipitation output, a similar behavior arises: The individual param-

eters account for more of the output uncertainty here. In particular, the CCN and INP concentrations have

larger effects.

4.4. Size Distribution of Hail

Regarding the damage potential of hail events, the size distribution of hailstones is of great importance. Thus,

we additionally investigate the response of the surface size distribution of the hydrometeor class classified as

hail by the COSMOmodel to different environmental conditions. Each uncertain input parameter is assigned

two discrete values representing regimeswithin the parameter ranges with low and high values, respectively.

The two regimes are denoted by “-” and “+.” The values were chosen such that a reasonable difference occurs

without the necessity of using the full parameter ranges and such that there is always a reasonable amount

of wind shear present. The chosen values are given in Table 3.

For each setup and for all 64 possible combinations of these parameters, emulators are used to simulate the

size distributionof hail. The emulators predict thenumber concentration at givenparticle diameters. Figure 6a

shows the mean size distributions of surface hail for the WB setup where the shadings denote the areas in

which the surface hail size distributions are found for the environmental conditions specified by the legends.

The maximum of the size distribution of surface hail is located at a diameter of 5mm and an amount

in the order of (1) m−4. The size distributions can be divided into three groups. By analyzing the input

combinations of each group, three governing input parameters can be identified: the CCN concentration, the
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Table 3

Input Values Representing Both Lower and Higher Regimes of the Parameter Ranges, Which Are Used to

Analyze the Size Distribution of Hail

Input Lower value (−) Higher value (+) Units

CCN concentration 500 3,000 cm−3

INP concentration 0.1 10 scal. factor

Wind shear (Fshear) 0.5 1.0 scal. factor

Potential temperature 𝜃0 298 302 K

Temperature perturbationΔT (WB) 2 5 K

Temperature perturbationΔT (CP) −10 −6 K

Height of ridge (Oro) 2,000 5,000 m

Radius of warm bubble Rhor 7 13 km

Radius of cold pool Rhor 14 26 km

Half width of ridge (Oro) 14 41 km

Note. CCN=cloudcondensationnuclei; CP=coldpool; INP= ice-nucleatingparticles;WB=warmbubble.

INP concentration, and the potential temperature 𝜃0. If the values of all CCN concentration, INP concentration,

and 𝜃0 represent the higher values, the least amount of hail is produced. Conversely, the largest amount of

hail is producedwhenCCN, INP, and 𝜃0 take the lowest values. Mediumamounts of hail are produced for other

combinations of the governing parameters. As in COSMO hail is either produced by freezing of raindrops or

growth of graupel, a decrease of the CCN concentration leads to larger raindrops and faster growth of grau-

pel and thus larger hail. However, between the cloud base and the ground large amounts of hail are lost due

to melting. Therefore, large hailstone are necessary for a detection of surface hail such that low CCN and INP

concentrations provide a higher number of hailstones at the ground. Presumably, high temperatures in the

lower troposphere further enhance the melting process and accordingly, more hailstones are found for a low

value of 𝜃0. To summarize, the least amount of hail at the ground is found for conditionswith a high number of

CCN and INP and rather warm temperatures with high CAPE, whereas few CCN and INP and colder conditions

produce more hail when a WB is used as trigger mechanism.

The parameter main effects for the size distribution shown in the right plot of Figure 6b confirms the result

found above. Mostly, 𝜃0 contributes to the output uncertainty of the number concentrations at the given

diameters. In the medium size range with diameters between 2.5 ⋅ 10−4 and 2.5 ⋅ 10−3 m the potential tem-

perature 𝜃0 is responsible for more than 80% of the output uncertainty. On the one hand the main effect of

𝜃0 decreases to roughly 20% toward larger diameters, and on the other hand the sum of the uncertainty con-

tributions from the CCN and INP concentrations increases to a total of 46%. Contributions to the overall main

effect of other input parameters are only of minor importance, and thus, the three parameters causing the

largest uncertainty in the size distribution are the potential temperature 𝜃0 and the CCN concentration and

the INP concentration.

When using a CP as triggermechanism, the analysis of the size distribution yields similar results with somedif-

ferences. As it can be seen fromFigure 6c themaximumof the distribution is also found at a diameter of 5mm.

However, four groups of size distributions can be distinguished. Identical to the WB setup, a group of simula-

tions identified by high CCN and INP concentrations and high temperatures can be separated toward lower

number concentrations and a group characterized by lowCCN and INP concentrations, and low temperatures

can be separated toward higher number concentrations. In addition, the remaining size distributions can be

divided into one groupwithmedium high number concentrations related to low potential temperatures and

one groupwithmedium low number concentrations related to high potential temperatures. Figure 6d shows

the main effects for the size distribution of surface hail for the CP setup. From a diameter of 0.25 mm to a

diameter of 1 mm over 80% of the uncertainty is dominated by 𝜃0. From a diameter of 2.5 mm onward the

influence of 𝜃0 gets smaller and the contributions of the CCN and INP concentrations start to grow reach-

ing values of 44% and 12%, respectively. Compared to the WB setup these contributions of the CCN and INP

concentrations are larger.

Results deviating from those of the WB and CP setups are found when a mountain ridge is used to trigger

convection. Figure 6e shows the size distributions for each of the 64 combinations of the input parameters
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Figure 6. (left) Size distributions of hail at z = 0m for all trigger mechanisms. Each line represents the distribution in

one of the 64 environmental conditions. (right) Bar plots of the main effect for the mean size distribution of surface hail

for all trigger mechanisms using the whole parameter range. The shading in (a) and (c) illustrates regimes of the size

distributions controlled by CCN and INP concentrations and 𝜃0. CCN = cloud condensation nuclei; CP = cold pool; INP =

ice-nucleating particles; WB = warm bubble.

stated in Table 3 and Figure 6f depicts the main effects. Compared to the WB and CP setups, the shape of the

distributions is more diverse. Some of thempeak at a diameter of 5mm,whereas others peak at a diameter of

7.5mmor have similar values at both diameters. A small number of simulations shows size distributions with

lower number concentrations. However, these differences are only distinct in the range of themaximum, and

thus, a clear separation into groups is not possible. The sum of the main effects in each case varies around

70%, which means that more parameter interactions occur in the orography setup as already seen in section

4.2. Several input parameters contribute almost equally to the output uncertainty: the CCN concentration

(∼ 20%), the INP concentration (∼ 10%), the wind shear (∼ 20%), and the half width of the mountain ridge

(∼ 20%). Furthermore, there are alsominor contributions from 𝜃0 and theheight of the ridge. The fact that var-

ious input parameters have similar large contributions to the uncertainty in the size distribution here prevents

us from naming a specific key parameter in this case.

4.5. Sensitivity to CCN Concentration

There are many studies analyzing the cloud response and consequences of variations in CCN, for example,

Khain et al. (2011), Morrison (2012), Noppel et al. (2010), and Yang et al. (2017). However, the results of these

studies are not uniform, and thus, the relation between changes in the CCN concentration and the cloud
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Figure 7. Sensitivity of mean integrated cloud water, mean integrated hail, and precipitation by hail to variations in the

cloud condensation nuclei concentration for (a) the warm bubble setup, (b) the cold pool setup, and (c) the orography

setup. Thin lines represent the results for 32 different environmental conditions (regimes), and the bold line denotes the

mean. CCN = cloud condensation nuclei.

responses is not clearly determined. For example, on the one hand Khain et al. (2011) simulated a severe

supercell that caused large hail up to 10 cm in diameter over southwest Germany for different CCN concentra-

tions and found that an increase of the CCN concentration leads to an increase of hail fall. On the other hand

Noppel et al. (2010) obtain in the simulations of the same storm an opposite result: An increase of the CCN

concentration is mainly connected to a decrease of the precipitation of hail.

As the emulators require hardly any computational power, they are a convenient tool to runmany simulations

and investigate the cloud response to variations of the CCN concentration in different environmental condi-

tions in our idealized setup. Similar to section 4.4 each input parameter except for the CCN concentration is

assigned two values representing the lower and higher values of the parameter space. The chosen values are

the same as in Table 3, while the parameter range of the CCN concentration is systematically sampled with a

set of 10,000 points. All possible combinations of the five remaining input parameters generate 32 different

environmental regimes for comparison. During the analysis we focus on themean integrated cloudwater, the

mean integrated hail mass, and themaximum amount of precipitation by hail. Figure 7 shows the considered

output versus the CCN concentration for all 32 regimes and for all trigger mechanisms. The output values are

normalized with their respective maximum reached in each regime. For most of the considered regimes this

maximum is reached at the lowest CCN concentration for the integrated hail content and the amount of hail

at the ground and at the highest CCN concentration for the integrated amount of cloud water.

In general, the mean sensitivity of the three output variables to the CCN concentrations behaves similarly for

all triggermechanisms. The cloudwater increases whereas both the in-cloud hail and the precipitation of hail

decrease with increasing CCN concentration. When a WB is used to trigger convection, the integrated cloud

water shows a strong increase for low CCN concentrations, which flattens toward higher concentrations. The

integrated hail content decreases to approximately 70%of itsmaximumvaluewhen a polluted atmosphere is

prescribed. However, thedifferences in hail content between the regimes are larger than for the cloudwater as

the minimal values of the hail content vary between 40% and 90% of the maximum value. Both the decrease

and the spread are more pronounced for the precipitation of hail than for the integrated hail content. On

average, the precipitation of hail is reduced to less than 40%when the CCN concentration is increased, while

in some regimes the reduction is even stronger such that no hail is found at the ground.

From all trigger setups, the CP turns out to be most robust to changes of the environmental conditions. The

cloudwater increases from60%to100%and thehail contentdecreases linearly to70%forCCNconcentrations

between 100 and 4, 000 cm−3. Both variables show amaximum spread of about 20%. The precipitation of hail

is reduced to values between 40%of the original value and no hail at all. Although the spread is higher for the

hail reaching the ground, all atmospheric regimes exhibit a linear decrease.

In the orography setup large deviations from the mean trend are found. Beginning at values around 80% of

themaximumthemeanof the integrated cloudwater increases slowly for lowCCNconcentrations and slightly

faster for high concentrations. However, there are also regimes where a sensitivity to CCN is hardly visible.

Two variations are possible for the trend of the integrated hail content. First, most of the simulations and

thus the mean of all results are rapidly decreasing with increasing CCN concentration. Second, some regimes

show amoderate increase of the hail content or are insensitive to changes of the CCN concentration between
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approximately 2, 000–3, 000 cm−3. In contrast, the results of the precipitation of hail are more uniform with

linear decreases reaching the minimum value for the highest CCN concentrations.

Summarizing, we see that the sensitivity of hail on the ground, integrated cloudwater, and hail content to the

CCN concentration varies for each regime of environmental conditions, but its sign is never reversed. Espe-

cially in the orography setup large variations are possible, which reflects the complexity of convection above

mountainous terrain (Kirshbaumet al., 2018). Still, theoverall trend is the same for all considered triggermech-

anisms, and in all cases the sensitivity to the CCN concentration is linked to an increase in the integrated cloud

water and to a decrease in the integrated hail content and themaximumprecipitation of hail. Thus, the results

are robust for different environmental conditions and trigger mechanisms.

However, several studies note that there are problems concerning bulk microphysics schemes and hydrome-

teor sizes. For example, Dennis and Kumjian (2017) state that bin schemes are necessary to track changes of

the hail size as bulk schemes do not treat the processes satisfactorily that affect the size distributions. Further,

Lee et al. (2008) mention that the calculation of precipitation, and thus, also the hail at the ground is not as

accurate in bulk models as in bin models. To approach this issue, Loftus and Cotton (2014) introduce a mod-

ified microphysics setup where a three-moment scheme is implemented for an improved prediction of hail.

They find that an increase of the CCN concentration induces an increase of the number of hailstones, which

corresponds to our findings where the CCN concentration is identified as controlling parameter of the size

distribution as well. Since Loftus and Cotton (2014) investigate the effect of the CCN concentration only, the

classification of controlling parameters of the size distribution of hail is assumably appropriate although a

bulk microphysics scheme is implemented in the COSMOmodel. Further studies similar to Loftus and Cotton

(2014) incorporating modifications of the microphysics scheme and the variation of not only one but sev-

eral parameters are necessary to confirm these findings. Further, this means that the discrepancies between

the findings of Khain et al. (2011) and Noppel et al. (2010) cannot be explained by different environmental

conditions but rather by the differences of the microphysics schemes used in these studies.

5. Summary and Conclusions

In this studywehave exploredhowvariations in six different environmental conditions affect deep convective

clouds. In particular we have explored integrated cloud water contents, surface precipitation, and hail size

spectrum. Furthermore, we have investigated whether the results are robust by considering different trigger

mechanisms of convection.

Using a variance-based sensitivity analysis technique, made possible through an implementation using sta-

tistical emulators, the output variance in model outputs has been decomposed into different components,

which relate to changes of the environmental conditions (main effect) and their interactions (interaction

effect). An analysis of the main effect sensitivity indices for each output has shown that for most output vari-

ables, the uncertainty in the potential temperature, which controls the CAPE in the initial profile, and the CCN

concentration are the largest contributors to theoverall output uncertainty. Thismeans that the impact of pro-

cesses depending on these parameters, such as the nucleation of cloud droplets, on the output uncertainty

is larger compared to dynamical responses driven by wind shear, for example.

With the systematic covariation of different environmental conditions over a wide range, we also cover con-

ditions that have been previously studied by smaller sets of sensitivity experiments. Storer et al. (2010), for

example, analyzed the impact of CAPE and CCN concentration on deep convective clouds and also found that

overall the clouds are quite sensitive to changes of CAPE. Further, they stated that some parameters such as

the cloud water path do not strongly depend on CAPE similar to the results of our analysis. Another result of

Storer et al. (2010) was that the effect of the CCN concentration is comparable to the effect of CAPE, which is

consistentwithour findings.Other studies suchas those fromTaoet al. (2007) andFanet al. (2013) also showed

a clear impact of the CCN concentration on the cloud properties and precipitation. Furthermore, the role of

interaction effects changes and the composition of the parameter contributions to the output uncertainty for

the different outputs differs for each of the trigger mechanisms.

However, the results of the sensitivity analysis dependon the ranges of the input parameters thatwere chosen

to represent various atmospheric conditions. For a more applied approach, we subsequently restrained the

ranges of the environmental conditions to mean prediction errors of the forecast of the COSMO model, and

thereby, the focus has changed froma general analysis of environmental conditions to the composition of the
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uncertainty of the actual model forecast. This analysis indicates that the CCN concentration is still important

for the output uncertainty. Further controlling environmental conditions are the INP concentration in theWB

andCP setups and thewind shear in the orography setup. Hence, amore precise representation of the vertical

wind profile and an inclusion of observations of the aerosol concentration may improve the forecast error of

the COSMOmodel.

To understand how the mean size distribution of surface hail is affected by environmental conditions and

the choice of the convection trigger, we have defined 64 setups of distinct environmental conditions and

have compared the corresponding size distributions for each trigger. It appears that the sensitivity of the sur-

face hail size distribution to environmental conditions depends on the trigger mechanism as different input

parameters impact the results. When a WB or CP is used, the uncertainty in the number concentration of sur-

face hail is controlled by the CCN concentration, the INP concentration and the potential temperature 𝜃0. In

contrast, no controlling parameters are identifiable in the orography setup as several parameters interact and

determine the sizedistributionof hail. Overall, a shift of the sizedistributions toward smaller or larger hailstone

diameters caused by the changes in the environment is not found.

Similarly, the sensitivity of integrated cloud water, integrated hail, and precipitation by hail to the CCN con-

centration has been examined in different environmental conditions. For this purpose the parameter range of

the CCN concentration has been sampledwith 10,000 points forwhich the output of cloudwater, in-cloudhail

and precipitation has been predicted by the emulators. The comparison of the results of the different environ-

mental conditions and the three trigger mechanisms reveals that on average the sensitivities are robust for

all considered setups. An increase of the CCN concentration is related to an increase of the integrated cloud

water, whereas it is related to a decrease of the integrated hail content and the precipitation of hail. However,

the exact curves vary depending on the environmental conditions. Especially in the orography setup, large

deviations from the mean trend are possible for the different atmospheric regimes.

Summarizing, we see that for all of our analyses the results differ depending on the trigger mechanism with

mainly the orography setup being different from the WB and CP setups. So far, sensitivity studies have usu-

ally been conducted using a single method to trigger convection (Adams-Selin et al., 2013; Chen & Lin, 2005;

Storer et al., 2010) and thus the same sensitivities have not been compared for different trigger mechanisms.

Our results indicate that sensitivities found for one triggermechanism cannot be transferred to other triggers

one to one. Part of the differences can be attributed to the structure of the initial convection in the orogra-

phy setup where several cells are triggered along the mountain ridge compared to the WB and CP setups

where single cells are triggered. However, there are also minor differences between the WB setup and the CP

setup. This limits the transferability of identified sensitivities to real-case simulations, in which all three trigger

mechanisms can happen in modified forms.

Concluding, statistical emulationenables adense samplingof thewholeparameter space in a short amountof

time and thus a comprehensive sensitivity analysis. The quantification and comparison of contributions from

input parameters to the output uncertainty would have not been possible without these methods. However,

in theprocess information is lost becausemeanandmaximumvalues are used in this analysis. In future studies

this problem could be reduced by multivariate emulation (Hankin, 2012; Overstall & Woods, 2016), where

multiple variables are fittedwith a single emulator. However, such emulators can bemore difficult to generate

as further specifications must be made as to how the multiple output variables depend on each other, which

are not always known. Furthermore, an emulator is not a replacement for a numericalmodel basedonphysical

equations, yet the validation ensures that the specific relation between input and output described by each

emulator is well represented. So far, we have considered deep convective clouds in idealized setups only, and

the results depend on assumptions in the two-moment scheme such as the use of saturation adjustment.

Thus, the sensitivities might vary for real-case simulations. Nevertheless, we are optimistic that our findings

are also partly applicable to real events. Overall the emulator approach appears to be a powerful tool for the

analysis of complex weather prediction models, which we recommend for further use.
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