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ARTICLE

Monoallelic expression and epigenetic inheritance
sustained by a Trypanosoma brucei variant surface
glycoprotein exclusion complex
Joana Faria1, Lucy Glover1,2, Sebastian Hutchinson 1,3, Cordula Boehm1, Mark C. Field 1 & David Horn 1

The largest gene families in eukaryotes are subject to allelic exclusion, but mechanisms

underpinning single allele selection and inheritance remain unclear. Here, we describe a

protein complex sustaining variant surface glycoprotein (VSG) allelic exclusion and antigenic

variation in Trypanosoma brucei parasites. The VSG-exclusion-1 (VEX1) protein binds both

telomeric VSG-associated chromatin and VEX2, an ortholog of nonsense-mediated-decay

helicase, UPF1. VEX1 and VEX2 assemble in an RNA polymerase-I transcription-dependent

manner and sustain the active, subtelomeric VSG-associated transcription compartment.

VSG transcripts and VSG coats become highly heterogeneous when VEX proteins are

depleted. Further, the DNA replication-associated chromatin assembly factor, CAF-1, binds to

and specifically maintains VEX1 compartmentalisation following DNA replication. Thus, the

VEX-complex controls VSG-exclusion, while CAF-1 sustains VEX-complex inheritance in

association with the active-VSG. Notably, the VEX2-orthologue and CAF-1 in mammals are

also implicated in exclusion and inheritance functions. In trypanosomes, these factors sustain

a highly effective and paradigmatic immune evasion strategy.
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A
ntigenic variation and host immune evasion by parasites
causing malaria1, giardiasis2 and African trypanoso-
miasis3 depend upon monoallelic and switchable variant

surface antigen expression. Indeed, allelic exclusion governs the
expression of many of the largest known gene-families, typically
encoding cell-surface proteins in protozoa and mammals, and has
major impacts on health and disease. In mammals, odour
detection depends upon olfactory receptor exclusion4 and B- and
T-cell specificity depends upon immunoglobulin and surface
receptor exclusion, respectively5. Selection of a single allele from a
large gene family is thought to be inherently stochastic rather
than deterministic and generates tremendous cellular diversity,
upon which adaptive mechanisms operate. Notably, the diversity-
generating exclusion systems of protozoan antigenic variation,
and the host immune response, are mutually adaptive and in
direct competition. Despite intense study, the molecular
mechanisms facilitating the selection and maintenance of a single
active allele, coordinated with heritable exclusion of all others,
remain poorly understood.

The African trypanosome, Trypanosoma brucei, is transmitted
among mammalian hosts by tsetse-flies and, due to effective
immune evasion, causes chronic and lethal infections, specifically
sleeping-sickness in humans and nagana in cattle. In these
parasites RNA polymerase-I (pol-I) transcribes a single, domi-
nant, telomeric variant surface glycoprotein (VSG) gene3 as part
of a polycistronic transcription unit. Pol-I transcription initiates
at several sites but this is attenuated at all but one site6. T. brucei
can switch to activate a new telomeric VSG expression site (ESs)
but, significantly, switching occurs at low-frequency and all but
one of the ESs typically remain ‘silent’, despite possessing all cis-
elements required for expression7.

The active VSG-ES is associated with an extranucleolar pol-I
transcription factory, known as the expression site body (ESB)8,9.
This VSG-ES is depleted of nucleosomes10,11 and nuclease-
hypersensitive chromatin persists at this locus even if transcrip-
tion is blocked12. An HMG chromatin protein is enriched at both
the ESB and the nucleolus12,13, and a focus of SUMOylation
associates with the ESB14. In addition, histones15 and histone
variants16, telomere-binding proteins, a histone H3-K76 methyl-
transferase, a histone deacetylase, a chromatin remodeler, histone
chaperones, nuclear lamina components, cohesin and the inositol
phosphate pathway all impact VSG-ES silencing to varying degrees
(reviewed in ref. 17). These factors may impact chromatin-
dependent silencing or transcriptional permissivity but, notably, a
direct role in gene selection has not been demonstrated. More
recently, the first factor specifically enriched in association with the
active VSG-ES, VSG exclusion 1 (VEX1), was identified17.

Here, we identify and characterise a VEX1–VEX2 complex.
The complex assembles a sub-nuclear domain in a transcription-
dependent manner and maintains VSG allelic exclusion by
negatively controlling transcription of other telomeric VSGs.
Inheritance of VSG exclusion requires maintenance of the VEX-
complex during S-phase, which depends upon the conserved
chromatin assembly factor, CAF-1.

Results
A subtelomere- and VSG-associated VEX-complex. We pre-
viously described T. brucei VEX1 (Tb927.11.16920), the only
known protein specifically enriched in association with the ESB17.
VEX1, therefore, is at the heart of the nuclear subdomain
meditating antigenic variation in trypanosomes, but VEX1 lacks
orthologs in other cell types, it remained unclear why VSG-exclu-
sion was only partially perturbed following VEX1-knockdown
and it remained unclear whether other factors were involved in
VSG-exclusion.

To identify VEX1 chromatin interactions, we affinity-purified
VEX1myc-associated chromatin and deep-sequenced the enriched
DNA. Reads were accurately aligned to individual VSG-ESs by
uniqueness filtering, using MapQ > 118. An examination of
protein coding sequences within the hemizygous subtelomeric
VSG-ESs7,19 revealed VSG-2, the active VSG, as the most enriched
gene (Fig. 1a, Supplementary Data 1, sheet 1). We also observed
particularly strong enrichment of the region downstream of this
gene (Fig. 1a). This is consistent with a focus of VEX1 that is
adjacent to, rather than coincident with, the extranucleolar focus
of pol-I at the active VSG-ES17. Notably, DNA immediately
downstream of several silent ES-associated VSGs was also
enriched (Fig. 1a, Supplementary Fig. 1). This is also consistent
with our model proposing that conserved VSG-associated
sequences, including the telomeric repeats, participate in VEX1-
and homology-dependent VSG-silencing17. Thus, chromatin
interactions connect VEX1 to the conserved sequences associated
with telomeric VSGs.

Next, we affinity-purified VEX1GFP-associated proteins using
cryomilling and high-affinity nanobodies. The procedure was
carried out initially in insect-stage T. brucei (Supplementary
Fig. 2a, b), for which protocols were established20, and then in
bloodstream form T. brucei (Fig. 1b). Quantitative proteomic
analysis (Fig. 1b, Supplementary Fig. 2a, b, Supplementary Data 1,
sheet 2) revealed tag-dependent enrichment of green flourescent
protein (GFP) and the same set of five proteins in four
independent experiments; VEX1 was enriched, as expected, but
also Tb927.11.13380, an ortholog of the nonsense-mediated
mRNA-decay ATP-dependent superfamily 1-type helicases,
UPF1/SMG2/NAM7/Rent121, (Fig. 1c, Supplementary Fig. 2c–e),
now designated VEX2 (predicted 224 kDa, 2026 residues).
Trypanosomes encode two UPF1-related proteins (Supplementary
Fig. 2c). The putative T. brucei canonical UPF1 has been studied
but it remains unclear whether classical nonsense-mediated decay
operates22. VEX2 contains a UPF1-related helicase domain
towards the C-terminus, including the canonical motifs involved
in ATP binding and hydrolysis and nucleic acid binding
(Supplementary Fig. 2d). Structural prediction suggested the
presence of an α-solenoid architecture at the N-terminus
(Supplementary Fig. 2e), in place of the typical UPF2-interacting
domain23; α-solenoids are frequently involved in protein–protein
or protein–RNA interactions. The other three proteins that
displayed tag-dependent enrichment were all three components
of chromatin assembly factor 1 (CAF-1; CAF-1a, Tb927.8.3980;
CAF-1b, Tb927.10.7050, CAF-1c, Tb927.11.4970; Fig. 1b, c,
Supplementary Fig. 2a), the evolutionary conserved hetero-
trimeric replication-associated histone chaperone24. Notably, no
pol-I components were enriched.

Super-resolution fluorescence microscopy revealed that, like
VEX1, VEX2 localised to a single major sub-nuclear focus
(detected in ~80% of nuclei) that was replicated and segregated at
the appropriate phases of the cell cycle (Fig. 1d). Consistent with
the proteomics evidence, VEX2-foci co-localised with VEX1 foci
(Fig. 1e, Supplementary Movie 1) and the extranucleolar, histone-
depleted pol-I compartment (Fig. 1f). We conclude that the
VEX1–VEX2-complex is associated with the single VSG tran-
scription compartment.

VEX-complex compartmentalisation is transcription-dependent.
VEX1 foci are disrupted in cells treated with transcription inhi-
bitors, indicating that active transcription is required for
assembly17,25. However, it was unclear from these studies whether
VEX1 was degraded or redistributed throughout the nucleoplasm.
Protein blotting indicated that neither VEX1 (Fig. 2a) nor VEX2
(Fig. 2b) were degraded following pol-I specific transcription
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inhibition with BMH-21. Indeed, super-resolution confocal
microscopy revealed that both VEX1 (Fig. 2a, Supplementary
Fig. 3a) and VEX2 (Fig. 2b, Supplementary Fig. 3b) displayed
significant levels of redistribution across the nucleus following
inhibition of pol-I transcription, or inhibition of general tran-
scription with actinomycin D (Supplementary Fig. 3c–f). Thus,
recruitment of VEX1 and VEX2 to the VSG transcription com-
partment requires active pol-I transcription. VEX1 and VEX2
proteins remain within the nucleus when transcription is pre-
vented, suggesting availability for retargeting once pol-I tran-
scription reinitiates.

VEX2 depletion results in multi-VSG expression. VEX1 was
initially identified from a high-throughput RNA interference
(RNAi) screen for subtelomeric loss-of-silencing17. Another
genome-wide RNAi screen indicated minimal fitness-cost

following VEX1-knockdown, but a significant and major fitness-
cost following VEX2-knockdown, specifically in bloodstream-
form cells and not insect-stage cells26 (Supplementary Fig. 4a).
This likely explains why only VEX1, and not VEX2, was identified
in the loss-of-silencing screen, and indicates a bloodstream-form
specific function for VEX2; VSG is not normally expressed in the
insect-stage.

To explore the function of VEX2, we assembled three
independent inducible RNAi knockdown strains with an active
VSG-2 expression site (Fig. 3, Supplementary Fig. 4b). Knock-
down was associated with a significant growth defect (Fig. 3a), but
little perturbation of cell cycle distribution (Supplementary
Fig. 4c). In these cells, normally silent VSG-6 was strongly
derepressed after only 24 h, as assessed by protein immunoblot-
ting (Fig. 3b), immunofluorescence microscopy (Fig. 3c) and
immunostaining followed by flow cytometry (Fig. 3d). Notably,
abundance of the initially active VSG was also clearly reduced

12

20

2

0.2

e
m

P
A

I 
s
c
o

re

0.1

G1

G2Post-M
0

4

–1 Start Stop 1 kb

–1

–2

–4

L
o
g

2
F

C

Start Stop 1 kb

4

2

0

m
y
c
V

E
X

2
/D

N
A

mycVEX2Histone H3NOG1pol-l mycVEX2mycVEX2

S

1 10

GFP

VEX2
VEX1

VEX2GFPVEX1myc

VEX2
2026

917

705

550

467

UPF1-related

Zinc finger

ED-rich

WD40

VEX1
CAF-1

CAF-1a

CAF-1b

CAF-1c

100

100

130

250

250

55

55 EF1α

Merge + DNA

Merge + DNAMerge + DNA Merge + DNA

G1

G2

95

kDa

70

1000

Enrichment score

8
4
0

VSG-2 ES

VSG-6 ES

VSG-13 ES
5 kb

C
h

IP
/i
n

p
u

t

12

8

4

0C
h

IP
/i
n

p
u

t

12
8
4

0

0

Active

Silent

VSG
-2

Sile
nt

 V
SG

s

ESAG
s

0.5

1.0

1.5

2.0

2.5

C
h

IP
/i
n

p
u

t

C
h
IP

/i
n
p
u
t

N

K

W
T

V
E

X
1

G
F

P

W
T

m
y
c
V

E
X

2

a b c

d e

f

Fig. 1 A subtelomere- and VSG-associated VEX-complex. a Affinity purification of VEX1myc-associated chromatin followed by sequencing (ChIP-seq).

Enrichment traces over active (VSG-2) and silent (VSG-6, VSG-13) VSG-ESs with 1 kbp non-overlapping bins; red circles, promoters; red boxes, VSGs; grey

boxes, expression-site associated genes (ESAGs). Box-plot depicting enrichment of the indicated CDSs. Centre lines show the medians; box limits indicate

the 25th and 75th percentiles; whiskers extend from the 10th to the 90th percentile, outliers are shown. Silent VSGs, n= 18; ESAGs, n= 129. Metagene plot

and the associated heat-map for active and silent telomeric VSGs. The red bar on the metagene plot indicates the location of a highly conserved sequence

in the VSG 3’-untranslated region. b VEX1GFP immunoprecipitation and proteomics. GFP-tag dependent enrichment from bloodstream form T. brucei.

emPAI, exponentially modified protein abundance index. The inset shows immunoprecipitates and tag-dependent VEX1 (red) and VEX2 (green) bands

highlighted in a silver-stained gel. c Schematic representation of VEX1 (Tb927.11.16920), VEX2 (Tb927.11.13380) and CAF-1 subunits (a, Tb927.8.3980; b,

Tb927.10.7050; c, Tb927.11.4970) indicating conserved domains and motifs. d Immunofluorescence analysis during the cell cycle and protein-blot analysis

of mycVEX2 expression. N nucleus; K kinetoplast (mitochondrial genome). e, f Immunofluorescence-based colocalisation studies of VEX2GFP and VEX1myc

(e) or a nucleolar (No) and ESB marker (pol-I, largest subunit), a nucleolar marker (NOG1) or Histone H3 (f). In e, G1 or G2 cells are shown. d–f DNA was

counter-stained with DAPI; the images correspond to maximal 3D projections of 0.1 μm stacks; scale bars 2 μm; the data are representative of independent

biological replicates and independent experiments. Source data are provided as a Source Data file
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after 48 h of VEX2-knockdown (Fig. 3b) and VSG-6 appeared to
accumulate in intracellular compartments as well as at the surface
(Fig. 3c, right-hand side). To survey additional VSGs, we used
quantitative proteomics of proteins released from the cell-surface.
The active VSG on wild-type cells, VSG-2, displayed a relative
abundance of 99.9%. Following VEX2-knockdown, VSG-2
remained the most abundant VSG, but VSG-6 and several
additional ES-associated VSGs were derepressed (Fig. 3e, Supple-
mentary Data 1, sheet 3). Because antigenic variation occurs at
low frequency, T. brucei clones are typically homogeneous and
express a single VSG (Fig. 3c–e). Following VEX2-knockdown,
however, >90% of cells simultaneously expressed VSG-2, and
VSG-6 at the cell surface as determined by microscopy (Fig. 3c)
and flow cytometry (Fig. 3d). Taken together, these results
indicate major disruption of allelic exclusion and the simulta-
neous expression of multiple VSGs on the surface of individual
cells following VEX2-knockdown.

VEX2 coordinates allele-specific VSG-ES transcription. To
further explore gene expression defects following VEX2-knock-
down, we analysed the transcriptome, comparing three inde-
pendent knockdown strains to three wild-type sub-clones
(Supplementary Fig. 5, Supplementary Data 1, sheets 4–5). Since
RNAi may not degrade the entire mRNA, we show efficient
disruption of VEX2 transcript in Fig. 4a. Among approximately
7600 genes encoded in the genome, 166 displayed >5-fold and
significantly (p < 10−2) increased expression after 24 h knock-
down (Fig. 4b–e), including every known pol-I transcribed
protein-coding locus. There are 18 known silent, telomeric, pol-I
promoter-associated VSGs in the genome; 13 in polycistronic
expression sites and 5 in monocistronic expression sites, with the
latter only normally activated in metacyclic cells in the insect
salivary gland18. Total transcript abundance from this full set of
18 VSGs (Fig. 4b, c), and 130 silent expression-site associated
genes (ESAGs) (Fig. 4d), was increased by 212 and 32-fold,

a

b

– +
BMH-21

– BMH-21 + BMH-21

BMH-21

BMH-21

–
+

–
+

1–2 foci Distributed

1– 2 foci Distributed

– BMH-21 + BMH-21

kDa
130

55

– +
BMH-21

kDa

250

55

EF1α

0

20

40

60

80

100

N
u

c
le

i 
(%

)

0

20

40

60

80

100

N
u

c
le

i 
(%

)EF1α

VEX1myc

mycVEX2

mycVEX2/DNA

VEX1myc/DNA

Fig. 2 VEX-complex compartmentalisation is transcription dependent.

a, b Protein-blot and immunofluorescence analysis of VEX1myc (a) and
mycVEX2 (b) before and after BMH-21 treatment (30min at 1 μM).

Proportions of nuclei displaying 1–2 major foci or distributed signals are

indicated; the remaining cells displayed no detectable signal. Values are

averages of two independent experiments (≥100 nuclei each). Error bars,

SD; **p < 0.01; ***p < 0.001 (two-tailed paired Student’s t test). DNA

was counter-stained with DAPI; the images correspond to maximal 3D

projections of 0.1 μm stacks; scale bars 2 μm; the data are representative of

independent biological replicates and independent experiments. Source

data are provided as a Source Data file

10
9
8
7
6
5
4

0

VSG-6

V
S

G

V
S

G
-2

10
2

10
2

0

50

100

%
 o

f 
m

a
x
.

10
3

10
3

10
4

10
4

10
5

10
2

10
3

10
4

10
5

10
5

10
2
10

3
10

4
10

5

VSG-6

VSG-6
Relative protein abundance (emPAI)

0.01

0
0

20

40

C
e
lls

 (
%

)

60

80

100

24 48
Induction (h)2

6
17

8
15
18
11

653

Wild-type

13
531

0.1 1 10 100

24

8.7% 92.5%

+ Tet

+ Tet– Tet

– Tet

–
 T

e
t

N
o
 T

e
t

+
 T

e
t

+
 T

e
t 
(2

4
 h

)

V
E

X
2
-k

n
o
c
k
d
o
w

n
C

o
n
tr

o
ls

48 72

Induction (h)

C
u
m

u
la

ti
ve

 g
ro

w
th –Tet

+Tet +Tet (h)

VEX2

VSG-6

VSG-6

V
S

G
-6

+

VSG-2
+

VSG-6
+

VSG-2
+
/VSG-6

+

V
S

G
-2

+

Merge + DNA Merge + DNA

VSG-2

VSG-2

EF1α

0
kDa

250
72
55

55

55

24 48

VEX2 RNAi
a b

d e

c

Fig. 3 VEX2 depletion results in multi-VSG expression. a Cumulative growth following tetracycline (Tet) induced VEX2-knockdown; *p < 0.05; **p < 0.01

(multiple t tests). Protein blotting (b), immunofluorescence analysis (c), and flow cytometry (d), to assess VSG expression following VEX2-knockdown (24

h). EF1α, loading-control in (b); in c, DNA was counter-stained with DAPI and the graph depicts the rapid increase of dual VSG expressing cells following

VEX2 knockdown by microscopy analysis. Scale bars, 5 μm (left hand side) and 2 μm (right hand side). Percentages in d indicate double-positive cells.

e Quantitative mass spectrometry analysis of surface-VSGs following VEX2-knockdown (48 h). The inset shows data for wild-type cells. emPAI,

exponentially modified Protein Abundance Index. Error bars (not visible in a), SD; data are averages from two (a/c/e) independent biological replicates and

representative of independent experiments (a–d). Source data are provided as a Source Data file

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-10823-8

4 NATURE COMMUNICATIONS |         (2019) 10:3023 | https://doi.org/10.1038/s41467-019-10823-8 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


respectively. Even the ESAGs at the active transcribed locus (n=
18) were significantly (p < 10−50) upregulated (9-fold, Fig. 4d), as
were the non-telomeric, pol-I transcribed procyclin (associated)
genes (Fig. 4e); procyclin genes produce abundant surface proteins
that are normally expressed only in insect mid-gut stage cells.
Highlighting the magnitude of the VEX2-knockdown phenotype,
derepressed VSGs contributed >24% of total VSG transcripts,
compared to only 0.1% in control cells (Supplementary Data 1,
sheets 4–5); the super-abundant active VSG mRNA is >200-fold
more abundant than the average mRNA encoding ribosomal
proteins. Notably, several previously silent VSGs in ESs with dual
promoters (VSG-6, 8, 15 and 17; see ref. 7) were particularly
derepressed and produced the four most abundant cellular
mRNAs, after VSG-2; these VSGs were also readily detected at the
cell-surface following VEX2-knockdown (Fig. 3e). The same
VSG-ESs were activated at high rates during VSG switching27.
Thus, an additional VSG-ES promoter likely facilitates the dere-
pression or activation of a VSG-ES. We conclude that VEX2
coordinates VSG allelic exclusion and has a profound impact on
differential VSG expression.

We did not anticipate increased expression of ESAGs at the
active VSG-ES in response to VEX2-knockdown (Fig. 4d).
However, it has long been known that ESAGs upstream of VSGs,
despite co-transcription in the same polycistron, yield far less
abundant transcripts, and no factor responsible for this
differential control had been identified previously; VSG mRNA

is >140-fold more abundant than the mean ESAG mRNA18. Our
transcriptome analysis now indicates post- or co-transcriptional
suppression of these ESAGs mediated by VEX2. We speculate,
based on sequence similarity of VEX2 to UPF1, that negative
control by VEX2 may be related to nonsense-mediated mRNA-
decay.

We next asked what impact VEX2-knockdown and VSG-ES
derepression had on RNA pol-I localisation. Immunofluorescence
microscopy revealed a remarkable loss of the nucleolar pol-I
signal after only 24 h of knockdown and a substantial loss of
detectable extranucleolar pol-I foci; protein blotting indicated that
pol-I was still present following VEX2 knockdown (Fig. 4f). These
results suggest that derepressed VSG-ESs deplete the nucleolus
and the ESB of pol-I, redistributing the polymerase to multiple
extranucleolar sites.

VEX-complex knockdown yields a severe exclusion defect.
VEX1 knockdown yielded a moderate VSG derepression defect17

relative to the VEX2 knockdown phenotype (Figs. 3 and 4). We,
therefore, knocked down both VEX1 and VEX2 simultaneously
and carried out a similar analysis to that described above.
VEX1–VEX2 double knockdown was associated with a very
severe growth defect that was cytocidal after 72 h (Fig. 5a). In
these cells, silent VSG-6 was again strongly derepressed, as
assessed by protein immunoblotting; the active-VSG signal was
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once again clearly reduced after 48 h of knockdown (Fig. 5b).
Following 48 h of VEX1–VEX2 double knockdown, immuno-
fluorescence microscopy revealed that almost all cells expressed
both VSG-2 and VSG-6, while >20% of cells simultaneously
expressed VSG-2, VSG-6 and VSG-3 (Fig. 5c); VSG-13 was also
expressed by >20% of these cells (Supplementary Fig. 6a). We
further monitored VEX1-knockdown cells over an extended
period, during which cells remain viable17. This revealed >25% of
the population expressing both VSG-2 and VSG-6 throughout the

time-course, with no evidence for switching to VSG-6 expression
(Supplementary Fig. 6b). Thus, VEX-complex knockdown dis-
rupts allelic exclusion and does not simply increase the VSG
switching rate. Quantitative proteomic analysis following
VEX1–VEX2 knockdown revealed derepression of 15 pol-I pro-
moter-associated VSGs (Fig. 5d, Supplementary Data 1, sheet 3).
A comparison of relative VSG expression revealed that dere-
pressed VSGs contributed approx. 40% of total VSG following
VEX1–VEX2 knockdown (Fig. 5e, Supplementary Data 1, sheet
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3) compared to only approximately 10% of total VSG following
VEX2 knockdown. As for VEX2-knockdown (Fig. 4f), double
knockdown was associated with loss of both the nucleolar pol-I
signal and detectable extranucleolar pol-I foci (Supplementary
Fig. 6c).

Transcriptome analysis following VEX1–VEX2 knockdown
(Fig. 5f, Supplementary Fig. 7, Supplementary Data 1, sheets 4–5)
revealed a similar pattern of derepression as observed above for
VEX2 knockdown alone (Fig. 5g–j). Again, all known pol-I
transcribed protein-coding loci were derepressed, and previously
silent VSGs linked to dual VSG-ES promoters produced the four
most abundant cellular mRNAs, after VSG-2 (Fig. 5g). These data

demonstrate that the VEX-complex coordinates VSG allelic
exclusion. The allelic exclusion system collapses following
depletion of the VEX-complex, yielding multi-VSG expression,
highly heterogeneous VSG coats and cell-death.

VEX-complex interactions impact abundance and location. We
next asked what impact VEX1 and VEX2 have on each other.
VEX1-knockdown had no detectable impact on VEX2 expression
or focal localisation (Fig. 6a). In contrast, VEX1 over-expression
substantially diminished VEX2 abundance; VEX1 was highly
overexpressed in most nuclei (~80%) and VEX2 foci were no
longer detectable by immunofluorescence (Fig. 6b). These data
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likely explain the previously reported more severe VSG dere-
pression phenotype following VEX1 over-expression compared
with knockdown17 and also indicate that VEX1 can limit VEX2
abundance; this latter feature may be important for preventing
activation of a second VSG. We also tested the impact of VEX2-
knockdown on VEX1 localisation and found that VEX1 was
redistributed across multiple sub-nuclear puncta following loss of
VEX2 (Fig. 6c). Thus, VEX1 association with the VSG tran-
scription compartment is VEX2-dependent.

VEX-complex compartmentalisation is stage-specific. Insect-
stage T. brucei cells neither transcribe VSG nor exhibit allelic
exclusion. Since we show above that VEX-complex association
with the VSG transcription compartment requires pol-I tran-
scription, we asked whether VEX2 association with this com-
partment is absent in insect-stage cells. Like VEX117, VEX2 was
indeed redistributed through the nuclear compartment during
differentiation (Fig. 7a). Protein blotting revealed substantial
upregulation of VEX2 as the VSG signal diminished (Fig. 7a) and
these differentiated cells displayed multiple VEX2-foci, some of
which were coincident with VEX1-foci (Fig. 7b). Redistributed
VEX2 was similarly observed in long-term established insect-
stage cells. Thus, both VEX1 and VEX2 associate with the VSG
transcription compartment in a pol-I transcription-dependent
and life cycle stage-specific manner.

Colocalisation of CAF-1 and the VEX-complex during S phase.
We next considered the interaction between the VEX-complex
and CAF-1; all three components of this conserved chromatin
chaperone were co-immunoprecipitated with VEX1 (see Fig. 1b).
DNA replication presents both an opportunity to retain or reset
epigenetic states. We, therefore, asked if CAF-1 plays a role in the
inheritance of the VEX-complex-dependent epigenetic state
during DNA replication; the active VSG-ES is replicated early
during S-phase while the silent VSG-ESs are replicated later28.
Significantly, S-phase specific VSG-ES derepression was pre-
viously reported following CAF-1b knockdown15. By analysing
the localisation of a tagged CAF-1b subunit, either CAF-1bGFP or
CAF-1bmyc, we observed major CAF-1b foci, despite an overall
punctate nuclear distribution. Notably, these foci co-localised
with the sub-nuclear compartment defined by both VEX1
(Fig. 8a, Supplementary Movie 2) and VEX2 (Fig. 8b) and
coincident signals were significantly enriched in S-phase cells
(Fig. 8a, b); the interaction between the VEX-complex and CAF-1

was also confirmed by immunoprecipitation followed by protein
blotting (Fig. 8c).

VEX-complex reassembly and inheritance requires CAF-1. By
analysing phenotypes associated with CAF-1b knockdown, we
confirmed two further specific predictions in support of CAF-1
dependent inheritance of the VEX-complex. First, VEX1 dis-
tributed across multiple sub-nuclear puncta following CAF-1b
knockdown (12 h, Fig. 9a); while VEX2 notably remained pri-
marily compartmentalised in a single focus in each nucleus under
the same conditions (Fig. 9b). Indeed, we observed more intense
VEX2 foci following CAF-1b knockdown, and protein blotting
confirmed that VEX2 abundance is specifically increased when
CAF-1b is depleted (Fig. 9c, Supplementary Fig. 8a, b). Thus,
CAF-1 limits VEX2 abundance, an effect that may be enhanced
by excess VEX1 (see above). Second, following CAF-1b knock-
down (see Fig. 9d), transcriptome analysis revealed specific
derepression of VSGs and other pol-I transcribed protein-coding
genes (Fig. 9e–i, Supplementary Fig. 8c, d, Supplementary Data 1,
sheets 4–5).

Following CAF-1b knockdown for 24 h (see Supplementary
Fig. 8c), 115 genes displayed >5-fold and significantly (p < 10−2)
increased expression, >80% of which were also significantly
increased following VEX2 knockdown (Supplementary Data 1,
sheets 4, 5). In this case, we observed a more pronounced increase
in total transcript abundance for promoter-proximal VSGs (89-
fold, n= 5, Fig. 9g) relative to promoter-distal VSGs (9-fold, n=
5, Fig. 9g). Similarly, we observed a more pronounced increase
in total transcript abundance for promoter-proximal ESAGs
(48-fold, n= 34, Fig. 9h) relative to promoter-distal ESAGs
(4-fold, n= 96, Fig. 9h). Procyclin (associated) genes were also
derepressed (6-fold, Fig. 9i), while ESAGs at the active locus
displayed significantly (p < 10−4) reduced expression (44 ± 19%,
n= 12; Fig. 9h, Supplementary Data 1, sheets 4–5), consistent
with increased VEX2 abundance and enhanced VEX2-mediated
negative control at this locus (see above). Thus, CAF-1 knock-
down has a major impact on pol-I transcribed protein-coding
loci; promoter-proximal genes may be particularly susceptible to
derepression due to a genome-wide histone chaperone defect.

A model for VSG allelic exclusion by the VEX-complex. Finally,
combining RNA-seq data, we compared the relative contributions
of VEX1, VEX2 and CAF1-b to VSG silencing (Fig. 10a) and also
calculated relative contributions to an allelic exclusion index; the
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ratio of reads from the active VSG relative to all 18 silent
expression-site associated VSGs (Fig. 10b). VEX2 clearly makes
the major contribution to VSG silencing (Fig. 10a, b), establishing
a 1000-fold expression differential in wild-type cells, which, fol-
lowing VEX2 or VEX-complex depletion, is diminished to a 2–4-
fold differential (Fig. 10b). As illustrated by our model (Fig. 10c),
we conclude that the VEX-complex associates with the active
VSG in a pol-I transcription-dependent manner and thereby
coordinates nuclear pol-I compartments and VSG exclusion.
VEX1 compartmentalisation is VEX2-dependent, while retention
during DNA replication is also CAF-1 dependent.

Discussion
An improved understanding of immune evasion by pathogens
has profound importance to health and disease. Despite intense
study, mechanisms underlying stochastic activation of one allele
and the heritable exclusion of all others remain to be fully
defined. This has been the case for antigenic variation in the
parasites that cause malaria1, giardiasis2 and African trypanoso-
miasis;3 and also in mammals where olfactory receptor allelic
exclusion underpins odour detection4 and where immunoglobu-
lin and receptor allelic exclusion underpin specificity in B and
T cells5.

Here, we describe an association between a bipartite VSG
exclusion (VEX)-complex and the active VSG transcription
sub-compartment in T. brucei. The complex, which is com-
partmentalised due to active VSG-ES transcription, mediates
transcriptional silencing of all other VSG alleles (Fig. 10c). In

addition, VEX1 sequestration requires VEX2, and also CAF-1
during DNA replication. Transcription-dependent sequestra-
tion, and a major allelic exclusion defect when the VEX-complex
is depleted are consistent with a sequestration-transcription
based positive-feedback mechanism, favoring sequestration of
the VEX-complex at the transcribed VSG compartment. This
may be important for maintaining, and we speculate, also
establishing, allelic exclusion. CAF-1 dependence indicates that
inheritance of exclusion requires VEX1 reloading during, or
soon after, DNA replication. Notably, the VEX-complex is
also present in insect-stage cells, suggesting availability for
retargeting once VSG transcription reinitiates in parasites in the
insect salivary gland.

Several observations suggest potentially shared mechanisms
with allelic exclusion in mammals. The VEX2-related UPF1
orthologue in humans (Rent1) influences early nuclear events in
mRNA biogenesis, including splicing29. Mammalian Rent1 is
enriched at telomeres and negatively controls the association
between telomeric repeat-containing RNA (TERRA) transcripts
and chromatin at these sites; it has been proposed that these
transcripts promote heterochromatin assembly, similar to Xist
RNA promotion of X-chromosome inactivation30. In addition,
murine UPF1 is required for X-inactivation and formation of Xist
RNA domains, a function involving Xist splicing control31. Taken
together, these findings suggest a conserved role for this helicase
family in regulating lncRNA-chromatin associations, and possibly
in gene expression choices. The enrichment of VEX1 and VEX2
in association with the active VSG-ES is also reminiscent of
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nuclear sub-structures in other eukaryotic cells, such as PML
bodies and nuclear speckles32,33.

It remains unclear how the activity state of a gene is repro-
duced on daughter chromatids following DNA replication. The
conserved hetero-trimeric histone H3–H4 specific chaperone,
CAF-1, participates in chromatin assembly directly behind the
passing DNA polymerase during DNA replication, integrating
DNA synthesis with conservative reassembly of chromatin in
eukaryotes24,34. This involves reincorporating the majority of
maternal histones within 400 bp of their pre-replication locus35

and locus-specific bookmarking by epigenetic regulatory com-
plexes to maintain transcriptional programs36,37. Mammalian
CAF-1 sustains somatic cell types38 and epigenetic memory by
interacting with heterochromatin protein 1α, a histone H3
methyltransferase and KRAB-ZFP-associated protein 1; this
complex is also associated with sub-nuclear foci39. Human CAF-1
can also activate transcription independent of its histone
deposition function40 and the conserved CAF-1 subunit-asso-
ciated dREAM complex plays a role in specifying and main-
taining olfactory receptor gene expression in Drosophila41. Thus,
in addition to housekeeping roles in chromatin assembly, several
lines of evidence suggest an evolutionary conserved role for CAF-
1 in sustaining site-specific molecular memories of epigenetic
states. Our findings indicate that this can involve CAF-1 depen-
dent and locus-specific compartmentalisation of non-histone,
chromatin-associated regulators as epigenetic marks. Consistent
with this view, a cohesin-dependent delay in active VSG sister
chromatid separation facilitates epigenetic inheritance42. Thus,
premature segregation of sister chromatids following cohesin
depletion may yield free VEX1 and present opportunities for
activation of other VSG-ESs.

VEX2 makes the greatest contribution to differential VSG
expression, as assessed at mRNA and protein levels, while loss of
both VEX1 and VEX2 leads to collapse of the exclusion system.
Transcription sustains VEX-complex assembly at the active locus
and this sequestration through transcription may also drive the
establishment of a single active site. The VEX-complex may also
be self-limiting, in the sense that CAF-1 and VEX1 can negatively
control VEX2 expression; this may be important to minimise
activation at other sites and hence secure selectivity. We pre-
viously demonstrated homology-dependent silencing by VEX117

and suspect that communication among VSG alleles requires a
trans-acting RNA component. Although the current findings
demonstrate robust negative control of silent VSGs by the VEX-
complex, a more detailed dissection of the proposed positive and
negative controls, and their coordination to achieve allelic
exclusion, will require further study.

In summary, the crosstalk among VSG-ESs and inheritance of
allelic exclusion in trypanosomes requires transcription, the VEX-
complex and CAF-1 dependent partitioning of VEX1. These
factors collectively sustain a specific assembly in association with
the active VSG, resulting in exclusion of all other VSG alleles.
CAF-1 links the VEX-complex to the active site to produce a
molecular memory. Our findings reveal the factors underpinning
a winner-takes-all paradigm for the establishment, maintenance
and inheritance of nuclear bodies and allele-specific epigenetic
states. To our knowledge, this is the first characterisation of a
protein complex directly responsible for single gene choice in an
allelic exclusion system.

Methods
T. brucei growth and manipulation. Bloodstream-form T. brucei, Lister 427 and
2T1 cells43, both wild-type with respect to VEX1, VEX2 and CAF-1 subunits, were
grown in HMI-11 medium and genetically manipulated using electroporation44;
cytomix was used for all transfections. Puromycin, phleomycin, hygromycin and
blasticidin were used at 2, 2, 2.5 and 10 µg ml−1 for selection of recombinant

clones; and at 1, 1, 1 and 2 µg ml−1 for maintaining those clones, respectively.
Cumulative growth curves were generated from cultures seeded at 105 cells ml−1,
counted on a haemocytometer and diluted back to 105 cells ml−1 as necessary. For
differentiation of bloodstream form to procyclic form, 2 × 107 cells were resus-
pended in DTM medium, 2.5 mg ml−1 of haemin, 300 mM cis-aconitate and
incubated at 27 °C. Established procyclic-form T. brucei, Lister 427 cells were
grown in SDM-79 at 27 °C and genetically manipulated using electroporation as
above. Blasticidin was used at 10 and 2 μg ml−1 for selection and maintenance,
respectively.

Plasmids. For RNAi, primers were selected from ORF sequences using CLC
Viewer v. 7.8 and BLAST analysis to minimise potential off-target effects. A specific
RNAi target fragment for VEX2 (Tb927.11.13380, 471 bp) was amplified and
cloned into pRPaiSL45. The VEX1 (Tb927.11.16920, 574 bp)17 and CAF-1b
(Tb927.10.7050, 458 bp)15 RNAi cassettes were excised prior to electroporation by
digesting with AscI. For epitope-tagging at the native locus, a 710 bp fragment of
VEX2 was amplified and cloned into pNATTAGx45 to add an N-terminal 6× c-myc
or GFP-tag and a fragment of 918 bp was amplified and cloned into pNATxTAG45

to add a C-terminal GFP tag. The vectors were linearised with XhoI and HpaI,
respectively. The VEX112myc17 and CAF-1b12myc15 C-terminal tagging vectors were
linearised with SphI and NdeI, respectively. The VEX1 and CAF-1b GFP C-
terminal tagging vectors were made by replacing the 12× c-myc tag and were also
linearised with SphI and NdeI, respectively. The VEX1 C-terminal myc-tag over-
expression cassette17 was excised prior to electroporation by digesting with AscI.
Linearised RNAi and overexpression constructs, under the control of tetracycline-
inducible promoters, were transfected into 2T1 cells, which allow for targeting to a
single genomic locus validated for robust inducible expression43.

ChIP-seq. ChIP and cell lysis46 was carried out with the following modifications.
Briefly, 2 × 108 T. brucei bloodstream form cells expressing a C-terminal 12-myc
tagged endogenous copy of VEX1 were cross-linked with 1% formaldehyde for 20
min at RT. DNA was sonicated using a Bioruptor (Diagenode) with sonication
beads (Diagenode, C01020031) for 5 cycles of 30 s on/30 s off. C-terminal 12-myc
VEX1 was immunoprecipitated with α-Myc antibody coupled to Dynabeads Pro-
tein G (2.8 µm). Antibody coupling to the Dynabeads was carried out according to
the manufactures recommendations. The beads were then washed with RIPA
buffer (50 mM HEPES-KOH, pKa 7.55, 500 mM LiCl, 1 mM EDTA, 1.0% NP-40,
0.7% Na-Deoxycholate) and eluted DNA was purified by phenol chloroform
extraction and ethanol precipitation. Reads were mapped to bloodstream VSG-ESs7

and metacyclic VSG-ESs47,48 from the Lister 427 strain. Bowtie 2-mapping49 was
with the parameters --very-sensitive --no-discordant --phred33, and with a MapQ
value of >118. Alignment files were manipulated with SAMtools50. Alignments were
inspected with the Artemis genome browser51. Telomeric VSG coding sequences
with a mapping quality filtering of >1 were aligned using deeptools computeMatrix
scale-regions. The bedgraph for log2 fold change was generated using deepTools252

with 1 kb bins and the option smoothLength 5000, plotted in Excel and further
assembled in Illustrator. The heat map was generated using deepTools. Reads were
counted using BEDTools53, counting reads in non-overlapping 1 kb bins. Files were
normalised by counting total read counts per library prior to fold change calcu-
lation for each bin. Locus maps were generated by exporting vector graphics views
or regions of interest from Artemis genome browser and manipulation in Adobe
illustrator. The box plot was generated in Graphpad Prism v7.0.

Affinity-enrichment of VEX1-interactors. 1 × 1010 insect or bloodstream form T.
brucei cells with or without a C-terminal GFP-tagged endogenous copy of VEX1
were washed three times in ice cold PBS with protease inhibitors (Roche, EDTA
free) and subsequently cryomilled into a fine grindate, in a planetary ball mill
(Retsch)20; protein–protein interactions are effectively preserved under these
conditions. Six aliquots of 50 mg of frozen grindate were thawed into ice cold lysis
buffer (20 mM HEPES, pH 7.4, 1 mM MgCl2, 10 µM CaCl2, protease inhibitor
cocktail) containing either 100 mM NaCl or 250 mM citrate and either 0.1%
Tween, 0.1% Brij58, 0.1% Triton X-100 or 0.1% Chaps, and pipetted to homo-
genise. The samples were then subjected to sonication (three pulses at 60% amp)
and placed on ice. Samples were spun for 10 min at 20,000g at 4 °C to pellet the
debris. The supernatant was removed and added to a 1.5 ml eppendorf containing
dimeric α-GFP nanobodies54 conjugated to magnetic beads (Dynabeads—Thermo
Scientific) and agitated at 4 °C for 2 h. The samples were then placed on a magnetic
rack and washed three times with ice-cold lysis buffer. Samples were eluted with a
non-reducing sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-
PAGE) loading buffer or equivalent. The resulting proteins were fractionated by 1D
SDS-PAGE and visualised by silver staining.

Quantitative mass spectrometry. Affinity-enriched samples were run 2 cm into a
NuPAGE® Novex Bis–Tris 10% gel with NuPAGE® MOPS SDS running buffer
(Life Technologies) and subjected to overnight (16 h) trypsin digestion (Modified
Sequencing Grade, Roche). Peptides were then extracted, dried in a SpeedVac
(Thermo Scientific), resuspended in 50 µl 1% formic acid, centrifuged and trans-
ferred to high-performance liquid chromatography (HPLC) vials. 5 µl was typically
analysed on a Q Exactive HF Hybrid Quadrupole-Orbitrap Mass Spectrometer
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(Thermo Scientific) coupled to an UltiMate 3000 RSLCnano ultra HPLC system
(Thermo Scientific) and EasySpray column (75 μm× 50 cm, PepMap RSLC C18
column, 2 μm, 100 Å, Thermo Scientific). The mass spectrometer was operated in
data dependent mode with a single MS survey scan from 335 to 1800 m/z followed
by 20 sequential m/z dependent MS2 scans. The 20 most intense precursor ions
were sequentially fragmented by higher energy collision dissociation. The MS1
isolation window was set to 1.4 Da and the resolution set at 60,000. MS2 resolution
was set at 15,000. The AGC targets for MS1 and MS2 were set at 3e6 ions and 2e5

ions, respectively. The normalised collision energy was set at 27%. The maximum
ion injection times for MS1 and MS2 were set at 50 and 19 ms, respectively. The
peptides from each fraction were separated using a mix of buffer A (0.1% formic
acid in MS grade water) and B (0.08% formic acid in 80% MS grade CH3CN) and
eluted from the column using a flow rate of 300 nl min−1 and a linear gradient
from 5 to 40% buffer B over 68 min. The column temperature was set at 50 °C.
RAW data files were extracted and converted to Mascot generic files (.mgf) using
MSC Convert. Data were searched against the MaxQuantTbrucei database using
the Mascot Search Engine (Mascot Daemon Version 2.3.2). Fold-change, relative to
a sample lacking GFP-tagged VEX1, was used to derive an enrichment score. For
VSG analysis, glycosylphosphatidylinositol (GPI)-specific phospholipase C (GPI-
PLC) cleaved soluble VSG (sVSG) was prepared and subjected to quantitative mass
spectrometry analysis17,55; the eluate was concentrated on an Amicon Ultra 0.5 ml
centrifugal filter (Millipore), and recovered in 100 μl of water. emPAI scores are
proportional to protein content in a protein mixture56.

Co-Immuniprecipitation. 4 × 108 bloodstream form T. brucei cells with or without
a C-terminal GFP-tagged endogenous copy of VEX2 and a C-terminal 12-myc-
tagged endogenous copy of CAF-1b were washed three times in ice-cold PBS with
protease inhibitors and lysed into ice cold lysis buffer (RIPA, 1 mM DTT, protease
inhibitor cocktail). Pipetting to homogenise, 30 s of vortexing and incubation for
30 min at 4 °C facilitated lysis. Samples were spun for 10 min at 20,000g at 4 °C to
pellet debris. The supernatant was removed and added to a 1.5 ml eppendorf
containing α-GFP antibody (Abcam) conjugated to magnetic Dynabeads and
agitated at 4 °C for 2 h. The samples were then placed on a magnetic rack and
washed five times with ice-cold lysis buffer. Samples were eluted with a reducing
NuPAGE LDS loading buffer. The resulting proteins were fractionated by 1D SDS-
PAGE and analysed by protein-blotting.

Protein blotting. Protein samples were run according to standard protein
separation procedures, using SDS-PAGE. However, for VEX2 detection, the use
of Bis-Tris gels with a neutral pH environment and a bis–tris/bicine based
transfer buffer (containing a reducing agent and 10% methanol) were critical for
protein separation and transfer, respectively (NuPAGE, Invitrogen). Otherwise,
western blotting was carried out according to standard protocols. The following
primary antibodies were used: rabbit α-VEX2 (1:1000), rabbit α-pol-I largest
subunit17 (1:500), rabbit α-VSG-2 (1:20,000), rabbit α-VSG-6 (1:20,000), mouse
α-c-myc (Millipore, clone 4A6, 1:7,000), rabbit α-GFP (Abcam, 1:1,000) and
mouse α-EF1α (Millipore, clone CBP-KK1, 1:20,000). We used horseradish
peroxidase coupled secondary antibodies (α-mouse and α-rabbit, Biorad, 1:2000).
Blots were developed using an enhanced chemiluminescence kit (Amersham)
according to the manufacturer’s instructions. Densitometry was performed using
Fiji v. 2.0.0.

Microscopy. Immunofluorescence microscopy was carried out according to
standard protocols, using 12-well 5 mm (Thermo Scientific) or 18-well μ-slides
(Ibidi) for wide field, and confocal microscopy, respectively. For super-lowest
speed; pinhol microscopy, the cells were attached to poly-L-lysine treated coverslips
(#1.5), stained and only then mounted onto glass slides. For colocalisation studies
with pol-I we used antigen-retrieval. Prior to permeabilization, fixed cells were
rehydrated in phosphate-buffered saline (PBS) for 5 min at RT, held at 95 °C for 60
s in freshly prepared antigen-retrieval buffer (100 mM Tris, 5% urea, pH 9.5) and
then washed 3 × 5 min in PBS at RT. Cells were mounted in Vectashield with DAPI
(wide field) or stained with 1 µg ml−1 DAPI for 10 min and then mounted in
Vectashield without DAPI (confocal and super resolution). In T. brucei, DAPI-
stained nuclear and mitochondrial DNA were used as cytological markers for cell-
cycle stage; one nucleus and one kinetoplast (1N:1K) indicates G1, one nucleus and
an elongated kinetoplast (1N:eK) indicates S-phase, one nucleus and two kineto-
plasts (1N:2K) indicates G2/M and two nuclei and two kinetoplasts (2N:2K)
indicates post-mitosis57,58. Primary antisera were rat α-VSG-2 (1:10,000), rabbit α-
VSG-6 (1:10,000), rabbit α-VSG-1359 (1:5000), mouse α-VSG-360 coupled with
Alexa 488 (1:500), mouse α-EP procyclin (Cedarlene, 1:1,000), rabbit α-GFP
(Invitrogen, 1:250; Abcam, 1:500), mouse α-myc (Source Bioscience, clone 9E10,
1:200 or New England Biolabs, clone 9B11, 1:2,000), rabbit α-pol-I largest subunit17

(1:100), rabbit α-NOG161 (1:500) or rabbit α-histone H3 (Abcam, 1:1000). The
secondary antibodies were Alexa Fluor conjugated goat antibodies (Thermo Sci-
entific): α-mouse, α-rat and α-rabbit, AlexaFluor 488 or Alexa Fluor 568 (1:1000 or
1:2000, for confocal or wide field field microscopy, respectively) or α-rat Alexa 647
(1:1000). For the colocalisation studies in Fig. 8a, b and the quantification in
Fig. 5c, cells were analysed by confocal microscopy, using a Leica TCS SP8 confocal
laser scanning microscope and the Leica Application Suite X (LASX) software

(Leica, Germany). For the remaining quantifications, cells were analysed by wide
field microscopy, using a Zeiss Axiovert 200M microscope with an AxioCam MRm
camera and the ZEN Pro software (Carl Zeiss, Germany). The images were
acquired as z-stacks (0.1–0.2 µm) and in the case of the wife field microscopy,
further deconvolved using the fast iterative algorithm in Zen Pro. For all quanti-
fications, images were acquired with the same settings and equally processed.
Corrected total nuclear fluorescence= integrated density− (area of selected
nucleus × mean fluorescence of background readings). Representative images were
further acquired using a Leica TCS SP8 confocal laser scanning microscope in
Hyvolution Mode and the Leica Application Suite X (LASX) software (Leica,
Germany). The Hyvolution mode allows super-resolution level images, with set-
tings: highest resolution/lowest speed; pinhole 0.5—Images with DNA in grey (or
cyan); Figs. 1d–f, 2a, b, 3c (right hand side) 4f, 5c (right hand side), 6c, 7b, 8a, b
(right hand side), 9a, b and Supplementary Fig. 3c, d. All the confocal images (with
or without Hyvolution mode) correspond to maximal 3D projections by brightest
intensity stacks of approximately 30 slices of 0.1 µm. All the images were processed,
scored and the signal quantified using Fiji v. 2.0.062. Actinomycin D was applied at
10 µg ml−1 for 30 min and pol-I inhibitor (BMH-21) at 1 µM for 30 min, both
at 37 °C.

Flow cytometry. Flow cytometry was carried out according to standard proce-
dures. The primary antibodies were as follows: rat α-VSG-2 (1:10,000) and rabbit
α-VSG-6 (1:10,000). Secondary antibodies were goat α-rat Alexa Fluor 647 and
goat α-rabbit Alexa Fluor 488 (both 1:2000). DNA was stained with propidium
iodide at 10 µg ml−1. Samples were analysed on a BD LSRFortessa (BD Bios-
ciences) and data were visualised using FlowJo software. More than 40,000 events
were analysed to determine the percentage of cells in each quadrant.

Transcriptome analysis. RNA-seq analysis was performed using 2T1 cells and
uninduced or induced clones of VEX2 (24 and 48 h), VEX1/VEX2 (24 and 48 h) or
CAF-1b (24 h) RNAi. Briefly, polyadenylated transcripts were enriched using poly-
dT beads and reverse-transcribed before sequencing on a HiSeq platform (Illu-
mina). Reads were mapped to a hybrid assembly consisting of the T. brucei 927
reference genome plus the bloodstream VSG-ESs7 and metacyclic VSG-ESs47,48

from the Lister 427 strain. Bowtie 2-mapping49 was with the parameters --very-
sensitive --no-discordant --phred33. Alignment files were manipulated with
SAMtools50. Per-gene read counts were derived using the Artemis genome
browser63, MapQ > 118. Read counts were normalised using edgeR64 and differ-
ential expression was determined with classic edgeR. RPKM values were derived
from normalised read counts in edgeR. Base pair resolution plots were generated
using an in-house script.

Statistical analysis. All statistical analyses were performed using GraphPad Prism
Software (version 7.0), except the transcriptomic analysis (described above).
Detailed information regarding replicates, statistical tests and outputs can be found
in Supplementary Data 1, sheet 6.

Resources and reagents. Details of resources and reagents can be found in
Supplementary Data 1, sheet 7. All unique materials are available on request.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
RNA-seq and ChIP-seq data have been deposited in the European Nucleotide Archive
www.ebi.ac.uk/ena (Accession nos. PRJEB21615 and PRJEB25352, respectively).
Proteomics data have been deposited in the PRoteomics IDEntifications (PRIDE)
database www.ebi.ac.uk/pride, ProteomeXchange accession no. PXD013304. The source
data underlying Figs. 1d, 2a, b, 3a–e, 4f, 5a–e, 6a–c, 7a, 8a, b, 9a–c, 10a, b, Supplementary
Figs. 3a–f, 4c, 6a–c, 8a, b, d are provided as a Source Data file.
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