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To test the validity of theoretical models, their predictions must be compared to experimental 

data. Instead of choosing one out of many to describe mass measurements of zirconium, 

Bayesian statistics allows to average over a variety of models.  

 

 

One of the most spectacular quantum effects in atomic nuclei is the emergence of a shell 

structure. Protons and neutrons are interacting through the strong force, and rearrange 

themselves into a shell structure that is similar to the one observed in the electronic structure 

of atoms. Since Maria Goeppert Mayer’s pioneering work1, which earned her the Noble Prize 

in Physics in 1963, nuclear physicists have gained a better understanding of the shell structure. 

However, important questions such as the origin of an additional binding energy, named the 

Wigner energy, in nuclei, where neutrons and protons occupy the same shell orbitals2,3, remain 

open. Now, writing in Nature Physics, Alec Hamaker and colleagues have provided answers 

to this question by performing accurate mass measurements of zirconium isotopes4. 

 

The mass measurements are then combined with an advanced statistical analysis in order to 

shed light on the underlying shell structure. Hamaker and colleagues used a theoretical 

approach  based on energy density functional theory. Originally developed in the field of 

condensed matter physics by Pierre Hohenberg and Walter Kohn5, this theory has been 

successfully applied to nuclear physics6 and moreover, has become a common tool for 

describing the properties of atomic nuclei. 

 

As alluded to in its name, the key element of density functional theory is the functional of the 

density that describes the properties of the system under scrutiny. Knowing the exact functional 

would allow to determine the actual ground state properties of the system at a given density. 

As the ideal functional is not known, one needs to use approximations that are often based on 

different hypotheses. Given their phenomenological nature, most of the available functionals 

are characterised by a number of adjustable parameters, which can be extracted from a fit to 

the experimental data.  

 

Although the majority of available functionals tend to reproduce the nuclear observables 

reasonably well, their extrapolations to unchartered territories of the nuclear chart lead to 

different results. This raises the questions on how one can rely on such a variety of 

extrapolations and which functional one should use to compare new experimental results to? 

 

The answer Hamaker and colleagues have employed is rather simple and illuminating7. Instead 

of selecting one particular model to compare their measurements to, they averaged over a pool 

of models using Bayesian statistics. Figure 1 illustrates the procedure: given two models trained 

on a set of data, a new model can be built by using a weighted average of the original two. 

According to the Bayesian model average procedure, the weights are calculated by using the 

data of a validation set. Such a data-driven approach allows to combine the best out of a family 



of models by obtaining results that are less dependent on the choices underlying the model, for 

example, the optimization of a certain parameter of a given functional. 

 
Figure 1 Schematic representation of Bayesian model averaging). Two models (orange and green lines) are trained on a 

given data set (blue circles). Bayesian model averaging provides a new model (purple line) from the weighted average of 

models 1 and 2. Hereby, the weights are calculated by using a validation data set (red squares). 

On top of each individual model considered for the Bayesian model averaging (BMA), 

Hamaker and colleagues suggested the use of a simple Gaussian process8  to compensate for 

possible deficiencies of a given model in reproducing some given observable.  The main 

advantage of using a Gaussian process instead of a more sophisticated neural networks9 is the 

reduced number of adjustable parameters and the straightforward definition of error bars.  

Thanks to the use of BMA, Hamaker and colleagues provide a solid conclusion concerning 

the missing physics in the adopted nuclear models that can not simply taken into account by 

slightly readjusting the underlying coupling constants. 

 

When compared to the mass measurements, the authors find  a discrepancy between theory 

and experiment with a significance of more than one standard deviation. This represent a 

clear challenge for current theoretical models, and thus this work proves that in not sufficient 

to perform better adjustement of functional in order to better describe the data, but new 

physics should be explored as for example the competition between deformation effects, 

isospin breaking effects, and proton-neutron pairing10.  
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