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Abstract

Recent progress in the runtime analysis of evolutionary algorithms (EAs) has allowed

the derivation of upper bounds on the expected runtime of standard steady-state genetic

algorithms (GAs). These upper bounds have shown speed-ups of the GAs using

crossover and mutation over the same algorithms that only use mutation operators

(i.e., steady-state EAs) both for standard unimodal (i.e., OneMax) and multimodal

(i.e., Jump) benchmark functions. The bounds suggest that populations are beneficial

to the GA as well as higher mutation rates than the default 1/n rate. However, making

rigorous claims was not possible because matching lower bounds were not available.

Proving lower bounds on crossover-based EAs is a notoriously difficult task as it is

hard to capture the progress that a diverse population can make. We use a poten-

tial function approach to prove a tight lower bound on the expected runtime of the

(2+1) GA for OneMax for all mutation rates c/n with c < 1.422. This provides the

last piece of the puzzle that completes the proof that larger population sizes improve

the performance of the standard steady-state GA for OneMax for various mutation

rates, and it proves that the optimal mutation rate for the (2+1) GA on OneMax is

(
√

97 − 5)/(4n) ≈ 1.2122/n.
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1 Introduction

The runtime analysis of randomized search heuristics like evolutionary algorithms

(EAs), simulated annealing, ant colony optimization and estimation-of-distribution

algorithms is a young and active subfield in algorithm research that has produced

remarkable results in the last 20 years [2,11,15,23]. Its main goal is to understand

the working principles of the algorithms in different scenarios by deriving runtime

bounds depending on problem characteristics, choice of algorithms and parameters.

This line of research started with simple evolutionary algorithms using mutation only.

Still today, the role of crossover, also called recombination, is less well understood

than the one of mutation. In fact, explaining when recombination and mutation based

genetic algorithms (GAs)1 perform better than more traditional general purpose search

heuristics that use mutation alone is regarded as one of the fundamental problems in

evolution-inspired computation.

Traditionally proofs showing that crossover is a useful operator relied either on

excessively low crossover rates [16,18] or on some diversity-enforcing mechanism

to make recombination effective by increasing the probability that members of the

population are different [8,10,20,22,27]. However, it was never shown whether this

enforced diversity was necessary or whether it was an additional requirement for the

proofs to hold. Recently some results have appeared proving the superiority of standard

steady state GAs2 over mutation-only algorithms, without the need of any additional

diversity enforcing mechanisms. Dang et al. [7] proved that for sufficiently large

population sizes, the (μ+1) GA is at least a linear factor faster than the best algorithm

using only standard bit mutation for the Jump benchmark function. Hence, they showed

that crossover may help algorithms to escape more quickly from local optima. Sutton

[28] even proved that for the NP-hard Closest String problem from computational

biology, the (μ+1) GA with sufficiently large population size and restarts is a fixed

parameter tractable (FPT) algorithm while if only standard bit mutation is used (i.e.,

(μ+1) EA) it is not.

Strikingly, recombination has also been proven to be useful on unimodal functions.

Lengler [21] has shown that there exist monotone functions for which the (μ+1) EA

with not too low standard bit mutation rate c/n (i.e., c > 2.13) requires exponential

runtime with high probability while the (μ+1) GA with sufficiently large population

sizes can solve them in O(n log n) expected runtime for arbitrary mutation rates i.e.,

Θ(1)/n. Analyses have revealed that the (μ+1) GA is faster than the (μ+1) EA using

any standard bit mutation rate and population size, even on unimodal functions where

the latter is particularly efficient i.e., OneMax [5,6]. Furthermore, if the fitness of

offspring that are identical to their parents is not unnecessarily re-evaluated, then the

algorithm is faster than any unary unbiased black box algorithm for the problem [19],

albeit slower than if the diversity is enforced [3,27]. To prove these results, precise

1 The term “evolutionary algorithms” is commonly used as an umbrella term for evolutionary algorithms

with and without crossover. We use the term “Genetic Algorithm (GA)” to emphasize the use of crossover

in an evolutionary algorithm.

2 Steady state GAs are those that replace at most a proper subset of the population in each generation (usually

one new individual is created). Typically they use standard bit mutation which flips each bit independently

with probability c/n.
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analyses up to the leading constants are required since for OneMax the algorithms

have the same asymptotic expected runtime O(n log n) for moderate population sizes.

An important insight from these analyses is that if diversity is enforced as in Sud-

holt’s work [27], then inevitably there are no advantages of using population sizes

greater than μ = 2 for OneMax. On the other hand, the analysis of Corus and Oliveto

[6] provides upper bounds that decrease with the population size (up to some sub-

logarithmic limit). For large enough population sizes the best derived upper bound is

roughly 1.64n ln n while, for μ = 2, Corus and Oliveto only provide a larger upper

bound of 4ecn ln n
c(c+4)

+ O(n) [5]. Due to a mistake in one probability calculation this turns

out to actually be 9ecn ln n
c(2c+9)

+ O(n).

Indeed, all the positive results summarised above regarding the plain (μ+1) GA

required sufficiently large population sizes. While the comparative statements with the

mutation-based algorithms were possible because of the availability of lower bounds

on their expected runtime, rigorously showing whether the suggested population sizes

are actually necessary requires lower bounds on the expected runtime of the (μ+1) GA.

Proving lower bounds for GAs with crossover is a notoriously hard task. The only avail-

able analysis concerning a standard GA is the proof that the simple genetic algorithm

(SGA [12]) cannot solve OneMax in polynomial time with overwhelming probability

due to the ineffectiveness of the fitness proportional selection operator [25,26]. There

have been recent attempts to generalize proof methods like the family tree technique

to crossover-based algorithms; however, these only apply in a specific setting without

mutation.

Providing lower bounds on the expected runtime of the (μ+1) GA for OneMax

has turned out to be surprisingly difficult. Sudholt simplified the analysis by con-

sidering a “greedy” (2+1) GA that always selects amongst the fittest individuals in

the population and is sped-up by automatically achieving the best possible crossover

operation between different parents [27]. A less greedy (2+1) GA was considered by

Corus and Oliveto where individuals are only immediately crossed over optimally if

the Hamming distance between the parents is larger than 2 [5]. These simplified algo-

rithms allow the analysis to ignore the improvements which may occur in standard

GAs when one parent is crossed over with another one of different fitness. However,

it was never proven that the algorithms are indeed faster than the standard (2+1) GA,

hence that the bounds are also valid for the latter algorithm. In this paper we provide

a lower bound for the (2+1) GA with no simplifications that matches its upper bound

up to the leading constant, hence providing a rigorous proof that larger populations

are beneficial to the GA for OneMax. The preciseness of the results also allows us

to derive that the value of c ∈ (0, 1.422] that yields the optimal mutation rate c/n is

approximately c = 1.21221445.

A major difficulty in proving rigorous lower bounds for populations with crossover

is to find a way to aggregate the state of the algorithm such that it accurately captures

the current distance from the optimum, but also the potential improvements of the

crossover operator. These advancements could be very big if the parents have a large

Hamming distance, and our aim is to show that this rarely happens. We solve the

aggregation problem for the (2+1) GA by defining a potential function that captures

the current fitness and opportunities for easy improvements through crossover. By
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showing bounds on the expected increase in the potential, we are able to quantify how

the distance to the optimum decreases in one generation. The challenge lies in proving

this for every possible population, from those with identical individuals to those with

a good amount of diversity. Once the potential is appropriately bounded, we can use

standard drift analysis arguments to bound the expected time from below.

1.1 Main Contributions

The expected optimisation time of the (2+1) GA is bounded from above as follows.

Theorem 1 The expected optimisation time of the (2+1) GA with mutation rate c/n,

c > 0 a constant, on OneMax is at most

9ec

c(2c + 9)
· n ln(n) + O(n).

For c = 1 this is 9
11

· en ln(n) + O(n) ≈ 2.224n ln(n) + O(n). The upper bound

follows from applying the analytical framework in [5] with a corrected transition

probability for pr , using the value 1/(4e) instead of 5/(24e) (we shall give more

details in Sect. 3). It can also be proven with mild adaptations of the proof of [27,

Theorem 4]. We provide a self-contained proof in Sect. 3.

Our main contribution is the following lower bound that matches the upper bound

proven in Theorem 1 up to small-order terms.

Theorem 2 The expected optimisation time of the (2+1) GA with mutation rate c/n,

and 0 < c ≤ 1.422 a constant, on OneMax is at least

9ec

c(2c + 9)
· n ln(n) − O(n log log n).

Since the bounds from Theorems 1 and 2 have the same leading constant 9ec

c(2c+9)
,

which is minimised for

c =
√

97 − 5

4
≈ 1.21221445,

we identify this as the optimal mutation rate for the (2+1) GA (up to small-order terms)

within the range of rates covered by Theorem 2.

Theorem 3 Amongst all mutation rates c/n with c ∈ (0, 1.422], the choice c =
√

97−5
4

is the optimal mutation rate of the (2+1) GA on OneMax, up to small-order terms.

Then the expected optimisation time is ≈ 2.18417n ln(n) + O(n).

The best identified mutation rate for the (2+1) GA is lower than the one minimising

the upper bound for larger population sizes μ ≥ 5 (it is at least 1.425/n and increases

with μ) always providing upper bounds below 1.7n ln n and decreasing with μ [6].

This implies that the (2+1) GA with mutation rate
√

97−5
4n

is at least 28% slower than

any (μ+1) GA with μ ≥ 5 and appropriate mutation rates.
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Algorithm 1 (2+1) GA

Initialize P = {x1, x2} by selecting two search points from {0, 1}n independently and uniformly at

random (u. a. r.).

for t ← 1, 2, . . . do

Select y1 and y2 from P u.a.r. with replacement.

Create z by applying uniform crossover to y1 and y2.

Flip each bit in z independently with probability c/n.

Remove the worst of x1, x2 and z, breaking ties u. a. r.

end for

Structure of the paper. Section 2 formally defines the (2+1) GA and lists important tools

for the analysis, including the drift theorem used for our main result. Section 3 presents

the above-mentioned, corrected upper bound from Theorem 1 and its self-contained

proof. In Sect. 4, we introduce the potential function that captures the state of the

(2+1) GA and is crucial for the drift analysis proving the lower bound in Theorem 2.

As determining the drift requires a careful case analysis, we give a roadmap of this

analysis in Sect. 5, followed by the technical Sects. 6–8 that analyze the drift in different

scenarios. In Sect. 9 we then put all pieces of our analysis together to complete the proof

of Theorem 2. In addition, Sect. 10 gives empirical results and results of regression

analyses. The latter confirm that our theoretical results are remarkably precise and

provide further insight into small-order terms. We finish with some conclusions. To

streamline the presentation of the most important cases in the drift analysis, some less

insightful proofs have been moved to an appendix.

This paper extends a previous conference paper [24] where most proofs had to be

omitted because of space constraints. The experimental results have not been published

before either.

2 Preliminaries

The (2+1) GA is defined in Algorithm 1. The algorithm initialises the population with

two randomly chosen individuals. At each generation it selects two random parents

with replacement to be mated via uniform crossover. The operator assigns each bit to

the offspring by selecting the corresponding bit from one parent with probability 1/2

and from the other with the same probability. Standard bit mutation is then applied to

the offspring by flipping each of its bits independently with probability c/n. Finally,

the worst individual amongst the parents and the offspring is removed to select the

new population. Ties are broken uniformly at random.

We will analyse the expected runtime of the algorithm to optimise the function

f (x) = OneMax(x) =
∑n

i=1 xi , which counts the number of 1-bits in a bitstring.

Formally, the runtime is defined as the number of fitness function evaluations, which

equals the smallest t such that the current population contains an optimum, up to an

additive term of at most 2 stemming from evaluating the initial population.

Throughout this article, we will use state-of-the-art analysis techniques for random-

ized search heuristics, including drift analysis and concentration inequalities. In the
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following, we list three important tools, starting with the drift theorem that is crucial

for the lower bound on the runtime.

Theorem 4 (Multiplicative drift, lower bound, e. g., [29])

Let X t , t ≥ 0, be a stochastic process, adapted to a filtration Ft , over a state space

S ⊆ R
≥xmin , where xmin > 0. Assume that X t is non-increasing, i. e., X t+1 ≤ X t for

all t ≥ 0. Let T be the smallest t ≥ 0 such that X t ≤ xmin. If there exist positive real

numbers β, δ > 0 such that for all t < T it holds that

1. E(X t − X t+1 | Ft ) ≤ δX t

2. P(X t − X t+1 ≥ β X t ) ≤ βδ/ ln(X t )

then

E(T | F0) ≥
1 − β

1 + β

ln(X0/xmin)

δ

The following Chernoff bound goes back to [4] and is formulated in the style of [9,

Theorem 1.10.1].

Theorem 5 Let X1, . . . , Xn be independent random variables taking values in [0, 1].
Let X :=

∑n
i=1 X i . Let δ ≥ 0. Then

P(X ≥ (1 + δ)E(X)) ≤ e− min{δ2,δ}E(X)/3.

The following lemma bounds a sum by an integral.

Lemma 6 For any integrable function f : R → R, the following statements hold.

1. If f is non-increasing in [a, b],
∑b

i=a f (i) ≤ f (a) +
∫ b

a
f (i) di .

2. If f is non-decreasing in [a, b],
∑b

i=a f (i) ≤ f (b) +
∫ b

a
f (i) di .

3. If there is an α ∈ [a, b] such that f is non-increasing in [a, α] and non-decreasing

in [α, b] then
∑b

i=a f (i) ≤ f (a) + f (b) +
∫ b

a
f (i) di .

Proof The first statement follows from splitting off the term f (a) and using
∫ j

j−1 f (i) di ≥ f ( j) for all j ∈ [a+1, b], which follows from f being non-increasing.

This implies
∑b

i=a+1 f (i) ≤
∫ b

a
f (i) di . The second statement is proved similarly. For

the last statement, we note
∑b

i=a f (i) ≤
∑⌊α⌋

i=a f (i)+
∑b

i=⌈α⌉ f (i). Then we apply the

first statement to
∑⌊α⌋

i=a f (i) and the second statement to
∑b

i=⌈α⌉ f (i), yielding a bound

of f (a)+ f (b)+
∫ ⌊α⌋

a
f (i) di+

∫ b

⌈α⌉ f (i) di ≤
∑b

i=a f (i) ≤ f (a)+ f (b)+
∫ b

a
f (i) di .

Finally, we frequently need the following estimate of the largest binomial coeffi-

cient, which can be found in [9, Inequality 1.4.18].

Lemma 7 For all n ∈ N and k ∈ {1, . . . , n} it holds that

(

n

k

)

≤
(

n

⌈n/2⌉

)

≤ 2n

√

2

πn
.
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3 Upper Bounds for the (2+1) GA

In this section we aim to convince the reader in two different ways that the upper

bound for the (2+1) GA is as stated in Theorem 1, with a leading constant of 9ec

c(2c+9)

instead of the leading constant 4ec

c(c+4)
claimed in [5].

Sudholt [27] provided an upper bound for (μ+λ) GAs with a diversity mechanism in

the tie-breaking rule for the replacement selection. The analysis is based on a fitness-

level argument and a simple Markov chain analysis made on each fitness level. Corus

and Oliveto [5] analysed the standard (μ+1) GA, for which the choice μ = 2 yields

the (2+1) GA as defined in Algorithm 1. They observed that the (μ+1) GA can lose

diversity after creating it, which required a more complex Markov chain analysis of

each fitness level. We first explain their framework and argue why the leading constant

is 9ec

c(2c+9)
. In addition, we give a self-contained bound based on the analysis in [27]

with an ad-hoc Markov chain framework similar to the one used in [5], simplified for

the fixed value of μ = 2 (and λ = 1). This shows that both previous works [5,27],

with appropriate modifications, yield the same upper bound for the (2+1) GA.

3.1 The Framework by Corus and Oliveto

Corus and Oliveto coupled the standard artificial fitness levels method [15] with a

Markov chain framework to bound the expected runtime of the (μ+1) GA for OneMax

and any population size μ [5]. More precisely, they divided the search space into the

canonical n + 1 fitness levels, each containing all search points with i 1-bits, and

assumed that the algorithm is in level L i if all the individuals of the population have

exactly i 1-bits. Since crossover may only speed up the optimisation process if diversity

is present in the population, a Markov chain was used on each fitness level to distinguish

between populations with and without diversity. The Markov chain at fitness level i

consists of two transient states S1,i and S2,i (i.e., resp. with/without diversity) and an

absorbing state S3,i , that is reached when a solution with better fitness is identified.

For each level the analysis was performed by pessimistically assuming that initially

on each level the population has no diversity (i.e., all individuals are identical). For

this assumption to hold, and a valid upper bound on the expected runtime achieved,

once the absorbing state is reached for level L i , the expected time for the improved

individual to take over the population has to be taken into account before the analysis

of the absorption time of the Markov chain for level L i+1 may be carried out (i.e., the

population is initially in state S1,i+1 for each level L i ). When the algorithm is on the

current level L i with no diversity (S1,i ) only two changes of states may occur, both

due to mutation: either the absorption state S3,i is reached by increasing the number

of 1-bits in an individual, or a state with some diversity is reached by switching the

order of 1-bits and 0-bits in an offspring, hence reaching state S2,i . From this state,

S3,i may be reached more quickly than from state S1,i if diverse parents are selected

for reproduction and at least an extra 1-bit obtained in the offspring via crossover with

constant probability if the diversity is not lost before (eg., by selecting two identical

parents, creating a copy by not flipping any bits, and removing the diverse individual

in the selection for replacement step). Overall, the proof strategy requires summing up
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the bounds on the absorption times of the n+1 Markov chains and subsequent takeover

times over the n + 1 levels according to the artificial fitness levels methodology.

The described technique allows to calculate the transition probabilities of the

Markov chain, hence to provide upper bounds on the expected runtime of the

(μ+1) GA, as a function of any population size μ. In particular, it provides bounds on

the expected runtime of the (μ+1) GA up to the leading constant for population sizes

of μ = o(log n/ log log n) that are smaller than those of any steady-state EA using

only standard bit mutation (i.e., no crossover) (i.e., for larger population sizes the

take over time becomes asymptotically larger than the O(n log n) expected runtime

of the (1+1) EA). An important insight from the Markov chain analysis is that the

probability of losing diversity in state S2,i is higher for population size μ = 2 than for

larger populations: in the former case the diversity may be completely lost in every

generation by either of the two individuals taking over, which is not the case for larger

populations. However, in the analysis of this transition probability for the special case

μ = 2, the bound provided by the authors of [5] is by a factor of 2 smaller than the

correct one due to a mistake in the calculation of the probability that different parents

are selected for reproduction and the variation operators produce an offspring identi-

cal to either parent (and the differing parent is removed by selection of replacement).

This miscalculation led to an upper bound on the expected runtime of the (2+1) GA of
4ecn ln n
c(c+4)

+ O(n) instead of the correct bound of 9ecn ln n
c(2c+9)

+ O(n) provided in Theorem 1.

In the following subsection we provide a self-contained proof of the result and point

out exactly where the miscalculation occurred in [5].

3.2 A Self-Contained Upper Bound Proof for the (2+1) GA

Here we give a self-contained proof of the upper bound for the (2+1) GA, Theorem 1.

Proof of Theorem 1 We use straightforward adaptations of the proof of [27, Theo-

rem 4], using the same notation as in [27]. As in said proof, we distinguish between

the following cases that are labelled according to the current best fitness in the popula-

tion, called i . There are cases i .1, i .2, and i .3 explained in the following. We estimate

the expected time spent in all these cases, summed up over all possible values of i , to

obtain an upper bound on the total expected optimisation time.

Case i.1: the population contains a search point with fitness i and one search point

of lower fitness.

This case is left for good if another search point of fitness at least i is created as

then both search points will have fitness at least i . A sufficient condition for this is

that the parent with fitness i is selected twice as parent (probability 1/4) and no 1-bit

is flipped during mutation (probability at least (1 − c/n)n−1 = Ω(1)). Hence the

expected waiting time in case i .1 is O(1).

The other two cases are:

Case i.2: the population contains two copies of the same individual, with fitness i.

Case i.3: the population contains two different individuals, both having fitness i.

The algorithm can switch between the two cases as diversity can be gained or lost.

We first bound the expected time spent in Case i .3. This case can be left for good

if the two different search point are chosen as parents (probability 1/2) if crossover
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generates a surplus of 1-bits (estimated from below by 1/4 in [27, page 427]) and if

mutation does not flip any bits (probability at least (1 − c/n)n). Together, we obtain a

probability of at least (1 − c/n)n/8. Hence, the expected time spent in Case i .3 is at

most 8/(1 − c/n)n = O(1).

Let Ti,2 be the random time spent in Case i .2. We leave this case for good if

mutation only flips a single 0-bit and no 1-bit. This event has probability at least

p+ := (n − i) ·c/n · (1−c/n)n−1. We further make a transition to Case i .3 if mutation

flips exactly one 0-bit and one 1-bit, leading to a different search point with fitness i ,

and then choosing one of the identical parents for removal (probability 2/3). The

probability of said events is at least p2→3 := i(n − i) · (c/n)2 · (1 − c/n)n−2 · 2/3.

From Case i .3 the algorithm can move back to Case i .2, so that we may have to

consider multiple visits to Case i .2. A necessary condition for going back to Case i .2

is that the created offspring is identical to one of the search points in the population,

and the other search point is being selected for removal (probability 1/3). The proba-

bility for creating an identical offspring is maximised when the two search points have

Hamming distance 2. Either the same parent is selected twice (probability 1/2) and

mutation does not flip any bit (probability (1 − c/n)n), or the same parent is selected

twice and mutation creates the other parent (probability O(1/n2)), or different par-

ents are selected (probability 1/2), crossover and mutation set the two differing bits

identical to one of the parents (probability 1/2 i.e., this is the probability that was

wrongly estimated to be 1/4 in [5] leading to an upper bound of 5/(24e) for going

back to Case i .2 rather than the correct 1/(4e) bound which we derive now) and muta-

tion does not flip any of the common bits (probability (1 − c/n)n−2). Together, the

probability of going back to Case i .2 is at most

1

3
·
(

(1 − c/n)n

2
+ O

(

n−2
)

+
(1 − c/n)n−2

4

)

=
(1 − c/n)n

4
+ O(n−1).

Hence the conditional probability that, when Case i .3 is left towards Case i .2 or higher

fitness, it is left towards Case i .2 is at most

p3→2 :=
(1 − c/n)n/4 + O(n−1)

(1 − c/n)n/4 + O(n−1) + (1 − c/n)n/8
=

2

3
+ O(n−1).

With these pessimistic estimations for transition probabilities, we obtain the following

recurrence:

Ti,2 ≤ 1 + (1 − p+ − p2→3)Ti,2 + p2→3 p3→2Ti,2

which is equivalent to
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Ti,2 ≤
1

p+ + p2→3(1 − p3→2)

and plugging in the above values yields the following upper bound for Ti,2:

1

(n − i) · c/n · (1 − c/n)n−1 + i(n − i) · (c/n)2 · (1 − c/n)n−2 · 2/3 · (1 − 2
3

− O(n−1))

≤
1

(n − i) · c/n + i(n − i) · (c/n)2 · 2/9
· (ec + O(n−1)).

Summing up these upper bounds for all i yields a total time bound of

≤ (ec + O(n−1))

n−1
∑

i=0

1

(n − i) · c/n + i(n − i) · (c/n)2 · 2/9

= (ec + O(n−1))
n

c

n−1
∑

i=0

1

(n − i)(1 + i · c/n · 2/9)
.

A closer inspection of the function f (i) := 1
(n−i)(1+i ·c/n·2/9)

reveals that it is non-

decreasing in [0, n − 1] if c ≤ 9/2. For c > 9/2 it is non-increasing in [0, n(2c −
9)/(4c)] and non-decreasing in [n(2c − 9)/(4c), n − 1]. In either case, we obtain an

upper bound from Lemma 6:

n−1
∑

i=0

1

(n − i) + i(n − i) · c/n · 2/9

≤
1

n
+

1

1 + (n − 1) · c/n · 2/9
+

∫ n−1

i=0

1

(n − i)(1 + i · c/n · 2/9)
di .

The first two summands are in O(1). The integral simplifies as follows, using e. g.

equation 3.3.20 in [1]:

∫ n−1

i=0

1

(n − i)(1 + i · c/n · 2/9)
di =

[

9

2c + 9
· ln

(

1 + i · c/n · 2/9

n − i

)]n−1

0

=
9

2c + 9

(

ln

(

1 + (n − 1) · c/n · 2/9

1

)

− ln

(

1

n

))

=
9

2c + 9
· ln (n + (n − 1) · c · 2/9) .

Plugging everything together, the total time bound is

(ec + O(n−1))
n

c

(

O(1) +
9

2c + 9
· ln (n + (n − 1) · c · 2/9)

)

=
9ec

c(2c + 9)
· n ln (n + (n − 1) · c · 2/9) + O(n)
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≤
9ec

c(2c + 9)
· n ln(n) + O(n).

Noting that the times in all Cases i .1 and i .3, summed up for all i , are O(n) proves

the claim.

4 A Potential Function Approach

We now turn to the main contribution of this paper, the tight lower bound for the

(2+1) GA. Before going into detail, this section describes the main idea behind our

approach and clarifies some further notation and fundamental observations that will

be used in the remainder.

We write a population {x1, x2} in order of monotonically decreasing fitness, that

is, f (x1) ≥ f (x2). Let n11 be the number of bit positions where both parents have

ones and likewise for n00 and the number of zeros. Let n10 be the number of positions

where x1 has a 1 and x2 has a 0 and likewise for n01. Then we have f (x1) = n11 +n10

and f (x2) = n11 +n01. Since by assumption, f (x1) ≥ f (x2), we have n10 ≥ n01 and

n10 = n01 is equivalent to the two individuals having equal fitness. In case n10 = 0,

both individuals are identical. Such a population is called monomorphic in population

genetics, and we use this term here.

Note that the (2+1) GA is an unbiased algorithm in the sense of Lehre and Witt

[19]. In brief, this means that the algorithm treats all bit positions and all bit values

symmetrically when generating new search points. Owing to this symmetry of bit

positions and the fact that the fitness function is symmetrical itself, i. e., it only depends

on the number but not the positions of the one-bits, it suffices to know n11, n10 and

n01 to fully characterise the state of the algorithm. Note that n00 can be derived as

n − n11 − n10 − n01.

The following lemma characterises probabilities of setting a bit to 1 in the offspring

after a crossover of two different parents and a mutation of the result.

Lemma 8 Consider a crossover of two parents x, y followed by mutation with mutation

rate pm , resulting in an offspring z. For all i ,

P(zi = 1) =

⎧

⎪

⎨

⎪

⎩

1 − pm if xi = yi = 1

1/2 if xi �= yi

pm if xi = yi = 0.

Proof If xi = yi then crossover will create an offspring with the same bit value. The

statement for xi �= yi holds because of symmetry, or using the following, alternative

argument. The offspring has a 1 if crossover creates a 1 and mutation does not flip bit i ,

or if crossover creates a 0 and mutation does flip bit i . The probability of the former

event is 1/2 · (1 − pm) and the probability of the latter event is 1/2 · pm . Together,

this gives 1/2.

Note that differing bits xi �= yi are set to 1 with probability 1/2, irrespective of

the mutation rate. Hence, when two parents are selected, we only need to consider the
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effect of mutation on the bits where the parents agree. We frequently and tacitly use

this fact.

Our lower bound applies when only considering populations where the number of

zeros in the fitter parent is at most n/polylog(n) and at least polylog(n). This implies

that all probabilities that involve flipping a 0 to 1 are polylogarithmically small.

The main tool for our lower bound is going to be drift analysis, applied to a potential

function that captures the current state and potential easy fitness improvements.

Definition 1 For a population P with values n11, n10, n01, n00 we define the potential

of P as

ϕ(P) = n11 + n10 +
n01

3
.

The intuition is that n11 + n10 describes the current best fitness in the population.

The term n01/3 adds potential to the best fitness as the population has the potential

to exploit the diversity given by the n01 1-bits that only exist in the less fit individual

during a successful crossover operation.

The choice of the factor 1/3 is motivated as follows. We know from previous work

[5,27] that the most helpful populations for improvements are those where two search

points have the same number of ones and Hamming distance 2, that is, n10 = n01 = 1.

(Larger Hamming distances have the potential for larger fitness improvements, but

such populations are rarely reached when the number of zeros becomes reasonably

small.)

Assume the current state has n10 = n01 = 1, corresponding to a potential of

n11 + n10 + 1/3. The most likely transitions (and, when only O(n/polylog(n)) zeros

are left, the only transitions with probability Ω(1)) are (1) collapsing the population

to copies of one parent (and potential n11 +n10) and (2) creating a surplus of one 1-bit

by crossover and not flipping anything else (potential n11 + n10 + 1). The probability

of the former event is roughly3 (1 − pm)n/4, which is the probability of selecting

the same parent twice, not flipping any bits and then selecting the other population

member for removal plus the probability of selecting different parents, creating one

parent by crossover and not flipping any bits. The probability of the latter event is

roughly (1 − pm)n/8, which is the probability of selecting different parents, setting

both differing bits to 1 and not flipping any bits in the subsequent mutation.

Comparing these terms, the conditional probability of an improvement via crossover

is roughly 1/3. In case a monomorphic population is reached, the potential reduces

by 1/3 and this happens with conditional probability 1 − 1/3. In the latter event, the

potential increases by 1 − 1/3 and this happens with conditional probability 1/3. The

net effect of these transitions in the expected change of the potential is (1−1/3)1/3−
1/3(1 − 1/3) = 0. So the potential balances out the effects of “volatile” states left

quickly.

Obviously, our analysis still needs to account for other, less likely transitions. For

populations with n10 = n01 > 1 the conditional transition probabilities change as

the probability of creating one of the parents by crossover depends on the Hamming

3 In this informal discussion we ignore events of smaller probability (e. g. picking the same parent twice

and creating the other population member by a lucky mutation).
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distance n10 + n01 between parents. For n10 = n01 > 1 the likely progress in a

successful crossover may be smaller than n01/3. Hence the term +n01/3 in Definition 1

is a precise estimate for the likely progress when n01 = 1 and for larger n01 it is an

overestimation.

It suffices to restrict our considerations to moderate values of n10 and n01. The reason

is that the (2+1) GA always has a constant probability of creating a monomorphic

population in one generation, regardless of the current population. This means that

large values of n10 and n01 are very unlikely.

Lemma 9 Let t ≥ log2 n and t = nO(1). With probability 1−n−Ω(log n), all populations

within the time interval [log2 n, t] have Hamming distance at most log2 n between their

two individuals.

Proof We call a generation that creates a population of two identical individuals a

monomorphic generation. The crucial idea is to show that monomorphic generations

are very frequent so that large Hamming distances are unlikely to occur.

The probability of a monomorphic generation happening is at least (1/4)(1 −
1/n)n(1/3) = Ω(1) since it is sufficient to select a fittest parent twice, to clone it

and to remove the other parent (which has probability at least 1/3). For a number

t ≥ 0 of generations after a monomorphic one, let Dt denote the maximum number

of bits in which the two parents ever have differed during these t generations. The

crucial idea is that only mutations can increase this D-value. The total number of

bits flipped in t generations is the sum of tn Poisson trials with success probability

c/n each. Hence, within t generations following a monomorphic one, the D-value is

bounded from above by 2ct with probability 1−2−Ω(t) according to Chernoff bounds

(Theorem 5), and clearly the Hamming distance is no larger than the D-value. We set

t := (log2 n)/(2c) to bound the D-value by log2 n.

The proof is completed by noting that the probability of not observing a monomor-

phic generation within log2 n generations is (1 − Ω(1))log2 n = n−Ω(log n). Together

with the failure bound 2−Ω(t), which is n−Ω(log n) for t = (log2 n)/(2c), and a

union bound, this means that in any polynomial number of generations following the

first monomorphic one the Hamming distance never exceeds log2 n with probability

1 − nO(1)n−Ω(log n) = 1 − n−Ω(log n).

5 Roadmap for the Analysis

We give a deliberately informal, high-level view of our analysis, where Δ :=
ϕ(Pt+1) − ϕ(Pt ) denotes the change in potential in one generation. By the law of

total probability, Δ can be split up according to the number of zeros flipped by muta-

tion:

E(Δ) = E(Δ | no zeros flip) · P(no zeros flip)

+ E(Δ | one zero flips) · P(one zero flips)

+ E(Δ | at least 2 zeros flip) · P(at least 2 zeros flip).
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The case that no zeros flip does not increase the potential, hence we aim to bound

the first line from above by 0. The second line captures the most important case: one

zero flips and subsequent progress is made. The second line will be bounded by the

dominant term in our claimed lower bound. The third line involves the probability of

flipping at least two zeros. If the number of zeros is small, this is unlikely and thus the

third line only contributes a small order term.

The above high-level view is not particularly accurate. Firstly, the above estimations

need to account for error terms. Secondly, the notion of “i zeros flip” used above is

not well-defined. This is because the number of zeros that can flip during mutation

depends on the parent selection. The same parents may be selected twice, and then

the number of zeros depends on the fitness of the parent. If two different parents are

used, we only consider mutations of bits that agree in both parents, as per Lemma 8.

Hence, we need to distinguish between different events from the parent selection.

To formalise this, let P11, P22, and P12 denote the events that parent selection chooses

the first parent twice, the second parent twice and both parents, respectively. We further

denote by F00 the number of flipping bits amongst the n00 bits and likewise for F11 and

n11 bits. We use asterisks to indicate the union of sets: F0∗ is the number of flipping

bits among n01 + n00 bits and F∗0 is the number of flipping bits among n10 + n00 bits.

Variables F1∗ and F∗1 are defined analogously. Armed with this notation, we express

the third line rigorously with a combination of events.

Lemma 10 For all populations with n11 ≥ n − n/ log3 n and n10 + n01 ≤ log2 n,

E(Δ | P11, F0∗ ≥ 2)P(F0∗ ≥ 2)

+ E(Δ | P22, F∗0 ≥ 2)P(F∗0 ≥ 2)

+ E(Δ | P12, F00 ≥ 2)P(F00 ≥ 2) = O (n0∗/(n log n))

Proof We give one common way of bounding the three lines from the statement. For all

F ∈ {F0∗, F∗0, F00}, the drift can only increase by at most n01 + F as every flipping 0-

bit can only increase the potential by at most 1 and crossover can increase the potential

on all n01 by at most 1. Also note that P(F∗0 ≥ 2) has the largest probability amongst

all variables F (as the underlying number of zeros is maximal for F∗0). Thus, all 3

lines are bounded as

E(Δ | F ≥ 2)P(F∗0 ≥ 2)

=
∞
∑

i=2

E(Δ | F = i)P(F∗0 = i) ≤
∞
∑

i=2

(n01 + i) · P(F∗0 = i)

≤
∞
∑

i=2

(n01 + i)
(cn0∗

n

)i

=
(cn0∗

n

)2
∞
∑

i=0

(n01 + i + 2)
(cn0∗

n

)i

Since n0∗ ≤ n − n11 ≤ n/ log3 n, we get
(

cn0∗
n

)2 = O(n0∗/(n log3 n)). The sum is

bounded by n01 + 2 +
∑∞

i=0 i
(

cn0∗
n

)i
, which is n01 + O(1) = O(log2 n). Together,

this implies the claim.
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The cases of no zeros flipping and one zero flipping are more difficult to handle.

Corresponding drift estimates will be derived in the following sections. More precisely,

we derive closed formulas for the drift of the potential function depending on the choice

of parents in the following Sect. 6 and then distinguish between generations that flip

no zeros (Sect. 7) and one zero (Sect. 8). As mentioned in the introduction, the drift

bounds obtained in these major technical sections are finally put together in Sect. 9.

6 Closed Formulas for the Potential Drift

Before proceeding to bound the drift of the potential, we derive closed bounds for

the potential under the condition P12 that different parents are being selected. These

bounds hold for arbitrary given values of F00, F11, the numbers of flipping common

zeros and ones, respectively. These closed formulas will then be used in the subsequent

sections to bound the drift for the cases F00 = 0 and F00 = 1, respectively.

For the derivation of closed formulas it is important to distinguish between two

cases: the parents having equal fitness, n10 = n01, or the parents having unequal

fitness, n10 > n01. This is because, depending on the fitness of the offspring, different

cases may occur and the probabilities used during replacement selection may differ.

For instance, when both parents have an equal fitness and the offspring happens to

have the same fitness as well, there is a 3-way tie that is resolved uniform randomly by

selection. When both parents have different fitness, 3-way ties are not possible (there

can only be ties between the offspring and one parent). However, the offspring might

be strictly worse than the better parent and strictly better than the worse parent. Such

a case cannot happen when n10 = n01. It therefore makes sense to split the analysis

into these two cases and to derive separate closed bounds on the potential drift.

6.1 A Closed Formula for Selecting Different Parents of Equal Fitness (n10 = n01)

In the following lemma we shall first derive a closed formula for the potential drift

when two different parents are chosen that have the same fitness, n10 = n01. The

lemma defines a threshold ℓ that reflects the number of bits crossover needs to set to

1 to achieve the same fitness as x1 and x2.

Lemma 11 Let S ∼ Bin(n10 + n01, 1/2) and ℓ := n10 − F00 + F11. Then for all

populations with n10 = n01,

E(Δ | P12, F00, F11)

= P(S ≥ ℓ) ·
(

5

6
· E(S | S ≥ ℓ) + F00 −

2F11

3
− n10

)

+ P(S = ℓ) ·
n10 − F00 − F11

18
.

Proof Consider a step where both parents are selected and F00, F11 are known. The

number of bits set to 1 by crossover is given by S ∼ Bin(n10 + n01, 1/2). By the law
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of total probability,

E(Δ | P12, F00, F11) =
∑

s∈Z

E(Δ | P12, F00, F11, S = s) · P(S = s).

Since n10 = n01, the fitness of both parents is n11 +n10 and the fitness of the offspring

is n11 + s + F00 − F11. If s < ℓ, the latter is less than n11 + n10 and the offspring will

be rejected. If s > ℓ, the offspring is fitter than the parent, one of the parents will be

chosen uniformly at random for removal. If the offspring is as fit as both parents, the

offspring is removed with probability 1/3. Thus,

E(Δ | P12, F00, F11) =
∑

s∈Z

E(Δ | P12, F00, F11, S = s) · P(S = s)

=
∑

s>ℓ

E(Δ | S = s) · P(S = s) +
2

3
· E(Δ | S = ℓ) · P(S = ℓ)

=
∑

s≥ℓ

E(Δ | S = s) · P(S = s) −
1

3
· E(Δ | S = ℓ) · P(S = ℓ).

Now we estimate E(Δ | S = s)P(S = s) for s ≥ ℓ. Let S10 be the number of bits

among the n10 bits that are set to 1 in the offspring and define S01 analogously for the

n01 bits. Note that S := S10+S01 where S10 ∼ Bin(n10, 1/2) and S01 ∼ Bin(n01, 1/2)

according to Lemma 8.

Given S10 = s10 and S01 = s01, the potential difference Δ is derived as follows.

Among the n11 bits, F11 bits flip to 0, reducing their contribution from 1 to 1/3

each, leading to a contribution of −2F11/3 to the potential difference. All the n10 bits

contribute 1 to the potential ϕ(Pt ). In Pt+1, s10 bits contribute 1 and the remaining

n10 − s10 bits contribute 1/3 each. Hence the contribution to the potential difference

is −2(n10 − s10)/3. The n01 bits contribute 1/3 each in ϕ(Pt ) and in Pt+1 we have

s01 bits contributing 1 each and the other n01 − s01 bits contributing 0. Hence the

contribution to the potential difference is s01 − n01/3. Finally, the contribution of the

n00 bits to the potential difference is F00.

In the following we denote by (X | Y ) the conditional variable X conditional on

Y , where Y is a sequence of events and/or random variables. Omitting the implicit

conditions P12, F00, F11 for brevity, we obtain a conditional drift Δ of

(Δ | S10 = s10, S01 = s01) = F00 −
2F11

3
−

2(n10 − s10)

3
+ s01 −

n01

3

= F00 −
2F11

3
− n10 + s −

1

3
· s10. (1)

By the law of total probability,

E(Δ | S = s) =
s

∑

s10=0

E(Δ | S = s, S10 = s10)P(S10 = s10 | S = s)
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=
s

∑

s10=0

(

F00 −
2F11

3
− n10 + s −

1

3
· s10

)

P(S10 = s10 | S = s)

= F00 −
2F11

3
− n10 + s −

1

3

s
∑

s10=0

s10 · P(S10 = s10 | S = s)

= F00 −
2F11

3
− n10 + s −

1

3
· E(S10 | S = s).

Now, (S10 | S = s) follows a hypergeometric distribution with parameters n10 (num-

ber of red balls), n10 +n01 (number of balls) and s (number of draws). The expectation

is thus s · n10/(n10 + n01) = s/2. Plugging this in yields

E(Δ | S = s) = F00 −
2F11

3
− n10 +

5

6
· s. (2)

Together, this gives

E(Δ | P12, F00, F11) =
∑

s≥ℓ

E(Δ | S = s) · P(S = s) −
1

3
· E(Δ | S = ℓ) · P(S = ℓ)

=
∑

s≥ℓ

(

F00 −
2F11

3
− n10 +

5

6
· s

)

· P(S = s)

−
1

3
·
(

F00 −
2F11

3
− n10 +

5

6
· ℓ

)

· P(S = ℓ).

Using

∑

s≥ℓ

s · P(S = s) =
∑

s≥ℓ

s · P(S = s ∧ S ≥ ℓ)

=
∑

s≥ℓ

s · P(S = s | S ≥ ℓ)P(S ≥ ℓ) = E(S | S ≥ ℓ)P(S ≥ ℓ),

the first terms simplify as

∑

s≥ℓ

(

F00 −
2F11

3
− n10 +

5

6
· s

)

· P(S = s)

=
(

F00 −
2F11

3
− n10

)

∑

s≥ℓ

P(S = s) +
5

6

∑

s≥ℓ

s · P(S = s)

=
(

F00 −
2F11

3
− n10

)

P(S ≥ ℓ) +
5

6
· E(S | S ≥ ℓ)P(S ≥ ℓ).
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The last term simplifies as

−
1

3
·
(

F00 −
2F11

3
− n10 +

5

6
· ℓ

)

· P(S = ℓ)

= −
1

3
·
(

F00 −
2F11

3
− n10 +

5

6
· (n10 − F00 + F11)

)

· P(S = ℓ)

= −
1

3
·
(

F00

6
+

F11

6
−

n10

6

)

· P(S = ℓ)

= −
F00 + F11 − n10

18
· P(S = ℓ) =

n10 − F00 − F11

18
· P(S = ℓ).

Together, this proves the claim.

The bound from Lemma 11 depends on the expected surplus E(S | S ≥ ℓ) generated

by a crossover on the bits that differ between the two parents, where ℓ reflects the

fitness threshold above which offspring are accepted. We use the following formula

to simplify such expressions. The proof goes back to work by Gruder [13] that is

highlighted in a paper by Johnson [17]. It is given in the appendix for the sake of

completion.

Lemma 12 Let S ∼ Bin(n, 1/2), then for all ℓ ∈ N,

E(S | S ≥ ℓ)P(S ≥ ℓ) =
ℓ

2
· P(S = ℓ) +

n

2
· P(S ≥ ℓ).

Using Lemma 12, we obtain the following simplified formula.

Lemma 13 Let S ∼ Bin(n10 + n01, 1/2). Then for all populations with n10 = n01,

E(Δ | P12, F00, F11) = P(S ≥ n10 − F00 + F11) ·
(

F00 −
2F11

3
−

n10

6

)

+ P(S = n10 − F00 + F11) ·
17n10 − 17F00 + 13F11

36
.

Proof. Recall ℓ := n10 − F00 + F11. By Lemma 11 and Lemma 12,

E(Δ | P12, F00, F11)

= P(S ≥ ℓ) ·
(

5

6
· E(S | S ≥ ℓ) + F00 −

2F11

3
− n10

)

+ P(S = ℓ) ·
n10 − F00 − F11

18

=
5

6

(

ℓ

2
· P(S = ℓ) + n10 · P(S ≥ ℓ)

)

+ P(S ≥ ℓ) ·
(

F00 −
2F11

3
− n10

)

+ P(S = ℓ) ·
n10 − F00 − F11

18

= P(S ≥ ℓ) ·
(

F00 −
2F11

3
−

n10

6

)

+ P(S = ℓ) ·
(

5

12
· ℓ +

n10 − F00 − F11

18

)

= P(S ≥ ℓ) ·
(

F00 −
2F11

3
−

n10

6

)

+ P(S = ℓ) ·
15ℓ + 2n10 − 2F00 − 2F11

36
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= P(S ≥ ℓ) ·
(

F00 −
2F11

3
−

n10

6

)

+ P(S = ℓ) ·
17n10 − 17F00 + 13F11

36
.

6.2 A Closed Formula for Selecting Different Parents of Unequal Fitness

(n10 > n01)

For the case of unequal fitness (n10 > n01), we use similar arguments as before. This

scenario has more involved calculations as we need to distinguish different cases: the

offspring may be at least as good as the fitter parent, and then the calculations are

similar to the equal-fitness scenario. The offspring may also be worse than the fitter

parent and better than the worse parent. In this case, the potential is derived from a

different formula as the values for n10 and n01 in the next generation are still determined

according to the fitter parent. In case the offspring’s fitness is equal to that of the worse

parent, there is a tie and the offspring is only accepted with probability 1/2. The lemma

defines two thresholds ℓ1 and ℓ2 that reflect the number of bits crossover needs to set

to 1 to achieve the fitness of x1 and x2, respectively.

Lemma 14 Let S ∼ Bin(n10 + n01, 1/2), ℓ1 := n10 − F00 + F11 and ℓ2 := n01 −
F00 + F11. Then for all populations with n10 > n01,

E(Δ | P12, F00, F11) = P(S > ℓ1) ·
2F00 − 2F11 − n10 + n01

3

+ P(S = ℓ1) ·
F00 − F11 + n01

3

+ P(S > ℓ2) ·
2F00 − n01

6

+ P(S = ℓ2) ·
F00

6
.

Proof Consider a step where both parents are selected and F00, F11 are known. The

number of bits set to 1 by crossover is given by S ∼ Bin(n10 + n01, 1/2). By the law

of total probability,

E(Δ | P12, F00, F11) =
∑

s∈Z

E(Δ | P12, F00, F11, S = s) · P(S = s).

Note that the fitness of x1 is n11 + n10, that of x2 is n11 + n01 and the fitness of the

offspring is n11 + s + F00 − F11.

We distinguish the following cases.

1. If s ≥ ℓ1, the offspring is at least as fit as the fitter parent, and x2 will be removed.

The new values of n10, n01 will be determined by the offspring.

2. If ℓ2 < s < ℓ1, the offspring is fitter than the worse parent x2, and x2 will be

removed. Parent x1 will remain the fitter parent.

3. If s = ℓ2, the offspring is as fit as x2 and x2 will be removed with probability 1/2.

Then the potential is computed as in the case ℓ2 < s < ℓ1.
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4. If s < ℓ2, the offspring is worse than x2 and will be rejected. Hence the potential

does not change.

Let Δ be the change of potential from the current population to the new population

Pt+1 as described above. Then,

E(Δ | P12, F00, F11) =
n10+n01
∑

s=ℓ1

E(Δ | P12, F00, F11, S = s) · P(S = s)

+
ℓ1−1
∑

s=ℓ2

E(Δ | P12, F00, F11, S = s) · P(S = s)

−
1

2
· E(Δ | P12, F00, F11, S = ℓ2) · P(S = ℓ2),

where the last line accounts for the fact that with probability 1/2 the offspring is

removed if s = ℓ2.

Now we estimate E(Δ | S = s)P(S = s), starting with the case for s ≥ ℓ1. Let S10

be the number of bits among the n10 bits that are set to 1 in the offspring and define

S01 analogously for the n01 bits. Note that S := S10 + S01 where S10 ∼ Bin(n10, 1/2)

and S01 ∼ Bin(n01, 1/2).

Given S10 = s10 and S01 = s01, the potential difference Δ is derived as follows.

Among the n11 bits, F11 bits flip to 0, reducing their contribution from 1 to 1/3

each, leading to a contribution of −2F11/3 to the potential difference. All the n10 bits

contribute 1 to the potential ϕ(Pt ). In Pt+1, s10 bits contribute 1 and the remaining

n10 − s10 bits contribute 1/3 each. Hence the contribution to the potential difference

is −2(n10 − s10)/3. The n01 bits contribute 1/3 each in ϕ(Pt ) and in Pt+1 we have

s01 bits contributing 1 each and the other n01 − s01 bits contributing 0. Hence the

contribution to the potential difference is s01 − n01/3. Finally, the contribution of the

n00 bits to the potential difference is F00. Together,

(Δ | S10 = s10, S01 = s01) = F00 −
2F11

3
−

2(n10 − s10)

3
+ s01 −

n01

3

= F00 −
2F11

3
−

2n10

3
−

n01

3
+

2

3
· s10 + s01

= F00 −
2F11

3
−

2n10 + n01

3
+ s −

1

3
· s10. (3)

By the law of total probability, for all s ≥ ℓ1,

E(Δ | P12, F00, F11, S = s)

=
s

∑

s10=0

E(Δ | P12, F00, F11, S = s, S10 = s10)P(S10 = s10 | S = s)

=
s

∑

s10=0

(

F00 −
2F11

3
−

2n10 + n01

3
+ s −

1

3
· s10

)

P(S10 = s10 | S = s)
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= F00 −
2F11

3
−

2n10 + n01

3
+ s −

1

3

s
∑

s10=0

s10 · P(S10 = s10 | S = s)

= F00 −
2F11

3
−

2n10 + n01

3
+ s −

1

3
· E(S10 | S = s).

Now, (S10 | S = s) follows a hypergeometric distribution with parameters n10 (num-

ber of red balls), n10 +n01 (number of balls) and s (number of draws). The expectation

is thus s · n10/(n10 + n01). Plugging this in yields

E(Δ | P12, F00, F11, S = s) = F00 −
2F11

3
−

2n10 + n01

3
+ s

(

1 −
n10

3n10 + 3n01

)

.

(4)

Now we consider the case ℓ2 ≤ S < ℓ1. Here x1 remains the fitter parent and

the potential difference Δ is derived as follows. Flipping bits among the n11 and n10

bits do not change the potential. We have S01 + F00 bits that each contribute 1/3 to

the potential, compared to n01 bits in the previous population. Hence the change in

potential is

(Δ | P12, F00, F11, S01 = s01) =
s01 − n01 + F00

3
. (5)

By the law of total probability, for all ℓ2 ≤ s < ℓ1,

E(Δ | P12, F00, F11, S = s)

=
s

∑

s01=0

E(Δ | P12, F00, F11, S = s, S01 = s01)P(S01 = s01 | S = s)

=
E(S01 | S = s) − n01 + F00

3

= s ·
n01

3n10 + 3n01
+

−n01 + F00

3

using the same calculations as before.

Plugging everything together,

E(Δ | P12, F00, F11)

=
n10+n01
∑

s=ℓ1

(

F00 −
2F11

3
−

2n10 + n01

3
+ s ·

2n10 + 3n01

3n10 + 3n01

)

P(S = s)

+
ℓ1−1
∑

s=ℓ2

(

s ·
n01

3n10 + 3n01
+

−n01 + F00

3

)

P(S = s)

−
1

2
·
(

ℓ2 ·
n01

3n10 + 3n01
+

−n01 + F00

3

)

P(S = ℓ2).
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By adding terms for ℓ1 ≤ s ≤ n10 + n01 to the second line and subtracting them from

the first line, we get

E(Δ | P12, F00, F11)

=
n10+n01
∑

s=ℓ1

(

2F00

3
−

2F11

3
−

2n10

3
+

2s

3

)

P(S = s)

+
n10+n01
∑

s=ℓ2

(

s ·
n01

3n10 + 3n01
+

−n01 + F00

3

)

P(S = s)

−
1

2
·
(

ℓ2 ·
n01

3n10 + 3n01
+

−n01 + F00

3

)

P(S = ℓ2)

= P(S ≥ ℓ1) ·
2F00 − 2F11 − 2n10

3
+

2

3

n10+n01
∑

s=ℓ1

s · P(S = s)

+ P(S ≥ ℓ2)

(

−n01 + F00

3

)

+
n01

3n10 + 3n01

n10+n01
∑

s=ℓ2

s · P(S = s)

−
1

2
·
(

ℓ2 ·
n01

3n10 + 3n01
+

−n01 + F00

3

)

P(S = ℓ2).

Applying Lemma 12 twice, to the first and second line, yields the following two

equations:

n10+n01
∑

s=ℓ1

s · P(S = s) =
ℓ1

2
P(S = ℓ1) +

n10 + n01

2
P(S ≥ ℓ1)

n10+n01
∑

s=ℓ2

s · P(S = s) =
ℓ2

2
P(S = ℓ2) +

n10 + n01

2
P(S ≥ ℓ2).

Plugging this in yields

E(Δ | P12, F00, F11) = P(S ≥ ℓ1) ·
2F00 − 2F11 − n10 + n01

3

+ P(S = ℓ1) ·
ℓ1

3

+ P(S ≥ ℓ2) ·
2F00 − n01

6

+ P(S = ℓ2) ·
n01 − F00

6
.
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7 Potential Drift When No Zeros Flip

We now consider the potential drift when no zeros flip. When the distance to the

optimum is o(n), this case is by far the most frequent case. This also means that our

drift bounds have to be precise, as even a small error term may have a big impact and

spoil the analysis.

7.1 Selecting the Same Parent Twice

We start by considering the drift conditional on selecting the same parent twice.

Lemma 15 For all populations with n10 = n01,

E(Δ | P11, F0∗ = 0)P(F0∗ = 0) = −
n01

9

(

1 −
c

n

)n

E(Δ | P22, F∗0 = 0)P(F∗0 = 0) = −
n01

9

(

1 −
c

n

)n

.

For all populations with n10 > n01,

E(Δ | P11, F0∗ = 0)P(F0∗ = 0) = −
n01

3

(

1 −
c

n

)n

E(Δ | P22, F∗0 = 0)P(F∗0 = 0) = 0.

Proof First assume n10 = n01 and consider the event P11. Given F0∗ = 0, that is,

if no 0-bit is flipped, the offspring can only be accepted if no 1-bit is flipped, i. e.,

F1∗ = 0. These events happen with probability P(F0∗ = 0)P(F1∗ = 0) = (1 − c/n)n

and they lead to an offspring that is identical to x1. Since all search points have equal

fitness, x2 is removed with probability 1/3. This leads to a monomorphic population

and the potential decreases by n01/3. Multiplying the above terms proves the claimed

equality. The case of P22 follows analogously, considering F∗0 and F∗1 instead.

For n10 > n01, if the fitter parent x1 is selected twice, a copy of it is created

with probability (1 − c/n)n and then x2 is removed. This decreases the potential by

n01/3. Multiplying the above terms yields an expectation of −n01/3 ·(1−c/n)n . Note

that other operations cannot increase the potential since no 0-bit is being flipped and

flipping 1-bits in x1 does not decrease the potential.

If x2 is selected twice as parent, the potential cannot increase since no 0-bits are

flipped, and it cannot decrease as any 1-bit being flipped will lead to the offspring

being rejected.

Now we consider the event that two different parents are selected. The remainder

of this section is split into drift bounds when the parents have equal fitness, n10 = n01,

and the case where parents have unequal fitness, n10 > n01.
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7.2 Selecting Different Parents of Equal Fitness (n10 = n01)

We use the closed formula from Lemma 13 to show that, to get an upper bound on the

drift when F00 = 0, we only need to consider F11 ∈ {0, 1} as larger values lead to a

non-positive drift. This is not obvious, but follows from a lengthy and trite calculation.

The proof is placed in the appendix to keep the main part streamlined.

Lemma 16 For all n10 = n01 and all i ≥ 2,

E(Δ | P12, F00 = 0, F11 = i) ≤ 0.

Now we are able to give an upper bound on the potential drift, assuming that

different parents are selected (P12) and no common zero-bits flip (F00 = 0).

Lemma 17 For every population with n10 = n01,

E(Δ | P12, F00 = 0) ≤

⎧

⎪

⎨

⎪

⎩

0 if n10 = 0
1
9

· P(F11 = 0) if n10 = 1
1
8

· P(F11 = 0) + 1
64

· P(F11 = 1) if n10 ≥ 2.

Proof By the law of total probability and Lemma 13,

E(Δ | P12, F00)

=
∞
∑

i=0

E(Δ | P12, F00, F11 = i) · P(F11 = i)

=
∞
∑

i=0

P(F11 = i)

(

P(S = n10 + i) ·
17n10 + 13i

36
− P(S ≥ n10 + i) ·

6n10 + 24i

36

)

=
n10−1
∑

i=0

P(F11 = i)

(

P(S = n10 + i) ·
17n10 + 13i

36
− P(S ≥ n10 + i) ·

6n10 + 24i

36

)

as the term in brackets is 0 for all values i ≥ n10.

For n10 = 0, the above is 0 and for n10 = 1, is it P(F11 = 0)/9 as claimed. For

n10 ≥ 2, by Lemma 16 all terms for i ≥ 2 are non-positive and can be dropped. Thus,

we get

E(Δ | P12, F00)

≤
1

∑

i=0

E(Δ | P12, F00, F11 = i) · P(F11 = i)

=
1

∑

i=0

P(F11 = i)

(

P(S = n10 + i) ·
17n10 + 13i

36
− P(S ≥ n10 + i) ·

6n10 + 24i

36

)

= P(F11 = 0)

(

P(S = n10) ·
17n10

36
− P(S ≥ n10) ·

6n10

36

)
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+ P(F11 = 1)

(

P(S = n10 + 1) ·
17n10 + 13

36
− P(S ≥ n10 + 1) ·

6n10 + 24

36

)

.

Writing the above as

P(F11 = 0)a0 + P(F11 = 1)a1,

we have a0 = 0 for n10 = 0 and a0 = 1/9 for n10 = 1. The maximum value is

a0 = 1/8 for n10 = 2. This can be seen from evaluating a0 for 0 ≤ n10 ≤ 10

(shown in Table 1) and from the following analytical arguments for n10 ≥ 11. We use

the bound on the largest binomial coefficient
(

2n10

k

)

≤
(

2n10

n10

)

≤ 22n10/(
√

πn10) for

all k according to Lemma 7 and the fact that P(S ≥ n10) ≥ 1/2 by symmetry of the

binomial distribution. Then a0 is at most

P(S = n10) ·
17n10

36
− P(S ≥ n10) ·

6n10

36

≤ P(S = n10) ·
17n10

36
−

n10

12

≤
1

√
πn10

·
17n10

36
−

n10

12

=
1

√
π

·
17

√
n10

36
−

n10

12
.

This upper bound becomes negative for n10 ≥ 11 (the real value a0 that is being

bounded from above already becomes negative for n10 ≥ 7). The term a1 is 0 for

n10 ≤ 1 and at most 1/64 for n10 ≥ 2. This can be seen by evaluating the above

formula for 2 ≤ n10 ≤ 10 (see Table 1) and bounding it above as follows for n10 ≥ 3,

using that P(S ≥ n10 + 1) is minimised for n10 = 3, where it is 5/16.

P(S = n10 + 1) ·
17n10 + 13

36
− P(S ≥ n10 + 1) ·

6n10 + 24

36

≤
1

√
πn10

·
17n10 + 13

36
−

5

16
·

6n10 + 24

36

=
1

√
πn10

·
17n10 + 13

36
−

5

16
·

6n10 + 24

36
,

which is at most n10/64 for n10 ≥ 11.

7.3 Selecting Different Parents of Unequal Fitness (n10 > n01)

The case of P12, different parents being selected, no common 0-bits flipping (F00 = 0)

and parents having unequal fitness is easy to handle as in this scenario the potential

drift is always non-positive. This is shown in the following lemma. It also states a

closed formula for the potential drift as this will be used later on, in the proof of

Lemma 22.
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Table 1 Numerical values for coefficients a0 and a1 defined in the proof of Lemma 17, for different values

of n10 = n01

n10 0 1 2 3 4 5 6 7 8 9 10

a0 0 1
9

1
8

11
96

53
576

95
1536

27
1024 − 161

12288 − 1369
24576

− 13219
131072 − 349465

2359296

a1 0 0 1
72

1
64

1
128 − 11

1536
− 85

3072 − 2585
49152

− 23927
294912 − 44317

393216 − 115495
786432

Lemma 18 For all n10 > n01 and all F11 ∈ N0,

E(Δ | P12, F00 = 0, F11)

= P(S > ℓ1)
−2F11 − n10 + n01

3
+ P(S = ℓ1)

−F11 + n01

3
+ P(S > ℓ2)

−n01

6
≤ 0.

The proof is not very insightful, hence it is placed in the appendix.

7.4 Combined Drift BoundWhen No Zero Flips

Assembling the previous drift bounds under various conditions, we get the following

drift bounds.

Lemma 19 Assume c ≤ 56/9, n10 = n01 and n11 ≤ n − c.

E(Δ | P11, F0∗ = 0) · P(P11, F0∗ = 0)

+ E(Δ | P22, F∗0 = 0) · P(P22, F∗0 = 0)

+ E(Δ | P12, F00 = 0) · P(P12, F00 = 0)

≤

{

cn2
10

9n
if n10 = n01

− n01
12

(

1 − c
n

)n
if n10 > n01.

Proof For n10 = n01, we argue that Lemma 17 implies

E(Δ | P12, F00 = 0) ≤
n01

9

(

1 −
c

n

)n11

.

This is obvious for n10 ≤ 1; for n10 ≥ 2 it follows from P(F11 = 1) = cn11/n ·
(1 − c/n)n−1 = cn11/(n − c) · (1 − c/n)n ≤ c (1 − c/n)n and 1/8 + c/64 ≤ 2/9 ≤
n01/9 using c ≤ 56/9.

By Lemmas 15 and 17, along with P(P12) = P(P11 ∪ P22) = 1/2 and

P(F00 = 0) = (1 − c/n)n00 , the left-hand side is at most

n10

18

(

1 −
c

n

)n11+n00

−
n10

18

(

1 −
c

n

)n

=
n10

18

(

1 −
c

n

)n11+n00
(

1 −
(

1 −
c

n

)n10+n01
)
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≤
n10

18

(

1 −
c

n

)n11+n00
(

1 −
(

1 −
c(n10 + n01)

n

))

=
n10

18

(

1 −
c

n

)n11+n00 c(n10 + n01)

n
≤

cn2
10

9n
.

The bound for the case n10 > n01 follows immediately from Lemmas 15 and 18, along

with P(P11) = 1/4.

8 Potential Drift When One Zero Flips

In this section we show that the drift is bounded by a term that yields the leading

constant we are aiming for in our main result. Note that here we can afford to include

error terms of lower order.

We first consider the case that two equal parents are selected.

Lemma 20 For all populations with n10 = n01,

E(Δ | P11, F0∗ = 1) ≤ P(F1∗ = 0)

(

1 −
n01

6

)

+ P(F1∗ = 1)

(

2

9
−

n01

9

)

E(Δ | P22, F∗0 = 1) ≤ P(F∗1 = 0)

(

1 −
n01

6

)

+ P(F∗1 = 1)

(

2

9
−

n01

9

)

.

For all populations with n10 > n01,

E(Δ | P11, F0∗ = 1) ≤

{

1
3 + 2

3 · P(F1∗ = 0) if n01 = 0
(

1 − n01
3

)

· P(F1∗ = 0) +
(

1
3 − n01

3

)

· P(F1∗ = 1) otherwise.

E(Δ | P22, F∗0 = 1) ≤
1

3
· P(F∗1 = 0) +

1

6
· P(F∗1 = 1).

Proof First assume n10 = n01 and consider the event P11. Given F0∗ = 1, the offspring

is accepted with certainty if no 1-bit is flipped. With probability 1/2 the parent survives

and then the new potential is at most n11+n10+1. Consequently, the potential changes

by at most 1 − n01/3 due to the loss of diversity. With the remaining probability 1/2,

the potential increases by at most 1. The overall expected change in potential in this

case is thus at most 1 − n01/6. If a single 1-bit also flips together with the 0-bit, then

the offspring has the same fitness as both parents and the individual to be removed

is selected uniformly at random. If the offspring is removed, the potential does not

change. If the parent is removed, the potential increases by at most 1/3. If the other

population member is removed, the potential increases by at most 1/3 − n10/3 due

to the loss of diversity. The expected change in potential in this case is thus at most

2/9 − n10/9. If more than one 1-bits flip, then the offspring will have lower fitness

than both other members and it will be rejected. Summing up the terms proves the first

claim and the case of P22 follows analogously, considering F∗0 and F∗1 instead.
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For n10 > n01, given F0∗ = 1 and that the fitter parent x1 is selected twice, we

consider separate cases according to the size of n01. If n01 = 0, then no diversity can

be lost. Thus, if no 1-bits flip, the potential increases by 1 because the new offspring

has higher fitness than x1 and x2 is rejected. If at least one 1-bit flips, then the best

fitness does not change and the potential increases by at most 1/3. Overall, for the

case when n01 = 0, the potential changes by P(F1∗ = 0) + 1/3 · P(F1∗ > 0) =
1/3 + 2/3 · P(F1∗ = 0). If n01 > 0 and no 1-bits flip, then the potential changes by

at most 1 − n01/3 since the diversity is lost because x2 is removed. If instead at least

one 1-bit flips, then the potential changes by at most 1/3−n01/3 since the best fitness

does not change and the diversity may be lost if x2 is removed. Since for n01 > 0

these terms are negative, and the offspring is accepted with probability 1 if F1∗ = 1

the claim follows by summing up the two terms.

If x2 is selected twice and no 1-bits are flipped, then the potential increases by at

most 1/3 (i.e., if an n00 bit is flipped) since the parent is removed and the diversity

is kept. If a single 1-bit is flipped then the potential increases again by at most 1/3.

However, since the offspring has the same fitness as its parent, it is necessary that the

parent is removed which happens with probability 1/2. If more than one 1-bits are

flipped, then the offspring is rejected. Summing up the terms completes the proof.

The proof of Lemma 20 has revealed a counterintuitive effect. A population of

individuals with very different fitness values f (x1) ≫ f (x2) can have an advantage

over a population where both members have the same fitness f (x1). This is because,

conditioning on a 0-bit flipping, if the fitter parent is chosen twice, a near-arbitrary

number of 1-bits can flip at the same time and the outcome may still be accepted. This

increases the potential and explains why Lemma 20 contains an unexpectedly large

potential drift in the case n10 > n01 = 0.

Now we consider the case P12 that two different parents are selected.

When F11 ≥ 2 and the parents have equal fitness, the drift under P12 is non-positive

for n10 ≥ 10, except for F11 = n10−1, where it is exponentially small in n10. The

proof of the following lemma is given in the appendix.

Lemma 21 For all n10 = n01, n10 ≥ 10 and all 2 ≤ i ≤ n10 − 1,

E(Δ | P12, F00 = 1, F11 = i) ≤

{

5n3
102−2n10/3 if i = n10 − 1

0 otherwise.

When the two parents have unequal fitness, the following uniform upper bound on

the potential drift applies.

Lemma 22 For all n10 > n01 and all F11 ∈ N0,

E(Δ | P12, F00 = 1, F11) ≤
2

3
.

Proof We start again with the drift formula from Lemma 14 and plug in F00 = 1.

Then

E(Δ | P12, F00 = 1, F11) = P(S > ℓ1) ·
2 − 2F11 − n10 + n01

3
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+ P(S = ℓ1) ·
1 − F11 + n01

3

+ P(S > ℓ2) ·
2 − n01

6

+ P(S = ℓ2) ·
1

6
.

For n10 < 12 the claim is verified numerically for all pairs n01 < n10, see Table 4.

We now turn to an analytical argument for n10 ≥ 12.

From Lemma 18 we already know that

P(S > ℓ1)
−2F11 − n10 + n01

3
+ P(S = ℓ1)

−F11 + n01

3
+ P(S > ℓ2)

−n01

6
≤ 0

regardless of F11. Hence,

E(Δ | P12, F00 = 1, F11)

≤ P(S > ℓ1) ·
2

3
+ P(S = ℓ1) ·

1

3
+ P(S > ℓ2) ·

1

3
+ P(S = ℓ2) ·

1

6

≤
1

3
+ P(S > ℓ2) ·

1

3
+ P(S = ℓ2) ·

1

6

since P(S ≥ ℓ1) ≤ 1/2 (using that ℓ1 is strictly greater than the mean of S). Altogether,

E(Δ | P12, F00 = 1, F11) ≤
1

3
+ P(S ≥ ℓ2)

1

3
≤

2

3

no matter how ℓ1 and ℓ2 turn out.

To obtain a combined drift formula, we need to consider probabilities for flipping

a certain number of 1-bits. The following simple lemma gives bounds for these.

Lemma 23 For every mutation rate c/n and every i ,

(

n11 − i + 1

n − c

)i

·
ci

i !

(

1 −
c

n

)n11

≤ P(F11 = i) ≤
(

n11

n − c

)i

·
ci

i !

(

1 −
c

n

)n11

.

Proof.

P(F11 = i) =
(

n11

i

)

( c

n

)i (

1 −
c

n

)n11−i

=
(

n11

i

)(

c

n − c

)i
(

1 −
c

n

)n11

=
(

n11

n − c
·

n11 − 1

n − c
· · · · ·

n11 − i + 1

n − c

)

·
ci

i !
·
(

1 −
c

n

)n11

.
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The first bracket is bounded as

(

n11 − i + 1

n

)i

≤
(

n11

n − c
·

n11 − 1

n − c
· · · · ·

n11 − i + 1

n − c

)

≤
(

n11

n − c

)i

.

Using Lemmas 20 and 21 and considering the drift under P12 separately for F11 ∈
{0, 1} and for all F11 when n10 ≤ 10, we get:

Lemma 24 Assume c ≤ 2.71, n10 + n01 ≤ log2 n, n11 ≥ n − n/ log3 n and n00 ≥
n10 log n.

E(Δ | P11, F0∗ = 1) · P(P11, F0∗ = 1)

+ E(Δ | P22, F∗0 = 1) · P(P22, F∗0 = 1)

+ E(Δ | P12, F00 = 1) · P(P12, F00 = 1)

≤

⎧

⎪

⎪

⎨

⎪

⎪

⎩

c(2c+9)
9ec · n00

n
· (1 + O(1/ log n)) if n10 = n01

c
ec

(

1
4

+ c
48

+ ec

4
+ O(1/ log n)

)

n00
n

if n10 > n01 = 0

c
ec

(

1
4

+ c
24

+ ec

3
+ O(1/n)

)

n00
n

if n10 > n01 > 0.

Proof We consider different cases.

Case n10 = n01: In case both parents have equal fitness,

E(Δ | P11, F0∗ = 1) · P(P11, F0∗ = 1) = E(Δ | P22, F∗0 = 1) · P(P22, F∗0 = 1)

and we bound the sum of both terms, using P(P11) = P(P22) = 1/4 and Lemma 20

(noting that the formulas for P11 and P22 are identical) as

P(F0∗ = 1)

2

(

P(F1∗ = 0)

(

1 −
n01

6

)

+ P(F1∗ = 1)

(

2

9
−

n01

9

))

. (6)

For P12 we consider probabilities P(F11 = ·), hence we aim to relate this with proba-

bilities P(F1∗ = ·) as follows. (Note that, for n10 = 0, F1∗ = F11.)

P(F1∗ = 0) =
(

1 −
c

n

)n11+n10

= P(F11 = 0)

(

1 −
c

n

)n10

and the term
(

1 − c
n

)n10 is at least 1 − cn10
n

and at most 1. Similarly,

P(F1∗ = 1) =
c(n11 + n10)

n

(

1 −
c

n

)n11+n10−1

= P(F11 = 1)
n11 + n10

n11

(

1 −
c

n

)n10

and the term n11+n10
n11

(

1 − c
n

)n10 is at least 1− cn10
n

and at most 1+O(n10/n). Likewise,

P(F0∗ = 1)

P(F00 = 1)
=

n00 + n01

n00

(

1 −
c

n

)n01

,
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which is at least 1 − cn01/n and at most 1 + O(1/ log n) owing to the assumption

n00 ≥ n10 log n ≥ n01 log n.

Thus, (6) can be written as

P(F00 = 1)

2

(

P(F11 = 0)

(

1 −
n01

6

)

+ P(F11 = 1)

(

2

9
−

n01

9

))

+ ξ · P(F00 = 1)

(7)

for an error term ξ ∈ [−O(1/ log n),+O(1/ log n)], regardless of the signs of the fac-

tors the terms P(F1∗ = 0) and P(F1∗ = 1) are multiplied with. Here we used that these

factors are in [−O(n10), O(n10)] and the absolute value of the error from replacing

each term P(F1∗ = ·) with P(F11 = ·) is at most O(n2
10/n) = O(1/ log n).

The third term from the statement is

E(Δ | P12, F00 = 1) · P(P12, F00 = 1)

=
P(F00 = 1)

2
E(Δ | P12, F00 = 1)

=
P(F00 = 1)

2

n10+1
∑

i=0

E(Δ | P12, F00 = 1, F11 = i)P(F11 = i). (8)

We simplify the expectations in the above terms for i ∈ {0, 1} using Lemma 13 and

add them to the terms in (7). This yields an upper bound of

P(F00 = 1, F11 = 0) · a0 + P(F00 = 1, F11 = 1) · a1

for coefficients a0, a1 defined as follows:

a0 :=
1

2

(

1 −
n10

6
+ P(S ≥ n10 − 1)

(

1 −
n10

6

)

+ P(S = n10 − 1) ·
17n10 − 17

36

)

a1 :=
1

2

(

2

9
−

n10

9
+ P(S ≥ n10)

(

1

3
−

n10

6

)

+ P(S = n10) ·
17n10 − 4

36

)

.

It is easy to verify that a0 = 1 for n10 = 0 and a0 ≤ 1 for 1 ≤ n10 ≤ 9. For n10 ≥ 10,

a0 becomes negative since the term P(S > n10 − 1)
(

1 − n10
6

)

is non-positive and

using P(S = n10 − 1) ≤ 1/(
√

πn10) according to Lemma 7, we get

a0 ≤
1

2

(

1 −
n10

6
+

1
√

πn10
·

11n10 + 19

36

)

< 0.

Similarly, it is easy to check that a1 = 2/9 for n10 = 0 and a1 ≤ 2/9 for 1 ≤ n10 ≤ 6.

For n10 ≥ 7, a1 becomes negative as

a1 =
1

2

(

2

9
−

n10

9
+ P(S > n10)

(

1

3
−

n10

6

)

+ P(S = n10) ·
11n10 + 8

36

)
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≤
1

2

(

2

9
−

n10

9
+

1
√

πn10
·

11n10 + 8

36

)

< 0.

By (8), for larger values of F11, coefficients ai for P(F00 = 1, F11 = i), with 2 ≤
i ≤ n10 + 1, can be bounded from considering only

ai =
E(Δ | P12, F00 = 1, F11 = i)

2
.

Then we can bound the sought expression as

E(Δ | P11, F0∗ = 1) · P(P11, F0∗ = 1)

+ E(Δ | P22, F∗0 = 1) · P(P22, F∗0 = 1)

+ E(Δ | P12, F00 = 1) · P(P12, F00 = 1)

≤ ξ · P(F00 = 1) +
n10+1
∑

i=0

ai P(F00 = 1, F11 = i)

= P(F00 = 1)

(

ξ +
n10+1
∑

i=0

ai P(F11 = i)

)

.

We bound ai by max{0, ai } to ensure non-negative terms, which enables us to use the

upper bound on P(F11 = i) provided by Lemma 23:

P(F11 = i) ≤
(

n11

n − c

)i

·
ci

i !

(

1 −
c

n

)n11

≤
ci

i !

(

1 −
c

n

)n11

where the last inequality follows from n11 ≤ n − c.

Thus,

P(F00 = 1)

(

ξ +
n10+1
∑

i=0

ai P(F11 = i)

)

≤ P(F00 = 1)

(

ξ +
n10+1
∑

i=0

max{ai , 0}P(F11 = i)

)

≤
cn00

n

(

1 −
c

n

)n00−1
(

ξ +
n10+1
∑

i=0

max{ai , 0} ·
ci

i !
·
(

1 −
c

n

)n11

)

=
cn00

n

(

1 −
c

n

)n00+n11−1
(

ξ
(

1 −
c

n

)−n11

+
n10+1
∑

i=0

max{ai , 0} ·
ci

i !

)

.

Using

(

1 −
c

n

)n00+n11

=
(

1 −
c

n

)n−n10−n01

≤ e−c

(

1 +
c

n − c

)n10+n01
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≤ e−c

(

1 +
2cn10

n − c

)

,

and recalling ξ ≤ O(1/ log n) we can write this as

cn00

ecn
(1 + O(1/ log n))

n10+1
∑

i=0

max{ai , 0} ·
ci

i !

assuming that max{ai , 0} · ci

i ! = Ω(1) (if it is 0 or o(1), we have proved the claim).

Now we obtain the claimed bound if we can show that

n10+1
∑

i=0

max{ai , 0} ·
ci

i !
≤ 1 +

2

9
· c. (9)

For n10 = 0 we have a0 = 1, a1 = 2/9, hence (9) holds with equality for n10 = 0. For

0 ≤ n10 ≤ 10 we evaluate the coefficients a0, . . . , an10+1 with the closed formulas

given above and verify (9) for c ≤ 2.71. The coefficients and the ranges of c for

which (9) holds are shown in Table 2. Since we assume c ≤ 2.71, the inequality holds

for all considered n10.

For n10 > 10, we already established above that a0 ≤ 0 and a1 ≤ 0. By Lemma 21,

ai ≤ 0 for all 2 ≤ i ≤ n10+1, except for i = n10−1, where it is at most 5n3
102−2n10/3.

For n10 ≥ 11, this is at most 0.00053 and thus we get an upper drift bound of

P(F00 = 1) (ξ + 0.00053) =
cn00

n
· (ξ + 0.00053) ≤

c(2c + 9)

9ec
·

n00

n
· (1 + O(1/ log n))

where the last inequality holds for c ≤ 6.09. This completes the proof for the case

n10 = n01.

Case n10 > n01 = 0: Now we consider unequal fitness, n10 > n01, in the special case

n01 = 0 (no diversity). By Lemma 20

E(Δ | P11, F0∗ = 1) · P(P11, F0∗ = 1)

=
P(F0∗ = 1)

4
·
(

1

3
+

2

3
· P(F1∗ = 0)

)

=
1

12
· P(F0∗ = 1) +

1

6
· P(F0∗ = 1, F1∗ = 0)

and
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Table 2 Values for coefficients ai from the proof of Lemma 24 under P12, F00 = 1 and n10 = n01, rounded to 4 digits

Condition on c n10 F11

a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11

c ≤ ∞ 0 1.0000 0.2222

c ≤ 2.71 1 0.8333 0.2083 0.0556

c ≤ 3.08 2 0.7048 0.1562 0.0903 0.0139

c ≤ 3.54 3 0.5833 0.0937 0.1042 0.0260 0.0035

c ≤ 4.08 4 0.4641 0.0258 0.1046 0.0326 0.0074 0.0009

c ≤ 4.47 5 0.3460 −0.0455 0.0957 0.0332 0.0098 0.0021 0.0002

c ≤ 4.93 6 0.2282 −0.1194 0.0799 0.0286 0.0097 0.0028 0.0006 0.0001

c ≤ 5.85 7 0.1106 −0.1951 0.0588 0.0193 0.0070 0.0027 0.0008 0.0002 0.0000

c ≤ 8.36 8 −0.0069 −0.2723 0.0334 0.0060 0.0014 0.0011 0.0007 0.0002 0.0000 0.0000

c ≤ 12.53 9 −0.1246 −0.3508 0.0045 −0.0107 −0.0068 −0.0020 −0.0001 0.0002 0.0001 0.0000 0.0000

c ≤ ∞ 10 −0.2423 −0.4302 −0.0274 −0.0305 −0.0176 −0.0068 −0.0017 −0.0002 0.0000 0.0000 0.0000 0.0000

The first column shows sufficient conditions on c that imply
∑

i max{ai , 0}ci /(i !) ≤ 1 + 2c/9

1
23
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E(Δ | P22, F∗0 = 1) · P(P22, F∗0 = 1)

=
P(F∗0 = 1)

4
·
(

1

3
· P(F∗1 = 0) +

1

6
· P(F∗1 = 1)

)

=
1

12
· P(F∗0 = 1, F∗1 = 0) +

1

24
· P(F∗0 = 1, F∗1 = 1).

Moving from events F0∗/F∗0 and F1∗/F∗1 to events F00 and F11 at the expense of

an additive error term ξ ′ ∈ [−O(1/ log n),+O(1/ log n)] as before and adding these

two expressions shows that the first two lines of the formula from the statement are

bounded by

(

1

12
+ ξ ′

)

P(F00 = 1) +
1

4
· P(F00 = 1, F11 = 0) +

1

24
· P(F00 = 1, F11 = 1).

(10)

Note that the first of these summands is multiplied by P(F00 = 1), which does not

include a statement on F11.

Reusing the above calculations, the third term from the statement is

E(Δ | P12, F00 = 1) · P(P12, F00 = 1)

=
P(F00 = 1)

2

n10+1
∑

i=0

E(Δ | P12, F00 = 1, F11 = i)P(F11 = i).

Using Lemma 14, the expectation simplifies to

E(Δ | P12, F00 = 1, F11 = i)

= P(S > n10 + F11) ·
2 − 2F11 − n10

3
+ P(S = n10 + F11) ·

1 − F11

3

+ P(S > F11) ·
1

3
+ P(S = F11) ·

1

6
.

Since n10 +n01 = n10 ≤ n10 + F11, the event S > n10 + F11 is impossible. The event

S = n10+F11 is only possible for F11 = 0, where P(S = n10 + F11) = P(S = n10) =
P(S = 0) by symmetry of the binomial distribution. For F11 = 0 we thus get

E(Δ | P12, F00 = 1, F11 = 0) = P(S = n10) ·
1

3
+ P(S > 0) ·

1

3
+ P(S = 0) ·

1

6

=
1

3
+ P(S = 0) ·

1

6
.

For all i > 0, we get

E(Δ | P12, F00 = 1, F11 = i) = P(S > F11) ·
1

3
+ P(S = F11) ·

1

6
.
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Now we can bound the sought expression as

E(Δ | P11, F0∗ = 1) · P(P11, F0∗ = 1)

+ E(Δ | P22, F∗0 = 1) · P(P22, F∗0 = 1)

+ E(Δ | P12, F00 = 1) · P(P12, F00 = 1)

≤ P(F00 = 1)

(

1

12
+ ξ ′ +

1

2

n10+1
∑

i=0

ai P(F11 = i)

)

where, putting together (10) and the above bounds on E(Δ | P12, F00 = 1, F11 = i),

a0 =
7

12
+ P(S = 0) ·

1

6

a1 =
1

24
+ P(S > 1) ·

1

3
+ P(S = 1) ·

1

6

∀i ≥ 2 : ai = P(S > i) ·
1

3
+ P(S = i) ·

1

6
.

Since all coefficients are positive, we can bound P(F11 = i) as before and obtain a

drift bound of

cn00

ecn
(1 + O(1/ log n))

(

1

12
+ ξ ′ +

1

2

n10+1
∑

i=0

ai ·
ci

i !

)

.

Bounding a0 ≤ 2/3 (since P(S = 0) ≤ 1/2), a1 ≤ 1/24 + 1/3 = 3/8 and ai ≤ 1/3

for i ≥ 2, we have

n10+1
∑

i=0

ai ·
ci

i !
≤

2

3
+

3

8
· c +

1

3

∞
∑

i=2

ci

i !

=
2

3
+

3

8
· c +

1

3
· (ec − c − 1)

=
1

3
+

1

24
· c +

1

3
· ec.

Plugging this in yields an upper drift bound of

cn00

ecn
(1 + O(1/ log n))

(

1

12
+ ξ ′ +

1

6
+

c

48
+

ec

6

)

=
cn00

ecn

(

1

4
+

c

48
+

ec

4
+ O(1/ log n)

)

.

Case n10 > n01 > 0: Finally, we deal with the case n10 > n01 > 0. By Lemma 20

E(Δ | P11, F0∗ = 1) · P(P11, F0∗ = 1)
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=
P(F0∗ = 1)

4

(

(

1 −
n01

3

)

· P(F1∗ = 0) +
(

1

3
−

n01

3

)

· P(F1∗ = 1)

)

≤
P(F0∗ = 1)

4

(

1 −
n01

3

)

P(F1∗ = 0)

≤
cn00

n

(

1 −
c

n

)n−1
(

1

4
−

n01

12

)

.

and

E(Δ | P22, F∗0 = 1) · P(P22, F∗0 = 1)

=
P(F∗0 = 1)

4
·
(

1

3
· P(F∗1 = 0) +

1

6
· P(F∗1 = 1)

)

=
cn00

n

(

(

1 −
c

n

)n−1 1

12
+

c(n11 + n01)

n

(

1 −
c

n

)n−1 1

24

)

≤
cn00

n

(

(

1 −
c

n

)n−1 1

12
+

(

1 −
c

n

)n c

24

)

=
cn00

n

(

1 −
c

n

)n−1
(

1

12
+

c

24

)

.

We use Lemma 22 to bound the third term in the statement as

E(Δ | P12, F00 = 1) · P(P12, F00 = 1)

=
P(F00 = 1)

2
· E(Δ | P12, F00 = 1)

≤
P(F00 = 1)

3
≤

cn00

n
·

1

3
.

Together, we get a drift bound of

(

1

3
+

(

1 −
c

n

)n−1
(

1

3
−

n10

12
+

c

24

))

cn00

n

≤
(

ec

3
+

1

4
+

c

24
+ O(1/n)

)

cn00

ecn
.

9 Putting Everything Together

Combining results from previous sections, for different numbers of flipping zeros,

yields the following unconditional drift bound.
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Lemma 25 If c ≤ 1.422, n10 + n01 ≤ log2 n, n11 ≥ n − n/ log3 n and n00 ≥ log5 n,

then

E(Δ) ≤
c(2c + 9)

9ec
·

n00

n
· (1 + O(1/ log n)).

Proof This follows from adding drift bounds from Lemmas 10, 19 and 24. For n10 =
n01, Lemma 24 gives the stated bound. The terms O(n2

10/n) = O((log4 n)/n) from

Lemma 19 and O(n0∗/(n log n)) = O(n00/(n log n)) can both be absorbed in the

O(1/ log n) term since n00/n ≥ log5 n/n.

For n10 > n01 = 0, the bound from Lemma 24 is at most the bound from the same

lemma for n10 = n01 since

c

ec

(

1

4
+

c

48
+

ec

4

)

≤
c(2c + 9)

9ec

for c ≤ 1.422. Then the claim follows as above.

For n10 > n01 > 0 note that Lemma 19 yields a negative upper bound of −n01/8 ·
(1 − c/n)n = −Ω(1). Since n00 ≤ n/ log3 n, we obtain a negative drift bound if n is

large enough.

To translate the upper bound from Lemma 25 into a lower bound on the expected

runtime, we use the lower-bound version of the multiplicative drift theorem from

Theorem 4. This theorem requires an upper bound on the drift of the potential function

and a sufficiently small probability for large jumps of this value. Such large jumps can

occur if the two individuals of the (2+1) GA have a large Hamming distance. Recall

that Lemma 9 shows this to be unlikely.

The following lemma shows that a drift of the potential can be translated into a lower

bound on the expected optimisation time. This is not immediate since the potential

function is a weighted combination of two quantities.

Lemma 26 Let Nt denote the number of n00-bits at time t of the (2+1) GA and T the

first point in time where n00 ≤ log5 n. Assume that n01 +n10 ≤ log2 n for all points in

time before T , and N0 ≥ log5 n. If E(ϕt+1 − ϕt | ϕt ) ≤ δNt for some n−O(1) ≤ δ < 1

and all t < T , then

E(T | ϕ0) ≥ (1 − O(1/ log n))
ln(n) − O(ln ln n)

δ
.

Proof We introduce a distance function ϕt := n − ϕt = n00 + 2
3

n01 as the mirror

image of our potential to obtain a function to be minimised, as required in Theorem 4.

Moreover, we write Δt = ϕt − ϕt+1. The key idea is to show that the statement on

E(T | ϕ0) holds under the slightly different drift condition

E
(

Δt | ϕt

)

≤ δϕt (11)

and then to prove that the actual drift condition E(ϕt+1 − ϕt | ϕt ) ≤ δNt leads to the

same result, up to lower-order terms.
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We consider the process from the first point in time where ϕt ≤ n/ log3 n, assume

(11) to hold for all t < T and estimate the remaining expected time to minimise the

distance ϕt . Lemma 9 and the facts that at most log n bits flip per generation and that

the distance does not drop below n/ log3 n within the first log2 n generations (each

happening with probability 1−n−Ω(log n)), imply thatϕ0 ≥ n/(2 log3 n)with respect to

our time count. We assume this to happen. By Lemma 9, with probability 1−n−Ω(log n)

it holds that n10 +n01 ≤ log2 n for any polynomial number of steps. Assuming this for

a sufficiently long period obtained from applying Markov’s inequality on E(T | ϕ0),

our assumptions only change the bound on the expected value by a 1 − n−Ω(log n)

factor.

Clearly, since n10 + n01 ≤ log2 n, crossover followed by a neutral mutation can

change the ϕ-value by at most log2 n. Moreover, each mutation flips k or more bits

with probability at most

(

n

k

)

( c

n

)k

≤
ck

k!
; (12)

in particular it flips at most log2 n bits with probability 1−n−Ω(log n). Adding up these

effects, we arrive at P
(

ϕt − ϕt+1 ≥ 2 log2 n
)

= n−Ω(log n). The time to minimise the

distance function is no smaller than the time to reach a distance of at most xmin :=
log5 n (we stop at this point to fulfill the condition on n00 in Lemma 25). Along with

β := 2/ log n and using X t := ϕt , we verify the second condition of Theorem 4 by

estimating

P(X t − X t+1 ≥ β X t ) ≤

P(X t − X t+1 ≥ βxmin) = P
(

X t − X t+1 ≥ 2 log2 n
)

= n−Ω(log n).

Finally, we estimate this bound as n−Ω(n) ≤ βδ/ log n ≤ βδ/log(X t ) since both β and

δ are at least inversely polynomial in n. Hence, P(X t − X t+1 ≥ β X t ) ≤ βδ/log(X t ),

which satisfies the condition. Applying the theorem and recalling our assumption

ϕ0 ≥ n/(2 log n),

E(T | X0) ≥
1 − β

1 + β
·

ln(ϕ0/xmin)

δ
= (1 − O(1/ log n))

ln(n/ log4 n)

δ

which is (1 − O(1/ log n))
ln(n)−O(ln ln n)

δ
. Recall that the unconditional expected time

is only by a factor 1 − n−Ω(log n) smaller.

Finally, we relate Nt to the distance function ϕt and note first that ϕt ≥ Nt . Since,

for t < T , our assumptions imply ϕt = n00 + (2/3)n01 ≤ (1 + 1/ log n)Nt , the

prerequisite

E(ϕt+1 − ϕt | ϕt ) ≤ δNt
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along with the fact Δt = ϕt+1 − ϕt imply

E
(

Δt | ϕt

)

≤ δ(1 − 1/ log n)ϕt .

Hence, (11) has been established with parameter δ(1 − 1/ log n) so that

E(T | ϕ0) ≥ (1 − O(1/ log n))
ln(n/ log4 n)

(1 − 1/ log n)δ
,

which is again (1 − O(1/ log n))
ln(n/ log4 n)

δ
as claimed.

We are now ready to prove our main result.

Proof of Theorem 2 We apply drift analysis to a “typical” run, that is, a run where events

mentioned in the following that happen with overwhelming probability do occur. The

contrary is called a failure event and if a failure occurs, we pessimistically assume that

the runtime is 0. By the law of total probability, the expected runtime is bounded from

below by the expected runtime in a typical run, multiplied by the probability that no

failure occurs.

With probability 1−2−Ω(n) the initial population has a maximum number of (2/3)n

one-bits. The random number of one-bits that crossover creates among the relevant

n10 and n01 bits follows a binomial distribution with parameters n10 + n01 and 1/2.

The expected value of this number equals (n10 + n01)/2 ≤ n/2, and using Chernoff

bounds (Theorem 5) with δ = 2n−1/3 and the upper bound n/2 on the expectation,

the number of one-bits of every fixed offspring is at most U := (n10 + n01)/2 + n2/3

with probability 1 − 2−Ω(n1/3). By a union bound, the probability that at least one

offspring has more than U one-bits is still 2−Ω(n1/3). Since the fittest parent has at

least (n10 + n01)/2 one-bits, this means that the number of one-bits at the relevant

positions, and thereby the number of one-bits of the fitter offspring, grows by at most

n2/3 with probability 1 − 2−Ω(n1/3). The same holds for each mutation with constant

rate c as seen in (12). Hence, the subsequent 2 log2 n generations do not increase the

OneMax-value to more than (3/4)n with probability 1 − 2−Ω(n1/3).

We consider the first point in time when n11 ≥ n−n/ log3 n. By the same arguments

as before, we then have n11 ≤ n − n/(2 log3 n) with overwhelming probability. Now

Lemma 9 is in force, implying that we can apply Lemma 26 with

δ ≤
c(2c + 9)

9ecn
· (1 + O(1/ log n)),

according to the drift bound from Lemma 25. Hence, if none of the above-mentioned

failure events occur, the expected optimization time is bounded from below by

(

1 − O

(

1

log n

))

9ecn ln(n) − O(n ln ln n)

c(2c + 9)
,
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Fig. 1 Average optimisation times over 10,000 runs of the (2+1) GA on OneMax with n = 1000 bits.

The mutation rate is set to c/n with c ∈ {0.05, 0.1, . . . , 1.4}. The thin blue lines show mean ± standard

deviation (Color figure online)

which is 9ec

c(2c+9)
· n ln(n) − O(n ln ln n) as claimed. This still holds when multiplying

the above with the probability of no failure event occurring, as the union of all failure

events is superpolynomially small.

10 Experiments

Our lower bound is tight up to lower-order terms. We ran experiments to see how close

the results are to the dominant term of 9ec

c(2c+9)
· n ln n, when varying c and n.

We first fixed n = 1000 and varied c in steps of 0.1. For each value of c, we

ran the (2+1) GA 10000 times to obtain smooth curves. For the range of c-values,

c ∈ (0, 1.422], covered by Theorem 2, Fig. 1 shows that the empirical averages are very

close to the dominant term. The vertical line indicates the c-value of
√

97−5
4

≈ 1.2122

that was determined to be optimal (up to small-order terms) in Theorem 3.

An obvious question arises: what if values of c are chosen that are larger than the

limit 1.422 in Theorem 2? Fig. 2 shows results of the previous experiment for a larger

range of c-values, c ∈ {0.1, 0.2, 0.3, . . . , 5.0}. The first vertical line in Fig. 2 again

indicates the c-value of
√

97−5
4

≈ 1.2122; the second vertical line indicates the limit

of 1.422 from Theorem 2.

We see that as c increases beyond 1.422, a gap starts to appear between the dominant

term and the average runtime. The average runtime seems to be smaller than 9ec

c(2c+9)
·

n ln n. This could indicate that the lower bound does not hold for c > 1.422, or that

there are small-order terms that affect the plots for n = 1000.
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Fig. 2 Average optimisation times over 10,000 runs of the (2+1) GA on OneMax with n = 1000 bits. The

mutation rate is set to c/n with c ∈ {0.1, 0.2, . . . , 5.0}. The thin blue lines show mean ± standard deviation

(Color figure online)

To see how quickly the runtime approaches the dominant term of 9ec

c(2c+9)
· n ln n

as n grows, we ran experiments with n increasing exponentially in powers of 2 from

n = 23 = 8 to n = 213 = 8192. Figure 3 shows the normalised average runtimes,

which is the runtime divided by n ln n. One can see that, for both the default and the

optimal mutation rates, c = 1 and c =
√

97−5
4

, respectively, the curves approach their

respective dominant terms. However, the approach is quite slow. Even for n = 8192

there is still a significant gap to the leading constant of the dominant term. This might

indicate that the average runtime includes a significant, negative small-order term.

Recall that our lower bound (Theorem 2) includes a negative term of−O(n log log n),

while the upper bound (Theorem 1) contains an additive term +O(n). The term

−O(n log log n) is an artefact of the fact that we only considered around n/ log3 n

fitness levels and we excluded the most difficult log5 n ones. It is easy to show that opti-

mising these fitness levels takes expected time O(n log log n) for both (1+1) EA and

(2+1) GA. We conjecture that the expected running time is close to 9ec

c(2c+9)
·n ln(n)+bn

for some negative constant b. This is based on related work on the (1+1) EA whose

expected runtime on OneMax is known to be en ln(n) − 1.8925 . . . n + O(log n) (cf.

[14], who even determine the expected runtime up to additive errors of O(log n/n)).

Intuitively, the negative linear term appears in the bound for the (1+1) EA since the

algorithm does not start with the largest possible value of the underlying potential

function, which is the number of one-bits. More precisely, the initial number of one-

bits X0 has an expected value of n/2 and the multiplicative drift theorems both for

lower and upper bounds involve the term ln(X0/xmin). For X0 ≈ n/2 this becomes

roughly ln(n) − ln 2, so that the crucial term ln(X0/xmin)/δ, where δ = Θ(1/n),

becomes at most (ln n)/δ − (ln 2)/δ = Θ(n ln n) − O(n). The expected initial value
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Fig. 3 Average optimisation times over 10,000 runs of the (2+1) GA and (1+1) EA on OneMax for different

values of n and different mutation rates, normalised by dividing by n ln n. The solid lines show the best

fit obtained by a non-linear regression fit to a model of an ln(n) + bn, using the non-normalised running

times. The dashed lines show the leading constants provided by theoretical results

of our potential function for the (2+1) GA equals (1/4 + 1/4 + 1/12)n = (7/12)n, so

we believe there is a non-negligible negative term in the expression for the expected

running as well.

To see how closely the empirical data matches a conjectured bound with a negative

linear term, we performed a non-linear regression to fit the average runtimes to a

model of an ln(n) + bn, for parameters a, b. We used the software R, version 4.0.3,

calling the nls command with starting values of a = 1 and b = 0. The results of the

regression were values of a, b that minimised the residual sum of squares.

For the (2+1) GA with c = 1, this resulted in a fitted function of 2.2381n ln(n) −
0.7995n. The leading constant 2.2381 is close to the value 2.224 from our theoretical

analysis. Likewise, for the optimal value c =
√

97−5
4

≈ 1.2122, the best fit is for

2.1532n ln(n)−0.5883n and the leading constant is close to 2.18417 from our analysis

and smaller than the leading constant for c = 1. In both cases, the linear term has

a negative sign. For comparison, the same regression for the (1+1) EA returned the

best fit for the function 2.745n ln(n) − 2.116n. The leading constant is close to the

theoretically proven one of e = 2.71828 and the coefficient of the linear term is also

close to the theoretical one of −1.8925 . . . [14].

11 Conclusions

Proving lower bounds for crossover-based GAs is a notoriously hard problem. We

have provided such a lower bound for the (2+1) GA on OneMax through a careful

analysis of a potential function that captures both the current best fitness and the

potential for finding improvements through crossover combining different “building

blocks” of good solutions. Our lower bound is tight up to small-order terms. This for

123



Algorithmica

the first time proves rigorously that populations are beneficial for standard steady-state

genetic algorithms. We also identified the optimal mutation rate for the (2+1) GA as

(
√

97 − 5)/(4n) for the considered range of mutation rates c/n.

Our lower bound applies for c ≤ 1.422 and an obvious open question is whether the

leading constant in the expected runtime remains at 9ec/(c(2c+9)) when this threshold

is exceeded. Our empirical results suggest that the expected runtime is smaller than the

stated bound, albeit it is not clear whether these results are affected by negative small-

order terms. We conjecture that the runtime is very close to 9ec

c(2c+9)
·n ln(n)+bn, where

bn is a linear term with a negative constant b. Our drift estimates subsumed errors

that were by a factor of O(1/ log n) smaller than the dominant term in asymptotic

notation, hence tighter analyses would be required to obtain rigorous bounds on the

conjectured linear term. Another avenue for future work would be to simplify our

approach, possibly by exploiting that states with n10 > 1 are rarely reached in the late

stages of a run, or to generalise our analysis to larger parent population sizes.

Acknowledgements This work was initiated at the Dagstuhl Seminar 19431 and supported by the EPSRC

under Grant EP/M004252/1.

OpenAccess This article is licensed under a Creative Commons Attribution 4.0 International License, which

permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give

appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,

and indicate if changes were made. The images or other third party material in this article are included

in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If

material is not included in the article’s Creative Commons licence and your intended use is not permitted

by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the

copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

A Omitted Proofs

In this appendix we present proofs omitted from the main part.

A.1 Proof of Lemma 12

Recall that Lemma 12 simplified the expected surplus of a binomially distributed

random variable. To prove Lemma 12, we use an equation that is attributed to Gruder

[13]. We therefore refer to it as Gruder’s equation.

Lemma 27 (Gruder’s equation [13]) For every 0 ≤ p ≤ 1 and all integers a, b,

b
∑

i=a

(

b

i

)

pi (1 − p)b−i (i − bp) = a

(

b

a

)

pa(1 − p)b−a+1.
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Proof. The claim is trivial for a > b, hence we assume a ≤ b. The following proof is

stated in [17], attributed to Gruder [13].

b
∑

i=a

(

b

i

)

pi (1 − p)b−i (i − bp) =
b

∑

i=a

(

b

i

)

pi (1 − p)b−i (i(1 − p) − (b − i)p)

=
b

∑

i=a

(

b

(

b − a

i − 1

)

pi (1 − p)b−i+1

−b

(

b − 1

i

)

pi+1(1 − p)b−i

)

= b

(

b − 1

a − 1

)

pa(1 − p)b−a+1

= a

(

b

a

)

pa(1 − p)b−a+1.

We use Gruder’s equation to prove Lemma 12.

Proof of Lemma 12

E(S | S ≥ ℓ)P(S ≥ ℓ) =
n

∑

s=ℓ

s · P(S = s)

=
n

∑

s=ℓ

(

s −
n

2

)

· P(S = s) +
n

2
· P(S ≥ ℓ)

=
n

∑

s=ℓ

(

n

s

)

2−n10−n01 ·
(

s −
n

2

)

+
n

2
· P(S ≥ ℓ).

Applying Gruder’s equation (Lemma 27) with p = 1/2, a = ℓ, b = n yields

= ℓ

(

n

ℓ

)

2−n−1 +
n

2
· P(S ≥ ℓ)

=
ℓ

2
· P(S = ℓ) +

n

2
· P(S ≥ ℓ).

A.2 Proof of Lemma 16

Recall that Lemma 16 claims that if F00 = 0 and F11 ≥ 2 then under P12 the potential

drift is non-positive.

Proof of Lemma 16 By Lemma 13,

E(Δ | P12, F00 = 0, F11 = i)

=
(

P(S = n10 + i) ·
17n10 + 13i

36
− P(S ≥ n10 + i) ·

6n10 + 24i

36

)

.
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The above is 0 for i ≥ n10, hence the claim is trivial for n10 ≤ 2. We assume n10 ≥ 3

in the following.

The claim is equivalent to

P(S = n10 + i) ·
17n10 + 13i

36
≤ P(S ≥ n10 + i) ·

6n10 + 24i

36
.

Multiplying by 36 ·22n10 and spelling out the binomial distributions involving S yields

(

2n10

n10 + i

)

· (17n10 + 13i) ≤
n10
∑

j=i

(

2n10

n10 + j

)

· (6n10 + 24i).

Dividing both sides by
(

2n10

n10+i

)

yields

(17n10 + 13i) ≤
n10
∑

j=i

(n10 + i)!(n10 − i)!
(n10 + j)!(n10 − j)!

· (6n10 + 24i).

Note that this is equivalent to

(11n10 − 11i) ≤
n10
∑

j=i+1

(n10 + i)!(n10 − i)!
(n10 + j)!(n10 − j)!

· (6n10 + 24i)

which holds trivially for i = n10. For i = n10 − 1, the above simplifies to

11 ≤
(2n10 − 1)!

(2n10)!
· (6n10 + 24n10 − 24) ⇔ 11 ≤ 15 −

12

n10

which is true for n10 ≥ 3. For i ≤ n10 − 2, we have

n10
∑

j=i+1

(n10 + i)!(n10 − i)!
(n10 + j)!(n10 − j)!

· (6n10 + 24i)

≥
i+2
∑

j=i+1

(n10 + i)!(n10 − i)!
(n10 + j)!(n10 − j)!

· (6n10 + 24i)

=
(

(n10 + i)!(n10 − i)!
(n10 + i + 1)!(n10 − i − 1)!

+
(n10 + i)!(n10 − i)!

(n10 + i + 2)!(n10 − i − 2)!

)

· (6n10 + 24i)

=
(

n10 − i

n10 + i + 1
+

(n10 − i)(n10 − i − 1)

(n10 + i + 1)(n10 + i + 2)

)

· (6n10 + 24i)

= (n10 − i)

(

1

n10 + i + 1
+

n10 − i − 1

(n10 + i + 1)(n10 + i + 2)

)

· (6n10 + 24i)

= (n10 − i)

(

2n10 + 1

(n10 + i + 1)(n10 + i + 2)

)

· (6n10 + 24i)
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= 6(n10 − i) ·
(2n10 + 1)(n10 + 4i)

(n10 + i + 1)(n10 + i + 2)
.

Now the claim follows if we can show that the above fraction is at least 11/6.

(2n10 + 1)(n10 + 4i)

(n10 + i + 1)(n10 + i + 2)

=
(n10 + i + 1)(n10 + i + 2) + (n10 − i)(n10 + i + 2) + (3i − 2)(2n10 + 1)

(n10 + i + 1)(n10 + i + 2)

= 1 +
(n10 − i)(n10 + i + 2) + (3i − 2)(2n10 + 1)

(n10 + i + 1)(n10 + i + 2)

≥ 1 +
(n10 − i)(n10 + i + 2) + (3i − 2)(n10 + i + 2)

(n10 + i + 1)(n10 + i + 2)

= 1 +
n10 + 2i − 2

n10 + i + 1

≥ 1 +
n10 + 2

n10 + 3

≥ 1 +
5

6
=

11

6
,

where in the last two inequalities we have used i ≥ 2 and n10 ≥ 3.

A.3 Proof of Lemma 18

Proof of Lemma 18 We investigate the formula

E(Δ | P12, F00 = 0, F11) = P(S > ℓ1) ·
−2F11 − n10 + n01

3

+ P(S = ℓ1) ·
−F11 + n01

3

+ P(S > ℓ2) ·
−n01

6
. (13)

that follows from Lemma 14 for F00 = 0. For n10 < 12 the claim is verified numeri-

cally for all pairs n01 < n10, see Table 3. We now turn to an analytical argument for

n10 ≥ 12.

Since the first term of the rhs. in (13) is clearly negative, we omit it in the follow-

ing. We use our assumption n10 ≥ 12. The aim is to compare different probabilities

occurring in (13) to each other. More precisely, we want to show the claim that

P(S > ℓ2) ≥ 2P(S = ℓ1). Along with the fact that the third term is clearly negative,

we then have

E(Δ | P12, F00 = 0, F11) ≤ P(S = ℓ1)

(

−F11 + n01

3

)
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Table 3 Numerical values for the potential drift given P12, n10 > n01 and F00 = F11 = 0, rounded to 4 digits

n10 n01

0 1 2 3 4 5 6 7 8 9 10

1 0.0000

2 0.0000 0.0000

3 0.0000 −0.0729 −0.0208

4 0.0000 −0.1146 −0.1354 −0.0521

5 0.0000 −0.1380 −0.2109 −0.1960 −0.0898

6 0.0000 −0.1510 −0.2591 −0.2988 −0.2565 −0.1322

7 0.0000 −0.1582 −0.2891 −0.3698 −0.3822 −0.3176 −0.1779

8 0.0000 −0.1621 −0.3073 −0.4173 −0.4736 −0.4628 −0.3795 −0.2263

9 0.0000 −0.1642 −0.3182 −0.4484 −0.5382 −0.5727 −0.5418 −0.4421 −0.2769

10 0.0000 −0.1654 −0.3246 −0.4682 −0.5827 −0.6536 −0.6684 −0.6197 −0.5054 −0.3293

11 0.0000 −0.1660 −0.3284 −0.4807 −0.6127 −0.7115 −0.7646 −0.7616 −0.6968 −0.5694 −0.3833

1
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Table 4 Numerical values for the potential drift given P12, n10 > n01 and F00 = 1, F11 = 0, rounded to 4 digits

n10 n01

0 1 2 3 4 5 6 7 8 9 10

1 0.6667

2 0.5000 0.5833

3 0.4167 0.4167 0.5052

4 0.3750 0.3125 0.3281 0.4297

5 0.3542 0.2500 0.2070 0.2402 0.3555

6 0.3437 0.2135 0.1276 0.1035 0.1536 0.2819

7 0.3385 0.1927 0.0771 0.0086 0.0024 0.0682 0.2086

8 0.3359 0.1810 0.0459 −0.0552 −0.1070 −0.0966 −0.0162 0.1355

9 0.3346 0.1745 0.0269 −0.0970 −0.1837 −0.2197 −0.1938 −0.0999 0.0623

10 0.3340 0.1709 0.0156 −0.1237 −0.2361 −0.3088 −0.3297 −0.2894 −0.1830 −0.0109

11 0.3337 0.1689 0.0090 −0.1406 −0.2711 −0.3719 −0.4309 −0.4375 −0.3837 −0.2656 −0.0842

1
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+ 2P(S = ℓ1)

(

−n01

6

)

≤ P(S = ℓ1)

(

−F11

3
+

n01

3
−

n01

3

)

≤ 0

since F11 ≥ 0.

Hence, we are left with the claim. We first assume n10 ≥ n01 + 2 and treat the case

n10 = n01 − 1 separately below. Note that nothing is to show if ℓ1 > n10 + n01 since

then only negative terms have non-zero probability. Hence, we assume ℓ1 ≤ n10 +n01

in the following. Since n01 ≤ n10 − 2 and F00 = 0, we have ℓ1 = n10 − F00 +
F11 ≥ (n10 + n01)/2 + 1 and ℓ2 = n10 − F00 + F11 ≤ ℓ1 − 2. Since S follows

a binomial distribution with parameters n10 + n01 and 1/2, we have shown ℓ1 ≥
E(S) + 1. Using the well-known monotonicity of the binomial distribution, we have

P(S = ℓ1 − 1) ≥ P(S = ℓ1), and, since P(S > ℓ2) ≥ P(S = ℓ1) + P(S = ℓ1 − 1),

we obtain P(S > ℓ2) ≥ 2P(S = ℓ1) as claimed in the case n10 ≥ n01 + 2.

If n10 = n01 + 1 we have to argue more carefully. A relatively straightforward

subcase (for n10 ≥ 12) is F11 = 0. Then ℓ2 = n01 and therefore

P(S > ℓ2) = P(S ≥ n01 + 1) ≥ P(S ≥ (n10 + n01)/2) ≥
1

2

by symmetry of the binomial distribution Bin(n10 + n01, 1/2). Also, for any k ∈
{0, . . . , n10 + n01}, we have

P(S = k) ≤
1

√
π(n10 + n01)/2

≤
1

√
πn10/2

≤ 0.231

according to Lemma 7 for n10 ≥ 12, which proves P(S = ℓ1) ≤ 1/4 and, therefore,

again P(S > ℓ2) ≥ 2P(S = ℓ1) as above.

We are left with n10 = n01 + 1 and F11 > 0. Here we take into account the first

line of (13) and obtain due to ℓ1 = ℓ2 + 1 that

E(Δ | P12, F00 = 0, F11) = P(S > ℓ1) ·
−2F11 − n10 + n01

3

+ P(S = ℓ1) ·
−F11 + n01

3

+ P(S ≥ ℓ1) ·
−n01

6

≤ Pr(S = ℓ1 + 1)

(

−
2F11

3
−

n01

6

)

+ Pr(S = ℓ1)

(

−
F11

3
+

n01

6

)

. (14)
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We will show that Pr(S = ℓ1 + 1)/ Pr(S = ℓ1) = α for some sufficiently large α and

obtain

E(Δ | P12, F00 = 0, F11) ≤ Pr(S = ℓ1)

(

−
2αF11

3
−

αn01

6
−

F11

3
+

n01

6

)

. (15)

The ratio α will reflect the following trade-off: if F11 is small then ℓ1 = n10 + F11 is

close to the middle value of the binomial distribution with parameters N := n10 +n01

and P(S = ℓ1 + 1) is not much smaller than P(S = ℓ1). Then the positive contribution

of n01/6 can almost be compensated by the negative −αn01/6. However, if F11 is big

then α must be relatively small due to the tail of the binomial distribution. Then we

exploit that the negative terms involving F11 make the drift bound small.

We now consider several ranges for F11 to relate the drift and α. The first range is

F11 ≥ n01/2. Then have (even without bounding α) (Table 4)

E(Δ | P12, F00 = 0, F11) ≤ Pr(S = ℓ1)

(

−
n01/2

3
+

n01

6

)

≤ 0.

If F11 < n01/2 and F11 ≥ 1 then we have

n01

k∗ + 1
≤ F11 <

n01

k∗

for some k∗ ≥ 2. Plugging the lower bound into (15), we have

E(Δ | P12, F00 = 0, F11) ≤ Pr(S = ℓ1)

(

−
2αn01

3(k∗ + 1)
−

αn01

6
−

n01

3(k∗ + 1)
+

n01

6

)

.

The bracket equals

−4α − α(k∗ + 1) − 2 + (k∗ + 1)

6(k∗ + 1)
· n01,

which becomes non-positive (and along with it also our drift bound) for

α ≥
k∗ − 1

k∗ + 5
.

Hence, we are left with establishing this bound on α. Note that, since n01 = n10 − 1,

the sum N := n10 + n01 is odd, and it holds that

ℓ1 ≤ n10 +
n01

k∗ =
(

N

2
+

1

2

)

+
(

N
2

− 1
2

)

k∗ ≤
(

N

2
+

1

2

)

+
N

2k∗ =
(

1

2
+

1

2k∗

)

N +
1

2
.
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Using the representation P(S = k) =
(

N
k

)

2−N , and the identity

(

a

b + 1

) / (

a

b

)

=
a − b

b + 1
,

we have P(S = ℓ1 + 1) ≥ P(S = ℓ1)
N/2−N/(2k∗)−1/2

N/2+N/(2k∗)+1/2+1
, hence

α =
N/2 − N/(2k∗) − 1/2

N/2 + N/(2k∗) + 3/2
=

k∗ − 1 − k∗/N

k∗ + 1 + 3k∗/N
≥

k∗ − 1 − k∗/12

k∗ + 1 + k∗/4
,

where we used N ≥ 12. Now,

α −
k∗ − 1

k∗ + 5
≥

(11/12)k∗ − 1

(5/4)k∗ + 1
−

k∗ − 1

k∗ + 5
=

11(k∗)2 − 23k∗ + 12

15(k∗)2 + 87k∗ + 60
≥ 0

for k∗ ≥ 1, which proves α ≥ k∗−1
k∗+5

as required.

A.4 Proof of Lemma 21

Lemma 21 is similar to Lemma 16, saying that the drift is non-positive if at least 2

1-bits flip. Strangely enough, this holds for all i ≥ 2, except for i = n10 − 1 where

the drift is exponentially small in n10.

Proof of Lemma 21 Using Lemma 13,

E(Δ | P12, F00 = 1, F11 = i)

= P(S ≥ n10 − 1 + i) ·
(

1 −
2i

3
−

n10

6

)

+ P(S = n10 − 1 + i) ·
17n10 − 17 + 13i

36

= P(S ≥ n10 − 1 + i) ·
36 − 24i − 6n10

36
+ P(S = n10 − 1 + i) ·

17n10 − 17 + 13i

36
. (16)

Noting that the first fraction is negative and the second one positive because of i ≥ 2,

the whole expression is non-positive if

α :=
P(S ≥ n10 − 1 + i)

P(S = n10 − 1 + i)
≥

17 − 13i − 17n10

36 − 24i − 6n10
. (17)

We will now bound α depending on i . It is easy to see that 17−13i−17n10
36−24i−6n10

< 1 for

i ≥ n10 while trivially α ≥ 1. This proves the statement for i ≥ n10. Hence, we now

focus on 2 ≤ i ≤ n10 − 2 and write i = n10/r for some r ∈ [n10/(n10 − 2), n10/2].
Then

17 − 13i − 17n10

36 − 24i − 6n10
=

17 − 13n10/r − 17n10

36 − 24n10/r − 6n10
=

13 + 17r − 17r/n10

24 + 6r − 36r/n10
.
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We now use a similar argument as in the proof of Lemma 18. Since n10 + i =
(1 + 1/r)n10 and S is based on a binomial distribution with 2n10 trials and success

probability 1/2, we obtain that

P(S = n10 + i)/P(S = n10 + i − 1) =
(

2n10

(1 + 1/r)n10

) / (

2n10

(1 + 1/r)n10 − 1

)

=
r − 1 + r/n10

r + 1

using the identity

(

a

b + 1

) / (

a

b

)

=
a − b

b + 1

and, similarly,

P(S = n10 + i + 1)

P(S = n10 + i)
=

r − 1

r + 1 + r/n10

as well as

P(S = n10 + i + 2)

P(S = n10 + i + 1)
=

r − 1 − r/n10

r + 1 + 2r/n10
.

Hence, since i ≤ n10 − 2

P(S ≥ n10 + i − 1)

P(S = n10 + i − 1)

≥
(

1 +
r − 1 + r/n10

r + 1
+

r − 1 + r/n10

r + 1
·

r − 1

r + 1 + r/n10

+
r − 1 + r/n10

r + 1
·

r − 1

r + 1 + r/n10
·

r − 1 − r/n10

r + 1 + 2r/n10

)

=: q,

in other words α ≥ q, with equality holding for i = n10 − 2.

We now show q − 13+17r−17r/N
24+6r−36r/N

≥ 0 for the desired ranges of N := n10 and i ,

which implies (17). Simple algebraic manipulations (supported by a computer algebra

system) yield that

q −
13 + 17r − 17r/N

24 + 6r − 36r/N

=

(7r4 + 32r3 − 66r2 + 40r − 13)N 4 + (−118r4 + 174r3 −
114r2 + 26r)N 3

+(−295r4 + 102r3 + r2)N 2 + (−242r4 + 10r3)N − 72r4

6((r + 4)N − 6r)(r + 1)N (N (r + 1) + 2r)(N (r + 1) + r)
.
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Clearly, the denominator of the last fraction is positive for N ≥ 6. We now prove that

its numerator, hereinafter called ν(r , N ), is positive for N ≥ 12 and N/(N − 2) ≤
r ≤ N/2. To see this, we will compute its first and second partial derivative with

respect to r :

∂

∂r
ν(r , N ) = (28r3 + 96r2 − 132r + 40)N 4 + (−472r3 + 522r2 − 228r + 26)N 3

+ (−1180r3 + 306r2 + 2r)N 2 + (−968r3 + 30r2)N − 288r3

and

∂2

∂2r
ν(r , N ) = (84r2 + 192r − 132)N 4 + (−1416r2 + 1044r − 228)N 3

+ (−3540r2 + 612r + 2)N 2 + (−2904r2 + 60r)N − 864r2.

If we evaluate ν(r , N ) and its first and second partial derivative at the minimum

viable r = N/(N − 2), we have

ν(N/(N − 2), N ) =
8N 4(4N 3 − 42N 2 − 61N − 63)

(N − 2)4

∂

∂r
ν(r , N )

∣

∣

∣

∣

r=N/(N−2)

=
2N 3(16N 4 − 28N 3 − 604N 2 − 1239N − 274)

(N − 2)3

and

∂2

∂2r
ν(r , N )

∣

∣

∣

∣

r=N/(N−2)

=
2N 2(72N 4 − 228N 3 − 2315N 2 − 2494N − 488)

(N − 2)2
,

all of which are clearly non-decreasing for N ≥ 2 (since the respective lead coefficients

are positive and all other coefficients negative) and verified as positive (with values

1144.6272, 626482.9440 and 2117468.1601, respectively) for all N ≥ 12, without

claiming this to be tight in all three cases. Hence, if N ≥ 12, ν(r , N ) is positive at

r = N/(N − 2) and increases with r at this point. If the second partial derivative

is positive for all r ∈ [N/(N − 2), N/2] then ν(r , N ) is monotone increasing on

that interval. Otherwise the second derivative, a quadratic function, will be monotone

increasing until its maximum at some r ∈ [N/(N − 2), N/2] and then monotone

decreasing. In particular this means that ν(r , N ) has at most one root right of r =
N/(N − 2). We evaluate ν(N/2, N ), i. e., at the maximum r -value considered and

obtain the polynomial

7

16
N 8 −

27

8
N 7 −

211

16
N 6 −

87

8
N 5 − 3N 4,

which is non-decreasing in N . Now, ν(N/2, N ) = 1144.6272 > 0 for N = 12. Due to

the monotonicity of ν(N/2, N ), this holds for all greater N as well, and together with
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the observations regarding monotonicity and roots in the interval [N/(N − 2), N/2],
this concludes the proof that ν(r , N ) ≥ 0 for N ≥ 12 and N/(N − 2) ≤ r ≤ N/2,

implying (17).

Finally, for i = n10 − 1 and n10 ≥ 10 the formula simplifies to

E(Δ | P12, F00 = 1, F11 = n10 − 1)

= P(S ≥ 2n10 − 2) ·
(

1 −
2(n10 − 1)

3
−

n10

6

)

+ P(S = 2n10 − 2) ·
17n10 − 17 + 13(n10 − 1)

36

≤ P(S = 2n10 − 2) ·
30n10 − 30

36

≤ P(S = 2n10 − 2) ·
5n10

6

=
(

2n10

2

)

· 2−2n10 ·
5n10

6

≤
(2n10)

2

2
· 2−2n10 ·

5n10

6

=
5n3

10

3
· 2−2n10 .
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