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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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1. Introduction: Research motivation 

 
Additive Manufacturing (AM) is a manufacturing process 

whereby complex structures are built through the layering of 

heated materials. This differs from traditional machining tech- 

niques which involve subtracting from a block of material to 

form a shape and offer several advantages such as ease of cus- 

tomisation, minimum use of material, reduced delivery time 

and maximum flexibility [10]. It has applications in many in- 

dustries including automotive, aerospace and medicine [20]. 

Laser Based Additive Manufacturing (LBAM) uses lasers to 

melt metal alloy powder to form a structure. Despite continuous 

technological improvements in LBAM systems, process stabil- 

ity and product quality are still affected by several parameters 

such as laser power, power distribution, scanning velocity, ma- 

terial feed rate, hatch spacing and substrate preheat temperature 

[6]. This leads to the formation of defects that affect the qual- 

ity and mechanical performance such as porosity and residual 
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stress of the structure [11]. As such, there is a keen interest in 

collecting information that can be used to better understand the 

process and generation of defects. As the defects occur within 

structure of the product, one of the main challenges is the se- 

lection of appropriate sensing technologies that can adequately 

perceive them. One approach is to integrate costly industrial- 

grade sensors to capture the process information. An alterna- 

tive solution before committing to a defined framework is to 

integrate low cost sensors to evaluate their efficacy for in-situ 

control and monitoring. Additionally low cost sensors can ac- 

celerate the prototyping process for feasibility research. Fur- 

thermore, the environment is hazardous to electronics due to 

the high temperatures induced by the laser and a significant 

amount of metal powder getting sprayed into the nearby area. 

This makes it more cost-effective to prototype using cheaper 

sensors and test whether it is possible to perceive the target vari- 

able. 

2. Related work: In-situ control for AM process using IoT 

& Machine Learning 

The advent of Industry 4.0 has driven the need for manufac- 

turers to collect more information and gain a better understand- 
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Abstract 

Additive manufacturing (AM) is emerging within many industrial applications due to inherent advantages such as rapid prototyping and produc- 

tion. However, the correlation of process parameters across modules and their impacts on product quality are not yet fully understood. This article 

presents a system built out of Internet of Things (IoT) and edge computing technologies to collect and analyze AM process in-situ. An IoT thermal 

camera platform was developed, and integrated within an Laser Based Additive Manufacturing (LBAM) system to collect information that could 

be used to characterize the thermal distribution surrounding the melt pool. Machine learning techniques were utilised to identify the occurrence 

of defects using the collected low-resolution thermal images. 
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ing of their shop floor. The current trend is to connect devices 

into a network commonly referred to as an Internet of Things 

(IoT) [15]. This network of distributed devices helps to fill in 

knowledge gaps about the current state of the factory leading 

to better allocation of resources and a more optimised process 

[17]. 

Several IoT platforms have been developed and imple- 

mented in an industrial setting. Wang et. al. proposed a cloud 

based system that manages the information collected from a se- 

ries of networked AM machines and allows customers to submit 

manufacturing requests directly to the machines. The informa- 

tion collected includes test data, design files, and machine sta- 

tus information [20]. Barbosa et al. attached a Bluetooth bea- 

con to several AM machines to collect and broadcast informa- 

tion to mobile devices handled by managers and operator [8]. 

When device users approach connected machines, the applica- 

tion displays machine information without the need for inspec- 

tion. Trabesinger et al. collected information using an industrial 

device called SINUMERIK Edge to collect, process and send 

information via the internet making it easily accessible to other 

members of the office with access to the network [19]. 

Machine Learning (ML) is a class of algorithms with the 

ability to learn from experience to improve performance or 

make predictions [13]. Li et al. created a predictive model using 

machine learning that combines multiple sensor sources to es- 

timate the surface roughness of extrusion-based additive man- 

ufacturing [12]. Zhu et al. combined a prescriptive deviation 

modelling method with machine learning techniques to pre- 

dict deviations in additive manufacturing [21]. Caggiano et al. 

is sensitive to changes of 1 ◦C. The camera was chosen as it 

was designed to connect with the popular Raspberry Pi edge 
computing platform and the manufacturer supplying an open 

source software library for handling the retrieval of temperature 

values. The library handles the low-level interactions including 

the required physics calculations so the user can directly re- 

trieve the temperature values with minimum hassle. The cam- 

era is recorded by the edge computing platform Raspberry Pi 

Model 3B+. This platform was chosen for its ability to interact 

with a wide range of sensors and devices. The platform runs an 

instance of the Linux operating system making it a flexible envi- 

ronment for developing in a range of programming languages. 

The camera is connected to the platform by a Breakout Gar- 

den breakout board designed so that the camera can be inserted 

without soldering wires onto the camera thus simplifying main- 

tenance and making it easier to use. Figure 1a shows how the 

components are connected to each other and 1b shows the plat- 

form’s housing. 

 

 
 

trained a Deep Convolutional Neural Network architecture that 

accepts images from two different sources to detect patterns in- 

(a) Components of low cost IoT 

platform 

(b) Housing for low cost IoT platform 

dicative of a defect [4]. Baturynska et al. proposes a conceptual 

optimisation framework combining machine learning and finite 

element modelling to identify the best process parameters for 

powder bed fusion additive manufacturing [1]. 

 
3. Methods and instruments 

 
Methods. A key feature of additive manufacturing is the melt 

pool. This is the channel formed when a pulse of power from 

the laser combines with the powder to form part of the prod- 

uct’s structure. The size and depth of the melt pool is influenced 

by the power of the laser and the type of material being used. 

As it forms the structure, the mechanical properties of the melt 

pool once cooled should be captured to detect whether it be- 

comes a potential point of failure [16]. Recently Khanzadeh et 

al have proposed a methodology for using thermal imaging and 

modelling of the melt pool to understand and model the charac- 

teristics of porosity during LBAM [9]. This work proposes an 

IoT based setup that comprises of a thermal camera to achieve 

in-situ process control during an LBAM process. The camera 

records information about subsurface temperature distribution 

and this information is then processed utilising ML techniques 

to detect defects in the structure. 

Instruments. The camera chosen is the Adafruit MLX90640 

thermal camera. The camera can sense from -40 to 400 ◦C and 

Fig. 1. Contents of the thermal camera platform 

 

 
Use case: BeAM machine. The BeAM Magic 2.0 machine 

based at The University of Sheffield, is a blown powder, di- 

rect energy deposition (DED) AM machine [2]. It comprises of 

a laser head which is moveable along five degrees of freedom 

and is managed by a separate motor controller. The position, 

velocity and electrical current history of the motor is recorded. 

The laser supply can transmit a laser with a maximum of 500 

Watts with the power set and triggered by the machine’s central 

controller. A thermal camera was installed connected in parallel 

with the laser head and provides a fixed view point of the build 

site. The camera records the radiative heat from the build site 

and is started with a trigger signal sent from the central con- 

troller. 

The building process takes place within an air tight cham- 

ber inside the machine designed to prevent metal powder from 

escaping to the outside. This chamber can be observed through 

a window on one side of the machine and a port hole on the 

door to the chamber. The products are built on a titanium build 

plate which is fixed in the centre of the chamber on top of a 

metal circle with four channels spaced at equal angles. A cus- 

tom slot liner was 3D printed that was designed to fit in one of 

these channels. It had a series of screw holes added along the 

length of the beam where the thermal camera platform could be 
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mounted at a fixed distance and angle relative to the build site. 

Figure 2 shows the thermal camera platform fitted inside the 

BeAM machine while it was in use. For the arrow shape build, 

the camera platform was setup at a distance of 15 cm. 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Developed thermal camera platform in-use inside the BeAM machine 

4. Results and Discussion 

 
Two builds were conducted to collect data using our devel- 

oped thermal camera platform. The first build was a complex 

arrow shape and the second was three parallel lines at a fixed 

distance from each other. The arrow shape build yielded the 

most interesting data and will be the focus of this paper. Figure 

3 shows the laser head position history recorded by the motor 

controller during the build collectors afterwards. Stainless Steel 

314L was used for fabricating the selected shape. The shape is 

made up of four layers each composed of the same structural 

components; an arrow head and three rectangles forming the 

tail. 

(a) Full maximum temperature plot (b) Zoomed in section of the maximum tem- 

perature plot 

 
Fig. 4. Maximum temperature of each frame recorded by the developed ther- 

mal camera platform during the arrow shape build 

 
 

Figure 5a shows examples of the data collected by the devel- 
oped thermal camera platform (24x32 image) during the arrow 
shape build. Units of x and y axis are pixels. The colorbar rep- 

resents temperature in ◦C. All of the frames contain a distinct 

T-shape similar to the one showed. The component along the 

plot y-axis is the path of the laser from the laser head to the 

build plate and ends at the temperature peak. The component 

taking up most of the x-axis is the sub-surface heat distribu- 

tion during the build. This is the most important section of the 

data as it contains the information relating to the formation of 

the melt pool. The amount of detail that can be captured from 

this experimental setup depends on how close the laser is to the 

camera. Overall, the data captured shows that the temperature 

distribution drops off sharply at the boundary (approx. 20-30 
◦ C) of the sub-surface heat distribution limiting the effective 

sensing range. 
 

(a) Frame recorded by developed thermal camera(b) Frame recorded by the first parallel 

platform thermal camera 
 

(a) The arrow shape build (b) Only the first layer 

 
Fig. 3: Position history of the laser head 

 
The thermal camera was able to collect data with some dis- 

tinct dynamics. Figure 4a shows the maximum temperature of 

each camera frame. The recording software was set to record 

to capture for three hours in order to capture the temperature 

before the build, the build period and the cooling period after- 

wards. The two clear spikes in the graph were confirmed to be 

data errors as they are far outside of the camera sensing range. 

The activity between frames 90000 and 150000 is the period 

of time where the product was being built. Figure 4b shows a 

region of the plot assumed to be associated with the arrow head 

section. 

Fig. 5. Examples of the thermal camera footage recorded during the arrow 

shape build 

 
Figure 5b shows an example of the footage recorded during 

the arrow shape build using the first parallel thermal camera. 

This camera captured an off-centre view of the laser surface 

power distribution over the build site. The data is displayed in 

grayscale with the white pixels representing the higher values. 

The image captured has a distinct circular boundary defining 

the process region. 

Surface laser power can be estimated by converting the 

recorded radiative heat to laser power density. An approximated 

model was developed to convert pixel wise heat to pixel wise 

temperature and then to laser power density. The material’s 

thermal response parameters, such as thermal diffusivity and 
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(a) Power estimate by Hough Circle Transform (b) Estimated laser radius with marked filtered data(c) Estimated hatch spacing. Dotted line represents esti- 

points and final estimate mated value 
 

Fig. 6. Estimated hatch spacing. Dotted line represents estimated value 

 

conductivity, were estimated from several datasheets. As these 

parameters were for specific temperature ranges, a function was 

fitted to interpolate in between the ranges. To estimate power 

the heating boundary needs to be identified. The Hough gradi- 

ent method [14] was applied as the heating area can be seen 

to be predominately circular. Figure 6a shows the power esti- 

mate results using the highest scoring circle according to the 

algorithm 1 . As it’s an image processing technique, each frame 

had to be normalised and converted to a grayscale image. The 

maximum estimate of the laser power under this method was 

400 Watts which when compared to the target of 500 Watts was 

reasonably close. This data was going to produce an underes- 

timate as the thermal camera records the surface radiative heat 

and does not record the subsurface temperature. Furthermore 

when the laser is inactive, the conversion to an image weights 

the noise highly due to the rescaling being based off the local 

maximum which may cause the transform to detect falsely large 

or small circles resulting in an incorrect estimate. 

One process parameter that can be estimated from the first 

parallel camera’s thermal footage is the laser radius. A com- 

mon approach is the 1/e2 method which measures the maxi- 

mum distance between two points in the laser power density 

where the intensity has fallen to 1/e2 times the peak value. Fig- 

ure 6c shows the estimated laser radius using this method and 

the post-processing steps to improve the result. The peaks in 

the dataset were identified and abnormal values more than three 

standard deviations of the mean were filtered. The spike at the 

start of the file is caused by a single frame in the footage where 

all the values are the maximum for the datatype. The cause for 

this is unknown. The laser radius is taken as the average of the 

filtered data resulting in a value of 0.2454 millimetres. The tar- 

get laser radius is 0.35 millimetres. The difference can be at- 

tributed to the post processing technique erroneously filtering 

beyond noise in the image and the recorded emitted heat values 

not being representative of the true heat at the build site. One of 

the most important process parameters in LBAM is hatch spac- 

ing. It is the distance between the tracks built by the laser head 

that form the build layers. Studies have shown that it affects the 

 
1 The Hough Circle transform searches a parameter space of possible circle 

centres and radii. Each circle is given a vote for every non-zero pixel that fits 

within the equation that describes the circle creating an accumulated score. 

heat transfer behaviours, surface quality and overlap rates [7]. 

Increasing the hatch spacing decreases the build time but results 

in pockets of unmelted powder to form affecting the build struc- 

ture and high porosity. The hatch spacing can be estimated from 

the laser head position by looking at the element wise distance 

between the y-position values. Figure ?? shows a region of the 

distance values with the dotted line indicating an average hatch 

spacing of 0.0236 millimetres. The difference between the es- 

timate and the target is believed to be due to the quality of the 

control system. 

One of the objectives with any manufacturing system is 

fewer defects in the product. By seeing how the temperature 

distributes below the surface it may be possible to detect the 

formation of defects. Unsupervised machine learning is a class 

of machine learning algorithms that attempts to separate the 

data into groups based on its parameters and has been shown 

to be effective in anomaly detection [18]. Figure 7a shows ex- 

amples of the results from two trialled methods. Both were set 

to classify the regions into three classes containing the back- 

ground (blue), foreground (green) and defect (red) respectively 

and each frame was treated independently. Figure 7a is a re- 

sult from using a pre-built unsupervised segmentation pipeline. 

Originally developed by Borovec et al. for clustering regions 

of medical images into active and inactive ones, the multistage 

pipeline classifies regions based on their colour and texture fea- 

tures [3]. The pipeline was able to consistently separate the 

thermal activity from the background and the labels remain- 

ing stable with only a couple of occasions when the activity 

labels swapped identities. The background label also consis- 

tently contained minimal noise resulting in reasonably clean 

and contained boundaries. The non-background labels repeat- 

edly separated the surface activity initially induced by the laser 

and the sub-surface activity that emanates from it. Figure 7a 

shows an example of applying k-means clustering. Like with 

the pipeline, it was able to separate the thermal activity from 

the background with reasonable success but noise was repeat- 

edly misclassified as non-background. One solution is to use 

information from previous frames to stabilise the classification 

of future frames. 
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(a) Unsupervised learning results from pre-built pipeline (left and middle) and K-means clus- 

tering (right) 
 

 

(b) Early attempt at 3D modelling using Gaussian Splat (left) and Delaunay Triangulation 

(right). 

 
Fig. 7. Unsupervised clustering of thermal images using a pre-built pipeline 

and K-Means clustering 

 
This work opens an avenue of research to attempt to model 

a more realistic 3D representation of the sub-surface heat dis- 

tribution. Figure 7b shows an early attempt to represent power 

density around and including the melt pool, visualised in a 3D 

model. This was done using Gaussian Splat and Delaunay Tri- 

angulation [5]. These methods were investigated to roughly es- 

timate the volume of the melt pool as a possible metric for the 

quality of the build. Further details on the experiment and the 

computational pipeline can be found in the repository refer- 

enced in the Supplementary Material. 

 
5. Conclusion 

 
In this paper, an IoT-grade thermal camera was used to mon- 

itor the thermal distribution through a melt pool. This work 

demonstrated that it can detect the heat distribution region of 

interest including features suitable for further processing (3D 

modelling of the heat distribution containing the melt pool). 

The process data was characterised using unsupervised ma- 

chine learning techniques in an attempt to identify defects. This 

reinforces the case for cheap IoT technology being a valid way 

to monitor manufacturing processes. One of the biggest limita- 

tions with controlling AM processes is the lack of understand- 

ing about the impact of process parameters on build quality. The 

data collected by this project’s AM machine was used to esti- 

mate important parameters such as hatch spacing, laser radius 

and laser power. These estimates and a better understanding of 

the key data features will help to outline an in-process frame- 

work that will help improve process repeatably and stability. 

These results help justify the integration of the low cost sensors 

to supplement existing industrial systems for in-process control 

and monitoring. 

Acknowledgements 

 
The work reported here was sponsored by Research Eng- 

land’s Connecting Capability Fund award CCF18-7157 – Pro- 

moting the Internet of Things via Collaboration between HEIs 

and Industry (Pitch-In). The authors would like to acknowledge 

the support of Airbus and the Royal Academy of Engineering 

(REA1718/1/20, RCSRF1718/5/41) under the Research Chairs 

and Senior Research Fellowships scheme. 

 

References 

 
[1] Baturynska, I., Semeniuta, O., Martinsen, K., 2018. Optimization of Pro- 

cess Parameters for Powder Bed Fusion Additive Manufacturing by Com- 

bination of Machine Learning and Finite Element Method: A Concep- 

tual Framework. Procedia CIRP 67, 227–232. doi:10.1016/j.procir. 

2017.12.204. 

[2] BEAM, 2020. BEAM 2.0 Product details. URL: https://www. beam-

machines.com/products/magic800. 
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