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Abstract

We test the predictive accuracy of forecasts of the number of COVID-19 fatalities

produced by several forecasting teams and collected by the United States Centers for

Disease Control and Prevention for the epidemic in the United States. We find three

main results. First, at the short horizon (1-week ahead) no forecasting team outperforms

a simple time-series benchmark. Second, at longer horizons (3- and 4-week ahead)

forecasters are more successful and sometimes outperform the benchmark. Third, one

of the best performing forecasts is the Ensemble forecast, that combines all available

predictions using uniform weights. In view of these results, collecting a wide range of

forecasts and combining them in an ensemble forecast may be a superior approach for

health authorities, rather than relying on a small number of forecasts.
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1 Introduction

Forecasting the evolution of an epidemic is of utmost importance for policymakers and health

care providers. Timely and reliable forecasts are necessary to help health authorities and the

community at large coping with a surge of infections and to inform public health interventions,

for example, to enforce (or ease) a lockdown at the local or national level. Accordingly,

in recent months there has been a rapidly growing number of research teams developing

forecasts for the evolution of the current COVID-19 pandemic caused by the new coronavirus,

SARS-CoV-2.

In the United States, the Centers for Disease Control and Prevention (CDC) collects weekly

forecasts of the evolution of the COVID-19 pandemic produced by different institutions

and research teams. These forecasts are aimed at informing public health decision-making

by projecting the probable impact of the COVID-19 pandemic at horizons up to four

weeks. The forecasting teams that submit their forecasts to the CDC include data scientists,

epidemiologists, and statisticians, and use different models and methods (e.g. SEIR, Bayesian,

and Deep Learning models), combining a variety of data sources and assumptions about

the impact of non-pharmaceutical interventions on the spread of the epidemic (such as

social distancing and the use of face coverings). This wealth of forecasts can be extremely

valuable for decision-makers, but it also poses a problem: how to act when confronted

with heterogeneous forecasts and, in particular, how to select the most reliable projections.

Decision-makers are thus faced with the task of comparing the predictive accuracy of different

forecasts. Indeed, selecting models and comparing their predictive accuracy are different

tasks, and in this paper we focus on the latter.

As the Diebold and Mariano (DM) test of equal predictive accuracy (see Diebold and

Mariano 1995, Giacomini and White 2006) adopts a model-free perspective to compare

competing forecasts, imposing assumptions only on the forecast errors loss differential, we

use it to compare competing forecasts for the number of COVID-19 fatalities collected by
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the CDC. The application of the DM test is particularly challenging when only a few out-of-

sample observations are available, as the standard test is unreliable, especially for multi-step

forecasts (Clark and McCracken 2013). To overcome this small-sample problem, we apply

fixed-smoothing asymptotics, as recently proposed for this test by Coroneo and Iacone (2020).

With fixed-smoothing asymptotics, the limit distribution of the DM statistic is derived under

alternative assumptions. In particular, when the long-run variance in the test statistic is

estimated as the weighted autocovariances estimate, the asymptotic distribution is derived

assuming that the bandwidth-to-sample ratio (denoted as b) is constant, as recommended by

Kiefer and Vogelsang (2005). With this alternative asymptotics, usually known as fixed-b, the

test of equal predictive accuracy has a nonstandard limit distribution that depends on b and

on the kernel used to estimate the long-run variance. The second alternative asymptotics that

Coroneo and Iacone (2020) consider is the fixed-m approach, as in Sun (2013) and Hualde

and Iacone (2017). In this case, the estimate of the long-run variance is based on a weighted

periodogram estimate, the asymptotic distribution is derived assuming that the truncation

parameter m is constant, and the test of equal predictive accuracy has a t distribution with

degrees of freedom that depend on the truncation parameter m. Both approaches have been

shown to deliver correctly sized predictive accuracy tests, even when only a small number of

out-of-sample observations is available (see Coroneo and Iacone 2020, Harvey, Leybourne and

Whitehouse 2017).

We evaluate forecasts for the cumulative number of COVID-19 fatalities produced at the

national level for the United States by the eight forecasting teams that submitted their

forecasts to the CDC without interruptions during the period June 20, 2020 to March

20, 2021. Although the evaluation period includes only 40 observations, we document an

increase in the volatility of the forecasting errors around the second half of the sample.

Accordingly, we perform our forecast evaluation separately on two sub-samples of equal size:

the first evaluation sub-sample (from June 20, 2020 to October 31, 2020) and the second
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evaluation sub-sample (from November 7, 2020 to March 20, 2021). This implies that for

each evaluation sub-sample we can base our inference only on 20 observations, making the

use of fixed-smoothing asymptotics crucial for obtaining reliable results.

We compare the predictive accuracy of the forecasts of each team relative to the forecasts

of a simple benchmark model, obtained by fitting a second-order polynomial using a rolling

window of the last five available observations. We also consider two ensemble forecasts that

combine the forecasts from several models using equal weights: one published by the CDC

and another one (the core ensemble) computed by us combining only the forecasts included

in our evaluation exercise.

A feature that makes forecast evaluation important in its own right, especially when dealing

with predicting the spread of COVID-19, is that the cost of under-predicting the spread

of the disease can be greater than the cost of over-predicting it. In the midst of a public

health crisis, the precautionary principle implies that erring on the side of caution is less

costly than predicting the tapering off of the disease too soon. Scale effects may also be

important in the evaluation of forecasts of an epidemic outbreak, since the same forecast

error may be considered differently when the realized level of fatalities is small, and when

there is a large number of fatalities. These effects may be taken into account in the forecast

evaluation exercise by a judicious choice of the loss function. Therefore, we evaluate the

predictive accuracy of each forecasting team using several loss functions, that include the

widely used quadratic and absolute value loss, the absolute percentage loss (that takes into

account the scale of the number of fatalities), and a linear exponential loss function (that

penalizes under-prediction more than over-prediction).

Our findings can be summarized as follows. First, the simple polynomial benchmark out-

performs the forecasters at the short horizon (1-week ahead), often significantly so. Second,

at longer horizons (3- to 4-week ahead), the forecasters become more competitive and some

statistically outperform the simple benchmark, especially in the first evaluation sub-sample.
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This suggests that forecasters can successfully help inform forward-looking policy decisions.

Third, the ensemble forecasts are among the best performing forecasts. This is particularly

true in the first evaluation sub-sample, but even in the second sub-sample the ensemble

forecast combinations outperform the benchmark, although in this sub-sample the DM test

statistics are not statistically significant. The reliability of ensemble forecasts underlines the

virtues of model averaging when uncertainty prevails, and supports the view in Manski (2020)

that data and modelling uncertainties limit our ability to predict the impact of alternative

policies using a tight set of models. Overall, our findings hold for all the loss functions

considered and caution health authorities not to rely on a single forecasting team (or a small

set) to predict the evolution of the pandemic. A better strategy appears to be to collect as

many forecasts as possible and to use an ensemble forecast.

The remainder of the paper is organized as follows. Section 2 lays out the methodology to

implement the test of equal predictive accuracy. Section 3 describes the data and the models.

Results are documented and discussed in Section 4, and Section 5 concludes. Finally, in

the Appendix, we perform a Monte Carlo simulation exercise to study the size and power

properties of the two tests of equal predictive ability with fixed-smoothing asymptotics for the

sample sizes considered in our empirical study, and consider several additional experiments

including some alternative benchmark forecasts.

2 Forecast Evaluation

We consider the time series of cumulative weekly deaths {y1, ..., yT}, with T the sample size

for which forecasts are available. We want to compare two h-week ahead forecasts ŷ
(1)
t|t−h

(
θ̂
(1)
w1

)

and ŷ
(2)
t|t−h

(
θ̂
(2)
w2

)
, where θ̂

(i)
wi

for i = 1, 2 denote the estimates obtained with a rolling window

of size wi used to construct forecast i, if known.

The forecast error for forecast i is e
(i)
t|t−h = yt − ŷ

(i)
t|t−h

(
θ̂
(i)
wi

)
and the associated loss is

L
(i)
t|t−h ≡ L

(
e
(i)
t|t−h

)
, for example, a quadratic loss would be L

(
e
(i)
t|t−h

)
=

(
e
(i)
t|t−h

)2

and an
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absolute value loss would be L
(
e
(i)
t|t−h

)
=

∣∣∣e(i)t|t−h

∣∣∣. The null hypothesis of equal predictive

ability of the two forecasts is

H0 : E
[
L
(
e
(1)
t|t−h

)
− L

(
e
(2)
t|t−h

)]
= 0. (1)

Denote the time-t loss differential between the two forecasts as

dt ≡ L
(
e
(1)
t|t−h

)
− L

(
e
(2)
t|t−h

)
,

and the sample mean of the loss differential as

d =
1

T

w+h+T−1∑

t=w+h

dt,

where w ≡ max(w1, w2).

When a large sample T is available, standard asymptotic theory may provide a valid guidance

for the statistical evaluation of d, see Diebold and Mariano (1995) and Giacomini and White

(2006). However, the same inference may be severely biased when the sample T has only a

moderate size, as it is indeed the case when comparing forecast accuracy of predictions of

the number of fatalities of COVID-19. In this case, fixed-b and fixed-m asymptotics can be

used to overcome the small-sample size bias, see Coroneo and Iacone (2020), Choi and Kiefer

(2010) and Harvey et al. (2017).

As for the fixed-b asymptotics, following Kiefer and Vogelsang (2005), under the null in (1)

√
T

d

σ̂BART,M

→d ΦBART (b) , for b = M/T ∈ (0, 1] , (2)

where σ̂2
BART,M denotes the weighted autocovariance estimate of the long-run variance of dt

using the Bartlett kernel and truncation lag M . Kiefer and Vogelsang (2005) characterize

the limit distribution ΦBART (b) and provide formulas to compute quantiles. For example, for
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the Bartlett kernel with b ≤ 1, these can be obtained using the formula

q (b) = α0 + α1b+ α2b
2 + α3b

3,

where

α0 = 1.2816, α1 = 1.3040, α2 = 0.5135, α3 = −0.3386 for 0.900 quantile

α0 = 1.6449, α1 = 2.1859, α2 = 0.3142, α3 = −0.3427 for 0.950 quantile

α0 = 1.9600, α1 = 2.9694, α2 = 0.4160, α3 = −0.5324 for 0.975 quantile

When testing assumptions about the sample mean, Kiefer and Vogelsang (2005) show in

Monte Carlo simulations that the fixed-b asymptotics yields a remarkable improvement in

size. However, while the empirical size improves (it gets closer to the theoretical size) as b is

closer to 1, the power of the test worsens, implying that there is a size-power trade-off.

For fixed-m asymptotics, following Hualde and Iacone (2017), under the null in (1) we have

√
T

d

σ̂DAN,m

→d t2m, (3)

where σ̂2
DAN,m is the weighted periodogram estimate of the long-run variance of dt using the

Daniell kernel and truncation m. Similar results, with a slightly different standardisation and

therefore a slightly different limit, are in Sun (2013). Monte Carlo simulations in Hualde and

Iacone (2017) and Lazarus, Lewis, Stock and Watson (2018) show that fixed-m asymptotics

has the same size-power trade-off documented for fixed-b asymptotics: the smaller the value

for m, the better the empirical size, but also the weaker the power.

Coroneo and Iacone (2020) analyze the size and power properties of the tests of equal predictive

accuracy in (2) and (3) in an environment with asymptotically non-vanishing estimation

uncertainty, as in Giacomini and White (2006). Results indicate that the tests in (2) and (3)
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deliver correctly sized predictive accuracy tests for correlated loss differentials even in small

samples, and that the power of these tests mimics the size-adjusted power. Considering size

control and power loss in a Monte Carlo study, they recommend the bandwidth M =
⌊
T 1/2

⌋

for the weighted autocovariance estimate of the long-run variance using the Bartlett kernel

(where ⌊·⌋ denotes the integer part of a number) and m =
⌊
T 1/3

⌋
for the weighted periodogram

estimate of the long-run variance using the Daniell kernel.

In Appendix A, we perform a Monte Carlo simulation exercise to investigate the empirical

size and power of the two tests for sample sizes that match the ones in our empirical study.

Our findings indicate that both tests are, in general, correctly sized, even when only 20

observations are available and in presence of autocorrelation of the loss differential, although

the test with WCE and fixed-b asymptotics can be slightly oversized in short samples and

in presence of strong autocorrelation. On the other hand, the test with WPE and fixed-m

asymptotics trails slightly behind the test with WCE in terms of power.

3 Forecasting Teams and Benchmark

3.1 Data and forecasting teams

In our empirical investigation, we use forecasts for the cumulative number of deaths collected

by the Centers for Disease Control and Prevention (CDC). The CDC is a federal agency in

charge of protecting public health through the control and prevention of diseases. It is also

the official source of statistics on the COVID-19 pandemic evolution in the US. In particular,

in collaboration with independent teams of forecasters, the CDC has set up a repository of

weekly forecasts for the numbers of deaths, hospitalizations, and cases. These forecasts are

developed independently by each team and shared publicly.1 We focus on forecasts of the

number of deaths for three main reasons. First, the number of fatalities is more accurate

1Background information on each forecasting teams, along with a summary explanation of their methods
are available via the link https://www.cdc.gov/coronavirus/2019-ncov/covid-data/forecasting-us.

html.
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Table 1: Forecasting Teams, Methods, and Assumptions

Code Team Model Method Change

CO COVID Analytics - MIT Sloan DELPHI Model Deep Learning model no
UM University of Massachusetts, Amherst UMass - MB Mechanistic Bayesian compartment model no
UA University of Arizona UA - EpiCovDA Modified SEIR model yes
GT Georgia Institute of Technology, Deep Out-

break Project
GT - Deep COVID Deep Learning model no

MO Northeastern University, Laboratory for the
Modeling of Biological and Socio-technical
Systems

MOBS - GLEAM COVID Metapopulation, age structured SEIR model no

PS Predictive Science, Inc. PS - DRAFT SEIR model yes
LA Los Alamos National Laboratory LANL - Growth Rate Statistical dynamical growth model no
JH Johns Hopkins University, Infectious Disease

Dynamics Lab
JHU - IDD - CovidSP Metapopulation SEIR model yes

Notes: The column code describes the code given in the empirical analysis to each team. A forecasting team is included if it submitted its predictions for all the weeks
in our sample. The table reports for each forecasting team the modelling methodology and whether the model considers a change in the assumptions about policy
interventions. In the fourth column, “yes” means that the modelling team makes assumptions about how levels of social distancing will change in the future, while “no”
means that it is assumed that the existing measures will continue through the projected 4-week time period.

than the number of cases and hospitalizations, since the latter ignores asymptomatic cases

and other diseases that are undetected. Second, the number of deaths is reported with less

spatial and temporal biases. Third, when faced with a pandemic, the number of fatalities is

arguably the primary concern of the health authorities and of the public.

Our sample includes projections for national COVID-19 cumulative deaths made for the

period between June 20, 2020 and March 20, 2021 by eight forecasting teams. The deadline

for the teams to submit their weekly forecasts is on the Monday of each week, and they are

usually published online on Wednesdays. Weekly cumulative data is the cumulative data up

to and including Saturday. This means that, for example, the forecasts submitted by June 22

had as targets the cumulative number of deaths as of June 27 (1-week ahead), July 2 (2-week

ahead), July 7 (3-week ahead), and July 12 (4-week ahead). Realised values are also taken

from the CDC website. Notice that when COVID-19 is reported as a cause of mortality on

the death certificate, it is coded and counted as a fatality due to COVID-19.

The eight forecasting teams selected are those that submitted their predictions with no

interruptions for all the weeks in our sample. We list the selected teams in Table 1, and

report the main features of the selected forecasts. They vary widely with regards to their

modelling choice, information input (for example, how the information on infected people
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is used), and in their assumptions about the evolution and impact of non-pharmaceutical

interventions (for example regarding social distancing).2

3.2 Ensemble forecasts

In our forecast evaluation exercise, we also consider two Ensemble forecasts: one published

by the CDC (that combines the individual forecasts from several teams and that we label

Ensemble - EN) and one computed by us (that combines the individual forecasts from the

eight teams listed in Table 1 and that we label Core Ensemble - CE).3

Combining forecasts is an effective procedure when there is uncertainty about the model and

the data, as it is indeed the case here, where differences also include alternative assumptions on

the responses of the public and of the health authorities. In this situation, combining forecasts

is useful as it helps to diversify risk and to pool information (see Bates and Granger 1969).

In particular, forecast combination is most advantageous when there is pervasive uncertainty,

as the ranking of best-performing forecasts may be very unstable and therefore forecast

combination provides a robust alternative (see Stock and Watson 1998, Timmermann 2006).

Optimal weights that give the best combination, in the sense of minimizing a given loss

function, can actually be derived, but in many practical applications estimated optimal

weights schemes result in a combined forecast that does not improve simple averaging (see

Clemen 1989, Smith and Wallis 2009, Claeskens, Magnus, Vasnev and Wang 2016).

In epidemiology, forecast combination has proved its ability to improve on the performance

of individual competing models. For example, Reich et al. (2019) found that ensemble

forecasting for influenza performed better on average against the constituting models; similar

results have also been obtained by Chowell et al. (2020) in the Ebola Forecasting Challenge.

2Additional information about the models used is available on the CDC repository page https://github.
com/cdcepi/COVID-19-Forecasts/blob/master/COVID-19_Forecast_Model_Descriptions.md, where
links to the modelling teams are also provided.

3The CDC Ensemble forecast is produced in collaboration with several research groups who form part of the
COVID-19 Forecast Hub consortium (see, https://covid19forecasthub.org/ for a detailed description).
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Both these works had access to a sufficiently long history of data, making a data-driven

selection of the weights assigned to the contributing models possible. Interestingly, Reich et

al. (2019) considered also the equal weighting scheme in their exercise, and found that this

naive ensemble performed quite well even against the one with data-driven weights, making

it a reasonable choice for the current situation of a new epidemic, in which no previous

outbreaks exist and no previous track record of past models is available.

The Ensemble forecast produced by the CDC is also naive, in the sense that it treats equally

all the available forecasts. Specifically, it is obtained by combining the forecasts of all the

teams that submitted to the CDC, as long as they submitted forecasts up to four weeks

ahead and these forecasts were at least equal to the level observed on the day in which the

forecast was submitted. The weekly composition of the pool of models contributing to the

Ensemble forecast changes, and it includes, in general, a larger number of teams than the

one we consider in our evaluation exercise.4 This loose criterion allows to include as many

forecasts as possible, which may be desirable, but there is also the risk of including poorly

performing teams. For this reason, we also consider the Core Ensemble constructed by us,

which uses only the forecasts (equally weighted) by the eight teams that are included in

our forecast evaluation exercise. The conjecture motivating this choice is that, as these are

the most long standing forecasting teams, they should also be the most experienced. This

experience may give them an edge relative to other teams. In addition, by comparing the

performance of the individual forecasts with the Core Ensemble forecast, we can reliably

assess the value added by the combination of the forecasts, as the Core Ensemble uses only

forecasts that are included in our exercise.

4In July 2020, the COVID-19 Forecast Hub changed the way it constructed the CDC Ensemble forecast
(we thank an anonymous reviewer for bringing this to our attention). Up until the week ending on July 18,
2020, the CDC Ensemble forecast is obtained from an equally weighted average of forecasts across all eligible
models. After that date, the methodology is changed and the Ensemble obtained from the median forecast
across all the eligible models (see the COVID-19 hub documentation and, in particular, Ray et al. 2020).
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3.3 Benchmark forecasts

The benchmark against which we compare the forecasts collected by the CDC is a polynomial

function. That is, benchmark forecasts are obtained as projections from the model:

yt = β0 + β1 t+ β2 t
2 + ut, (4)

where yt is the cumulative number of fatalities, t is the time trend, and ut is an unobserved

error term. To accommodate the fact that the forecasted patterns may need changing even

over a short span of time, we fit the quadratic polynomial model using Least Squares with a

rolling window of the last five observations (using weekly data, this covers approximately a

month). To ensure that the benchmark forecasts for the cumulative number of deaths are

not decreasing, we compute the benchmark predictions as the maximum between the current

value and the prediction from (4).

This very simple statistical model has been chosen because any continuous and differentiable

function can be approximated locally by a polynomial, and we take the second degree

polynomial as a local approximation. In recent works, the choice of a polynomial benchmark

has also been considered by Jiang, Zhao and Shao (2020) and Li and Linton (2021), among

others, although with some small differences. In Jiang et al. (2020), the intrinsic instability

of the forecasted patterns is accommodated by fitting occasional breaks; Li and Linton (2021)

fitted the model to the incidence of deaths, rather than to the cumulative deaths.

3.4 Preliminary Analysis

In this section, we present some preliminary analysis of the forecasts submitted by the

forecasting teams in Table 1, the Ensemble (EN) forecast published by the CDC, the Core

Ensemble (CE) constructed combining all the forecasts of the teams in Table 1, and the

forecast of the polynomial benchmark (PO), described above.
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Figure 1 plots all the forecasts considered for the 1 to 4-week ahead forecasting horizons,

alongside the realised data. Comparing the graphs in Figure 1 at different horizons, it

is apparent that the heterogeneity in forecasts grows with the forecasting horizon and,

concurrently, that the forecasts are less precise as the forecast horizon increases. This simple

observation may make the case for forecast combination at longer horizons more compelling.

Figure 2 plots the forecast errors for each forecasting team, the ensembles and the benchmark

(computed as the difference between the realization and the point forecast). The figure

indicates that most forecasting teams seem to have systematically under-predicted the target,

in particular in the second part of the sample. This is, of course, relevant for policy makers if

the costs of over-prediction and under-prediction are different. Figure 2 also shows that the

size of the forecast errors is increasing with the forecasting horizon, suggesting that there

is more uncertainty about the evolution of the epidemic in the long-run (4-week ahead),

compared to the short-run (1-week ahead).

Table 2 presents some summary statistics for the forecast errors. The table reports for each

forecasting horizon and forecasting scheme (team, Ensemble, Core Ensemble or polynomial)

the sample mean, median, standard deviation, skewness, and the sample autocorrelations

up to order 4 (in the columns AC(1), AC(2), AC(3) and AC(4), respectively). With the

exception of the benchmark, the average of the forecast errors are positive for all forecasts,

meaning that the forecasters tend to under-predict the fatalities.

At the 1-week horizon, the benchmark polynomial model appears to outperform all the

teams, with a much smaller average error and smaller dispersion. However, its performance

deteriorates at longer horizons, with the volatility of the forecast errors increasing substantially,

and becoming larger than those of most forecasting teams. This is not surprising, as

epidemiological models are designed to predict the evolution of a pandemic in the medium

and the long-run, and we observe here that even a very simple forecast does better when

the horizon is very short. At longer horizons, however, epidemiological models should be
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Figure 1: Cumulative deaths in US, observed vs. forecasts
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Note: Forecasts at forecasting horizons from 1 to 4 weeks, along with realised cumulative fatalities. Weekly

observations from June 20, 2020 to March 20, 2021. The vertical line indicates November 3, 2020 and delimits

the two sub-samples. The names of the forecasting teams are as in Table 1; EN denotes the Ensemble

published by the CDC, CE denotes the Core Ensemble constructed combining all the forecasts of the teams

in Table 1, and PO denotes the polynomial benchmark.
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Figure 2: Forecast errors
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of the forecasting teams are as in Table 1; EN denotes the ensemble forecast, CE denotes the core ensemble,

and PO the polynomial benchmark. Forecast errors are defined as the realised value minus the forecast.
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Table 2: Summary Statistics of Forecast Errors

1-week ahead Mean Median Std Skew AC(1) AC(2) AC(3) AC(4)

CO 2475.85 1920.00 4429.68 0.22 0.19 0.06 0.15 0.43
UM 3363.88 1705.50 3693.80 1.19 0.83 0.72 0.62 0.52
UA 3663.35 2062.00 4310.21 0.87 0.73 0.65 0.55 0.51
GT 2695.21 1334.09 3651.89 0.71 0.43 0.40 0.38 0.39
MO 2520.66 1549.87 2965.75 0.90 0.70 0.56 0.52 0.54
PS 3057.91 2454.00 3028.03 0.92 0.70 0.46 0.43 0.38
LA 2860.78 2108.79 2883.87 1.31 0.47 0.22 0.23 0.40
JH 5096.85 2333.36 4921.48 0.75 0.78 0.61 0.60 0.71
EN 2754.32 1678.50 3246.07 1.11 0.71 0.54 0.52 0.55
CE 3216.81 2015.61 3256.36 1.10 0.74 0.56 0.56 0.62
PO −97.66 91.00 2210.91 −0.74 0.22 −0.44 −0.16 0.35

2-week ahead Mean Median Std Skew AC(1) AC(2) AC(3) AC(4)

CO 3737.88 2200.00 5428.87 0.87 0.42 0.11 0.25 0.44
UM 3830.68 1697.00 4541.00 1.52 0.70 0.43 0.52 0.59
UA 4586.73 2705.50 6911.65 0.98 0.71 0.52 0.51 0.52
GT 3330.98 2166.46 4945.81 0.25 0.31 0.20 0.36 0.35
MO 3004.34 2365.75 3780.38 0.81 0.56 0.26 0.33 0.44
PS 3759.05 3333.50 5381.69 0.60 0.56 0.15 0.14 0.19
LA 4128.15 3400.92 4235.16 1.37 0.16 -0.14 -0.06 0.35
JH 4986.19 2812.73 6491.23 0.49 0.68 0.44 0.47 0.61
EN 3322.70 1808.50 4459.98 1.27 0.61 0.25 0.36 0.47
CE 3920.50 2627.34 4299.01 1.28 0.66 0.33 0.47 0.60
PO −89.38 1053.40 5021.96 −0.75 0.42 −0.26 −0.14 0.13

3-week ahead Mean Median Std Skew AC(1) AC(2) AC(3) AC(4)

CO 4971.90 3164.00 7114.77 0.88 0.60 0.27 0.25 0.36
UM 4410.38 2082.00 5849.59 2.00 0.52 0.22 0.35 0.58
UA 5644.75 3893.50 9930.94 1.20 0.70 0.48 0.43 0.51
GT 3988.10 2844.71 6407.18 −0.20 0.25 0.26 0.37 0.32
MO 3496.54 2592.72 5166.81 0.47 0.48 0.27 0.05 0.20
PS 4129.98 3890.75 9066.45 −0.03 0.52 0.09 0.06 0.06
LA 5992.51 5576.28 5790.07 0.72 0.05 −0.20 −0.18 0.28
JH 4343.70 2386.35 8874.59 0.43 0.71 0.55 0.53 0.60
EN 3951.13 2309.00 5562.79 1.32 0.60 0.28 0.21 0.35
CE 4622.23 3005.15 5569.31 1.32 0.66 0.35 0.39 0.54
PO 27.63 2232.54 8841.85 −0.87 0.58 0.01 −0.13 0.01

4-week ahead Mean Median Std Skew AC(1) AC(2) AC(3) AC(4)

CO 6594.93 4090.00 9744.80 0.70 0.73 0.36 0.26 0.26
UM 4963.63 3037.50 7521.18 2.13 0.43 0.01 0.18 0.44
UA 7021.95 4854.00 12912.43 1.37 0.72 0.44 0.41 0.48
GT 4875.40 3314.53 8662.06 -0.14 0.36 0.18 0.37 0.30
MO 3882.06 3566.27 7309.12 -0.11 0.54 0.30 -0.01 0.01
PS 4058.40 5026.75 13878.24 -0.50 0.50 0.11 0.05 0.01
LA 8273.18 7802.85 8444.13 0.06 0.16 -0.06 -0.08 0.37
JH 2769.82 16.31 12755.55 0.54 0.75 0.63 0.60 0.63
EN 4641.08 2610.50 7286.16 1.16 0.66 0.31 0.22 0.29
CE 5304.92 2759.80 7359.80 1.11 0.70 0.37 0.37 0.45
PO -301.20 4249.03 13860.09 -1.03 0.64 0.18 0.02 0.07

Notes: The table reports summary sample statistics of forecast errors for the teams, the Ensemble (EN), the
Core Ensemble (CE) and the polynomial (PO) forecasts. The table reports mean, median, standard deviation
(std), skewness (skew), and autocorrelation coefficients up to order 4 (AC(1), AC(2), AC(3), AC(4)). Weekly
observations from June 20, 2020 to March 20, 2021.
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expected to produce forecasts that are superior to simple statistical benchmarks.

From Table 2 we can also observe that the forecast errors are autocorrelated, as documented in

the columns AC(1), AC(2), AC(3) and AC(4). This happens even for one-step-ahead forecasts,

where the first order sample autocorrelation may be as high as 0.83. This is interesting

because, under mean squared error loss, optimal h-step ahead forecast errors should be at

most MA(h− 1): so 1-step ahead forecast errors should be Martingale Differences, 2-step

ahead errors should be at most MA(1), and so on. Indeed, this is the very argument given in

Diebold and Mariano (1995) to justify the choice of the rectangular kernel to estimate the

long-run variance. However, this condition is clearly violated by all forecasts.

One explanation of this higher order autocorrelation in the forecast errors and the fact that

the forecasting teams systematically underpredict the number of fatalities could be that the

forecasting teams use alternative loss functions to produce their forecasts. Indeed, Patton

and Timmermann (2007) show that, under asymmetric loss and nonlinear data generating

processes, forecast errors can be biased and serially correlated of arbitrarily high order.

Finally, Figure 2 shows a break in the volatility of the forecast errors across the first and the

second halves of the sample (as illustrated by the vertical line in each diagram of Figures 1-2).

This is also shown in Tables 3-4, where we report summary statistics for the forecast errors

in the two sub-samples. In particular, we note that the volatility of the forecast errors is

considerably higher in the second sub-sample. Such decline in the quality of the forecasts

in the most recent sub-sample may at first be puzzling: one would expect the forecasting

teams to improve their performance as more information becomes progressively available.

However, this structural break in the forecasting ability of all models could in part be related

to the emergence of a new strain of the virus in the end of 2020, with specific mutations in

the spike protein of SARS-CoV-2 resulting in increased transmissibility. Consistent with this

explanation, research from the CDC reports that the B.1.1.7 virus strain (often referred to as

the “Kent” variant) is estimated to have emerged in September 2020. This variant exhibited
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Table 3: Summary Statistics of Forecast Errors - First evaluation sub-sample

1-week ahead Mean Median Std Skew AC(1) AC(2) AC(3) AC(4)

CO 965.10 1060.50 1238.58 -0.59 0.61 -0.13 -0.57 -0.64
UM 1059.70 740.00 799.46 0.99 0.33 -0.09 -0.02 -0.12
UA 1149.25 718.50 2377.89 2.20 0.01 0.20 -0.03 0.01
GT 961.88 340.84 2235.86 3.32 -0.14 0.20 0.18 -0.09
MO 860.03 804.30 914.07 0.10 -0.01 0.18 0.19 -0.15
PS 1461.63 1469.50 1388.68 0.12 0.12 -0.17 0.12 0.20
LA 1583.01 1261.77 1034.43 0.68 0.21 0.13 -0.26 -0.26
JH 1314.88 1135.98 1028.01 0.21 0.60 0.16 -0.13 -0.35
EN 878.69 781.00 702.74 -0.08 0.22 0.10 0.15 -0.23
CE 1169.43 1072.08 739.99 0.24 0.24 0.33 0.20 -0.11
PO 184.05 240.70 863.85 -0.01 0.52 0.10 0.11 -0.18

2-week ahead Mean Median Std Skew AC(1) AC(2) AC(3) AC(4)

CO 1248.00 1622.00 2072.00 -0.76 0.60 0.05 -0.24 -0.39
UM 1286.20 1245.50 933.21 0.70 0.33 0.05 -0.22 -0.32
UA 535.85 -223.00 3737.17 0.23 0.23 0.32 0.01 -0.13
GT 1099.22 436.94 2391.34 2.65 -0.14 0.34 -0.01 0.08
MO 1334.24 1707.04 1769.66 -1.58 0.06 0.18 -0.16 -0.09
PS 1766.03 2284.75 2986.82 -1.13 0.25 -0.27 -0.08 0.17
LA 2873.01 2637.79 2117.38 0.18 0.41 0.11 -0.20 -0.45
JH -24.23 -308.80 1874.64 0.38 0.68 0.32 -0.18 -0.40
EN 988.15 653.50 1227.02 0.41 0.37 0.14 -0.23 -0.33
CE 1264.79 1296.37 1069.34 0.25 0.40 0.24 -0.11 -0.15
PO 665.81 1050.20 2286.05 -0.30 0.72 0.31 0.13 -0.11

3-week ahead Mean Median Std Skew AC(1) AC(2) AC(3) AC(4)

CO 1733.15 2588.00 2487.69 -1.11 0.49 -0.04 -0.10 -0.31
UM 1543.35 1401.00 1212.55 0.03 0.15 0.16 -0.07 -0.26
UA -307.65 -1466.00 5456.38 0.26 0.36 0.40 0.01 -0.20
GT 1179.99 869.56 2787.10 2.08 -0.07 0.45 -0.04 -0.01
MO 1761.96 2198.23 3470.14 -1.61 0.17 0.19 -0.22 -0.25
PS 1303.08 2203.00 5607.86 -1.79 0.40 -0.19 -0.18 -0.08
LA 4844.44 4477.22 3177.37 0.13 0.51 0.15 -0.25 -0.50
JH -2536.57 -2703.05 3367.77 -0.01 0.80 0.49 0.16 -0.08
EN 1151.16 648.45 1792.83 0.71 0.50 0.25 -0.20 -0.38
CE 1190.22 948.76 1733.00 0.16 0.48 0.16 -0.15 -0.38
PO 1546.59 1622.03 4607.05 -0.36 0.81 0.46 0.20 -0.05

4-week ahead Mean Median Std Skew AC(1) AC(2) AC(3) AC(4)

CO 2495.20 3046.00 2746.48 -0.53 0.46 -0.14 -0.11 -0.24
UM 1985.65 2532.00 2120.85 -0.99 -0.09 -0.01 0.18 -0.05
UA -862.95 -3495.00 7232.63 0.73 0.47 0.43 0.14 -0.22
GT 1346.80 293.71 3724.08 1.70 0.04 0.44 -0.02 -0.02
MO 2238.44 3443.73 5868.38 -1.70 0.29 0.22 -0.25 -0.33
PS 200.98 1934.75 9607.37 -1.97 0.48 -0.08 -0.23 -0.22
LA 6953.06 6431.77 4444.55 0.16 0.56 0.32 0.01 -0.32
JH -6589.80 -5408.15 5803.66 -0.38 0.85 0.66 0.28 0.07
EN 1309.30 368.50 2490.15 1.14 0.52 0.37 -0.01 -0.34
CE 970.92 597.7 2736.02 0.36 0.56 0.25 -0.13 -0.56
PO 2672.81 2938.39 7805.47 -0.35 0.83 0.53 0.25 -0.04

Notes: The table reports summary statistics of forecast errors for the teams, the Ensemble (EN), the Core
Ensemble (CE) and the polynomial (PO) forecasts. The table reports mean, median, standard deviation
(std), skewness (skew), and autocorrelation coefficients up to order 4 (AC(1), AC(2), AC(3), AC(4)). Weekly
observations from June 20, 2020 to October 31, 2021.
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Table 4: Summary Statistics of Forecast Errors - Second evaluation sub-sample

1-week ahead Mean Median Std Skew AC(1) AC(2) AC(3) AC(4)

CO 3986.60 4375.00 5825.61 -0.56 0.01 -0.13 0.01 0.38
UM 5668.05 5257.00 4023.67 0.22 0.71 0.50 0.28 0.04
UA 5668.05 5257.00 4023.67 0.22 0.71 0.50 0.28 0.04
GT 4428.55 4503.65 4006.28 -0.38 0.38 0.20 0.16 0.14
MO 4181.28 4291.58 3378.33 -0.13 0.58 0.30 0.24 0.27
PS 4654.20 4090.50 3395.22 0.15 0.65 0.27 0.17 0.05
LA 4138.55 3610.50 3544.55 0.43 0.33 -0.05 0.00 0.24
JH 8878.81 9467.99 4306.70 -0.21 0.43 -0.01 -0.05 0.21
EN 4629.95 4108.50 3705.17 0.05 0.56 0.25 0.22 0.27
CE 5264.19 4893.07 3520.45 0.10 0.56 0.18 0.18 0.28
PO -379.36 -446.50 3019.97 -0.34 0.19 -0.51 -0.22 0.36

2-week ahead Mean Median Std Skew AC(1) AC(2) AC(3) AC(4)

CO 6227.75 6081.00 6569.00 -0.01 0.21 -0.19 0.05 0.34
UM 6375.15 4424.50 5275.00 0.57 0.54 0.09 0.26 0.31
UA 8637.60 7281.00 7038.68 0.63 0.63 0.15 0.20 0.21
GT 5562.74 5781.50 5831.40 -0.84 0.15 -0.12 0.22 0.15
MO 4674.44 4429.20 4508.98 0.13 0.48 -0.01 0.16 0.36
PS 5752.08 5342.25 6493.53 0.08 0.52 0.04 -0.01 0.00
LA 5383.28 4634.00 5386.77 0.77 0.01 -0.35 -0.17 0.39
JH 9996.60 10425.31 5488.58 -0.81 0.12 -0.48 -0.28 0.13
EN 5657.25 5428.00 5277.33 0.31 0.44 -0.12 0.11 0.26
CE 6576.20 5324.99 4684.47 0.40 0.42 -0.19 0.12 0.35
PO -844.56 1196.90 6733.56 -0.33 0.37 -0.37 -0.25 0.11

3-week ahead Mean Median Std Skew AC(1) AC(2) AC(3) AC(4)

CO 8210.65 8926.50 8696.68 -0.02 0.49 0.06 0.03 0.24
UM 7277.40 5187.00 7173.65 1.06 0.36 -0.07 0.10 0.43
UA 11597.15 11219.50 9903.23 1.18 0.56 0.04 0.03 0.25
GT 6796.22 8185.65 7739.23 -1.30 0.04 0.00 0.19 0.17
MO 5231.13 4332.77 6034.96 0.33 0.50 0.15 -0.05 0.22
PS 6956.88 9382.50 10975.21 -0.38 0.49 0.03 -0.02 -0.05
LA 7140.59 7402.15 7479.55 0.30 -0.10 -0.34 -0.23 0.39
JH 11223.98 10597.45 7117.63 -0.59 0.13 -0.29 -0.27 0.17
EN 6751.10 6560.00 6618.05 0.41 0.45 -0.01 -0.12 0.15
CE 8054.25 7246.77 5988.86 0.58 0.43 -0.11 -0.03 0.34
PO -1491.33 3231.80 11592.63 -0.44 0.52 -0.12 -0.26 -0.04

4-week ahead Mean Median Std Skew AC(1) AC(2) AC(3) AC(4)

CO 10694.65 14709.50 12328.52 -0.25 0.67 0.21 0.07 0.12
UM 7941.60 4073.50 9640.82 1.21 0.34 -0.20 0.00 0.34
UA 14906.85 12236.50 12611.04 1.62 0.56 -0.08 -0.06 0.24
GT 8404.01 9258.78 10673.80 -1.12 0.26 -0.16 0.24 0.21
MO 5525.68 4118.23 8338.64 0.14 0.63 0.26 -0.01 0.11
PS 7915.83 12412.50 16483.96 -0.70 0.45 0.06 0.01 -0.05
LA 9593.30 10939.26 11087.67 -0.26 0.09 -0.15 -0.12 0.45
JH 12129.44 11167.02 10763.97 0.02 0.34 0.01 0.05 0.30
EN 7972.85 7476.50 8910.65 0.23 0.57 0.06 -0.04 0.13
CE 9638.92 9422.56 8009.63 0.31 0.53 -0.04 0.01 0.28
PO -3275.21 6527.39 17741.72 -0.58 0.58 0.05 -0.09 0.03

Notes: The table reports summary statistics of forecast errors for the teams, the Ensemble (EN), the Core
Ensemble (CE) and the polynomial (PO) forecasts. The table reports mean, median, standard deviation
(std), skewness (skew), and autocorrelation coefficients up to order 4 (AC(1), AC(2), AC(3), AC(4)). Weekly
observations from November 7, 2020 to March 20, 2021.
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Figure 3: Incident deaths in the US over the evaluation period

Note: Weekly observations from June 20, 2020 to March 20, 2021. The vertical line indicates November 3,

2020 and delimits our two evaluation sub-samples.

rapid growth in the US in early 2021, and was predicted to be the predominant variant by

March 2021 (Galloway, Paul, MacCannell, Johansson, Brooks, MacNeil, Slayton, Tong, Silk

and Armstrong 2021). This is illustrated in Figure 3 showing the incident deaths across the

overall evaluation period. Thus the increased forecasting errors may be driven by the sudden

heightened incident deaths and associated increased slope of the cumulative deaths curve.

At any rate, the volatility of the forecasting errors increases markedly starting from the

beginning of November 2020. We thus perform our forecast evaluation separately on two

equally-sized sub-samples: the first evaluation sub-sample (from June 20, 2020 to October

31, 2020), and the second evaluation sub-sample (from November 7, 2020 to March 20, 2021).

This means that for each evaluation sub-sample we base our inference on just 20 observations.

With such small sample sizes, fixed-smoothing asymptotics is crucial to obtain correctly sized

tests.

4 Forecast Evaluation Results

Our main results for the test of equal predictive ability of each forecasting team vis-à-vis the

benchmark model (4) are reported in Table 5.

We conduct the analysis separately for the two evaluation sub-samples identified in Figure 2.
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This yields 20 observations for each sub-sample, underlying the importance of alternative

asymptotics in evaluating predictive ability.5 In the baseline analysis, we evaluate forecast

errors relying on the quadratic loss function. We present the test statistics using both the

weighted covariance estimator with Bartlett kernel (WCE) and the weighted periodogram

estimator with Daniell kernel (WPE) of the long-run variance. A positive value for the test

statistic indicates that the forecast in question is more accurate than the benchmark.

We report two-sided significance at the 5% and 10% levels, using fixed smoothing asymptotics

(fixed-b for WCE and fixed-m for WPE) to establish the critical values. In particular, for

T = 20 and the bandwidths recommendations in Coroneo and Iacone (2020), the critical

values are ±2.57 and ±2.09 with fixed-b asymptotics and ±2.78 and ±2.13 with fixed-m

asymptotics. For comparison, we also report significance based on bootstrap critical values,

constructed using the overlapping stationary block-bootstrap of Politis and Romano (1994)

using an average block length of T 1/4 ≈ 2 and a circular scheme, as described in Coroneo

and Iacone (2020).

We consider first the upper panel of Table 5, which reports results for the first sub-sample from

June 20, 2020 to October 31, 2020. Results indicate that no forecasting scheme predicts better

than the benchmark at the 1-week forecasting horizon. In fact, we find that the benchmark

often significantly outperforms the forecasting teams. On the other hand, at the 2-week

horizon the sign of some test statistics turns from negative to positive, reflecting a smaller

relative loss by the forecasting teams. The relative performance of the forecasters improves

further at longer horizons (3 and 4 weeks ahead), and we observe statistically significant

relative gains in performance for some forecasting teams and the ensemble forecasts.

The MAEs for the first sub-sample reported in Table 6 indicate that, at 3- and 4-weeks ahead,

both ensemble forecasts (the EN ensemble provided by the CDC and the CE core ensemble

constructed combining all the forecasts of the teams in Table 1) performed better than the

5In Appendix C, we conduct the test of equal predictive ability on the full sample.
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Table 5: Tests for Equal Predictive Ability

First evaluation sub-sample: Jun 20, 2020 – Oct 31, 2020

1-week ahead 2-week ahead 3-week ahead 4-week ahead
WCE WPE WCE WPE WCE WPE WCE WPE

CO -2.829∗∗ -2.063 -0.340 -0.294 1.452 1.254 2.147∗ 1.812
UM -2.231∗ -2.362∗ 1.663 2.237∗ 2.939∗∗ 2.782∗∗ 2.953∗∗ 2.636∗

UA -1.993 -1.867 -1.378 -2.157∗ -0.510 -1.636 0.689 0.791
GT -1.149 -0.954 1.204 1.040 3.619∗∗ 3.147∗∗ 4.057∗∗ 3.579∗∗

MO -2.248∗ -1.860 -0.645 -0.879 1.412 1.317 1.587 1.479
PS -4.815∗∗ -3.758∗∗ -3.018∗∗ -2.801∗∗ -0.523 -0.458 0.086 0.073
LA -3.527∗∗ -3.292∗∗ -1.862 -1.509 -0.925 -0.746 -0.241 -0.199
JH -2.646∗∗ -2.280∗ 1.194 1.119 0.714 0.544 -0.307 -0.243
EN -1.840 -1.701 1.881 1.911 3.074∗∗ 2.798∗∗ 3.445∗∗ 3.014∗∗

CE -2.992∗∗ -2.521∗ 1.381 1.381 2.937∗∗ 2.789∗∗ 3.472∗∗ 3.044∗∗

Second evaluation sub-sample: Nov 7, 2020 – Mar 20, 2021

1-week ahead 2-week ahead 3-week ahead 4-week ahead
WCE WPE WCE WPE WCE WPE WCE WPE

CO -3.985∗∗ -3.235∗∗ -1.163 -0.972 0.055 0.048 0.322 0.269
UM -2.704∗∗ -2.186∗ -0.747 -0.625 1.732 1.493 2.450∗ 2.097
UA -2.845∗∗ -2.279∗ -1.875 -1.563 -0.765 -0.664 0.061 0.053
GT -3.084∗∗ -2.501∗ -1.833 -1.797 0.546 0.572 0.995 0.930
MO -2.504∗ -2.016 0.183 0.157 1.674 1.532 2.073 1.890
PS -2.641∗∗ -2.207∗ -0.900 -0.813 -0.643 -0.583 -0.413 -0.366
LA -2.327∗ -1.845 -0.211 -0.199 0.754 0.694 0.730 0.656
JH -6.675∗∗ -6.429∗∗ -5.431∗∗ -6.656∗∗ -0.884 -0.775 0.357 0.306
EN -2.756∗∗ -2.212∗ -0.639 -0.562 1.102 1.023 1.486 1.342
CE -3.249∗∗ -2.616∗ -1.036∗ -0.902 0.709 0.641 1.221 1.066

Note: test statistics for the test of equal predictive accuracy using the weighted covariance estimator
(WCE) and the weighted periodogram estimator (WPE) of the long-run variance. The benchmark is a
second degree polynomial fitted on a rolling window of 5 observations. The forecast errors are evaluated
using the absolute value loss function, and a positive value of the test statistic indicates lower loss for
the forecaster (i.e. better performance of the forecaster relative to the polynomial model). ∗∗ and ∗

indicate, respectively, two-sided significance at the 5% and 10% level using fixed-b asymptotics for WCE
and fixed-m asymptotics for WPE. and indicate, respectively, two-sided significance at the 5%
and 10% level using the bootstrap. Bootstrap critical values are constructed using the overlapping
stationary block-bootstrap of Politis and Romano (1994) using an average block length of T 1/4 ≈ 2
and a circular scheme, as described in Coroneo and Iacone (2020).
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Table 6: MAE across sub-samples

MAE

1st sub-sample 2nd sub-sample

1 week 2 weeks 3 weeks 4 weeks 1 week 2 weeks 3 weeks 4 weeks

CO 1304 1979 2486 3045 6013 7347 9740 13744
UM 1063 1330 1700 2559 5681 6399 7354 8640
UA 1544 2482 4118 5870 6201 8821 11790 14907
GT 1144 1430 1847 2512 5009 6846 9013 11601
MO 1034 1957 3221 5026 4516 5300 6182 7797
PS 1671 2827 4357 6367 4879 7036 11414 16466
LA 1583 3003 4983 7048 4260 5739 8275 12443
JH 1372 1431 3318 7016 8879 10453 12004 13382
EN 945 1168 1535 1899 4943 6274 7518 9422
CE 1169 1340 1636 2204 5365 6752 8318 10137
PO 654 1830 3848 6541 2415 5515 9896 15132

Relative MAE

1st sub-sample 2nd sub-sample

1 week 2 weeks 3 weeks 4 weeks 1 week 2 weeks 3 weeks 4 weeks

CO 1.99 1.08 0.65 0.47 2.49 1.33 0.98 0.91
UM 1.63 0.73 0.44 0.39 2.35 1.16 0.74 0.57
UA 2.36 1.36 1.07 0.90 2.57 1.60 1.19 0.99
GT 1.75 0.78 0.48 0.38 2.07 1.24 0.91 0.77
MO 1.58 1.07 0.84 0.77 1.87 0.96 0.62 0.52
PS 2.56 1.54 1.13 0.97 2.02 1.28 1.15 1.09
LA 2.42 1.64 1.29 1.08 1.76 1.04 0.84 0.82
JH 2.10 0.78 0.86 1.07 3.68 1.90 1.21 0.88
EN 1.44 0.64 0.40 0.29 2.05 1.14 0.76 0.62
CE 1.79 0.73 0.43 0.34 2.22 1.22 0.84 0.67
PO 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Notes: The table reports the MAE of forecast errors for each team, the Ensemble (EN), the Core
Ensemble (CE) and the polynomial (PO) forecasts. The top panel shows the MAE level, and the
bottom panel shows the MAE relative to the MAE of the benchmark model. The first evaluation
sub-sample is from June 20, 2020 to October 31, 2020, and the second evaluation sub-sample from
November 7, 2020 to March 20, 2021.

individual forecasting teams. This finding is consistent with the consensus in the literature

about the advantages of forecast combination (see Stock and Watson 1998, Timmermann

2006).

Turning to the second sub-sample from November 7, 2020 to March 20, 2021, we can see

from Table 5 that the benchmark still significantly outperforms some teams and the ensemble

forecasts at the shortest horizon. However, in this sub-sample the forecasting teams and the

ensembles fail to significantly outperform the benchmark even at the longer horizons. The
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MAEs for the second sub-sample reported in Table 6 indicate that, also in this sub-sample,

at 3- and 4-week horizons, the two ensembles performed better than most of the individual

teams.

Finally, notice that the performance of the Ensemble forecast published by the CDC is similar

to the one of the Core Ensemble constructed combining all the forecasts of the teams in

Table 1. However, the MAEs for the Ensemble are in all cases smaller than the ones for the

Core Ensemble, indicating that combining a larger set of forecasts than the ones considered

in Table 1 can provide some benefits in terms of predictive ability, albeit small.6

Results are overall similar regardless of the type of estimator of the long-run variance.

We also notice that findings from the bootstrap are largely the same, and confirm that

fixed-smoothing asymptotics is a suitable and computationally much less time-consuming

alternative to bootstrapping, as also found in Coroneo and Iacone (2020) and Gonçalves and

Vogelsang (2011). Moreover, by using fixed-smoothing asymptotics, we have known critical

values for each test, given the sample size and choice of bandwidth.

4.1 Alternative Loss Functions

The absolute value loss function that we use in the baseline forecast evaluation reported

in Table 5 is a common choice in forecast evaluation. In particular, the null hypothesis is

the equality of the mean absolute prediction error. However, in relation to predicting the

spread of COVID-19 (and, more generally, predicting the spread of an epidemic), the cost of

under-predicting the spread of the disease can be greater than the cost of over-predicting it.

Similarly, scale effects are important, since the same forecast error may be more costly for

public health policy interventions when the number of fatalities is small compared to when it

is large. For these reasons, in this section we consider alternative loss functions.7

6The equal predictive ability of the Ensemble forecast relative to the forecasting teams and the Core
Ensemble is formally tested in Appendix E.

7The teams submitting forecasts to the CDC were advised that their point forecasts would be evaluated
with the mean absolute error loss function. The predictive median minimizes the mean absolute error and
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The DM test can be applied directly to alternative loss functions. Thus, we consider three

alternative loss functions that provide alternative criteria for forecast comparison. Denoting

et as the forecast error (thus abbreviating in this way e
(i)
t|t−h), the alternative loss functions

considered are the following:

• Quadratic: L(et) = (et)
2;

• Absolute Percentage: L(et) = |et|/(yt − yt−1);

• Linex: L(et) = exp (et/(yt − yt−1))− et/(yt − yt−1)− 1.

The quadratic loss function is a popular measure that penalises more large forecast errors:

in this case, it seems natural to interpret it as giving more weight to fatalities that happen

when the epidemic is less predictable. The absolute percentage loss considers the scale of the

number of fatalities occurring in the period, thus allowing to evaluate differently the same

forecast error when only a few fatalities occur, as opposed to when there is a large number of

fatalities. Finally, with the linear exponential (linex) loss function we impose asymmetric

weights, with more penalty given to under-prediction than to over-prediction. This reflects

the fact that the social cost of the two errors, under- and over-prediction, are different, as

the cost of not responding to the pandemic and incurring in a large loss of lives in the future

is often regarded to be much higher than the economic and social cost of responding too

quickly, imposing a lockdown when it is not necessary (on the precautionary principle in

public health see Goldstein 2001).

The findings are summarized in Figures 4 and 5 for the first evaluation sub-sample, and in

Figures 6 and 7 for the second evaluation sub-sample (the results for the absolute value loss

function are also included, to facilitate the comparison). The dotted, dashed and continuous

red horizontal lines denote respectively the 20%, 10% and 5% significance levels, which are,

should, therefore, correspond to the optimal point forecast. However, if forecasters put greater weight to
underprediction and, thus, seek to minimize a Linex type loss function, Christoffersen and Diebold (1997)
show that such loss function implies an optimal point forecast that is a weighted sum of the mean and
variance.
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Figure 4: Forecast evaluation with WCE - First evaluation sub-sample
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This figure reports the test statistic for the test of equal predictive accuracy using the weighted covariance

estimator (WCE) of the long-run variance and fixed-b asymptotics. The benchmark is a second degree

polynomial model fitted on a rolling window of 5 observations. A positive value of the test statistic indicates

lower loss for the forecaster, i.e. better performance of the forecaster relative to the polynomial model.

Different loss functions are reported with different markers: plus refers to a quadratic loss function, diamond

to the absolute loss function, filled circle to the absolute percentage loss function and empty circle to the

asymmetric loss function. The dotted, dashed and continuous red horizontal lines denote respectively the

20%, 10% and 5% significance levels. The forecast horizons are 1, 2, 3 and 4 weeks ahead. The evaluation

sample is June 20, 2020 to October 31, 2020.
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Figure 5: Forecast evaluation with WPE - First evaluation sub-sample
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This figure reports the test statistic for the test of equal predictive accuracy using the weighted periodogram

estimator (WPE) of the long-run variance and fixed-m asymptotics. The benchmark is a second degree

polynomial model fitted on a rolling window of 5 observations. A positive value of the test statistic indicates

lower loss for the forecaster, i.e. better performance of the forecaster relative to the polynomial model.

Different loss functions are reported with different markers: plus refers to a quadratic loss function, diamond

to the absolute loss function, filled circle to the absolute percentage loss function and empty circle to the

asymmetric loss function. The dotted, dashed and continuous red horizontal lines denote respectively the

20%, 10% and 5% significance levels. The forecast horizons are 1, 2, 3 and 4 weeks ahead. The evaluation

sample is June 20, 2020 to October 31, 2020.
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Figure 6: Forecast evaluation WCE - Second evaluation sub-sample
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This figure reports the test statistic for the test of equal predictive accuracy using the weighted covariance

estimator (WCE) of the long-run variance and fixed-b asymptotics. The benchmark is a second degree

polynomial model fitted on a rolling window of 5 observations. A positive value of the test statistic indicates

lower loss for the forecaster, i.e. better performance of the forecaster relative to the polynomial model.

Different loss functions are reported with different markers: plus refers to a quadratic loss function, diamond

to the absolute loss function, filled circle to the absolute percentage loss function and empty circle to the

asymmetric loss function. The dotted, dashed and continuous red horizontal lines denote respectively the

20%, 10% and 5% significance levels. The forecast horizons are 1, 2, 3 and 4 weeks ahead. The evaluation

sample is November 7, 2020 to March 20, 2021.
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Figure 7: Forecast evaluation WPE - Second evaluation sub-sample
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This figure reports the test statistic for the test of equal predictive accuracy using the weighted periodogram

estimator (WPE) of the long-run variance and fixed-m asymptotics. The benchmark is a second degree

polynomial model fitted on a rolling window of 5 observations. A positive value of the test statistic indicates

lower loss for the forecaster, i.e. better performance of the forecaster relative to the polynomial model.

Different loss functions are reported with different markers: plus refers to a quadratic loss function, diamond

to the absolute loss function, filled circle to the absolute percentage loss function and empty circle to the

asymmetric loss function. The dotted, dashed and continuous red horizontal lines denote respectively the

20%, 10% and 5% significance levels. The forecast horizons are 1, 2, 3 and 4 weeks ahead. The evaluation

sample is November 7, 2020 to March 20, 2021.
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respectively, ±1.56, ±2.09 and ±2.57 for fixed-b asymptotics and ±1.53, ±2.13 and ±2.78

for fixed-m asymptotics.

First of all, we can observe how the results are not substantially different adopting a WCE or

WPE estimator, as already documented in Table 5. Figures 4-7 also show that changing the

loss function to quadratic or absolute percentage does not have great impact on the evaluation

of predictive ability. On the other hand, the results are different if the linex function is used,

as in this case for forecast horizons larger than 1-week ahead the null hypothesis is almost

never rejected at the 5% significance level.

Considering the forecast horizon, it is clear that the simple polynomial benchmark outperforms

all the teams, sometimes significantly so at the 1-week horizon, and often at the 2-week

horizon. However, as the forecasting horizon is moved to three and four weeks, the teams

improve their performance with respect to the polynomial benchmark. In the first evaluation

sub-sample, the Georgia Institute of Technology, Deep Out-break Project (GT) and the

University of Massachusetts, Amhers (UM) teams, and also the Ensemble and the Core

Ensemble outperform the benchmark at almost any level of statistical significance when the

quadratic and the absolute percentage loss functions are used.

In the second evaluation sub-sample, when we use the quadratic and the absolute percentage

loss functions, we still document more accurate predictions for several teams, for example for

the University of Massachusetts, Amhers (UM), for the Northeastern University, Laboratory

for the Modeling of Biological and Socio-technical Systems (MO) and for the ensembles,

although these findings are seldom statistically significant. On the other hand, neither the

forecasting teams nor the ensemble forecasts outperform the benchmark significantly, if the

linex loss function is used. This seems to be mainly due to the fact that most forecasting

teams (and the ensembles) under-predicted the fatalities, and this is more penalized with this

loss function. Our empirical findings may also be viewed as offering support for the results

discussed by Elliott and Timmermann (2004), who show how the equal weights ensemble is
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less appropriate in the presence of asymmetries in the loss function and in the distribution of

the errors. Notice, however, the teams submitting forecasts to the CDC were advised that

their point forecasts would be evaluated with the absolute value loss function, and therefore

it is fair to conjecture that their predictions do not optimize the quadratic, the absolute

percentage or the linex loss functions. Had the teams been told that an alternative loss

function was to be used to evaluate the forecast accuracy, then their point predictions might

have been different. For example, if the linex loss function was used, the predictions would in

general be larger.

In general, we conclude that the ensemble forecasts deliver some of the best performing

predictions. They often achieve statistically significant outperformance against the benchmark.

This is the case for the 3- and 4-week ahead predictions during the first evaluation sub-sample,

when losses are evaluated using the absolute value, quadratic or absolute percentage loss

functions. Even when the outperformance is not significant, ensemble predictions perform

relatively well, in the sense of not underperforming the benchmark, even during the second

evaluation sub-sample when the forecast errors are larger. Between the two ensemble forecasts,

the wider ensemble obtained by the CDC performs slightly better against the benchmark

compared to the Core Ensemble, illustrating once again the gains from combining a large

number of predictions.

4.2 Comparing the two evaluation sub-samples

Comparing the results of the tests for equal predictive ability across the two sub-samples,

we note that the null hypothesis is more difficult to reject during the second evaluation sub-

sample. In particular, whilst during the first sub-sample (Figures 4 and 5), many forecasting

teams and the ensemble forecasts outperform the benchmark at the 3- and 4-week horizons,

this is no longer true in the second sub-sample (Figures 6 and 7).

Heightened incident deaths, associated with the increased transmissibility of the new strains of
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the virus that emerged in late 2020 and in 2021, may have affected the statistical performance

of the tests of equal predictive ability in two ways: by making the task of forecasting more

difficult (as evident by the larger MAEs in the second sub-sample in Table 6) and by inflating

the long run variance of the test statistic (thus reducing the power to detect a significant

difference for given MAE differential). Of course, the purpose of the tests of equal predictive

ability is not to compare predictive ability across different periods, so a more pronounced

failure to reject the null hypothesis during the second evaluation sub-sample is not evidence

that the models were less valuable in this period.

To examine further the reasons for the apparent change in the forecastability of the epidemic,

in the bottom panel of Table 6 we report the ratio of the MAE of each forecasting team and

the MAE of the benchmark. This enables us to compare the relative performance of each

forecasting team and the benchmark across the two evaluation sub-samples. Considering for

example the 4-week forecasting horizon, we can notice that for some forecasting teams and

the ensembles the ratios are considerably smaller for the first evaluation sub-sample compared

to the second evaluation sub-sample. This is true for all the loss functions considered (MAE,

RMSE, MAPE, and MLinex), and suggests that the forecasting environment was different

across the first and the second evaluation sub-samples.8

4.3 Additional experiments

In the Appendix, we consider several additional experiments and empirical exercises. In

particular, in Appendix C, we perform the tests of equal predictive ability for the full sample,

instead of considering each evaluation sub-sample separately. In Appendix D, we use an

alternative benchmark model, obtained based on fitting an AR(1) model to the log incidence

of weekly deaths. Finally, in Appendix E, we use the CDC ensemble forecast as the benchmark

model, to test formally the null of equal predictive ability of the forecasting teams and the

8In Appendix B we report RMSE, MAPE and MLinex of the forecast errors across the two different
evaluation sub-samples.
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ensemble forecast.

5 Conclusion

We evaluate the relative predictive accuracy of real-time forecasts for the number of COVID-19

fatalities in the US, produced by several competing forecasting teams for two evaluation

periods: June 20, 2020 to October 31, 2020 (first evaluation sub-sample) and November 7,

2020 to March 20, 2021 (second evaluation sub-sample). Ensemble forecasts, that combine

all available forecasts using an equal weights scheme are also included. Since sample sizes are

small, we use fixed-smoothing asymptotics for the limit distribution of the scaled expected

loss differential between two competing forecasts. We find that none of the forecasting

teams outperform a simple statistical benchmark at the 1-week horizon; however, at longer

forecasting horizons some teams show superior predictive ability.

The ensemble forecasts deliver some of the most competitive predictions. Whilst they do not

yield the best forecasts overall, they are competitive in the sense of delivering predictions

that significantly outperform the benchmark at longer horizons during the first evaluation

sub-sample, and also never performing statistically worse than the benchmark even in the

second evaluation sub-sample. In this sense, the Ensemble forecast may be seen as a robust

choice. We also document that the broad based Ensemble published by the CDC is more

accurate than the Core Ensemble, that only pools forecasts from the teams that we include

in our exercise.

Overall, our results indicate that forecasts of the COVID-19 epidemic are valuable but need

to be used with caution, and decision-makers should not rely on a single forecasting team (or

a small set) to predict the evolution of the pandemic, but should hold a large and diverse

portfolio of forecasts.

A natural extension of our analysis is to evaluate the interval forecasts with different level of
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coverage submitted by the forecasting teams to the CDC. This would require choosing an

appropriate loss function, for example the weighted interval score (see Bracher, Ray, Gneiting

and Reich 2021), and applying the same alternative asymptotics we have used here. In

particular, recent work by Coroneo, Iacone and Profumo (2019) shows that fixed-smoothing

asymptotics may also be employed successfully to evaluate density forecasts.

Another interesting extension to the current work is to consider the predictive accuracy for

a panel data of forecasts (since the forecasting teams predict not only the national spread

of the disease, but also the regional evolution of the epidemic). Timmermann and Zhu

(2019) propose methods for testing predictive accuracy for panel forecasts. In particular,

they develop a panel-data Diebold-Mariano test for equal predictive accuracy, that pools

information across both the time-series and cross-sectional dimensions. Our analysis could,

therefore, be extended to the evaluation of a panel of regional predictions.
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A Monte Carlo study

In this appendix, we evaluate the size and power properties of the tests that we use in

our empirical study. We simulate forecast errors as in Diebold and Mariano (1995), Clark

(1999) and Coroneo and Iacone (2020). In particular, we first simulate a vector of forecast

innovations from a bivariate standard normal, (v1t, v2t)
′ ∼ N(02, I2). We then introduce

contemporaneous correlation by taking




u1t

u2t


 =




√
k 0

ρ
√

1− ρ2







v1t

v2t


 ,

and serial correlation by taking

e1t =

∑q
j=0 θ

ju1t−j√∑q
j=0 θ

2j

e2t =

∑q
j=0 θ

ju2t−j√∑q
j=0 θ

2j
.

We use both an absolute value loss function, i.e. dt = |e1t|−|e2t| and a quadratic loss function,

i.e. dt = e21t − e22t. We compute the test statistics with WCE estimates of the long run

variance, and use critical values both from standard asymptotics and from the application of

fixed smoothing asymptotics. The expected loss differential is zero for k = 1, so we use k = 1

to evaluate size and k = 1 + c/
√
T for c = 1, . . . , 30 to evaluate power. We use T = 20 as

this sample matches the dimension of our two samples in the empirical analysis. We also use

T = 40 to assess the consequences on size and power of the decision to split the sample to

address the instability in the second part. In all cases, we use 10,000 replications, ρ = 0.5

and q = 5, and investigate the effect of autocorrelation by using different values of θ.

Size results are in Table A1, and power results are in Figures A1 and A2 for the absolute

value loss, and in Figures A3 and A4 for the quadratic loss. Several interesting results can be
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Table A1: Size of tests with standard vs. fixed-smoothing asymptotics

Absolute value loss function

T=20 T=40

θ -0.5 0 0.5 0.75 -0.5 0 0.5 0.75

WCE Standard 0.143 0.113 0.142 0.192 0.118 0.096 0.115 0.141
WCE Fixed-b 0.062 0.050 0.065 0.097 0.062 0.047 0.057 0.078

WPE Standard 0.127 0.119 0.127 0.144 0.101 0.094 0.097 0.110
WPE Fixed-m 0.050 0.048 0.052 0.057 0.053 0.049 0.049 0.054

Quadratic loss function

T=20 T=40

θ -0.5 0 0.5 0.75 -0.5 0 0.5 0.75

WCE Standard 0.133 0.112 0.134 0.175 0.114 0.098 0.109 0.133
WCE Fixed-b 0.051 0.044 0.051 0.072 0.051 0.046 0.049 0.064

WPE Standard 0.112 0.110 0.115 0.126 0.095 0.096 0.091 0.098
WPE Fixed-m 0.040 0.041 0.039 0.041 0.043 0.048 0.043 0.043

Note: empirical rejection frequencies for tests of equal predictive ability at 5% nominal size for various MA(5)
processes with different values of θ. The top panel refers to tests that use an absolute value loss function,
and the bottom panel to tests that use a quadratic loss function. The table reports WCE estimate of the
long run variance and with critical values from standard or fixed-b asymptotics, and tests that use WPE
estimate of the long run variance and with critical values from standard or fixed-m asymptotics.

observed:

• Tests with standard asymptotics are severely oversized, even in the sample with 40

observations and no autocorrelation. In addition, as the sample size decreases and the

autocorrelation increases, the size properties deteriorate even further.

• Both versions of the tests with fixed-smoothing asymptotics have good size properties

even in the extremely small, T = 20 sample. However, the test with WCE may still

be oversized in cases of relatively large dependence (θ = 0.75) and when the sample

is as short as the ones in our empirical study, especially when the absolute value loss

function is used.

• Both tests with fixed-smoothing asymptotics achieve power close to the unfeasible
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size-adjusted power when the absolute value loss function is used. When the quadratic

loss is used, the WPE with fixed-smoothing asymptotics has slightly less power that

the size-adjusted reference in the smallest, T = 20 sample.

• The WCE test has more power than the WPE test, especially in the smallest sample.
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Figure A1: Finite sample local power with WCE and absolute value loss

10 20 30 40

c

0

0.2

0.4

0.6

0.8

1
T = 20, = 0

Fixed-b

Size-Adj

10 20 30 40

c

0

0.2

0.4

0.6

0.8

1
T = 20, = 0.5

Fixed-b

Size-Adj

10 20 30 40

c

0

0.2

0.4

0.6

0.8

1
T = 40, = 0

Fixed-b

Size-Adj

10 20 30 40

c

0

0.2

0.4

0.6

0.8

1
T = 40, = 0.5

Fixed-b

Size-Adj

Note: The figure displays empirical rejection frequencies at 5% nominal size for deviations from the null

by c/
√
T . Size-Adjusted refers to the case in which simulated size-adjusted critical values are used. The

long run variance is estimated using the WCE with Bartlett kernel. Results are reported for sample size of

20 observations (top plots) and 40 observations (bottom plots), and for no autocorrelation (left plots) and

θ = 0.5 (right plots).
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Figure A2: Finite sample local power with WPE and absolute value loss
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Note: The figure displays empirical rejection frequencies at 5% nominal size for deviations from the null

by c/
√
T . Size-Adjusted refers to the case in which simulated size-adjusted critical values are used. The

long run variance is estimated using the WPE with Daniell kernel. Results are reported for sample size of

20 observations (top plots) and 40 observations (bottom plots), and for no autocorrelation (left plots) and

θ = 0.5 (right plots).
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Figure A3: Finite sample local power with WCE and quadratic loss
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Note: The figure displays empirical rejection frequencies at 5% nominal size for deviations from the null

by c/
√
T . Size-Adjusted refers to the case in which simulated size-adjusted critical values are used. The

long run variance is estimated using the WCE with Bartlett kernel. Results are reported for sample size of

20 observations (top plots) and 40 observations (bottom plots), and for no autocorrelation (left plots) and

θ = 0.5 (right plots).
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Figure A4: Finite sample local power with WPE and quadratic loss
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Note: The figure displays empirical rejection frequencies at 5% nominal size for deviations from the null

by c/
√
T . Size-Adjusted refers to the case in which simulated size-adjusted critical values are used. The

long run variance is estimated using the WPE with Daniell kernel. Results are reported for sample size of

20 observations (top plots) and 40 observations (bottom plots), and for no autocorrelation (left plots) and

θ = 0.5 (right plots).
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B Comparing forecast errors across sub-samples

Table B2: RMSE across sub-samples

RMSE

1st sub-sample 2nd sub-sample

1 week 2 weeks 3 weeks 4 weeks 1 week 2 weeks 3 weeks 4 weeks

CO 1546 2374 2980 3660 6938 8932 11801 16086
UM 1315 1575 1944 2866 6893 8190 10092 12303
UA 2587 3682 5327 7102 7508 11031 15089 19321
GT 2382 2577 2962 3872 5904 7953 10153 13374
MO 1238 2181 3814 6142 5322 6416 7872 9828
PS 1992 3405 5619 9366 5711 8552 12761 17911
LA 1877 3537 5750 8192 5391 7520 10205 14451
JH 1653 1827 4148 8685 9821 11338 13195 16037
EN 1114 1551 2093 2758 5872 7646 9337 11790
CE 1374 1639 2066 2838 6284 8006 9947 12404
PO 862 2326 4749 8064 2968 6617 11397 17600

Relative RMSE

1st sub-sample 2nd sub-sample

1 week 2 weeks 3 weeks 4 weeks 1 week 2 weeks 3 weeks 4 weeks
CO 1.79 1.02 0.63 0.45 2.34 1.35 1.04 0.91
UM 1.53 0.68 0.41 0.36 2.32 1.24 0.89 0.70
UA 3.00 1.58 1.12 0.88 2.53 1.67 1.32 1.10
GT 2.76 1.11 0.62 0.48 1.99 1.20 0.89 0.76
MO 1.44 0.94 0.80 0.76 1.79 0.97 0.69 0.56
PS 2.31 1.46 1.18 1.16 1.92 1.29 1.12 1.02
LA 2.18 1.52 1.21 1.02 1.82 1.14 0.90 0.82
JH 1.92 0.79 0.87 1.08 3.31 1.71 1.16 0.91
EN 1.29 0.67 0.44 0.34 1.98 1.16 0.82 0.67
CE 1.59 0.70 0.44 0.35 2.12 1.21 0.87 0.70
PO 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Notes: The table reports root mean square errors (RMSE) of forecast errors for each team, the
Ensemble (EN), the Core Ensemble (CE) and the polynomial (PO) forecasts. The top panel shows the
RMSE level, and the bottom panel shows the RMSE relative to the RMSE of the benchmark model.
The first evaluation sub-sample is from June 20, 2020 to October 31, 2020, and the second evaluation
sub-sample from November 7, 2020 to March 20, 2021.
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Table B3: MAPE across sub-samples

MAPE

1st sub-sample 2nd sub-sample

1 week 2 weeks 3 weeks 4 weeks 1 week 2 weeks 3 weeks 4 weeks

CO 0.24 0.35 0.43 0.54 0.40 0.46 0.63 0.90
UM 0.19 0.24 0.30 0.45 0.32 0.37 0.44 0.55
UA 0.27 0.47 0.78 1.07 0.35 0.50 0.68 0.89
GT 0.22 0.26 0.32 0.42 0.30 0.43 0.63 0.84
MO 0.20 0.37 0.57 0.87 0.27 0.33 0.40 0.51
PS 0.30 0.50 0.72 1.04 0.30 0.45 0.75 1.10
LA 0.28 0.51 0.86 1.20 0.26 0.38 0.62 0.91
JH 0.24 0.26 0.66 1.42 0.58 0.73 0.85 0.87
EN 0.17 0.20 0.25 0.30 0.29 0.39 0.48 0.62
CE 0.21 0.23 0.28 0.37 0.32 0.42 0.54 0.68
PO 0.12 0.33 0.70 1.19 0.16 0.36 0.67 1.06

Relative MAPE

1st sub-sample 2nd sub-sample

1 week 2 weeks 3 weeks 4 weeks 1 week 2 weeks 3 weeks 4 weeks

CO 2.00 1.06 0.61 0.45 2.50 1.28 0.94 0.85
UM 1.58 0.73 0.43 0.38 2.00 1.03 0.66 0.52
UA 2.25 1.42 1.11 0.90 2.19 1.39 1.01 0.84
GT 1.83 0.79 0.46 0.35 1.88 1.19 0.94 0.79
MO 1.67 1.12 0.81 0.73 1.69 0.92 0.60 0.48
PS 2.50 1.52 1.03 0.87 1.88 1.25 1.12 1.04
LA 2.33 1.55 1.23 1.01 1.63 1.06 0.93 0.86
JH 2.00 0.79 0.94 1.19 3.63 2.03 1.27 0.82
EN 1.42 0.61 0.36 0.25 1.81 1.08 0.72 0.58
CE 1.75 0.70 0.40 0.31 2.00 1.17 0.81 0.64
PO 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Notes: The table reports MAPE of forecast errors for each team, the Ensemble (EN), the Core
Ensemble (CE) and the polynomial (PO) forecasts. The top panel shows the MAPE level, and the
bottom panel shows the MAPE relative to the MAPE of the benchmark model. The first evaluation
sub-sample is from June 20, 2020 to October 31, 2020, and the second evaluation sub-sample from
November 7, 2020 to March 20, 2021.

47



Table B4: MLinex across sub-samples

MLinex

1st sub-sample 2nd sub-sample

1 week 2 weeks 3 weeks 4 weeks 1 week 2 weeks 3 weeks 4 weeks

CO 0.05 0.10 0.16 0.29 0.11 0.17 0.40 0.85
UM 0.04 0.05 0.06 0.14 0.07 0.11 0.20 0.39
UA 0.12 0.25 0.48 0.84 0.09 0.21 0.46 1.00
GT 0.20 0.20 0.19 0.27 0.06 0.13 0.33 0.82
MO 0.04 0.10 0.25 0.57 0.05 0.08 0.14 0.25
PS 0.08 0.22 0.38 0.76 0.06 0.17 0.46 1.03
LA 0.06 0.22 0.70 1.74 0.05 0.13 0.39 0.95
JH 0.04 0.06 0.26 0.82 0.26 0.46 0.77 0.93
EN 0.02 0.04 0.06 0.10 0.06 0.11 0.19 0.36
CE 0.04 0.04 0.06 0.12 0.07 0.13 0.25 0.45
PO 0.01 0.10 0.54 2.22 0.02 0.08 0.31 0.88

Relative MLinex

1st sub-sample 2nd sub-sample

1 week 2 weeks 3 weeks 4 weeks 1 week 2 weeks 3 weeks 4 weeks
CO 5.00 1.00 0.30 0.13 5.50 2.13 1.29 0.97
UM 4.00 0.50 0.11 0.06 3.50 1.38 0.65 0.44
UA 12.00 2.50 0.89 0.38 4.50 2.63 1.48 1.14
GT 20.00 2.00 0.35 0.12 3.00 1.63 1.06 0.93
MO 4.00 1.00 0.46 0.26 2.50 1.00 0.45 0.28
PS 8.00 2.20 0.70 0.34 3.00 2.13 1.48 1.17
LA 6.00 2.20 1.30 0.78 2.50 1.63 1.26 1.08
JH 4.00 0.60 0.48 0.37 13.00 5.75 2.48 1.06
EN 2.00 0.40 0.11 0.05 3.00 1.38 0.61 0.41
CE 4.00 0.40 0.11 0.05 3.50 1.63 0.81 0.51
PO 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Notes: The table reports MLinex of forecast errors for each team, the Ensemble (EN), the Core
Ensemble (CE) and the polynomial (PO) forecasts. The top panel shows the MAPE level, and the
bottom panel shows the MLinex relative to the MLinex of the benchmark model. The first evaluation
sub-sample is from June 20, 2020 to October 31, 2020, and the second evaluation sub-sample from
November 7, 2020 to March 20, 2021.
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C Full sample testing results

Testing results on the full sample from June 20, 2020 to March 20, 2021 are reported in

Figures C5-C6. Results are very similar to what is obtained for the analysis on the two

sub-samples. In particular, in the short-run, the benchmark outperforms the other forecasts,

while in the long-run, some teams and the ensembles outperform using some alternative

loss functions. In particular, Figure C5 documents how in the short run, the benchmark

model outperforms the team and the ensemble predictions. At 4-week ahead, according to

MAPE, some teams and both ensemble forecasts significantly outperform the benchmark.

While, according to MAE, only University of Massachusetts-Amherst forecasts outperform

the benchmark. A similar pattern is documented by Figure C6.
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Figure C5: Forecast evaluation with WCE - Full sample
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This figure reports the test statistic for the test of equal predictive accuracy using the weighted covariance

estimator (WCE) of the long-run variance and fixed-b asymptotics. The benchmark is a second degree

polynomial model fitted on a rolling window of 5 observations. A positive value of the test statistic indicates

lower loss for the forecaster, i.e. better performance of the forecaster relative to the polynomial model.

Different loss functions are reported with different markers: plus refers to a quadratic loss function, diamond

to the absolute value loss function, filled circle to the absolute percentage loss function and empty circle to

the asymmetric loss function. The dotted, dashed and continuous red horizontal lines denote respectively the

20%, 10% and 5% significance levels. The forecast horizons are 1, 2, 3 and 4 weeks ahead. The evaluation

sample is June 20, 2020 to March 20, 2021.
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Figure C6: Forecast evaluation with WPE - Full sample
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This figure reports the test statistic for the test of equal predictive accuracy using the weighted periodogram

estimator (WPE) of the long-run variance and fixed-m asymptotics. The benchmark is a second degree

polynomial model fitted on a rolling window of 5 observations. A positive value of the test statistic indicates

lower loss for the forecaster, i.e. better performance of the forecaster relative to the polynomial model.

Different loss functions are reported with different markers: plus refers to a quadratic loss function, diamond

to the absolute value loss function, filled circle to the absolute percentage loss function and empty circle to

the asymmetric loss function. The dotted, dashed and continuous red horizontal lines denote respectively the

20%, 10% and 5% significance levels. The forecast horizons are 1, 2, 3 and 4 weeks ahead. The evaluation

sample is June 20, 2020 to March 20, 2021.
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D AR(1) benchmark

In this appendix, we use an AR(1) benchmark instead of the the polynomial function in (4).

In particular, we fit an AR(1) model to the logarithm of weekly incident deaths, as follows

Yt = µ+ ϕYt−1 + ϵt (5)

where Yt = log(yt − yt−1) and yt denotes the cumulative weekly deaths. We then obtain

predictions for yt, as follows

yt+h|t = yt +
h∑

j=1

exp(Yt+j|t)

where Yt+j|t is the j steps ahead prediction from (5). As for the polynomial benchmark in

Section 3.3, we use a rolling window of five observations to estimate the coefficients.

Figure D7 plots the forecast errors for each forecasting scheme (computed as the difference

between the realization and the point forecast). The figure indicates that the AR(1) benchmark

has forecast errors similar to those of the polynomial benchmark used in the main text.

Testing results using the AR(1) benchmark are reported in Figures D8-D9. Results are

similar to those obtained using the baseline benchmark model. In particular, none of the

forecasting teams predicts better than the benchmark at the 1-week forecasting horizon,

with the benchmark significantly outperforming several forecasting teams. Differences at the

2-week horizon are almost never significant, and in some cases the sign of the test statistic

turns from negative to positive. At the 3- and 4- week horizons, some teams significantly

outperform the AR(1) benchmark model.
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Figure D7: Forecast errors, AR benchmark
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Note: Forecast errors at forecasting horizons from 1 to 4 weeks. Weekly observations from June 20, 2020 to

March 20, 2021. The vertical line indicates November 3, 2020 and delimits the two sub-samples. EN denotes

the ensemble, CE denotes the core ensemble, PO the polynomial benchmark and AR the AR(1) benchmark.

Forecast errors are defined as the realised value minus the forecast.
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Figure D8: Forecast evaluation with AR(1) benchmark - First evaluation sub-sample
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This figure reports the test statistic for the test of equal predictive accuracy using the weighted covariance

estimator (WCE) of the long-run variance and fixed-b asymptotics. The benchmark is an AR(1) fitted on a

rolling window of 10 observations. A positive value of the test statistic indicates lower loss for the forecaster,

i.e. better performance of the forecaster relative to the AR(1) model. Different loss functions are reported

with different markers: plus refers to a quadratic loss function, diamond to the absolute value loss function,

filled circle to the absolute percentage loss function and empty circle to the asymmetric loss function. The

dotted, dashed and continuous red horizontal lines denote respectively the 20%, 10% and 5% significance

levels. The forecast horizons are 1, 2, 3 and 4 weeks ahead. The evaluation sample is June 20, 2020 to

October 31, 2020.
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Figure D9: Forecast evaluation with AR(1) benchmark - Second evaluation sub-sample
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This figure reports the test statistic for the test of equal predictive accuracy using the weighted covariance

estimator (WCE) of the long-run variance and fixed-m asymptotics. The benchmark is an AR(1) fitted on a

rolling window of 10 observations. A positive value of the test statistic indicates lower loss for the forecaster,

i.e. better performance of the forecaster relative to the AR(1) model. Different loss functions are reported

with different markers: plus refers to a quadratic loss function, diamond to the absolute value loss function,

filled circle to the absolute percentage loss function and empty circle to the asymmetric loss function. The

dotted, dashed and continuous red horizontal lines denote respectively the 20%, 10% and 5% significance

levels. The forecast horizons are 1, 2, 3 and 4 weeks ahead. The evaluation sample is November 7, 2020 to

March 20, 2021.

55



E Ensemble benchmark

In this section we consider as benchmark the Ensemble forecast produced by the CDC. Thus,

we are now testing for the null of equal predictive accuracy of each forecasting team and the

Ensemble forecast. As noticed in Section 3, the weekly composition of the pool of models

contributing to the Ensemble forecast changes, and it includes, in general, a considerably

larger number of teams than the one we consider in our evaluation.

Testing results are reported in Figures E10-E11. In the first sub-sample, the Ensemble

outperforms all forecasting teams at all forecasting horizons, with a significant outperformance

in some cases. In the second sub-sample, results are more mixed as, while most forecasting

teams are outperformed by the Ensemble, the predictions of the Northeastern University,

Laboratory for the Modeling of Biological and Socio-technical Systems (MO) significantly

outperform the Ensemble predictions at all forecasting horizons. Of particular interest is

the fact that the Core Ensemble is also often outperformed (sometimes significantly) by the

Ensemble, indicating the importance of averaging a larger number of predictions, rather than

just a few.
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Figure E10: Forecast evaluation with Ensemble benchmark - First evaluation sub-sample
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This figure reports the test statistic for the test of equal predictive accuracy using the weighted covariance

estimator (WCE) of the long-run variance and fixed-b asymptotics. The benchmark is the Ensemble forecast

produced by the CDC. A positive value of the test statistic indicates lower loss for the forecaster, i.e. better

performance of the forecaster relative to the Ensemble. Different loss functions are reported with different

markers: plus refers to a quadratic loss function, diamond to the absolute value loss function, filled circle to

the absolute percentage loss function and empty circle to the asymmetric loss function. The dotted, dashed

and continuous red horizontal lines denote respectively the 20%, 10% and 5% significance levels. The forecast

horizons are 1, 2, 3 and 4 weeks ahead. The evaluation sample is June 20, 2020 to October 31, 2020.
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Figure E11: Forecast evaluation with Ensemble benchmark - Second evaluation sub-sample
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This figure reports the test statistic for the test of equal predictive accuracy using the weighted covariance

estimator (WCE) of the long-run variance and fixed-b asymptotics. The benchmark is the Ensemble forecast

produced by the CDC. A positive value of the test statistic indicates lower loss for the forecaster, i.e. better

performance of the forecaster relative to the Ensemble. Different loss functions are reported with different

markers: plus refers to a quadratic loss function, diamond to the absolute value loss function, filled circle to

the absolute percentage loss function and empty circle to the asymmetric loss function. The dotted, dashed

and continuous red horizontal lines denote respectively the 20%, 10% and 5% significance levels. The forecast

horizons are 1, 2, 3 and 4 weeks ahead. The evaluation sample is November 7, 2020 to March 20, 2021.
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