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Abstract. The climatic relevance of aerosol–cloud interac-

tions depends on the sensitivity of the radiative effect of

clouds to cloud droplet number N , and liquid water path

LWP. We derive the dependence of cloud fraction CF, cloud

albedo AC, and the relative cloud radiative effect rCRE =

CF · AC on N and LWP from 159 large-eddy simulations

of nocturnal stratocumulus. These simulations vary in their

initial conditions for temperature, moisture, boundary-layer

height, and aerosol concentration but share boundary con-

ditions for surface fluxes and subsidence. Our approach is

based on Gaussian-process emulation, a statistical technique

related to machine learning. We succeed in building emula-

tors that accurately predict simulated values of CF, AC, and

rCRE for given values of N and LWP. Emulator-derived sus-

ceptibilities ∂ ln rCRE/∂ lnN and ∂ ln rCRE/∂ lnLWP cover

the nondrizzling, fully overcast regime as well as the driz-

zling regime with broken cloud cover. Theoretical results,

which are limited to the nondrizzling regime, are reproduced.

The susceptibility ∂ ln rCRE/∂ lnN captures the strong sensi-

tivity of the cloud radiative effect to cloud fraction, while the

susceptibility ∂ ln rCRE/∂ lnLWP describes the influence of

cloud amount on cloud albedo irrespective of cloud fraction.

Our emulation-based approach provides a powerful tool for

summarizing complex data in a simple framework that cap-

tures the sensitivities of cloud-field properties over a wide

range of states.

1 Introduction

Aerosol perturbations can lead to changes in cloud brightness

and amount via the influence of aerosol on cloud formation

and various aerosol–cloud interaction (ACI) processes. Our

process understanding of ACI has improved greatly over re-

cent decades; however, the radiative forcing due to ACI con-

tinues to dominate the uncertainty margin of the total anthro-

pogenic forcing of the climate system. Due to their abun-

dance and location, forcing and forcing uncertainty are dom-

inated by shallow, warm clouds in marine boundary layers

(Myhre et al., 2013; Boucher et al., 2013).

ACIs are notoriously hard to quantify because they pose

a multiscale problem, not only in terms of spatial and tem-

poral scales but also in terms of the effective degrees of

freedom used to describe ACI in different settings. The

multiscale spectrum of approaches to the ACI problem

has been described to range from “Darwinian” (low-level,

high-dimensional, complex, reductionist) to “Newtonian”

(high-level, low-dimensional, effective, emergent) descrip-

tions (Harte, 2002; Feingold et al., 2016; Mülmenstädt and

Feingold, 2018).

We illustrate this notion by discussing the relative cloud

radiative effect (rCRE) as quantified by

rCRE =
Fclr − Fall

Fclr
≈ AC · CF, (1)

where F denotes downwelling SW radiative fluxes at the sur-

face under clear-sky (index clr) and all-sky (index all) condi-

tions and AC and CF denote cloud albedo and cloud fraction,

respectively (Xie and Liu, 2013). By describing their effect

on the radiation budget, rCRE captures the effect of clouds
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on climate. In the spirit of Platnick and Twomey (1994), ACI

can be quantified based on the susceptibility, or normalized

sensitivity, of the rCRE to the cloud droplet number concen-

tration N :

d lnrCRE

dlnN
=

∂ ln rCRE

∂ lnN
+

∂ ln rCRE

∂ lnLWP

dlnLWP

dlnN
. (2)

The decomposition on the right-hand side is motivated by

distinguishing cloud microstructure as captured by N from

macrostructure as represented by the liquid water path, LWP.

Note that this decomposition does not necessarily align with

the contributions of AC and CF to rCRE. Aerosol effects

on cloud microstructure are associated with cloud brightness

(Twomey, 1977, 1974; Boers and Mitchell, 1994; Feingold

et al., 1997; Christensen and Stephens, 2011; McGibbon and

Bretherton, 2017), while aerosol effects on the macrostruc-

ture of the cloud correspond to cloud amount (Albrecht,

1989; Matheson et al., 2005; Kaufman et al., 2005; Small

et al., 2009; Stevens and Feingold, 2009; Zheng et al., 2010;

Christensen and Stephens, 2011; Chen et al., 2014; Feingold

et al., 2015; McGibbon and Bretherton, 2017).

The reductionist approach to deriving rCRE(LWP,N) and

the partial derivatives in Eq. (2) starts by asking how AC(τ )

depends on cloud optical thickness τ , followed by deriving

the dependence of τ(LWP,N) on LWP and N , which are, in

turn, functions of the meteorological and aerosol conditions.

Even more complex chains of dependencies can be derived

for CF(LWP,N) and LWP(N) because these relationships

are shaped by the entire cloud field. The advantage of this

approach is that each link can in principle be deduced from

detailed process understanding. The disadvantage is that a

large number of variables and processes need to be quanti-

fied.

The emergence-based alternative is to subsume process

complexity in low-dimensional relationships that effectively

describe rCRE as a function of a small set of controlling

variables. In other words, this means searching for a sim-

ple relationship for rCRE(LWP,N). Alternatively, it may

mean abandoning the idea of disentangling aerosol effects

on cloud microstructure (N ) and macrostructure (LWP) alto-

gether – similar to the definition of effective radiative forcing

in Myhre et al. (2013) – and quantifying dlnrCRE/dlnN di-

rectly. While the direct nature of this approach is an obvious

advantage, the challenge of the emergence-based approach

lies in its data-mining exploratory nature, and lack of a priori

guidance for finding and justifying emergent relationships.

In this paper, we aim to combine the reductionist and

emergence-based approaches to determine the partial deriva-

tives in Eq. (2); the LWP adjustment d lnLWP/dlnN will be

the topic of an upcoming paper. We demonstrate how a sta-

tistical method related to machine learning can be applied to

derive system-wide relationships from the detailed process

representation that is ingrained in a set of model simulations.

Our contribution addresses an increasing interest in ma-

chine learning approaches within the atmospheric sciences,

especially in the context of parameterizing shallow clouds

(Krasnopolsky et al., 2013; Schneider et al., 2017; Brenowitz

and Bretherton, 2018; Gentine et al., 2018; O’Gorman and

Dwyer, 2018). This interest in utilizing modern computa-

tional statistical methods illustrates a community need to ad-

dress a certain mismatch between traditional process-based

cloud research and synthesizing approaches, especially for

representing clouds in climate models.

We specifically apply the tool of Gaussian-process em-

ulation (Rasmussen and Williams, 2006; O’Hagan, 2006).

Emulation is an established method used to extract multi-

dimensional relationships from sparse data. It can be con-

sidered a form of kernel-based supervised machine learning.

In the atmospheric sciences, emulation has so far been used

to investigate the relationship between model response and

uncertain parameters associated with physical parameteriza-

tions and to a lesser extent boundary conditions, e.g., Lee

et al. (2011, 2013), Johnson et al. (2015), and Posselt et al.

(2016). We adapt this method to quantitatively derive rela-

tionships between cloud-field properties that evolve over the

course of numerical simulations, namely rCRE(LWP,N),

AC(LWP,N), and CF(LWP,N).

We present state-of-the-art large-eddy simulations (LESs)

of stratocumulus (Sect. 2) and demonstrate that our approach

(Sect. 3) successfully translates process understanding cap-

tured by the LES into a quantification of the rCRE, AC, and

CF and their relationships to LWP and N (Sect. 4). As an

application, we then derive and discuss the partial suscepti-

bilities in Eq. (2) (Sect. 5) before we conclude (Sect. 6).

2 Simulations

We perform LES with the System for Atmospheric Modeling

(SAM; Khairoutdinov and Randall, 2003). Our domain mea-

sures 48km×48 km at a horizontal resolution of 200 m and a

vertical resolution of 10 m. The time step is 1 s. Simulations

are nocturnal and of 12 h duration. Sea surface temperature,

subsidence, and surface fluxes are fixed to the values of Ack-

erman et al. (2009). The model activates aerosol particles

based on the prognosed supersaturation and simulates con-

densation and/or evaporation and collision-coalescence using

a bin-emulating 2-moment approach (Feingold et al., 1998).

Particles are removed by collision-coalescence, scavenging

and wet deposition. We assume a surface source of aerosol

particles of 70 cm−2 s−1 (Yamaguchi et al., 2017; Kazil et al.,

2011). Integrated properties such as cloud water path (CWP),

rain water path (RWP), and their sum, the LWP, are calcu-

lated directly from cloud and rain water mass mixing ratios.

Drop number concentration is calculated from the prognosed

cloud and rain number concentrations and is usually domi-

nated strongly by the former. For more details on the model

setup see Yamaguchi et al. (2017).

Atmos. Chem. Phys., 19, 10191–10203, 2019 www.atmos-chem-phys.net/19/10191/2019/
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Following Feingold et al. (2016), we simulate 191 stra-

tocumulus (Sc) cases with different initial conditions. We si-

multaneously vary six initial conditions of the Sc field: liq-

uid water potential temperature (284 < θl/K < 294), the to-

tal mixing ratio (6.5 < qt/(gkg−1) < 10.5), and the aerosol

concentration (30 < Na/cm−3 < 500) in a mixed layer,

as well as the initial height (500 < Hmix/m < 1300) of

that mixed layer and the jumps (6 < 1θl/K < 10, −10 <

1qt/(gkg−1) < −6) at the inversion above the mixed layer.

To generate our ensemble of model simulations, we sam-

ple well-spaced combinations of these initial conditions over

the six-dimensional space spanned by the ranges given above

using a maximin Latin-hypercube design algorithm (Morris

and Mitchell, 1995). This Latin-hypercube sampling ensures

good coverage across the six-dimensional space of the initial

conditions and prevents any spurious aerosol-meteorology

covariability due to sampling (Feingold et al., 2016).

We create a Latin-hypercube sampling of 200 points. Not

all of these correspond to conditions for which cloud for-

mation is expected. Based on applying saturation adjust-

ment as an a posteriori condition, we identify 191 suit-

able initial conditions. For these initial conditions, actual

LESs are performed. From these simulations, we remove all

those that do not sustain cloud. We also remove simulations

that would form rain within the first hour while collision-

coalescence and sedimentation are still switched off for spin-

up. These simulations are characterized by unrealistically

strong rain once collision-coalescence is allowed. We iden-

tify such early-precipitating simulations based on the crite-

rion that the maximum domain-averaged surface precipita-

tion rate over the time series (0–12 h) exceeds 10 mm d−1.

After this filtering, 159 of the initial 191 simulations re-

main. We discard 2 h of spin-up and build our analysis on

hours 2 to 12, at output intervals of 10 min, which means that

the time series from each simulation consists of 60 domain-

averaged values. The total number of data points amounts to

60 · 159 = 9540.

Figure 1 summarizes our dataset as a function of the

domain-averaged liquid water path, LWP, which we define as

the sum of cloud and rain water path, LWP = CWP + RWP,

and the vertically averaged cloud droplet number concen-

tration, N , in cloud columns with optical depth τ500 nm > 1,

where the index indicates the considered wavelength. To il-

lustrate the system evolution, we discuss the four labeled tra-

jectories in the figure. Figure 2 illustrates the spatial arrange-

ment of these trajectories. The clouds of trajectory A deepen

in response to longwave radiative cooling and attendant con-

densation. In contrast, the thick clouds of trajectory B fea-

ture strong entrainment that leads to cloud thinning. Cloud

deepening and thinning approximately balance each other

in a region indicated by the solid blue line in Fig. 1. Tra-

jectory C shows a cloud system with large droplets whose

adiabatic volume-mean droplet radius at cloud top quickly

reaches a critical value of about 12 µm associated with the

onset of precipitation (Gerber, 1996). This rapidly reduces

the cloud droplet number (Fig. 1) and leads to the breakup of

the cloud field (Fig. 2). Trajectory D initially features droplet

sizes that are too small for precipitation formation. Through

cloud deepening similar to trajectory A, droplets grow until

their size crosses the threshold value for precipitation forma-

tion. As for trajectory C, this means that the cloud droplet

number starts to decrease.

To guide further discussion, we partition the state space

into three regions: the upper right quadrant (first quadrant,

Q1 in the following) is characterized by the absence of driz-

zle and evolution from the initial state towards decreasing

LWP; the upper left quadrant (Q2) features no drizzle and

increasing LWP; the lower part of the state space (Q34) fea-

tures drizzle and decreasing droplet number.

We distinguish the two-dimensional state space spanned

by LWP and N from the parameter space of the system. Pa-

rameters are set externally and do not evolve in time. The

parameters of our simulations are its boundary conditions,

especially sea surface temperature, subsidence, and surface

fluxes. Initial conditions could also be considered parame-

ters. Their role for the system’s evolution is, however, some-

what ill-defined due to the spin-up process. In real systems,

a distinction between state variables and parameters is only

approximate. It requires a timescale separation so that slowly

evolving variables can be considered fixed and parameter-

like in comparison to fast-evolving variables. While previous

applications of emulators, e.g., Lee et al. (2013) and Johnson

et al. (2015), have explored how the behavior of the system

varies across the parameter space, we explore how it varies

across the resulting state space. Our choice of LWP and N

as state variables is motivated by Eq. (2). It is not a priori

clear that the properties of cloud fields that arise from a six-

dimensional set of initial conditions can be described as two-

dimensional functions. For such a reduction in dimensional-

ity to be successful, it is required that multiple initial condi-

tions in the six-dimensional space map onto individual points

on the two-dimensional state space. In hydrology, this cir-

cumstance is known as equifinality (Beven, 2005). Our data

do not perfectly, but only approximately, collapse onto the

two-dimensional state space. This imperfection manifests as

noise in our data when presented in two dimensions.

3 Building ensembles of emulators

We analyze our data based on the assumption that the re-

lationship between the state-space variables and the cloud

output variables can be modeled as a Gaussian process, and

employ the technique of Gaussian-process emulation (Ras-

mussen and Williams, 2006). The historical origins of this

method lie in predicting the distribution of gold in South

Africa, based on a small sample of carefully located test

drillings. Gaussian-process emulation is a preferred interpo-

lation technique for sparse data (that is ideally well spaced)

of variables that vary smoothly (no discontinuities) across

www.atmos-chem-phys.net/19/10191/2019/ Atmos. Chem. Phys., 19, 10191–10203, 2019
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Figure 1. Temporal evolution (hours 2–12) of 159 LESs with varying initial conditions (see text) in an LWP–N state space, colored by

fraction of rain water path (RWP) to the total liquid water path (LWP). Individual simulations are indicated by gray lines and start at the

location of gray circles. The dashed blue line corresponds to an adiabatic volume-mean droplet radius at cloud top of 12 µm (adiabatic

condensation rate γ = 2.5 · 10−6 kg m−4). Together with the solid blue line, it defines three regions, which are labeled Q1 (first quadrant),

Q2 (second quadrant), and Q34 (combination of third and fourth quadrants). Red letters indicate trajectories discussed in the main text.

the dimensions of interest. Our data sample the LWP–N

state space partially in a sparse manner (when considering

different runs) and partially in a reasonably dense manner

(within the time series of individual runs). In contrast to the

six-dimensional initial conditions, which we sampled using

a space-filling Latin hypercube design, the data associated

with the system evolution is not Latin-hypercube sampled.

As the system evolves and moves towards the solid blue line

in Fig. 1, the coverage of the space becomes less evenly dis-

tributed, which can lead to issues of instability in parame-

ter estimation when fitting a Gaussian-process emulator. We

therefore adapt the emulation approach to our situation. To

fulfill the methodological requirements of sparsity and sam-

pling, we generate a set of approximately Latin-hypercube

sampled subsets of the data and construct a Gaussian-process

emulator for each subset (see Sect. 3.1). Together, this set of

fitted emulators forms an emulator ensemble that takes into

account most of the available data (see Sect. 3.2).

3.1 Subsampling

To build and validate the emulators in the emulator ensem-

ble, we split the total dataset randomly into two equally large

subsets. We use one of these to build the emulator (train-

ing dataset) and the other to independently test the emulator

(validation dataset). The random splitting is based on equal,

unconditioned probabilities for each data point to belong to

either of the two datasets. It especially does not take into ac-

count to which time series a data point belongs and which

data points from the same time series may already be in the

same dataset.

Gaussian-process emulation is designed for reasonably

sparse and well-spaced data over the dimensions of interest.

As discussed, our data do not take this form because they

consist of many densely sampled time series that are them-

selves sparsely distributed in state space. We therefore sub-

sample from the total training data in the following way: we

create a virtual set of ntrn Latin-hypercube sample points in

the LWP–N state space and replace each point in the Latin-

hypercube sample by the geometrically closest point from

our dataset. Data points are added when their normalized

Euclidean distance from the Latin-hypercube sampled point

does not exceed 5/ntrn. We do not use data points twice and

training and validation data are treated as completely sepa-

rate such that a data point cannot be selected for both training

and validation. Figure 3 illustrates two such examples of sub-

sampling. We proceed in the same way to select a subsam-

ple of nvld = 2ntrn validation data points from the validation

dataset. The Latin hypercubes underlying the samplings for

the training and the validation dataset augment one another

Atmos. Chem. Phys., 19, 10191–10203, 2019 www.atmos-chem-phys.net/19/10191/2019/
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Figure 2. Horizontal arrangement of liquid water path (sum of rain and cloud water) for trajectories (top row) A to (bottom row) D from

Fig. 1. The left column shows t = 2 h, which corresponds to the gray circles in Fig. 1. The right column shows the last time step (t = 12 h)

and the central column shows t = 6 h.

so that their combination is also Latin-hypercube sampled.

We achieve the Latin-hypercube samples using the R pack-

age lhs (R Core Team, 2018; Carnell, 2018).

3.2 Ensemble emulation and averaging

By varying the random seed of the initial Latin-hypercube

sampling, we create an ensemble of subsamples. To each sub-

sample we apply Gaussian-process emulation, constructing

and validating a separate emulator model for each subsam-

ple in turn. For a general overview of the mathematical de-

tails of the emulator model, we refer the reader to Johnson

et al. (2015). It is based on a Bayesian statistical framework

where we select an underlying mean and covariance struc-

ture that is then fitted given information from the training

data. We specifically assume a linear combination of LWP

and N as the underlying mean function and use a Matérn co-

variance structure (Rasmussen and Williams, 2006). We ac-

count for noise in our data (nugget effect). Our data are noisy

because our simulations do not perfectly, but only approxi-

mately, collapse onto the LWP–N state space. This is illus-

trated by the fact that individual data points in region Q34

of Fig. 1 may differ in their value of RWP/LWP, i.e., their

color, from closely neighboring points (cf. Fig. 5 to see the

same for rCRE instead of RWP/LWP). Emulators are fitted

using the function km() in the R package DiceKriging

(Roustant et al., 2012; R Core Team, 2018).

As the data points chosen for different Latin-hypercube

samplings are not necessarily different, the emulator ensem-

ble members that we obtain in this way are not independent.

To limit the repeated use of data points, we relate the number

of ensemble members nensbl, or random seeds, to the number

of training data points for the individual emulators ntrn such

that no more than 50 % of the total available training data ntot
trn

are used: nensbl = ntot
trn/(2ntrn).

www.atmos-chem-phys.net/19/10191/2019/ Atmos. Chem. Phys., 19, 10191–10203, 2019
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Figure 3. Subsampling (solid circles) from the total training data

(opaque points) for the rCRE emulator ensemble members with the

(a) lowest and (b) highest root-mean-square error (RMSE) in pre-

dicting the validation data. The RMSE values are 0.010 and 0.024,

respectively.

We characterize an individual emulator within the emula-

tor ensemble by its root-mean-square error (RMSE) in pre-

dicting the validation data. We characterize the emulator en-

semble as a whole by a weighted mean µ, where the weight-

ing w depends on the RMSE of the individual emulators:

µ =

∑

iwixi
∑

iwi
with wi = 1 −

RMSEi − min(RMSE)

max(RMSE) − min(RMSE)
. (3)

For the example of the rCRE emulator shown in Fig. 5, Fig. 3

illustrates the best and worst sampling within the ensemble

as quantified by the RMSE of the corresponding individual

emulators.

Figure 4 shows the spread of emulator RMSE that is ob-

tained when varying the number of training data points ntrn

used to build an emulator ensemble. The median RMSE

tends to decrease with an increasing number of data points,

while the number of ensemble members decreases commen-

surately. As a compromise between the quality of individual

emulators and ensemble statistics we choose ntrn = 50.

Figure 4. Root-mean-square errors (RMSEs) of individual rCRE

emulator ensemble members obtained using different subsamples

as a function of the number of training data points. The number of

ensemble members is indicated at the top of the plot. Orange lines,

boxes, and whiskers correspond to the median, upper and lower

quartiles, and 5th and 95th percentiles of the distribution of RMSEs

in the emulator ensemble.

4 Emulators for rCRE, cloud albedo, and cloud

fraction

Figures 5 and 6 demonstrate the successful application of our

emulator ensemble technique to derive surfaces of rCRE, Ac,

and CF (all determined using a threshold of τ > 1) as a func-

tion of LWP and N from the multi-time-series data shown in

Fig. 1. The emulated surfaces successfully predict simulation

outcomes (validation data) that were not used in creating the

emulator (training data) as shown by scatter plots and data

points in the figures.

In accordance with Eq. (1), the shape of the emulated

rCRE surface follows from the surfaces of cloud albedo and

cloud fraction (Fig. 6a, c). Cloud fraction generally decreases

with decreasing LWP as the Sc deck entrains and thins until

the detection threshold, τ = 1, occurs. Its surface is domi-

nated by a gradual shift of its isolines from Q2 to Q34 as rain

formation sets in. In the shift region (Q3, left part of Q34),

cloud fraction depends strongly on N . Elsewhere, isolines

run mostly in the vertical direction such that CF is largely in-

dependent of N . Cloud albedo is characterized by negatively

sloped isolines so that cloud albedo tends to increase with

both LWP and N . The isolines, and thus the dependence of

cloud albedo on LWP and N , are distorted in the drizzling

region (Q34).

This distortion in Q3 is caused by the bimodality of the

drop-size distributions, so that cloud albedo and fraction are

influenced by the radiative effects of cloud droplets as well

as rain drops. Figure 6b and d considers the cloud water

path (CWP) instead of LWP as x axis. This transformation

leads to a shift in the isolines: cloud fraction isolines become

approximately vertical as τ > 1 is controlled by CWP and

hardly influenced by the additional contribution of RWP to

LWP. The tilt of the cloud albedo isolines is reversed, indi-

cating a contribution of RWP to total cloud albedo.

Atmos. Chem. Phys., 19, 10191–10203, 2019 www.atmos-chem-phys.net/19/10191/2019/
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Figure 5. Emulated rCRE surface (ensemble mean Eq. 3) as a function of LWP and droplet number, N , as color contours. The standard

deviation, σ , of the emulated rCRE over the ensemble (Eq. 4) is indicated by hatching, with σ < 0.01 and 0.01 < σ < 0.05 for nonhatched

and hatched regions, respectively. Emulated values outside [0,1] are masked. Color-filled circles with gray outline show the validation subset

of the total dataset shown in Fig. 1 (see Sect. 3.1). For visibility, only every 10th validation data point is shown. The color scale for the data

points is the same as for the contours and the gray outline of their edges has been added to distinguish validation data from the emulated

surface (see Fig. 9 for an example of this type of plot where values of data points and surface differ more). The scatter plot in the inset

compares the complete validation dataset to the emulated values. White lines indicate quadrants as in Fig. 1.

4.1 Uncertainty

Our approach features five different kinds of uncertainties, or

errors. First, the Gaussian-process emulation returns a ran-

dom variable, i.e., a probability distribution of possible sur-

faces. This uncertainty depends on the training data used to

build an individual emulator. It can be quantified by a stan-

dard deviation and its values can be inferred from Fig. 8.

Second, the quality of the emulator mean function is quan-

tified by the RMSE of an emulator in predicting the valida-

tion data. This measure of uncertainty depends on the train-

ing as well as the validation data that is used for a specific

emulator, i.e., one member of the emulator ensemble. It is

not spatially resolved but averages the error of the emulator

over the whole LWP–N state space. As indicated in the cap-

tion of Fig. 3, RMSE lies between 0.01 and 0.02 for the rCRE

emulators.

Third, we have the error due to the noise that arises when

collapsing our dataset onto the LWP–N state space. This

uncertainty is the most fundamental uncertainty because it

cannot be reduced by increasing the number of data points

available. It is inherent to our modeling of rCRE as two-

dimensional function of LWP and N .

Fourth, we have the uncertainty of the emulator ensem-

ble. Following Eq. (3), we quantify this uncertainty using a

weighted ensemble standard deviation,

σ =

√

∑

iwi(xi − µ)2

∑

iwi
, (4)

where the weights wi are defined in Eq. (3) and depend on the

RMSE. Hatching in Fig. 5 shows that the ensemble uncer-

tainty (weighted standard deviation) for values of the rCRE

is mostly smaller than 0.05 and in large regions of the state

space smaller than 0.01. Comparing the different emulators,

we find that the cloud-fraction emulator ensemble is more

uncertain than that of the cloud albedo (Fig. 6). This re-

flects that cloud albedo only depends on the local proper-

ties of the cloud field that are directly represented by LWP

and N , while the cloud fraction is a cloud-field property.

The cloud-fraction uncertainty is mitigated by considering

the combined quantity of the rCRE.

Lastly, we have a sampling uncertainty illustrated in Fig. 7.

We indicate the level of sampling uncertainty by counting the

number of trajectories that sample a specific part of the state

space. To this end, we partition the LWP–N state space into

60 × 50 bins and for each bin we count how many of our

159 trajectories contain a data point within. This uncertainty

arises because our data, especially when projected onto the

two-dimensional LWP–N state space, are noisy. Regions of
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Figure 6. Same as Fig. 5 but showing (a, b) cloud fraction and (c, d) cloud albedo as a function of (a, c) total liquid water path, LWP,

and cloud droplet number concentration, N , and (b, d) cloud water path, CWP, and N . The standard deviation, σ , of the emulated variable

over the ensemble (Eq. 4) is indicated by hatching, with σ < 0.01, 0.01 < σ < 0.05, and 0.05 < σ < 0.5 for nonhatched, single-hatched, and

double-hatched regions, respectively.

the state space that are sampled by a single trajectory are

thus less reliably represented than regions where the consid-

eration of different trajectories attenuates the noise. Note that

the nugget effect assumed for building individual emulators

cannot account for this sampling uncertainty: an undersam-

pled region does not appear noisy.

Figure 8 compares the three spatially resolved types of er-

ror for the rCRE emulator. The standard deviation of the en-

semble is mostly smaller than the standard deviation of the

individual emulator. This reflects the larger amount of data

and information considered when building the emulator en-

semble. Comparison with the sampling uncertainty indicates

that the ensemble standard deviation may be overconfident

in poorly sampled regions because it cannot capture the true

level of noise in these regions. Therefore, because the ensem-

ble uncertainty is generally small, we will use the sampling

uncertainty to guide the interpretation of the rCRE emulator

in the following.

4.2 Comparison to bilinear regression and effective

degrees of freedom

Previous studies have determined partial susceptibilities as in

Eq. (2) from binned linear (e.g., Sena et al., 2016) or bilin-

ear regression (Jiang et al., 2010; Glassmeier and Lohmann,

2018). We therefore add a brief comparison of our method

to bilinear regression. Figure 9 demonstrates that bilinear

regression does not capture the simulation data as well as

the emulator surface. While the coefficient of determination,

Atmos. Chem. Phys., 19, 10191–10203, 2019 www.atmos-chem-phys.net/19/10191/2019/
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Figure 7. Illustration of sampling by trajectories. The sample size

(gray scale) is determined by counting the number of trajectories

(colored lines) per grid box. Note that the trajectories shown are the

same as in Fig. 1.

Figure 8. Comparison of errors from emulation, ensemble, and

sampling. Contours show the ratio of emulator and ensemble stan-

dard deviation (SD) and hatching shows the sample size as in Fig. 7.

Note that sample sizes smaller than one trajectory can occur due to

interpolation.

r2 = 0.95, and RMSE = 0.05 are acceptable, the regression

surfaces cannot account for the tilt of isolines discussed in

Sect. 4. As a consequence, the regression surface predicts a

large region of non-physical, negative, rCRE. The reason be-

hind the poor performance of bilinear regression is that its

three free parameters are insufficient to capture the complex-

ity of the emulated surface. The number of degrees of free-

dom required to adequately capture the complexity of the

simulation data can be estimated from Fig. 4. The value of

ntrn at which the emulator RMSE levels off can be interpreted

as the number of degrees of freedom of the fitted surface, in

our case about 50. Performing bilinear regression for spe-

cific bins increases the total number of free parameters in the

regression. In contrast to emulation, however, this approach

is limited by the requirement of a sufficient number of data

points per bin. We therefore consider emulation to be a pow-

erful and superior alternative to binned regression studies.

5 Partial susceptibilities of rCRE to droplet number

and LWP

While partial susceptibilities (Eq. 2) are directly obtained as

the coefficients of a bilinear regression, the emulated rCRE

surface requires their derivation as finite differences of the

array that represents the surface. Figure 10 shows the loga-

rithmic derivatives of the surface shown in Fig. 5.

In the upper parts of the state space (Q1 and Q2), emulator-

derived susceptibilities in Fig. 10a and b compare reasonably

well to theoretical results for nondrizzling conditions (black

line contours), which assume a unimodal droplet-size distri-

bution and high-cloud fraction (Boers and Mitchell, 1994;

Sena et al., 2016):

∂ ln rCRE

∂ lnLWP
=

5

6
(1 − rCRE) ,

∂ ln rCRE

∂ lnN
=

1

3
(1 − rCRE) . (5)

In accordance with the different prefactors, rCRE is thus

more susceptible to LWP than to N . Susceptibilities decrease

with increasing LWP, reflecting the saturation behavior of AC

for high LWP.

While Feingold et al. (1997) discuss the effect of drizzle

initiation on AC and precipitation susceptibility, the authors

are not aware of studies addressing susceptibilities of rCRE,

AC, CF, or related quantities under drizzling conditions. Our

emulator approach enables us to do so. As discussed in the

context of Fig. 6, the contribution of rain water to total LWP

leads to a shift of rCRE isolines and makes cloud fraction

at constant LWP a function of N . This creates a maximum

in ∂ ln rCRE/∂ lnN for fixed LWP in the vicinity of the iso-

line distortion (Figure 10a). It also explains why isolines of

∂ ln rCRE/∂ lnLWP are tilted in the drizzling region. This in-

dicates that the partial susceptibility of rCRE to N not only

captures the radiative effects of droplet size but also accounts

for cloud fraction changes, while the partial susceptibility to

LWP is comparably insensitive to the latter.

We abstain from interpreting the susceptibility in the left

half of Q2; due to the low sample size in this region, the

observed substructure is likely not physical.
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Figure 9. Same as Fig. 5 but using bilinear regression rCRE = a · log10(LWP)+ b · log10(N)+ c instead of emulation to obtain the surface.

From the regression, we obtain a = 0.40, b = 0.26 and c = −0.86 with a coefficient of determination of r2 = 0.95 and RMSE = 0.05.

6 Conclusions

We present a new method to summarize the detailed pro-

cess representation ingrained in LES into a simple pic-

ture of aerosol–cloud interactions (Eq. 2). We have con-

structed ensembles of Gaussian-process emulators to extract

how cloud albedo, AC; cloud fraction, CF; and the rela-

tive cloud radiative effect, rCRE (Eq. 1), depend on the

domain-averaged liquid water path, LWP, and vertically av-

eraged cloud droplet number concentration, N , from a set of

159 large-eddy simulations of nocturnal stratocumulus (Sc)

with different initial conditions (Fig. 1). The initial condi-

tions were Latin-hypercube sampled from a six-dimensional

space that took into account variations in moisture and tem-

perature profiles, including their jumps at the inversion, as

well as aerosol concentration and boundary-layer height. The

emulator–ensemble approach has enabled us to accurately

capture AC, CF, and rCRE as a function of LWP and N over

a wide range of LWP and N (Figs. 5 and 6). Our results

are based on an idealized set of simulations that currently do

not account for varying boundary conditions like subsidence

and surface fluxes. Taking such differences into account may

lead to a broader and/or denser sampling of the LWP–N state

space. This would extend and improve the emulated surfaces.

Emulation provides a viable and more powerful alterna-

tive to multivariate linear regression for deriving cloud-state-

dependent partial susceptibilities (Eq. 2). We demonstrate

this for the partial susceptibilities of rCRE to LWP and N

(Fig. 10). We reproduce theoretical results for full cloud

cover and monomodal droplet size distributions and extend

the known relationships into the drizzling regime. As cloud

fraction remains controlled by cloud water, the contribution

of rain water to total LWP leads to a strong dependence of

cloud fraction on N , for fixed LWP. This dependence corre-

sponds to a strong susceptibility of rCRE to N in the transi-

tion region from solid to broken cloud cover.

Our results confirm the expectation that rCRE is most sus-

ceptible to microphysical perturbations in the transition re-

gion between the high- and low-cloud fraction regime of Sc.

Our new approach allows us to clarify the interpretation of

Eq. (2): the direct contribution of droplet number changes to

rCRE (∂ ln rCRE/∂ lnN ) captures the effect of droplet num-

ber on cloud brightness as well as the effect on cloud fraction.

This is possible because N controls the rain water fraction

RWP/LWP at constant LWP. The adjustment contribution,

∂ ln rCRE/∂ lnLWP · dlnLWP/dlnN , captures the effect of

cloud amount on rCRE, irrespective of its distribution onto

fewer or more droplets or thicker or thinner clouds at low or

high cloud cover.

The methodology presented provides a powerful tool for

synthesizing detailed data into a simple predictive frame-

work. In this paper we have demonstrated its versatility for

studying the sensitivities of cloud-field properties over a

wide range of states. Subsequent work will focus on employ-

ing this emulator approach to gain a deeper understanding
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Figure 10. Partial susceptibilities of rCRE to (a) N and (b) LWP as a function of N and LWP as derived from the emulated rCRE surface

(Fig. 5) (color contours). Solid lines show theoretical susceptibility values following Boers and Mitchell (1994), restricted to the nondrizzling

region for which they apply. Hatching indicates the sample size as in Fig. 7. Note that sample sizes smaller than one trajectory can occur due

to interpolation. White lines indicate quadrants as in Fig. 1.

of LWP adjustments, d lnLWP/dlnN . In general, computa-

tional statistical approaches like the one discussed here have

broad potential. They enable process modelers to explore

their models beyond case studies, while at the same time they

empower empiricists to better account for state dependence.

This combination of approaches provides a promising avenue

for improving our understanding of the uncertainties asso-

ciated with the representation of shallow clouds in climate

models.
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