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Dynamic GPU Energy Optimization for Machine
Learning Training Workloads

Farui Wang, Weizhe Zhang, Senior Member, IEEE, Shichao Lai, Meng Hao, and Zheng Wang

Abstract—GPUs are widely used to accelerate the training of machine learning workloads. As modern machine learning models

become increasingly larger, they require a longer time to train, leading to higher GPU energy consumption. This paper presents

GPOEO, an online GPU energy optimization framework for machine learning training workloads. GPOEO dynamically determines the

optimal energy configuration by employing novel techniques for online measurement, multi-objective prediction modeling, and search

optimization. To characterize the target workload behavior, GPOEO utilizes GPU performance counters. To reduce the performance

counter profiling overhead, it uses an analytical model to detect the training iteration change and only collects performance counter

data when an iteration shift is detected. GPOEO employs multi-objective models based on gradient boosting and a local search

algorithm to find a trade-off between execution time and energy consumption. We evaluate the GPOEO by applying it to 71 machine

learning workloads from two AI benchmark suites running on an NVIDIA RTX3080Ti GPU. Compared with the NVIDIA default

scheduling strategy, GPOEO delivers a mean energy saving of 16.2% with a modest average execution time increase of 5.1%.

Index Terms—Dynamic energy optimization, online application iteration detection, multi-objective machine learning, GPU

✦

1 INTRODUCTION

In recent years, deep neural networks (DNNs) have
demonstrated breakthrough effectiveness in various tasks
that were once deemed impossible [1], [2]. Training an
effective DNN requires performing expensive training on
a large number of samples. As the model training time
increases, the energy consumption of machine learning
training workloads also grows. This is a particular concern
for high-performance GPUs because they are widely used
to train DNN workloads but are less energy-efficient than
their CPU counterparts. As a result, there is a critical need
to reduce the energy consumption for GPUs when training
machine learning workloads. Achieving this goal can reduce
the maintenance cost and allow users to train larger models
within the same budget.

Most of the existing studies in general GPU energy
optimization are offline techniques [3]–[7]. These techniques
require profiling applications ahead of time [3]–[5], [7] or
analyzing their source code [6] in advance to collect ap-
plication features. These approaches cannot adapt to the
change of the program behavior and can incur expensive
profiling overhead. Other approaches change the internal
working mechanisms of machine learning (ML) models [8],
[9], but they are specific to the ML algorithms used and do
not generalize to other ML methods.

Recently, efforts have been made to target online GPU
power optimization. The work presented in [10] proposes a
dynamic power management method for integrated APUs.
ODPP [11] is another online dynamic power-performance
management framework. ODPP detects the periods of appli-
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cations to build prediction models. However, their models
can only detect coarse-grained phase change patterns.

This work aims to provide a better dynamic GPU energy
optimization method for iterative ML training workloads.
We present GPOEO, a micro-intrusive 1 GPU online energy
optimization framework. GPOEO only requires the user to
mark the beginning and the end of the target code region.
GPOEO can then automatically collect the relevant infor-
mation to monitor the program behavior to identify the re-
peat workload patterns and adjust the energy optimization
scheme accordingly.

GPOEO trades execution time for energy efficiency. To
this end, we employ multi-objective optimization models
built on the XGBoost Classifier [12]. As a departure from
existing online GPU power optimization schemes, GPOEO
leverages the fine-grained runtime information provided by
the hardware performance counters to model the system
and program behavior to build more accurate decision
models. We use the predictive model as a cost function to
search for the optimal energy configuration for the current
workload pattern. These supporting methods enable us to
develop a period detection algorithm based on the fast
Fourier transform (FFT) and feature sequence similarity
evaluation to identify if a changed training iteration takes
place and adjust our optimization accordingly.

We evaluate GPOEO by applying it to 71 machine learn-
ing workloads from three AI benchmark suites [13]. We
test our approach on an NVIDIA RTX3080Ti GPU. Exper-
imental results show that GPOEO can reduce GPU energy
consumption by over 20% (16.2% on average), with most
execution time increments less than 7% (5.1% on average)
when compared to the NVIDIA default GPU scheduling
strategy.

1. Micro-intrusive means we require minor changes to the program
source code.
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This paper makes the following contributions:

• It is the first work to exploit performance counter met-
rics to perform online energy prediction and optimiza-
tion for discrete GPUs. By minimizing the instrument
and measurement overhead, our approach improves
the practicability of online GPU profiling.

• It presents a robust detection algorithm to automati-
cally detect the iterative period of ML applications from
the GPU resource traces (Section 4.1).

• It showcases how an effective GPU online energy opti-
mization framework can be constructed as a cost model
to quickly identify a good energy configuration.

Online material: The GPOEO framework is publicly avail-
able at https://github.com/ruixueqingyang/GPOEO.

2 BACKGROUND AND MOTIVATION

2.1 GPU configuration and profiling tools

NVIDIA provides the NVML [14] and CUPTI [15] library
for reconfiguring, measuring, and profiling its GPUs. The
NVML [14] can set Streaming Multiprocessor (SM) clock
frequency, global memory clock frequency (only certain
types of NVIDIA GPUs), and powercap online. It also sup-
ports measuring power, SM utilization, and global memory
utilization. The CUPTI [15] can profile performance counter.
These tools make GPU online energy optimization possible.
In this work, we adjust the clock frequency of the GPU SM
and global memory to achieve energy saving.

2.2 Motivation

2.2.1 Energy Optimization Potential

The training phase of machine learning usually uses high-
performance GPUs as accelerators. GPUs consume a lot of
energy and time. To explore the energy-saving potential
on GPUs, we run five applications in AIBench [13] and
benchmarking-gnns [16] on all combinations of SM and
memory clock frequencies and select the best configura-
tions for minimal energy consumption within the slow-
down constraint of 5%. Figure 1 shows the oracle results
of energy saving, slowdown, and ED2P (Energy ×Dealy2)
saving. The AI FE, AI S2T, and SBM GIN are relatively
compute-intensive and save significant energy (14.9%-
22.4%). The CLB MLP and TSP GatedGCN are relatively
memory-intensive and save considerable energy (18.0%-
26.4%). These results highlight that both compute-intensive
and memory-intensive ML training workloads have the
chance to save energy with acceptable slowdown.

2.2.2 Make Energy Optimization Practical

Most existing studies on GPU energy optimization are
offline and need domain knowledge and complex offline
profiling. Thus, users or researchers can hardly apply these
studies in practice. An ideal online GPU energy optimiza-
tion system should be non-intrusive to applications and
transparent to users. Majumdar’s work [10] only applies to
AMD APUs. Motivated by drawbacks, we propose an online
energy optimization framework called GPOEO. Users only
need to insert the Begin and End APIs, and the GPOEO
automatically optimizes energy online.
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Fig. 2. Period detection errors of ODPP and GPOEO under different SM
clock frequencies

2.2.3 Reduce Period Detection Error

Online sampling time series of power and utilization can
reflect the periodic pattern. ODPP [11] uses the Fourier
transform algorithm to detect periods, namely the execu-
tion time of one major iteration. However, according to
our experimental results, the period error of ODPP [11] is
quite large when the periodicity is not apparent. To solve
this shortcoming, we propose a robust period detection
algorithm. Figure 2 shows the absolute percentage errors
of period detection with ODPP and our algorithm GPOEO
under different SM clock frequencies on two ML applica-
tions. The “Default” means the NVIDIA default scheduling
strategy. The period detection errors of ODPP are pretty
significant and unstable, while the period detection errors of
our GPOEO are less than 5% under all SM clock frequencies.

2.2.4 Using GPU Performance Counters

ODPP [11] uses power, SM utilization, and memory uti-
lization as features to predict energy and execution time.
However, these coarse-grained features are inadequate to
give accurate predictions for some machine learning ap-
plications. We give an example in Figure 3. Applications
in each pair have similar average power and utilization
under the same reference clock frequency configuration, but
their optimal SM clocks for ED2P are different (memory
frequency fixed at 9251MHz). In light of this observation, we
wish to use more fine-grained metrics to capture the subtle
interactions between the application and the hardware. To
this end, we use hardware performance counter metrics
as features to build predictive models to estimate energy
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Fig. 3. ML applications with similar coarse-grained features and different
optimal SM clocks for ED2P

and execution time. Later in the paper, we show that this
strategy allows us to build more accurate prediction models,
which in turn lead to better optimization decisions. The key
challenges here are reducing the overhead of performance
counter profiling and minimizing code modifications.

3 OVERVIEW OF OUR APPROACH

This section defines the scope of the work and gives an
overview of our approach.

3.1 Problem Formulation

This work aims to find an optimal SM and memory clock
frequency configuration to balance the GPU energy con-
sumption and execution time for ML training workloads.
Our goal can be formulated as follows:

min FSM = fobj

(
̂engSM , ̂timeSM

)

s.t. ̂engSM = EngMdlSM (wSM ) ,

̂timeSM = T imeMdlSM (wSM ) ,

wSM = {SMgeari, Feature} ,

SMgeari ∈ {SMgear1, . . . , SMgearm} ,

Feature = {feature1, . . . , featureq} .

(1)

min FMem = fobj

(
̂engMem, ̂timeMem

)

s.t. ̂engMem = EngMdlMem (wMem) ,

̂timeMem = T imeMdlMem (wMem) ,

wMem = {Memgeari, Feature} ,

Memgeari ∈ {Memgear1, . . . ,Memgearp} .

(2)

Table 1 lists the variables used in our problem formula-
tion. We note that our approach can be applied to an arbi-
trary objective function. We select the energy consumption
with an execution time increase constraint as our objective
function to explicitly control the performance loss. Like
[17], we assume that the search space of SM and memory
clocks is convex and optimize the SM frequency and mem-
ory frequency in order. We use four prediction models to
estimate energy and time with different SM and memory
clock frequencies. Then we select the SM and memory clock
configuration that can best satisfy the optimization goal.

TABLE 1
Description of Parameters

Notation Description

fobj objective function
̂engSM energy consumption predicted with the SM clock
̂timeSM execution time predicted with the SM clock

EngMdlSM energy prediction model with the SM clock
T imeMdlSM time prediction model with the SM clock
SMgeari one SM gear represents an SM clock frequency
wSM the input vector containing SM clock

̂engMem energy consumption predicted with the memory
clock

̂timeMem execution time predicted with the memory clock
EngMdlMem energy prediction model with the memory clock
T imeMdlMem time prediction model with the memory clock
Memgeari one memory gear represents a memory clock fre-

quency
wMem the input vector containing memory clock
Feature feature vector measured under the reference clock
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Fig. 4. Overview of the GPOEO workflow.

3.2 Framework Overview

GPOEO includes two stages, shown in Figure 4. In the
offline training stage, we run representative benchmarks

on each SM and memory clock frequencies ( 1 ) to collect
performance counter metrics on the reference SM and mem-
ory frequencies and energy-time data on all frequencies.

Then we train multi-objective models ( 2 ). In the online
optimization stage, we measure energy and performance

counter metrics in one detected period ( 3 , 4 ), then

predict the optimal SM and memory frequencies ( 5 , 6 ).
After that, we try frequencies around the predicted optimal
configuration and compare the measured energy-time data

to search for the actual optimal configuration ( 7 ). Finally,
we set the actual optimal configuration and monitor energy

characteristics ( 8 ). If the fluctuation of energy characteris-
tics exceeds the threshold, another optimization process will
start.



4

4 DESIGN AND IMPLEMENT

4.1 Robust Period Detection

Iterative ML workloads exhibit periodic behavior across
iterations. We treat one period, namely one iteration, as
basic unit for online metric measurement and evaluation.
Our approach does not rely on offline code instrumentation
to reduce developer involvement.

4.1.1 Fourier Transform: Get Candidate Periods

To detect the period change, we leverage the Fourier trans-
form. This established methodology is widely used in signal
processing to detect the dominant frequency and period. In
our scenario, we assume the periodic feature of ML applica-
tions, such as GPU power and utilization, can be expressed
as a time-domain function F(t). Generally speaking, F(t)
is periodic and can be expressed as a linear combination of
trigonometric series (know as Fourier Series) in exponential
form as:

F (t) =

∞∑

n=−∞

Cne
2πjnt/Titer (3)

where Cn are Fourier coefficients.
We can get a series of frequency components via Fourier

transform:

F(ω) = 2π

∞∑

n=−∞

Cnδ (ω − 2πn/Titer) (4)

the frequency F(ω) is a series of impulse functions (i.e., δ)
located at 2πn/Titer , with amplitude proportional to Cn.
These impulses represent different frequency components
in F(t). The one with the largest amplitude is the major
frequency component. The iterative period Titer of the ML
application can be calculated as Titer = 1/fmajor , where
fmajor is the frequency of the major frequency component.

4.1.2 Feature Sequence Similarity: Find Accurate Periods

As mentioned in Section 2.2.3, the period detection results of
the Fourier transform may have vast errors. Our period cal-
culation algorithm (Algorithm 1) combines the fast Fourier
transform (FFT) and feature sequence similarity (Algorithm
2) to reduce these errors. We find amplitude peaks and
corresponding periods TPeak in the result of FFT (line 1-
3). Then we select periods Tpeakm with relatively high
peaks as candidate periods Tcand (line 4-5). We set the
peak coefficient cpeak to 0.6-0.7 empirically. Then we use
feature sequence similarity (Algorithm 2) to evaluate and
select the best candidate period with minimal error. Finally,
we perform a local search around the best candidate period
to further improve accuracy.

We propose the feature sequence similarity algorithm
(Algorithm 2) to evaluate candidate periods. We divide the
feature sampling curve into several sub-curves, and the time
duration of each sub-curve is equal to the candidate period
(line 1-4). The more similar the curves are, the closer the
candidate period is to the actual period. So we evaluate the
similarity of each pair of adjacent sub-curves (line 5-18).

Each sub-curve is a time series, and calculating the Eu-
clidean distance between corresponding points is a common
method to measure the similarity of time series. However, in

Algorithm 1 Period calculation algorithm based on FFT and
feature sequence similarity

Input: feature sampling sequence Smp = {s1, . . . , sN},
sampling interval Ts

Output: iterative period Titer , error of period err

1: Freq,Ampl = {freqi}, {ampli} =FFT(Smp, Ts)
2: T = {Ti} = {1/freqi}
3: Find peaks in Ampl, get the set of peaks AmplPeak =

{amplpeakm} and the set of corresponding periods
TPeak = {Tpeakm}

4: IndexCand = {idxcandk}
= {m|amplpeakm > cpeak×max(AmplPeak)}

5: TCand = {Tcandp} = {Tpeakidxcandk
}

6: for Tcandp ∈ TCand do
7: errp = Algorithm2(Tcandp,Smp, Ts)
8: end for
9: Find erridxmin = min({errp})

10: Tcandopt = Tcandidxmin

11: NT = Ts × (N − 1)/Tcandopt,
Tlow = Tcandopt × (1− 1/(NT + 1))

12: Tup = Tcandopt × (1 + 1/(NT − 1))
13: Construct an arithmetic sequence TLocal = {T localq},

where T localq = Tlow + (q − 1)× Taccu,
q = 1, . . . , (Tup − Tup)/Taccu

14: for T localq ∈ TLocal do
15: errlocalq =Algorithm2(T localp,Smp, Ts)
16: end for
17: Find err = erridxmin = min({errlocalq})
18: Titer = T localidxmin

19: return Titer, err

our scenario, the Euclidean distance is susceptible to high-
frequency interference and reports the wrong similarity.
Inspired by this, instead of calculating the distance of each
pair of corresponding points, we group the sampling data
within a series and evaluate the distance between the corre-
sponding groups. Specifically, we use the Gaussian mixture
model algorithm to cluster each sub-curves into N groups
(line 8-11). Then, for each group, we calculate the relative
average amplitudes (line 12-13). The average operation can
eliminate the influence of high-frequency interference. Later,
we calculate the symmetric mean absolute percentage error
(SMAPE) of the current group pair (line 14). Finally, we
calculate the weighted average of all SMAPEs as similarity
error (line 16-17). The weights are the numbers of sampling
points in groups. When all adjacent sub-curves are evalu-
ated, we treat the mean similarity error as the error of Titer
(line 19).

4.1.3 Online Robust Period Detection Algorithm Frame-

work

To get accurate Titer dynamically, we design an online
robust period detection algorithm framework (Algorithm
3). The framework calculates Titer in a rolling form while
sampling the power and utilization of the GPU until the
Titer is stable. First, we get the initial period Tinit, using
Algorithm 2. If sampling duration is short than cmeasure

times Tinit (cmeasure is set to 2 empirically), it is too short
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Algorithm 2 Feature sequence similarity algorithm

Input: Period to be evaluated Titer , feature sampling se-
quence Smp = {s1, . . . , sN}, sampling interval Ts

Output: error of period ErrT

1: NumT = ⌊sN/Titer⌋;Nums = ⌊T/Ts⌋
2: for i ∈ {1, . . . NumT } do
3: Smpi = {s(i−1)×Nums+1, . . . , si×Nums

} = {ssi,j}
(j = 1, . . . , Nums)

4: end for
5: for i ∈ {1, . . . , NumT − 1} do
6: Meanprev = mean(Smpi)
7: Meanback = mean(Smpi+1)
8: {GaGrp1, . . . ,GaGrpNumG} =Gauss(Smpi, NumG)

where GaGrpj = {idxj,1, . . . , idxj,Numj}
9: for j ∈ {1, . . . , NumG} do

10: Grpprev = {ssi,idxj,1
, . . . , ssi,idxj,Numj

}
11: Grpback = {ssi+1,idxj,1

, . . . , ssi+1,idxj,Numj
}

12: RelV alPrevj = mean(Grpprev)−Meanprev

13: RelV alBackj = mean(Grpback)−Meanback

14: grperrj =SMAPE(RelV alPrevj , RelV alBackj)
15: end for
16: Weight = {|GaGrp1|, . . . , |GaGrpNumG|}
17: erri = avg({grperr1, . . . , grperrNumG},Weight)
18: end for
19: return ErrT = mean({err1, . . . , errNumT−1})

Note: Gauss = the Gaussian mixture model clustering algorithm

to do a rolling calculation, so we calculate the required sam-
pling duration, skip rolling calculation, and return (line2-
6). If the sampling duration is long enough, we get some
updated samples by setting tstart (line 7). Samples before
tstart are ignored because they may be outdated. We set
step = 0.5 and ceval = 6.5 according to our experiments.
Then, the rolling period calculation begins. In each iteration,
we calculate the period (line 9-11) and increase tstart to
exclude more outdated samples for the next iteration (line
12). With the rolling period calculation, we get a sequence of
periods with errors (line 14). If an ML application runs in the
regular iteration phase, these periods should be similar. If
the difference of these periods is less than the threshold, set
SmpDurnext = −1 to indicate stop sampling. Otherwise,
calculate SmpDurnext (line 16-21). The best period, namely
Titer , is the period with the minimal error (line 15). If
SmpDurnext > 0, we ignore Titer , keep sampling, and call
Algorithm 3 again after SmpDurnext. Otherwise, we use
Titer for feature measurement (Section 4.2).

4.2 Micro-intrusive Online Feature Measurement

Based on the robust period detection, we propose the
adaptive feature measurement algorithm (Algorithm 4). The
feature measurement causes overhead and extends Titer

compared with the normal run of the application. So, we
adaptively detect Titer of applications while the measure-
ment is running (line 1-7). In line 5, we collect Featuredect
after a delay of SmpDurNext. We use the sampling se-
quence of Featuredect to form the curve for the period
detection, so we must sample Featuredect continuously and
uniformly. On the NVIDIA GPU platform, the instantaneous
power, SM utilization, and memory utilization can meet

Algorithm 3 Online robust period detection algorithm
framework
Input:feature sampling sequence Smp = {s1, . . . , sN}, sam-
pling interval Ts

Output:iterative period Titer , next sampling duration
SmpDurnext

1: Tinit, errinit =Algorithm1(Smp, Ts)
2: SmpDur = (N − 1)× Ts

3: if SmpDur < cmeasure × Tinit then
4: Titer = Tinit

5: SmpDurnext = cmeasure × Tinit − SmpDur
6: end if
7: tstart = max(0, (SmpDur − (2 + ceval × step)× Tinit))
8: while (SmpDur − tstart)/Tinit ≥ cmeasure do
9: istart = 1 + ⌊tstart/Ts⌋

10: SubSmp = {sistart, . . . , sN}
11: Tj , errj =Algorithm1(SubSmp, Ts)
12: tstart = tstart + step× Tinit

13: end while
14: T = {Tj}, Err = {errj}
15: Find min(Err) = errk then Titer = Tk

16: Diff = abs((max(T )−min(T ))/mean(T ))
17: if Diff < Diffthreshold then
18: SmpDurnext = −1
19: else
20: SmpDurnext =

⌈SmpDur/max(T )⌉ ×max(T )− SmpDur
21: end if
22: return Titer, SmpDurnext

Algorithm 4 Adaptive feature measurement

Input: features to be measured FeatureName =
{name1, . . . , namen}, the feature for iterative period detec-
tion Featuredect
Output: feature data Feature = {feature1, . . . , featuren}

1: Start measurement for FeatureName and Featuredect
2: SmpDurnext = SmpDurinit

3: while SmpDurnext > 0 do
4: Delay SmpDurnext

5: Collect sampling sequence of Featuredect
6: Titer, SmpDurnext =Algorithm3(Featuredect, Ts)
7: end while
8: Restart measurement for FeatureName
9: Delay Titer then stop measurement

10: Collect feature data Feature
11: return Feature

this requirement. However, the performance counters can-
not meet this requirement because its minimum sampling
granularity is a CUDA kernel. According to our experi-
mental results, we use the composite feature of power, SM
utilization, and memory utilization as Featuredect, whose
traces show more obvious periodicity. In line 6, we call
Algorithm 3 to detect Titer and determine whether Titer

is stable. If SmpDurNext > 0, we redo line 4-6 with the new
SmpDurNext. Otherwise, we think Titer is stable and restart
the feature measurement (line 8). After a delay of Titer , we
stop measurement and collect the feature data (line 8-10).

We implement micro-intrusive online feature measure-
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ment based on Algorithm 4. Users only need to insert the
Begin and End APIs of GPOEO at the beginning and end of
their source code, rather than instrument loops.

4.3 Training Data Collection and Model Generation

We establish energy consumption and execution time pre-
diction models with the boosting machine learning method.
Our work aims to find the optimal SM and memory clock
gears that optimize the objective function. Therefore, these
four models only need to predict the relative energy con-
sumption and execution time relative to the NVIDIA default
scheduling strategy rather than the absolute energy and
time [4].

To train the models defined in Equation 1 and 2, we
define and collect four training data sets:

EngTrSM = {EngSM i
j} (5)

T imeTrSM = {T imeSM i
j} (6)

EngTrMem = {EngMemi
j} (7)

T imeTrMem = {T imeMemi
j} (8)

where EngSM i
j or T imeSM i

j represents a piece of training
data collected from application i under the SM clock gear
SMgearj and the memory clock controlled by the NVIDIA
default scheduling strategy. EngMemi

j or T imeMemi
j is

collected under the memory clock gear Memgearj and
the optimal SM clock gear. engidefault and timeidefault are
the default energy consumption and execution time under
the NVIDIA default scheduling strategy. Each input vector
wSM

i
j or wMem

i
j contains SMgearj or Memgearj and the

feature vector Featurei. For each application, the feature
vector Featurei is measured under the reference clock con-
figuration.

EngSM i
j = {wSM

i
j , engSM

i
j/eng

i
default} (9)

T imeSM i
j = {wSM

i
j , timeSM

i
j/timeidefault} (10)

wSM
i
j = {SMgearj , Featurei} (11)

EngMemi
j = {wMem

i
j , engMem

i
j/eng

i
default} (12)

T imeMemi
j = {wMem

i
j , timeMem

i
j/timeidefault} (13)

wMem
i
j = {Memgearj , Featurei} (14)

4.3.1 Feature Selection

As mentioned in Section 2.2.4, the high-level features, such
as power, SM utilization, and memory utilization, cannot
provide enough information for modeling. So we introduce
performance counter metrics as input features.

The CUPTI [15] supports profiling over 1100 per-
formance counters on NVIDIA high-end GPUs, such as
RTX2080Ti and RTX3080Ti. Inspired by Arafa’s work
[7], we treat each Parallel Thread Execution (PTX) in-
struction as a basic unit of energy consumption and
focus on performance counter metrics that reflect the
density of different types of PTX instructions. We list
the selected metrics in Table 2. A metric with prefix
sm__inst_executed_pipe_ represents a type of PTX in-
struction. The suffix pct_of_peak_sustained_active

means the percentage of actual mean instruction throughput
to the theoretical maximum sustained instruction through-
put in an activity clock cycle [15].

TABLE 2
Selected Features

Notation Full name or expression

IPCPct sm inst executed.PctSus

L1MissPerInst
l1tex t sectors lookup miss.sum /
sm inst executed.sum

L1MissPct
l1tex t sectors lookup miss.sum /
(l1tex t sectors lookup miss.sum +
l1tex t sectors lookup hit.sum)

L2MissPerInst
lts t sectors lookup miss.sum /
sm inst executed.sum

L2MissPct
lts t sectors lookup miss.sum /
(lts t sectors lookup miss.sum +
lts t sectors lookup hit.sum)

ALUPct sm inst executed pipe alu.PctSus
ADUPct sm inst executed pipe adu.PctSus
FP16Pct sm inst executed pipe fp16.PctSus
FMAPct sm inst executed pipe fma.PctSus
FP64Pct sm inst executed pipe fp64.PctSus
XUPct sm inst executed pipe xu.PctSus
TNSPct sm inst executed pipe tensor.PctSus
CBUPct sm inst executed pipe cbu.PctSus
LSUPct sm inst executed pipe lsu.PctSus
TEXPct sm inst executed pipe tex.PctSus
UNIPct sm inst executed pipe uniform.PctSus

Note: PctSus = sum.pct of peak sustained active

According to related work [4], DRAM and L2 cache
miss information may help predict energy and time. How-
ever, profiling performance counters of DRAM and FBPA
need several kernel replays which cannot be implemented
online. We design several composite metrics as alterna-
tives, also shown in Table 2. The L1MissPerInst or
L2MissPerInst means the number of L1 or L2 cache miss
per instruction. The L1MissPct or L2MissPct means the
percentage of L1 or L2 cache miss. In conclusion, we use
metrics listed in Table 2 as features.

4.3.2 Benchmark Selection and Training Data Collection

We use the PyTorch Benchmarks [18], which contain
over 40 mini ML applications, for training. We select
the AIBench Training Component Benchmark [13], the
benchmarking-gnns [16], a ThunderSVM [19] workload,
and a ThunderGBM [20] workload as the testing set. The
benchmarking-gnns is a graph neural networks (GNN)
benchmarking framework including seven datasets (CLB,
CSL, SBM, TSP, TU, MLC, and SP) and nine models.

For each application in the training set, we profile fea-
tures under the reference clock configuration. We measure
the actual energy (engSM

i
j) and time (timeSM

i
j) under all

available SM clock gears and the memory clock controlled
by the NVIDIA default scheduling strategy. We also mea-
sure the actual energy (engMem

i
j) and time (timeMem

i
j)

under all available memory clock gears and the optimal
SM clock gear. Feature, energy, and time data construct four
training data sets (EngTrSM , T imeTrSM , EngTrMem, and
T imeTrMem). We conduct each measurement ten times and
take the average to reduce the training data noise.

4.3.3 Prediction model

We construct energy and time prediction models with the
XGBoost [12], a widely used supervised machine learning
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Fig. 5. The period detection errors of GPOEO and ODPP. GPOEO gives lower errors compared to ODPP.

model improved from the gradient tree boosting algorithm.
Combined with our scenario, we apply the XGBoost to build
four prediction models shown in Equation 1 and 2. The
model construction processes are similar, so we take the
energy consumption model EngMdlSM as an example to
introduce these processes. For EngMdlSM , the XGBoost
weights and sums several regression trees and can be de-
fined as follows:

̂engSM
i
j =

K∑

k=1

fk(wSM
i
j), fk ∈ F (15)

where ̂engSM
i
j is the predicted energy consumption of the

input vector wSM
i
j , which contains the features of applica-

tion i and the SM gear j. fk represents the kth regression
tree, and K is the number of regression trees. We use the
training datasets EngTrSM to train the model EngMdlSM .
During training, we use the grid search method to tune the
hyper-parameters such as the minimum loss reduction, the
maximum depth of a tree, the minimum sum of instance
weight, and the maximum number of nodes to be added.

4.3.4 Online Local Search

To fix minor errors caused by multi-objective predicted
models, we perform a local search around the predicted
optimal clock configuration. We use online detected period
and energy data measured during one period to evaluate
different clock frequencies and find the actual optimal clock
configuration. We first conduct a local search for the mem-
ory clock because wrong memory clock frequencies (too
low) can lead to severe slowdowns. Based on the optimal
memory clock frequency, we conduct another local search
for the SM clock. According to our experimental results and
Schwarzrock’s work [17], the relationship between energy
optimization objectives and clock gears is generally a convex
function. Based on this observation, we use the golden-
section search method [21] to accelerate our local search.
We first find a gear with a worse objective value on each
side of the predicted optimal gear to determine the search
interval. Then we follow the classic golden section-search
process [21] to attempt different clock gears. Due to possible
errors of measured energy and periods, we fit the attempted
points to obtain a convex function. Then we use the convex
function to determine the optimal clock gear.

4.3.5 Optimize aperiodic applications

The power and utilization traces of some applications are
aperiodic, such as applications in CSL and TUs datasets,

the ThunderSVM [19] workload, and the ThunderGBM [20]
workload. We can not evaluate their execution time or
energy consumption with data measured in one period. In
this case, we fix the measurement time interval and the use
measured mean number of instructions executed per second
(IPS) and power to evaluate the execution time and energy
consumption. If the number of instructions in the program
is Instsum, the execution time can be calculated as time =
Instsum/IPS, and the energy consumption can be calcu-
lated as energy = power ∗ time = Instsum ∗ power/IPS.
Then we can evaluate different clock frequency configura-
tions.

Based on these analyses, we apply GPOEO to aperi-
odic applications. We first measure performance counter
metrics in the fixed time interval and predict the optimal
clock frequency configuration. In the online local search, we
measure and calculate timedefault and energydefault under
the NVIDIA default scheduling strategy as the baseline.
Then, we follow the golden-section search strategy and
collect timei and energyi under different clock frequency
configurations near the predicted optimal clock frequency
configuration. Finally, we compare these timei and energyi
with the baseline to find the optimal clock frequency config-
uration.

5 EVALUATION

We evaluate our GPOEO system in this section. We first
introduce the experimental step. Then, we evaluate the
accuracy of the period detection algorithm and energy-
performance prediction models. Finally, we analyze the
online energy-saving results on various ML benchmarks.

5.1 Experimental Setup

5.1.1 Hardware and Software Platforms

Our experimental platform is a GPU server equipped with
one NVIDIA RTX3080Ti GPU, one AMD 5950X CPU, and 64
GB memory. The software environment is NVIDIA Driver
470.57 and CUDA 11.3. RTX3080Ti supports continuously
adjustable SM clock frequency, from 210 MHz to 2,025
MHz, and the step is 15 MHz. We find that some higher
frequencies are not practical or stable. Under lower frequen-
cies, applications cannot save energy while suffering severe
slowdowns. Therefore, we only consider the frequencies in
the middle part, which can run stably and may improve
energy efficiency. We treat each SM clock frequency as an
SM clock gear, from SMgear16 = 450 MHz to SMgear114
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Fig. 6. Period detection errors of ODPP and GPOEO on the CLB GAT
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Fig. 7. Period detection errors of ODPP and GPOEO on the
SBM 3WLGNN application under different SM clock frequencies

= 1,920 MHz. RTX3080Ti supports 5 global memory clock
frequencies: Memgear0 = 450 MHz, Memgear1 = 810 MHz,
Memgear2 = 5,001 MHz, Memgear3 = 9,251 MHz, and
Memgear4 = 9,501 MHz. We select SMgear106 = 1,800 MHz
and Memgear3 = 9,251 MHz as reference frequencies, which
are used in performance counter profiling.

5.1.2 Benchmarks

We train our machine learning models using data collected
from PyTorch Benchmarks [18]. We then test the trained
models on AIBench [13] and benchmarking-gnns [16]. In
addition to deep neural networks, we also use two classical
ML workloads, the ThunderSVM [19] and ThunderGBM
[20], in our evaluation.

5.2 Accuracy and Sensitivity of Period Detection

We analyze our period detection algorithm on 34 differ-
ent ML applications. Figure 5 shows the period detection
errors of GPOEO and ODPP [11] using the NVIDIA de-
fault scheduling strategy. GPOEO is far more accurate than
ODPP. The mean period error of GPOEO is 1.72%, while
the mean error of ODPP is 23.16%. The maximum error of
GPOEO is 7.2%, and 32 errors are within 5%. For ODPP,
nine errors are above 50%, nine errors are among 5-13%, and
sixteen errors are within 5%. GPOEO is more accurate than
ODPP on 29 applications. For the other three applications,
the accuracy differences are within 1%.

Figure 6, 7, and 8 show the periods detection errors
of GPOEO and ODPP under varying SM clock frequen-
cies and fixed memory clock frequency. GPOEO exhibits
stable low errors (within 5% for most cases). This phe-
nomenon indicates that GPOEO is sensitive to clock fre-
quency changes. However, ODPP shows poor stability. On
CLB GAT and SBM 3WLGNN, ODPP gains huge errors
under three and ten SM clock frequencies, respectively.
This instability causes inaccurate prediction models, which
ODPP builds online. For TSP GatedGCN, ODPP gains huge
errors (nearly 100%) under all frequencies because it is
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Fig. 9. Prediction errors by varying the SM clock (grouped by different
SM clock ranges)
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Fig. 10. Prediction errors by varying the SM clock (grouped by different
datasets)

disturbed by high-frequency noise, only detects the local
short period, and ignores the real global period.

5.3 Accuracy of Energy and Execution Time Prediction

In this section, we evaluate four prediction models. We
measure selected features (Table 2) during one iteration of
each ML application under the reference SM and memory
clock frequency (1800 MHz and 9251MHz). Then we use
these features and different SM and memory clock frequen-
cies as input of our multi-objective models to predict the
relative energy consumption and execution time relative
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Fig. 12. Prediction errors by varying the memory clock (grouped by
different datasets)

to the NVIDIA default scheduling strategy. Note that for
the SM clock models EngMdlSM and T imeMdlSM , we
let the NVIDIA default scheduling strategy control the
memory clock and then predict and select the optimal SM
clock frequency. For the memory models EngMdlMem and
T imeMdlMem, we assume that the SM clock is already set
to the optimal frequency and then predict and select the
optimal memory clock frequency.

For the SM clock models, we collect 10,890 prediction
values in total (2 objectives, 55 applications, and 99 SM clock
frequencies). The mean prediction errors of energy con-
sumption and execution time are 3.05% and 2.09%, respec-
tively. Next, we analyze the distributions of errors sorted by
SM clock frequency ranges and application datasets. Figure
9 shows the prediction errors of energy consumption and
execution time separately grouped by different SM clock
frequency ranges. Each clock frequency range contains 495
or 550 prediction values depending on the number of energy
gears included in the clock range (nine or ten gears). For all
clock ranges, most energy and time prediction errors are
less than 5%. Most scattered errors are within 20%. This
phenomenon proves that our energy prediction model and
execution time prediction model are accurate for different
SM clock frequencies. Figure 10 shows the prediction er-
rors grouped by different application datasets. Each group

contains 594 to 891 prediction values depending on the
number of applications included in the datasets (six to
nine applications). For all application datasets, most energy
and execution time prediction errors are less than 5%. This
phenomenon demonstrates that our SM clock models are
applicable to all these applications.

For the memory clock models, we collect 550 predic-
tion values in total (2 objectives, 55 applications, and 5
memory clock frequencies). The mean prediction errors of
energy consumption and execution time are 2.72% and
2.31%, respectively. Figure 11 shows the prediction errors of
energy consumption and execution time separately grouped
by different memory clock frequencies. For all clock fre-
quencies, most energy and time prediction errors are less
than 5%. Figure 12 shows the prediction errors grouped by
different application datasets. For all application datasets,
most prediction errors are also within 5%. These phenomena
demonstrate that our memory clock models are applicable
to all memory frequencies and all these applications.

5.4 Results of Online Optimization

Our multi-objective models predict the energy consumption
and execution time of one iteration under different SM and
memory clock gears. Users can use diverse energy efficiency
objectives to select the predicted optimal energy gears and
guide local search to find the actual optimal energy gears. In
this experiment, we set the objective function to minimize
the energy consumption within the slowdown constraint of
5%. For each ML training application, we use the energy
consumption and execution time under the NVIDIA default
scheduling strategy as the baseline. Then we run these
applications with our GPOEO system to optimize the energy
consumption online. We also implement the ODPP [11] as a
comparison.

5.4.1 Medium benchmark suite

Figure 13 shows the online optimization results of the
AIBench, the ThunderSVM workload, and the Thun-
derGBM workload. We use energy saving, slowdown (ex-
ecution time increase), and ED2P (ED2P = Energy ×
T ime2) saving to evaluate GPOEO and ODPP [11]. GPOEO
achieves an average energy saving of 14.7% and an average
ED2P saving of 6.8%, with an average execution time
increase of 4.6%. Especially, GPOEO achieves significant
energy saving (≥ 20%) on four out of sixteen applications.
On AI I2T, GPOEO achieves 29.5% energy saving and 0.1%
slowdown. Table 3 shows the online optimization process
for SM and memory clocks. On AI I2T, the error of our
multi-objective prediction models is only -2 SM gears. This
error is eliminated by the online local search within five
steps so that the vast energy saving can be achieved. For
AI 3DFR, AI 3DOR, AI I2IP, and AI TS, GPOEO obtains
considerable energy savings (18-24%) with reasonable slow-
downs (less than 8%). The online optimization processes
of these applications are similar to AI I2T. The prediction
errors of SM gear are relatively small (within 11 SM gears),
and the online local search reduces these errors in three to
five steps.

AI FE, AI ICMP, AI IGEN, AI LRK, AI OBJ, AI S2T,
and AI ST have medium energy-saving opportunities (10-
21%) with the slowdown constraint of 5%. GPOEO gains
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Fig. 13. Energy savings, slowdown, and ED2P saving compared to the NVIDIA default scheduling strategy on AIBench and traditional ML
applications

TABLE 3
Online optimization process for SM and memory clock on AIBench

3DFR 3DOR FE I2IC I2IP I2T ICMP IGEN LRK OBJ S2T ST T2T TS

Oracle SM Gear 104 102 109 104 91 94 107 71 88 100 108 39 100 107
Prediction Error (SM gear) -11 5 -13 2 3 -2 -13 22 24 -4 -15 11 5 -5
Search Error (SM gear) -2 -3 -8 1 -2 0 -2 -3 -2 0 -7 4 -2 -1
# of Search Steps (SM) 5 4 4 3 4 3 6 8 9 4 5 5 4 4
Oracle Mem clock (MHz) 9501 9251 9501 9501 9251 9251 9251 405 5001 9251 9251 810 9251 9501
Predicted Mem clock 9501 9501 9251 9501 9501 9501 9501 405 5001 9251 9501 405 9251 9501
Searched Mem clock 9501 9501 9501 9501 9501 9251 9251 405 5001 9251 9251 810 9251 9501
# of Search Steps (Mem) 2 2 3 2 2 2 2 3 3 3 2 3 3 2

medium energy savings (8-14%) with reasonable slow-
downs (2-7%) on these seven applications. Two reasons
cause GPOEO does not make full use of energy-saving po-
tentials. For AI FE and AI S2T, the period detection and fea-
ture measurement get inaccurate data due to some abnormal
iterations. Therefore prediction errors are significant and
local search can not eliminate these errors. For the conve-
nience of experiments, we just train each machine learning
model for a few iterations, and only iterations after opti-
mization processes can enjoy the optimal SM gear. However,
in real-life scenarios, the model will be trained on many
more iterations, for which our approach can give higher en-
ergy saving. GPOEO does not perform well on AI I2IC and
AI T2T. These two applications are computation-intensive
with little energy-saving opportunities (1% and 4%). For
non-periodical applications TGBM and TSVM, GPOEO also
achieves good results, saving 17.9% and 12.0% energy with
slowdowns of 3.5% and 4.7%, respectively. As for the mem-
ory clock, the oracle frequencies of thirteen applications
are 9,251 MHz or 9,501 MHz. Our method finds oracle
frequencies on eleven applications and finds nearby 9,501
MHz on the other two applications within two or three
search steps. In fact, the energy consumption and execution
time are similar under these two memory clock frequen-
cies. GPOEO also finds low oracle memory frequencies
on AI IGEN, AI LRK, and AI ST within three steps. Our
method meets the performance loss constraint of 5% on

nine applications, while ODPP only achieves the same goal
on four applications. For GPOEO, only iterations after opti-
mization processes are guaranteed to meet the performance
loss constraint, and the previous iterations may result in a
violation of the performance loss constraint.

Compared to ODPP, our approach can improve the
energy saving by 9.2%, improve the ED2P saving by
20.4%, and reduce the slowdown by 5.0% on average.
GPOEO performs better than ODPP on all sixteen appli-
cations. Especially, our approach gains both larger energy
savings and lighter slowdowns on eight applications. For
AI 3DFR, AI GEN, AI LRK, and AI S2T, GPOEO achieves
more considerable energy savings with similar slowdowns.
Our method gains similar energy savings with lighter slow-
downs on AI I2IC and TSVM. ODPP builds two piecewise
linear models online to predict energy and time. The accu-
racy of these two models is highly dependent on the period
detection accuracy. Poor period detection accuracy of ODPP
causes significant prediction errors, so ODPP shows heav-
ier slowdowns and less energy saving. On non-periodical
applications TGBM and TSVM, ODPP shows much worse
results than GPOEO. This phenomenon demonstrates that
ODPP cannot handle non-periodical applications, while
GPOEO can.
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Fig. 14. Energy saving, slowdown, and ED2P saving compared to the NVIDIA default scheduling strategy on benchmarking-gnns applications
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5.4.2 Large benchmark suite

We also use the benchmarking-gnns suite to evaluate
our method and ODPP [11] extensively. Figure 14 shows
the online optimization results of 55 applications in the
benchmark-gnns. GPOEO achieves an energy saving of
16.6% and an ED2P saving of 7.8%, with an execution
time increase of 5.2% on average. In comparison, ODPP
gains an energy saving of 6.1% and an ED2P saving of -
4.5%, with an execution time increase of 5.6% on average.
GPOEO saves ED2P on 50 applications, while ODPP only
gains ED2P saving on 19 applications. Our method meets
the performance loss constraint of 5% on 22 applications.
ODPP achieves the same goal on 27 applications because it
does not profile performance counters and has a lower mea-
surement overhead. With the help of performance counter
features, GPOEO saves more energy than ODPP on 48
applications. Applications in CSL and TU datasets are non-
periodical. ODPP can not handle these applications and
only saves 0.73% of energy with a slowdown of 1.32% on
average. On the contrary, GPOEO gains an energy saving of
20.0% with a slowdown of 5.2% on average. These phenom-
ena show that GPOEO has better performance and broader
applicability than ODPP.

5.5 Overhead Evaluation

To evaluate the overhead of the GPOEO system, we run
AIBench applications with the entire GPOEO system except
adjusting SM and memory clocks. We also manually set the
number of local search steps shown in Table 3. As shown in
Figure 15, all energy and time overheads are within 4%.

6 RELATED WORK

GPU performance counter profiling is expensive. Most GPU
energy optimization work [4], [6], [7], [22] is offline. Most
offline work [4], [6], [22] concentrates on modeling and
predicting energy and performance under different config-
urations. Other work studies GPU energy and performance
from the view of assembly instructions [6], [7].

A few studies [10], [11] realize GPU online energy con-
sumption optimization. Majumdar’s et al. [10] exploit low-
overhead fine-grained profiling functions supported by the
APU platform. It obtains the stream of energy, execution
time, throughput, and performance counter metrics at ker-
nel granularity without worrying about time and energy
overhead. Therefore it can catch energy-saving chances at
kernel granularity and save considerable energy with low
overhead. Majumdar’s work cannot be transplanted to the
NVIDIA GPU platform, considering the significant amount
of code instrumentation (around each kernel) and the high
overhead of continuously profiling. Our GPOEO targets the
NVIDIA GPU platform with high-overhead online profiling
(time overhead > 8% and energy overhead > 10%). We pro-
file performance counter metrics in only one period to mini-
mize overhead. We set one optimal energy configuration for
one iteration phase, so we may miss energy saving chances
within the iteration period. ODPP [11] proposes an online
dynamic power-performance management framework for
GPUs using coarse-grained features.

ML dedicated energy optimization work [8], [9], [23]–
[25] also has emerged. These studies explore hyperparame-



12

ter and model structure configurations in the training stage
to improve the energy efficiency in the inference stage.

7 CONCLUSION

We have presented GPOEO, a new online GPU energy
optimization framework for iterative machine learning (ML)
workloads. GPOEO detects iterative periods, measures per-
formance counter features, and predicts the optimal energy
configurations automatically. We evaluate GPOEO on 71
ML applications running on an NVIDIA RTX3080Ti GPU.
GPOEO achieves a mean energy saving of 16.2% at a modest
cost of 5.1% performance loss compared to the NVIDIA
default scheduling strategy. The multi-objective prediction
models need offline training, so future work includes ex-
ploring model free methods.
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