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Abstract

Can far-from-equilibrium material response under arbitrary loading be inferred from equilibrium data and
vice versa? Can the effect of element transmutation on mechanical behavior be predicted? Remarkably, such
extrapolations are possible in principle for systems governed by stochastic differential equations, thanks to a
set of exact relations between probability densities for trajectories derived from the path integral formalism
(Chen and Horing, 2007; Nummela and Andricioaei, 2007; Kieninger and Keller, 2021). In this article,
we systematically investigate inferences (in the form of ensemble-averages) drawn on system/process S
based on stochastic trajectory data of system/process S̃, with quantified uncertainty, to directly address
the aforementioned questions. Interestingly, such inferences and their associated uncertainty do not require
any simulations or experiments of S. The results are exemplified over two illustrative examples by means of
numerical simulations: a one-dimensional system as a prototype for polymers and biological macromolecules,
and a two-dimensional glassy system. In principle, the approach can be pushed to the extreme case where S̃
is simply comprised of Brownian trajectories, i.e., equilibrium non-interacting particles, and S is a complex
interacting system driven far from equilibrium. In practice, however, the “further” S̃ is from S, the greater
the uncertainty in the predictions, for a fixed number of realizations of system S̃.

Keywords: far from equilibrium, large deviation theory, path integrals

1. Introduction

Predicting the far-from-equilibrium response of materials is of great scientific and practical interest. Any
dynamically-loaded system, from an RNA strand being stretched by optical tweezers to steel being cold-
rolled, is driven away from equilibrium. Moreover, one may be interested in equilibrium and non-equilibrium
quantities like free energies or rheological/flow properties, and wish to infer them from experiments or
simulations of potentially different systems or loading conditions. On the simulation side, molecular dynamic
simulations have a computational cost and associated time scale limitations that currently precludes the
direct exploration of material behavior at low strain rates (Yan and Sharma, 2016). Similarly, it is difficult
in many dissipative experimental systems to probe the free energy landscape by evaluating the work at
infinitesimally slow loading rates (Collin et al., 2005). Ultimately, extrapolations of material behavior over
loading conditions or material systems is crucial for the inverse problem of material design.

Attempting to make predictions about one system based on knowledge of another has a long history:
approximating the system of interest as a perturbation on a more easily-soluble one is a standard technique
across mechanics and physics (Hashin and Shtrikman (1963); Zwanzig (1954)), and the idea finds applications
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in equilibrium free energy calculations with techniques such as thermodynamic integration (Rickman and
LeSar, 2002), umbrella sampling (Torrie and Valleau, 1977) or metadynamics (Laio and Parrinello, 2002;
Laio and Gervasio, 2008). Other approaches used to infer equilibrium information from non-equilibrium
data, coming from either simulations or experiments, include fluctuation theorems, such as the Jarzynski
relation (Jarzynski, 1997) or Crooks’ fluctuation theorem (Crooks, 1999). More recently, in the context of
simulating non-equilibrium behavior, hyperdynamics methods (Voter, 1997; Kim et al., 2013) have emerged
as a means to accelerate the simulation of rare events and alleviate the time-scale bottleneck. These may be
abstractly viewed as non-equilibrium analogues of the previous approaches, where the potential is modified
to have a faster-evolving system, e.g., by converting a large energy barrier into a smaller one, and the results
are then corrected to emulate those of the original system. These approaches are distinct from methods such
as transition path sampling (Bolhuis et al., 2002), forward flux sampling (Allen et al., 2009), milestoning
(Faradjian and Elber, 2004), parallel replica dynamics (Voter, 1998), and parallel trajectory splicing (Perez
et al., 2016), which leave the potential untouched and extend the temporal reach of the simulation via
sophisticated algorithms that preserve the statistics of the original system. For a review on accelerated
molecular dynamics methods we refer the reader to Perez et al. (2009) and Voter et al. (2002).

In 2007, an exact correspondence between trajectory probabilities in two different systems was derived,
and exploited (Chen and Horing (2007); Nummela and Andricioaei (2007)– see also earlier works with
similar ideas, e.g., Zuckerman and Woolf (1999)) to accelerate the sampling of trajectories that overcome
both energetic barriers (e.g., surface diffusion in a crystal) and entropic barriers (e.g., nanopore traversal
by a polymer; see also Shin et al. (2010)). The fundamental idea in each case is this: add a bias to the
system potential V → Ṽ := V + Vbias, perform simulations of the system governed by Ṽ , and use the exact
relations (discussed in detail below) to reweight the probability of the simulated trajectories so that they
are statistically equivalent to those of the original system governed by V . The potential Vbias can be highly
general, and could for example be selected to “fill in” a deep potential well in which the system is trapped, or
to point the system toward a particular location of interest in space. This is distinct from other accelerated
molecular dynamics formulations as the reweighting is exact for each trajectory, it does not require an a

priori knowledge of the reaction coordinates, it could potentially be applied to experimental data, and no
time rescaling is performed. There is also no requirement that the system’s evolution can be characterized
by long sojourns in deep potential wells, punctuated by occasional transitions between them, meaning that
path integral hyperdynamics can be applied even to systems with no well-defined transition state, such as
the energetic barriers mentioned above. Furthermore, we are interested not only in accelerating rare event
sampling (though this provides an intuitive example), but more generally in the statistical connections
between distinct systems. Rather than accelerating the simulation of a system’s evolution, we focus on
the computation of ensemble-average quantities, arbitrarily far from equilibrium. The method’s principal
shortcoming lies in the reweighting of the trajectories: adding too extreme a bias will destroy the statistics
of the quantity one is trying to compute for a fixed computational cost (Ikonen et al., 2011); and this
issue limits in practice the approach to systems of relatively small size and short time simulations. In
other words, choosing a large bias will greatly accelerate the sampling of rare trajectories, at the cost of
introducing great uncertainty in the statistical conclusions. Here, our interest lies not only in accelerated
sampling strategies, but also in understanding non-equilibrium material behavior, and its connection to
equilibrium properties. We extend the path integral hyperdynamics approach to include time-dependent,
out-of-equilibrium boundary conditions, of interest in mechanics, and fully quantify, for the first time, the
statistical uncertainty that the biasing procedure introduces.

The paper is organized as follows. In section 2 below, we give a detailed derivation of the procedure to
obtain expectation values of a given statistical observable O in system S from data generated by stochastic
simulations of system S̃. Next, in Section 3, we quantify the uncertainty introduced by the biasing procedure
in terms of the difference of interparticle potentials and loading conditions between the target (S) and
simulated (S̃) systems/processes. These results are then exemplified in Section 4 over a 1D mass-spring
chain subject to a non-equilibrium, time-dependent boundary condition. While this example is simple, it
has proved useful as a prototype for a polymeric chain and biological macromolecules, and it is here used
to showcase the various possibilities offered by the formalism. In particular, we firstly investigate element
transmutation, in which systems S and S̃ have different interatomic potentials. Secondly, we consider going
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from equilibrium to non-equilibrium conditions for the same material, and finally, we take the method to
its extreme by letting system S̃ be a simple Brownian motion, and S a nonlinear interacting chain with
time-dependent boundary conditions. A second physical system is explored in Section 5, where the caging in
two-dimensional glassy systems is predicted from the liquid state. Finally, Section 6 contains our conclusions,
and several appendices give further technical details of the calculations for completeness.

2. Predicting the non-equilibrium behavior of a material/process from that of a reference one

The goal of the present manuscript is to predict the evolution of an observable O(t) (e.g., instantaneous
stress, work done on the system, diffusion coefficient) for a material and loading conditions S, from that of
S̃. This general objective thus includes, as particular cases, virtual element transmutation for given loading
conditions (e.g., response for different interparticle potentials), as well as different loading conditions for a
given material (e.g., predicting the response to an excitation from equilibrium behavior). In all cases, the
material systems are here considered to be composed of particles, whose motion obey overdamped Langevin
dynamics. That is, the position of each particle ri evolves as

ηṙi = −∂V (r,λ(t))

∂ri
+
√
2kBTη ξ̇i, i = 1, ..., N (1)

where η is the effective viscosity, kB the Bolztmann constant, T the temperature and ξ̇i is a vector of
independent white noise (i.e., each component is assumed Gaussian with zero mean and variance given by
〈ξ̇i(t)ξ̇j(t′)〉 = δijδ(t − t′)Id, with Id being the d × d identity matrix and d being the dimension of the
problem). In addition, the total potential energy of the system V is considered to depend on all particles
positions r as well as, potentially, time-dependent boundary conditions λ(t). These equations are commonly
used to model systems in aqueous solution, such as biological macromolecules (Raj and Purohit, 2011) and
colloids (Markutsya et al., 2014), or as the basis of stochastic thermostats in molecular dynamics simulations
(Hijazi et al., 2018), when the system is coupled to a heat bath. Although the proposed framework may be
easily generalized to the case where external forces are present (Nummela and Andricioaei, 2007), or to the
underdamped case where inertia is not negligible (Chen and Horing, 2007; Kieninger and Keller, 2021), in
what follows we consider the simpler case of Eq. (1).

We here aim at predicting observables of material/process S, (characterized by potential V and loading
protocol λ(t)), from data on material/process S̃ (with potential Ṽ and protocol λ̃(t)), both evolving accord-
ing to the overdamped Langevin dynamics. To achieve this goal, we resort to the path integral formalism,
which provides an equivalent representation to the stochastic dynamics given by Eq. (1) (Chaichian and
Demichev, 2018). More precisely, for system S, the probability density of trajectories r(t), 0 < t < τ for
given initial conditions r(0) = r0, is given by

P(r(t)|r0) = 1

Z e−βI , where I =
1

4η

ˆ τ

0

N∑

i=1

∣∣∣∣ηṙi +
∂V

∂ri

∣∣∣∣
2

dt, (2)

where Z is a normalization factor that ensures that the path probability distribution is normalized to one,
and β = (kBT )

−1 is the inverse temperature. Similarly, for system S̃ with potential Ṽ , and same time range
as system S, the path probability density reads

P̃(r(t)|r0) = 1

Z e−βĨ , where Ĩ =
1

4η

ˆ τ

0

N∑

i=1

∣∣∣∣∣ηṙi +
∂Ṽ

∂ri

∣∣∣∣∣

2

dt. (3)

The derivations and precise meaning of Eqs. (2) and (3) is provided in Appendix A, where it is observed
that the normalization factor Z is identical for both expressions (when using the Itô interpretation for the
integrals inside the exponentials).

Then, the expected value of given observableO, in each ensemble (S or S̃) with the same initial conditions,
is given by 〈O(τ)〉S =

´

Dr O(τ)P(r(t)|r0) and 〈O(τ)〉S̃ =
´

Dr O(τ) P̃(r(t)|r0), respectively, where
´

Dr
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denotes integration over all paths r with r(0) = r0. These two observables may then be related in a
straight-forward manner as (see Appendix B for detailed proof)

〈O〉S =

〈
OP
P̃

〉

S̃

=
〈
Oe−βIbias

〉
S̃
, with

Ibias = I − Ĩ =
1

4η

ˆ τ

0

N∑

i=1

∂Vbias

∂ri
·
(
∂Vbias

∂ri
− 2
√

2kBTη ξ̇i

)
dt,

(4)

and Vbias = Ṽ (r, λ̃) − V (r,λ). In other words, the trajectories of an evolving material/process can be
reweighted to obtain the ensemble average of any observable for a different system or process. Equation
(4) has been previously derived by Chen and Horing (2007) to accelerate dynamic simulations, though the
possible change (albeit trivial) in boundary conditions λ was not considered. A pseudo-code describing in
detail the steps to realize Eq. (4) using an Euler-Maruyama time discretization scheme (Kloeden and Platen,
1999) is shown in Algorithm 1. There, observables O of very different nature are considered for completeness,
though their treatment is identical. These could be the expected evolution of a single particle, or an average
over the whole system, and they may also be instantaneous in nature (e.g., force at a given time), or
dependent on the full evolution (e.g., work done over a given time interval, mean squared displacement
or particle overlap). Examples of all of the above will be provided in Sections 4 and 5. We remark that
although the theoretical description above and pseudo-code solely consider changes in the potential energy,
both the temperature and the viscosity may be varied as well; in this case, the normalization factors Z of the
path probability distributions will be distinct for the two systems, and hence their ratio, now distinct from
one, will have to be included in P/P̃. Similarly, the interparticle forces may not necessarily be potential in
nature, though that will be the case for the examples considered in Sections 4 and 5.

An attentive reader may discover that the calculation of Ibias effectively requires the calculation of the
forces for the potential V associated to the system one is ultimately interested in, hence wondering about
the computational efficiency of such an approach. While this is certainly the case, the benefits could be
manifold. First, an appropriate choice for Ṽ could greatly accelerate the dynamics for a system that is
trapped in an energetic or entropic barrier, as noted in the introduction. This has been exploited by several
authors (Chen and Horing, 2007; Nummela and Andricioaei, 2007). Second, since the forces are computed
from the trajectories of system S̃, these calculations could be done a posteriori and be trivially parallelized
in time. This second point is quite interesting on its own, as perfect time parallelization has always been
thought of being impossible due to the sequential nature of time. Yet, temporal parallelization of molecular
dynamic simulations is very active area of research aimed at enabling long-time simulations (Perez et al.,
2016). Finally, an entire family of interparticle potentials characterized by a proportionality constant, may
be predicted with minimal added computational cost compared to that of a single potential. An example of
the latter will be provided in Section 5, where this point will explained in further detail.

While the appeal of the path reweighting strategy is clear from the above discussion, and its applications
are, in appearance, limitless, it is worth noting the sampling issues that arise as the two interparticle
potentials and/or boundary conditions diverge from each other. To illustrate this point, consider a single
degree of freedom system (N = 1) consisting of a mass connected to two linear springs, with spring constant
k = 1. The end of one of the springs is held fixed, while the end of the second is being pulled at a constant
velocity vp= 0.01, so that the resulting equation of motion is

ηẋ = −2kx+ kvpt+
√

2kBTη ξ̇. (5)

In this example, the aim is to predict the behavior of this system from a particle undergoing Brownian
motion, i.e., Ṽ1 = 0 and an intermediate harmonic potential Ṽ2 with spring constant k̃ = 1/2. Figures 1(a)-
(b) shows the three interparticle potentials considered as well as the results of the Langevin simulations for
each system, together with the predictions based on Eq. (4). While the predictions and the validations are
indistinguishable, the normalized histogram of the path probability ratio Pbias := P/P̃ in Figures 1(c)-(d),
clearly show that these become more heavy-tailed with time for a given potential Ṽ , or for a fixed time, as
the difference between the potentials V and Ṽ becomes larger. In other words, the fraction of trajectories
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Algorithm 1 Pseudo-code for predicting material/process S from material/process S̃ with overdamped
Langevin dynamics

// Overdamped Langevin dynamics for material/process S̃ and prediction for

material/process S
1 σ = 2kBTη
2 for all NR realizations do
3 Set initial condition r0 and t0 = 0;
4 for n from 0 to nT = T/∆t do

5 λ̃n+1 = λ̃n +
˙̃
λ(tn)∆t;

6 λn+1 = λn + λ̇(tn)∆t;
7 for i from 1 to N do
8 Generate noise ∆ξni with standard normal distribution;

9 Compute ∇iṼ
n = ∂Ṽ

∂ri

∣∣∣
r̃n,λ̃n

, ∇iV
n = ∂V

∂ri

∣∣∣
r̃n,λn

and ∇iV
n
bias = ∇iṼ

n −∇iV
n;

10 r̃n+1
i = r̃ni + 1

η

[
−∇iṼ

n∆t+
√
σ∆ξni

]
; // Update new displacement field

// Compute the observables of interest, such as

11 F̃n
ex = ∂Ṽ n

∂λ̃n
, Fn

ex = ∂V n

∂λn ; // external force

12 W̃n+1 = W̃n + F̃n
ex · ˙̃λn∆t, Wn+1 = Wn + Fn

ex · λ̇n∆t ; // total work

13 M̃SD
n
= 1

N

∑N
i=1

∥∥r̃ni − r̃0i
∥∥2 ; // mean squared displacement

14 Q̃n(a) = 1
N

∑N
i=1 H(a−

∥∥r̃ni − r̃0i
∥∥) ; // particle overlap

// Compute the bias factors

15 Ibias(tn+1) = Ibias(tn) + 1
4η

∑N
i=1 ∇iV

n
bias · (∇iV

n
bias∆t− 2

√
σ ∆ξni );

16 Pbias(t
n+1) = e−βIbias(t

n+1)

// Summing the observables of interest over all realizations, with Õn denoting,

for instance, r̃n, F̃n
ex, W̃n, M̃SD

n
or Q̃n(a), and On denoting r̃n, Fn

ex, Wn,

M̃SD
n

or Q̃n(a)

17

〈
Õn
〉
S̃
=
〈
Õn
〉
S̃
+ Õn,

18 〈OnPbias(t
n)〉S̃ = 〈OnPbias(t

n)〉S̃ +OnPbias(t
n),

19 N (tn) = N (tn) + Pbias(t
n),

// Update time

20 tn+1 = tn +∆t;

// Compute the ensemble average for all times, with Õ denoting, for instance, r̃, F̃ex,

W̃, M̃SD or Q̃(a), and O denoting r̃, Fex, W, M̃SD or Q̃(a)

21

〈
Õ
〉
S̃
= 1

NR

〈
Õ
〉
S̃
; // for process S̃

22 N = 1
NR

N
23 〈OPbias〉S̃ = 1

NRN 〈OPbias〉S̃ ; // prediction for process S
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// Overdamped Langevin dynamic simulations for material/process S (for comparison,

optional)

24 for all NR realizations do
25 Set initial conditions r0 and t0 = 0;
26 for n from 0 to nT = T/∆t do

27 λn+1 = λn + λ̇(tn)∆t;
28 for i from 1 to N do
29 Generate noise ∆ξni according to a standard normal distribution;

30 Compute ∇iV
n = ∂V

∂ri

∣∣∣
rn,λn

;

31 rn+1
i = rni + 1

η

[
− ∂V

∂ri
∆t+

√
σ∆ξni

]
; // Update new displacement field

// Compute the observables of interest

32 Fn
ex = ∂V n

∂λn ; // external force

33 Wn+1 = Wn + Fn
ex · λ̇n∆t ; // total work

34 MSDn = 1
N

∑N
i=1

∥∥rni − r0i
∥∥2 ; // mean squared displacement

35 Qn(a) = 1
N

∑N
i=1 H(a−

∥∥rni − r0i
∥∥) ; // particle overlap

// Summing the observables of interest over all realizations, with On denoting,

for instance, rn, Fn
ex, Wn, MSDn or Qn(a)

36 〈On〉S = 〈On〉S +On,

// Update time

37 tn+1 = tn +∆t;

// Compute the ensemble average for all times, with O denoting, for instance, r, Fex,

W, MSD or Q(a)

38 〈O〉S = 1
NR

〈O〉S ; // for process S
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which have a significant Pbias, and hence a significant contribution to the ensemble average, decreases with
time and Vbias. On a practical level, these heavier tails imply larger errors for the empirical averages of
Eq. (4) for a fixed number of realizations of system S̃. Quantifying a priori these estimates is therefore
crucial to assess the accuracy of the predictions without the need of validations. This is precisely the goal
of the next section.

Figure 1: (a) Interparticle potentials for the simulated (Ṽ1 and Ṽ2) and targeted (V ) systems. (b) Ensemble average of the
displacement for the simulated (Ṽ1 and Ṽ2) and targeted systems (V ), as well as the predictions from the first to the latter (Ṽ1

with bias and Ṽ2 with bias). (c) Time evolution of the normalized histogram for Pbias from Ṽ1 to V . (d) Comparison between
the normalized histogram of Pbias at t = 1 from Ṽ1 to V and from Ṽ2 to V . Parameters are chosen as N = 1, η = 5, β = 104,
Ṽs1(u) = 0, Ṽs2(u) =

1

4
u2, Vs(u) =

1

2
u2, NR = 105.

Finally, we remark that similar sampling issues arise as the system size increases. To illustrate this
fact, consider a one-dimensional mass-spring chain consisting of N particles being pulled at constant strain
rate (the case N = 1 being the example just considered). Then, if one aims at predicting the response for
potential V from a given Ṽ , it is observed that the normalized histogram for Pbias becomes more heavy
tailed as N increases; see Fig. 2. For these reasons, the path reweighting approach is often limited in practice
to small systems, and predictions over relatively short intervals of time.
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Figure 2: Comparison between the normalized histogram of Pbias at t = 1 when predicting the evolution of a mass-spring chain
with a quadratic potential Vs(u) = 1

2
u2 from independent Brownian particles Ṽs(u) = 0, for systems with different particle

numbers N = 1, 2, 3. The systems are being pulled at the constant strain rate (i.e., vp = 0.01, 0.015, 0.02 for each of the three
cases, respectively). Parameters are chosen as η = 5, β = 104, NR = 105.

3. Uncertainty Quantification

From Eq. (4) it is immediate that
〈
e−βIbias

〉
S̃
= 1. Although this identity is exactly satisfied for the

exact probability density, an empirical average, i.e., N :=
∑NR

r=1
1

NR
e−βIbias,r , where NR is the number

of realizations, may deviate from 1 if insufficient samples are used. In general, more realizations will be
needed the further apart systems/processes S̃ and S are, as noted in the previous section. Such a distance
can be measured by means of the Kullback-Leibler divergence, or relative entropy, between two probability
distributions P̃, and P, which, in this case, is equal to

DKL

(
P̃‖P

)
=

〈
log

P̃
P

〉

S̃

= β〈Ibias〉S̃ . (6)

In practice, we will quantify the uncertainty of our predictions (for general observables O) using the
standard error of the mean of Pbias := P/P̃ = e−βIbias

σN =
σPbias√
NR

, (7)

where σ2
Pbias

:= 〈P2
bias〉S̃ −〈Pbias〉2S̃ is the variance of Pbias, and N =

∑NR

r=1
1

NR
Pbias,r. We use this standard

error σN as an estimate for |N − 1|.

3.1. Linear uncertainty propagation estimate

The simplest approach to compute σ2
Pbias

is to consider the time-discretized evaluation of Pbias as a

nonlinear function of ∆ξn = ξn+1
i − ξni , where the indices i and n here refer to the degrees of freedom

i = 1, ..., Nd (d is the dimension of the problem), and discrete time tn, respectively, and to use the classical
formulas for propagation of uncertainty (Taylor, 1997, Chapter 3), i.e.,

σ2
Pbias

≃
Nd∑

i=1

nT−1∑

n=0

(
∂Pbias

∂∆ξni

∣∣∣
∆ξ=0

)2

σ2
∆ξn

i
=

Nd∑

i=1

nT−1∑

n=0

(
∂Pbias

∂∆ξni

∣∣∣
∆ξ=0

)2

∆t. (8)

This equation arises from a linear approximation of the function Pbias({∆ξni }), and further makes use of

the fact that ∆ξni are uncorrelated, and σ2
∆ξn

i
= ∆t. The notation

∣∣∣
∆ξ=0

is used to denote that the partial

derivatives are evaluated at the mean value of ∆ξ, which is zero.
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As discussed in detail in Appendix A and Appendix B, Pbias may be expressed using the Itô interpre-
tation as

Pbias = exp


− β

4η

Nd∑

j=1

nT−1∑

m=0

∂Vbias(x
m)

∂xm
j

[
∂Vbias(x

m)

∂xm
j

∆t− 2
√
σ∆ξmj

]
 , with

xm
j = x0

j +

m−1∑

p=0

∆xp
j , ∆xp

j = xp+1
j − xp

j and ∆xp
j = −∂Ṽ (xp)

∂xj
p

∆t

η
+

√
σ

η
∆ξpj ,

(9)

where σ = 2kBTη.
Noting that Pbias depends on ∆ξni directly and through xm

j for m > n, one obtains for the simplest case

of Ṽ = 0 that

∂Pbias

∂∆ξni
= Pbias


− β

4η




Nd∑

j=1

NT−1∑

m=n+1

2
∂Vbias

∂xm
j

∂2Vbias

∂xm
j ∂xm

i

√
σ

η
∆t− ∂Vbias

∂xn
i

2
√
σ




 . (10)

For such a case, the variance of Pbias may then be easily computed as

σ2
Pbias

=
β

2η
P2
bias

Nd∑

i=1

nT−1∑

n=0


∂Vbias

∂xn
i

−
N∑

j=1

nT−1∑

m=n+1

∂Vbias

∂xm
j

∂2Vbias

∂xm
j ∂xm

i

∆t

η



2

∆t

∣∣∣∣∣
∆ξ=0

. (11)

As will be seen later on in Fig. 3 by means of an example, this uncertainty propagation method, albeit
simple for Ṽ = 0, does not capture well the variance of Pbias even for very simple physical systems. This
is likely due to the importance of nonlinear effects induced by the exponential of Pbias. Furthermore, its
generalization to simulated systems with Ṽ 6= 0 is rather intricate, due to the many nested sums that this
would require.

3.2. Nonlinear uncertainty quantification estimate

To resolve the above two issues, we resort instead to perform a linear approximation to the bias potential
gradient in the exponent of Pbias to then estimate σ2

Pbias
directly as 〈P2

bias〉S̃ − 〈Pbias〉2S̃ . Specifically, we
expand the bias potential gradient linearly from a reference trajectory xr(t) as

∇Vbias(x, t) = ∇Vbias|xr(t)
+ ∇∇Vbias|xr(t)

δx+O(‖δx‖2), (12)

where δx = x − xr. Similarly, the noise term in the Langevin equations associated to system S̃ may be
approximated as

√
σ∆ξn = η

(
xn+1 − xn

)
+∇Ṽ (xn, tn)∆t

= η
(
∆xn

r + δxn+1 − δxn
)
+ ∇Ṽ

∣∣∣
xn
r

∆t+ ∇∇Ṽ
∣∣∣
xn
r

δxn∆t+O(‖δx‖2 ∆t),
(13)

where we have used an Itô representation for the discretized equations and defined ∆xn
r = xn+1

r − xn
r .

Using the above two approximations, and the change of variables δyn =
(
η/

√
σ∆t

)
δxn, introduced for

convenience, the exponents in Pbias and P̃ have a quadratic form in δyn. As a result, both 〈Pbias〉S̃ and
〈P2

bias〉S̃ may be computed analytically. These derivations are quite involved and are therefore relayed to
Appendix C. The resulting expression for 〈Pbias〉S̃ is

〈Pbias〉S̃ =
1√

detA
e

1
2b

TA−1b+c. (14)
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Here, c is a constant defined as,

c = − 1

2σ

nT−1∑

n=0

∥∥∥∥η
∆xn

r

∆t
+ ∇V |xn

r

∥∥∥∥
2

∆t, (15)

the vector b consists of nT small Nd-dimensional vectors,

b =




b1

b2

...
bnT


 , (16)

with

bn =





−
√

∆t

σ

[
∆t

η
∇∇V |xn

r

(
η
∆xn

r

∆t
+ ∇V |xn

r

)
−∆

(
η
∆xn−1

r

∆t
+ ∇V |xn−1

r

)]
, n < nT

−
√

∆t

σ

(
η
∆xnT−1

r

∆t
+ ∇V |

x
nT −1
r

)
, n = nT

(17)

and the matrix A may be written as,

A =




A11 A12 · · · A1nT

A21 A22 · · · A2nT

...
...

. . .
...

AnT 1 AnT 2 · · · AnTnT


 (18)

with each Nd×Nd matrix block defined as,

Apq =





I+ ΓnΓn, (p, q) = (n, n) with n = 1, · · · , nT − 1

− Γn, (p, q) = (n+ 1, n) or (n, n+ 1) with n = 1, · · · , nT − 1

I, (p, q) = (nT , nT )

0, otherwise

(19)

with

Γn = I− 1

η
∇∇V |xn

r
∆t. (20)

The matrix A is thus symmetric. As detailed in Appendix C, it may also be shown that the equations
det(A) = 1 and bTA−1b = −2c are identically satisfied in this discretized setting leading to 〈Pbias〉S̃ = 1.
We remark that in these derivations, the ensemble average for 〈Pbias〉S̃ is analytically computed, i.e., it does
not result from an empirical average.

As for 〈P2
bias〉S̃ , this reads

〈P2
bias〉S̃ =

1√
det(Asq)

e
1
2b

T
sqA

−1
sq bsq+csq , (21)

where the coefficients Asq, bsq and csq can be expressed as,

Asq = 2A− Ã, (22)

bsq = 2b− b̃, (23)

csq = 2c− c̃. (24)

10



Here, Ã, b̃ and c̃ are the defined as the analogues of A, b, and c, respectively, with the potential V replaced
by Ṽ .

Therefore, the resulting expression for the variance of Pbias is,

σ2
Pbias

=
〈
P2
bias

〉
S̃
− 〈Pbias〉2S̃

=
1√

det(Asq)
e

1
2b

T
sqA

−1
sq bsq+csq − 1.

(25)

The details of its implementation are detailed in Algorithm 2.
To illustrate the improved performance of this estimate compared to the classical uncertainty propagation

approach, consider the single one degree of freedom system discussed at the end of Section 2 with Ṽ = 0.
Figure 3 shows the value of σPbias

as a function of time, directly obtained from numerical simulations,
together with the estimates given by Eq. (11) and Eq. (25). As it may there be observed, the difference in
accuracy is striking, even for this rather simple example. Consequently, the later examples will make use of
the nonlinear propagation of uncertainty strategy described in this section.

Figure 3: Prediction of the standard deviation of Pbias with the linear (blue dashed line) and nonlinear (orange dotted line)
uncertainty estimates, together with σPbias

, as directly computed from simulation data (green solid line). The simulation
parameters are N = 1, NR = 105, kBT = 10−4, η = 5, vp = 0.01, ∆t = 10−3, from Brownian motion to quadratic potential
with k = 1. For the nonlinear uncertainty quantification estimates, the time discretization used is nT = 100 and the reference
trajectory is chosen as xr = 0.

We remark that the accuracy of the uncertainty quantification (UQ) estimates here derived will strongly
depend on the form of the bias potential that the trajectories explore. Equation (25) is nominally exact
for a quadratic bias (such as the one used in Fig. 3), though it is expected to only give an estimate for
general potentials. In the example of Section 4, quartic potentials will be considered, while Section 5 will
examine systems with Hertzian and Lennard-Jones potentials. These last two potentials strongly deviate
from quadratic, with the Hertzian not even displaying a unique minimum, and will thus allow us to explore
the degree of accuracy of these estimates for a wide range of systems.

3.3. Connection between the two strategies

While the two UQ approaches previously discussed in Sections 3.1 and 3.2 are quite distinct in their
starting point and final conclusions, Eq. (11) may actually be recovered following the same strategy as for
the nonlinear estimate under various simplifying assumptions. In particular, assuming xr(t) = 0 (hence,
∆xn

r = 0, and δxn = xn), Ṽ = 0 (hence, V = −Vbias), and only keeping linear terms in the integrand of
Ibias, such integrand can be approximated as

∇Vbias(x
n, tn) ·

(
∇Vbias(x

n, tn)∆t− 2
√
σ∆ξn

)

≃
∥∥∥∇Vbias|xn

r =0

∥∥∥
2

∆t− 2 ∇Vbias|xn
r =0 ·

[
η
(
xn+1 − xn

)
− ∇∇Vbias|xn

r =0 x
n∆t

]
.

(26)
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Algorithm 2 Pseudo-code for nonlinear uncertainty quantification

1 Choose a reference trajectory xr(t)
2 for all selected t < T at which to estimate the uncertainty do
3 Set timestep as ∆t = t/nT ;
4 for all n from 0 to nT do
5 τn = n∆t;

6 Compute xn
r , ẋ

n
r , ∇V |xn

r
, ∇Ṽ

∣∣∣
xn
r

, ∇∇V |xn
r
, ∇∇Ṽ

∣∣∣
xn
r

at time τn;

7 Compute c and csq as in Eqs. (15) and (24);
8 Initialize b and bsq as zero vectors with size NdnT , A and Asq as zero matrices with size

NdnT ×NdnT

9 for all n from 1 to nT − 1 do
10 Compute vector components bn and bn

sq as in Eqs. (16) and (23);

11 Compute Γn and Γ̃n as in Eq. (20);
12 Compute matrix blocks Apq and Apq

sq for (p, q) = (n, n), (n+ 1, n) and (n, n+ 1) as in Eqs. (19)
and (22);

13 Compute bnT , bnT
sq as in Eqs. (16), (23) and AnTnT , AnTnT

sq as in Eqs. (19), (22);

14 Solve usq from Asqusq = bsq;

15 Compute bT
sqA

−1
sq bsq = bsq · usq;

16 Compute det (Asq);

17 σ2
Pbias

(t) = 1√
det(Asq)

exp
(
1
2b

T
sqA

−1
sq bsq + csq

)
− 1.

Next, following the discrete Langevin equation for system S̃, we replace in the above expression η(xn+1 −
xn) =

√
σ∆ξn, and xn =

∑n−1
m=0 ∆xm =

∑n−1
m=0

√
σ
η ∆ξm. Furthermore, we note that expanding around

xr = 0 is identical to expanding around ∆ξ = 0. Then, Pbias can be written as a function of ∆ξ and
〈Pbias〉2S̃ and

〈
P2
bias

〉
S̃
may be computed analytically, giving (for details see Appendix D)

〈Pbias〉2S̃ ≃ exp

[
− 1

σ

nT−1∑

n=0

‖∇Vbias(x
n, tn)‖2 ∆t

]∣∣∣∣∣
∆ξ=0

exp


∆t

σ

nT−1∑

n=0

(
∇Vbias(x

n, tn)− 1

η

nT−1∑

m=n+1

∇∇Vbias(x
m, tm)∇Vbias(x

m, tm)∆t

)2
∣∣∣∣∣∣
∆ξ=0




(27)

〈
P2
bias

〉
S̃
≃ exp

[
− 1

σ

nT−1∑

n=0

‖∇Vbias(x
n, tn)‖2 ∆t

]∣∣∣∣∣
∆ξ=0

exp


2∆t

σ

nT−1∑

n=0

(
∇Vbias(x

n, tn)− 1

η

nT−1∑

m=n+1

∇∇Vbias(x
m, tm)∇Vbias(x

m, tm)∆t

)2
∣∣∣∣∣∣
∆ξ=0




(28)

Finally, assuming that the second exponential terms in both 〈Pbias〉2S̃ and
〈
P2
bias

〉
S̃
are small, we approx-
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imate exp (x) ≃ 1 + x, obtaining the following expression for the variance of Pbias

σ2
Pbias

=
〈
P2
bias

〉
S̃
− 〈Pbias〉2S̃

= exp

[
− 1

σ

nT−1∑

n=0

‖∇Vbias(x
n, tn)‖2 ∆t

]∣∣∣∣∣
∆ξ=0

∆t

σ

nT−1∑

n=0

(
∇Vbias(x

n, tn)− 1

η

nT−1∑

m=n+1

∇Vbias(x
m, tm) · ∇∇Vbias(x

m, tm)∆t

)2


∣∣∣∣∣∣
∆ξ=0

.

(29)

This exactly corresponds to the variance given by the linear variance propagation method in Eq. (11).

4. Example 1: Pulling experiments on one-dimensional mass-spring chains

4.1. Model description and overview of the cases to be examined

The first example that we examine is a prototype for polymers (Doi and Edwards, 1988), and biological
macromolecules such as DNA and coiled-coil proteins (Raj and Purohit, 2011). In particular, the model
consists of N particles following Langevin dynamics, connected through N + 1 identical springs, as shown
in Fig. 4. The first spring is fixed to a wall, while the last one has a prescribed displacement boundary
condition of the form xN+1 = λ(t) = vpt, where vp is a constant pulling velocity. Denoting by Ṽs the

potential energy of an individual spring for the system being simulated (system S̃), the governing equations
read {

ηẋi = Ṽ ′
s (xi+1 − xi)− Ṽ ′

s (xi − xi−1) +
√
σξ̇i, i = 1, 2, · · · , N − 1

ηẋN = Ṽ ′
s (λ(t)− xN )− Ṽ ′

s (xN − xN−1) +
√
σξ̇N .

, (30)

where σ = 2kbTη.
In the following, we will consider three specific combinations of systems S and S̃ to demonstrate the

versatility of the approach and the quality of the UQ estimates. These include

• Element transmutation. In this first example, we will aim at predicting the behavior of material S from
S̃ (different potential energies), while subjected to the same pulling protocol. This is similar to the
implementation of hyperdynamics (Chen and Horing, 2007) or path reweighting method (Kieninger
and Keller, 2021), where the potential is the only varying parameter between the simulated and the
predicted system.

• Predicting the far-from-equilibrium response of a material from its equilibrium behavior. Here, the
potential energy will remain the same, while the pulling velocity will change from 0 (equilibrium) to
a finite value (away from equilibrium).

• For the last example, we will change both the potential energy and the pulling protocol. In particular,
we will consider the extreme case of predicting the non-equilibrium response of a nonlinear interacting
mass-spring chain from independent Brownian particles, i.e., Ṽ = 0.

In each of these cases, we will consider observables that widely range in nature: from the expected
evolution of each particle, to the instantaneous force exerted on the system at a given time, to the work
done over a given time interval, which of course depends on the full evolution. For all cases, we choose
N = 10 particles, temperature kBT = 10−4, viscosity η = 5, interparticle potentials Vs and Ṽs of quartic
form, i.e., 1

2k2x
2 + 1

4k4x
4, and we will perform NR = 105 realizations of system S̃. The Langevin equations

will be numerically simulated using an Euler-Maruyama scheme (Kloeden and Platen, 1999) with a time
step ∆t = 10−3. For comparison purposes, material/process S will also be simulated, and the same number
of realizations will be used to directly estimate the ensemble averages.

For the uncertainty quantification estimates, we choose the reference trajectory xr(t) = 0 and use 100
time steps in the discretization for each evaluated time point. That is, for each time at which the variance
of Pbias is computed, a value of nT = 100 is chosen in the calculation of the coefficients Asq, bsq and csq,
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according to Eqs. (22), (23) and (24), respectively. We remark that although xr(t) = 0 does not correspond
in all cases to the expected trajectory of system/process S̃, this choice greatly simplifies the calculations
and leads to remarkably accurate estimates for σ2

Pbias
and |N − 1|.

Figure 4: Schematics of the 1D mass-spring system used in Example 1. Reprinted from (Huang et al., 2021) Harnessing
fluctuation theorems to discover free energy and dissipation potentials from non-equilibrium data, Vol 145, Shenglin Huang,
Chuanpeng Sun, Prashant K. Purohit, Celia Reina, Page 3, Copyright (2021), with permission from Elsevier.

4.2. Case 1: Element transmutation: from material S̃ to material S subjected to the same pulling protocol

This first case demonstrates the capability of the method for predicting the non-equilibrium response
of a system with an anharmonic potential, namely Vs(u) = 1

2k2u
2 + 1

4k4u
4 (material S) from a harmonic

one, Ṽ = 1
2 k̃2u

2, (material S̃), under the same pulling protocol λ̇(t) =
˙̃
λ(t) = vp. Here, we choose k̃2 = 0.5,

k2 = 1, k4 = 100 and vp = 0.01. Figures 5 (a-c) show the results for the ensemble averages of the
displacement of each particle 〈xi〉, the external force applied on the system 〈Fex〉 and the external work
〈W 〉. The blue solid lines, green dashed lines and orange dotted lines represent, respectively, the results from
Langevin simulation for system S with potential V , those for system S̃ with potential Ṽ , and the prediction
of system S from S̃ using Eq. (4). In particular, the lines from bottom to the top in Fig. 5(a) represent
the particles from 1 to N = 10. As it is there observed, all predictions are in excellent agreement with the
validation data. Only very minor differences for the average displacement and external force are observed
after around t ∼ 8, where the predictions become slightly more stochastic in nature. These increase in the
errors are to be expected as noted at the end of Section 2 and can be predicted using the nonlinear uncertainty
quantification estimates discussed in Sec. 3.2. We recall that these estimates aim at predicting the deviation
of the empirical average N =

∑NR

r=1
1

NR
Pbias,r from one through σN = σPbias

/
√
NR, which itself is used as a

measure of how well the path probability distribution of the system S (the one not simulated) is captured.
Figures 5(d, e) show the estimated growing standard deviation of factor Pbias in a log-log scale and the
deviation of N from one in a log-linear scale, respectively, compared to the corresponding values directly
calculated from the Langevin simulation. Remarkably, without simulation data for neither system S nor
system S̃, the derived estimates perfectly predict the standard deviation of Pbias, which spans four decades,
and the deviation of N . As time increase, the deviation of N finally reaches 3%, which is tolerable and
agrees well with the small errors in the observables. We note that the accuracy of these results is striking,
as the bias potential is not purely quadratic (for which the estimates would be exact), but instead include
a non-negligible quartic contribution.
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Figure 5: Prediction of the non-equilibrium behavior of material S with quartic interatomic potential Vs(u) =
1

2
k2u

2 + 1

4
k4u

4

from material S̃ with quadratic potential Ṽs(u) =
1

2
k̃2u

2 under the same pulling velocity λ̇(t) =
˙̃
λ(t) = vp(t), where k̃2 = 0.5,

k2 = 1, k4 = 100 and vp(t) = 0.01. (a-c) Results for the ensemble averages of three different observables: (a) the displacement
of each particle 〈xi〉, with i = 1, . . . , 10 from bottom to top, (b) the external force 〈Fex〉 and (c) the external work 〈W 〉. The
blue solid lines and green dashed lines are the results from Langevin simulation for material S and S̃, respectively. The orange
dotted lines are the predictions for material S from material S̃. (d, e) Validation of the uncertainty quantification estimates
by evaluating the time evolution of (d) the standard deviation of Pbias and (e) the deviation of the empirical factor N from
one. The solid blue lines are the exact value from the data and the orange dotted lines are the predictions using the nonlinear
uncertainty quantification method.

4.3. Case 2: From equilibrium to non-equilibrium for the same material

In contrast to the first case, this second case illustrates the prediction of the non-equilibrium response for
a given system (finite pulling velocity) given its equilibrium behavior (zero pulling velocity). The interatomic
potential considered is Vs(u) = Ṽs(u) =

1
2k2u

2 + 1
4k4u

4, with k2 = 1 and k4 = 100, and the pulling velocity

for the aimed non-equilibrium process is λ̇(t) = vp = 0.01. Figures 6(a-c) depict the prediction for the
average displacement of each particle, average external force and average work. While all the predictions
have good agreements with the true results at the beginning, the errors start to become more significant
from about t ∼ 6, at which point the ensemble averages appear to be more stochastic in nature. This
increased stochasticity results from a decrease in the number of trajectories that contribute in practice to
the ensemble average and is directly related to the heavier tails of Pbias discussed in Section 2. The larger
errors, as compared to Case 1 studied in Section 4.2, are also understandable from a sampling perspective.
In the process to be predicted, all the particles (especially the last few ones) are moving rightward in the
most probable trajectories induced by the positive pulling velocity. However, these trajectories are highly
unlikely to be observed at equilibrium, where the right end is fixed. Hence, the predicted evolution of the
observables (especially the average displacement for the last particle and, consequently, the average external
force and work) are biased. Figures 6(d, e) show the growing standard deviation of factor Pbias and the
deviation of the normalization factor N from one. The latter reaches an error of 0.1 at around t ∼ 8, at
which time the prediction for the observables becomes very poor and are no longer reliable. Here, again,
the uncertainty quantification estimates provide an excellent prediction of the sampling errors.
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Figure 6: Predicton of the non-equilibrium behavior under pulling velocity λ̇(t) = vp(t) > 0 (process S) from the equilibrium

response, i.e.,
˙̃
λ(t) = 0, (process S̃) for the same material with quartic interatomic potential Vs(u) = Ṽs(u) =

1

2
k2u

2 + 1

4
k4u

4,
where k2 = 1, k4 = 100 and vp(t) = 0.01. (a-c) Results for the ensemble averages of three different observables: (a) the
displacement of each particle 〈xi〉, (b) the external force 〈Fex〉 and (c) the external work 〈W 〉. The blue solid lines and green
dashed lines are the results from Langevin simulation with process S and process S̃, respectively. The orange dotted lines are
the prediction for process S from process S̃. (d, e) Validation of the uncertainty quantification estimates by evaluating the time
evolution of (d) the standard deviation of Pbias and (e) the deviation of the empirical factor N from one. The solid blue lines
are the exact value from the data and the orange dotted lines are the predictions using the nonlinear uncertainty quantification
method.

4.4. Case 3: From Brownian particles to the non-equilibrium response of an interacting particle system

The third and final case considered is aimed at demonstrating an extreme example for the path reweight-
ing strategy. Specifically, we choose to predict the non-equilibrium behavior of an anharmonic chain from
independent Brownian particles, i.e., Ṽ = 0. Here, material/process S is also set as a quartic interatomic
potential Vs(u) = 1

2k2u
2 + 1

4k4u
4 with k2 = 1 and k4 = 100 with pulling velocity λ̇(t) = vp = 0.01. Fig-

ures 7(a-c) depict the predictions for the average displacement, average external force and average work.
Despite the extreme nature of the example, the predictions are still reasonably good up to t = 10, and
actually better than that of Case 2 above. Here, the Brownian particles can freely move, while those of Case
2 are constrained due to the boundary conditions and interatomic potential for system S̃. This significantly
reduces the sampling errors that govern the accuracy of the predictions. Finally, Figures 7(d, e) show the
growing standard deviation of Pbias with time and the deviation of N from one. Again, the UQ estimates
perfectly predict both quantities over six decades in σPbias

. Moreover, the error of |N − 1| reaches 10% at
t ∼ 6, after which the number of realizations of system S̃ is insufficient to accurately make predictions of
system S.
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Figure 7: Prediction of the non-equilibrium behavior for material S with quartic interatomic potential Vs(u) =
1

2
k2u

2+ 1

4
k4u

4,

with k2 = 1, k4 = 100, under pulling velocity λ̇(t) = vp(t) = 0.01 from Brownian trajectories. (a-c) Results for the ensemble
averages of three different observables: (a) the displacement of each particle 〈xi〉, (b) the external force 〈Fex〉 and (c) the external
work 〈W 〉. The blue solid lines and green dashed lines are the results from Langevin simulations of system/process S and S̃,
respectively. The orange dotted lines are the prediction for material/process S from S̃. (d, e) Validation of the uncertainty
quantification estimates by evaluating the time evolution of (d) the standard deviation of Pbias and (e) the deviation of the
empirical factor N from one. The solid blue lines are the exact value from the data and the orange dotted lines are the
predictions using the nonlinear uncertainty quantification method.

5. Example 2: Caging in two-dimensional glassy systems

One of the most ubiquitous examples of out-of-equilibrium behavior, and one that we are regularly
familiar with from everyday experience, is that of glasses (Stillinger and Debenedetti, 2013; Charbonneau
et al., 2017). Glassy dynamics is observed in a wide range of length scales (from nanoparticles to grains)
spanning a variety of industries from building materials (concrete) to paints (colloidal suspensions), and
household goods (foams & gels)(Bonn et al., 2017; Nicolas et al., 2018). Despite the ubiquity of glassy
systems, the study of equilibrium statistical mechanics leaves us ill-equipped to answer many questions
surrounding the theory of glasses, though there has been significant recent progress (Berthier and Biroli,
2011). In these final examples, we aim to predict features of the glassy dynamics from the motions of
particles in the equilibrium, fluid phase of 2D glass-formers. Supercooled liquids above their glass transition
temperature exhibit a characteristic onset of “caged” dynamics, whereby particles vibrate in cages formed
by their neighbors before thermal fluctuations enable hopping past the cage. This phenomenon of particle
localization is usually called “caging” and can be observed in many dynamical quantities. The mean squared
displacement (MSD), familiar to many from the study of Brownian motion, is sufficient to explain such
behavior. The emergence of sub-diffusive (slope < 1) trends in the log-log fits to MSD is a hallmark of
the onset of particle caging; these cages prevent particles from moving freely throughout the sample. The
observance of a plateau at long times is indicative of strongly caged dynamics, indicating that the duration
of the cage grows as the material is cooled towards the glass transition.

5.1. Model description and overview of the cases to be examined

Here, we explore two model systems, a bidisperse mixture of Hertzian disks and the standard Kob-
Anderson type Lennard-Jones glass, shown in Fig. 8. The Hertzian system is defined by an interparticle
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potential

Vij(r) =




0.4ǫ

(
1− r

σij

)2.5
r ≤ σij

0 r > σij

(31)

with a 50:50 A:B mixture, where σAB = 1.2σAA and σBB = 1.4σAA. A constant packing fraction of 1.0σ−2
AA

is used. The Lennard-Jones system uses the usual interparticle potential with a numerical cut-off distance

Vij(r) =

{
4ǫij

[(σij

r

)12 −
(σij

r

)6]
r ≤ 2.5σij

0 r > 2.5σij

(32)

in a 60:40 A:B mixture, where the interaction lengths are set to σAB = 0.8σAA and σBB = 0.88σAA, the
energies are set to ǫAB = 1.5ǫAA and ǫBB = 0.5ǫAA, and a packing fraction of 1.1σ−2

AA is selected. We
choose this species ratio and packing fraction to reduce the chance of crystallization within the system, as
the usual 80:20 mixture used in 3D is more prone to do so in 2D (Brüning et al., 2008; Flenner and Szamel,
2015). Both systems are composed of 10 particles and σAA is taken to be 1 universally. Additionally, the
simulations are performed in a square, periodic box, and no external forcing is applied to the configurations.
As above, the Euler-Mayurama method (Kloeden and Platen, 1999) is used to integrate the overdamped
Langevin dynamics of the system with parameters η = 5, and ∆t = 10−3. We compare our results among
two different temperatures kBT ∈ {10−1, 10−2}. In the unbiased simulations, we choose pairings of ǫ̃ and
kBT such that we observe phenomenology consistent with dynamical arrest if we were to increase ǫ̃ or
decrease kBT . Thus, we use ǫ̃ = 10.0 when kBT = 10−1 and ǫ̃ = 1.0 when kBT = 10−2 in the Hertzian
case, and ǫ̃AA = 0.1 when kBT = 10−1 and ǫ̃AA = 0.01 when kBT = 10−2 in the Lennard-Jones model. A
total of NR = 107 realizations of the liquid phase in each system were simulated to perform predictions, and
another NR = 105 are produced to validate the accuracy of these results.

Figure 8: Initial configurations used in Example 2. (a) Hertzian system in a 50:50 mixture. Dark blue particles are A type and
light blue are B type. (b) Lennard-Jones system in a 60:40 mixture. Dark red are A type and light red are B type. The radii
of the particles reflect a size of 0.5σii for particle species i. The black dashed square is the boundary of the simulation box.

To analyze the results of our simulations we compute two dynamical quantities, the mean squared
displacement MSD and the particle overlap Q(a), defined as

MSD =

〈
1

N

N∑

i=1

‖∆ri‖2
〉
, (33)

Q(a) =

〈
1

N

N∑

i=1

H(a− ‖∆ri‖)
〉
, (34)
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where H is the Heaviside step function. The overlap Q(a) quantifies the fraction of particles that have moved
some distance a within the simulation box. The overlap function in this context conveys essentially the same
information as the self-intermediate scattering function, also commonly used in the glassy literature. We
choose a = 0.1 in all simulations to display the onset of caged dynamics at accessible timescales.

While the glass transition can normally be observed by lowering the system temperature until plateaus
are viewed in quantities like the MSD and Q(a), we here vary instead the energy scale ǫ relative to kBT to
increase the height of energetic barriers and induce caging. We prepare the initial state of each system to be
completely force balanced, thus making the initial dynamics nearly degenerate regarding the energy scale ǫ.
Initially, states are sampled from a spatially uniform distribution and the configurations are subsequently
quenched to their inherent structure using gradient descent (Tsalikis et al., 2008). In each system, we
only employ one initial configuration, where we observe phenomenology consistent with caged dynamics to
generate our realizations.

Since we only modify the potential through a scaling coefficient between our reference and target systems,
we can pull the difference in Ṽ and V through the integration. This leaves us with two terms in the
computation of Ibias, denoted below as I1 and I2

∂Vbias

∂ri
=
(
1− ǫ

ǫ̃

) ∂Ṽ

∂ri
= − (χ− 1)

∂Ṽ

∂ri
, (35)

Ibias =
(χ− 1)2

4η

ˆ τ

0

N∑

i

∥∥∥∥∥
∂Ṽ

∂ri

∥∥∥∥∥

2

dt+ (χ− 1)

√
kBT

2η

ˆ τ

0

N∑

i

∂Ṽ

∂ri
· ξ̇i dt = I2(χ− 1)2 − I1(χ− 1). (36)

With this equation in hand, we can compute any member of this family of potentials at virtually no added
computational cost; we simply compute the forces for Ṽ once, and then apply Eq. (36) for each desired V .
In our results, we employ this method to generate predictions at 10 different target potentials with ratios
V/Ṽ = χ sampled logarithmically from 1.259 to 10.0.
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Figure 9: Observables for the Hertzian case with kBT = 10−1, highlighting the transition to caging. Mean squared displacement
(a,b) and particle overlap (c) calculated from Ṽ (black dashed line) and validation datasets (bold lines). Prediction points
in which |N − 1| < 0.1 are plotted with solid dots, otherwise they are plotted with faint lines to highlight the prediction’s
deviation from validation. (d) Deviation in N from unity, indicating when we can be confident in the accuracy of the predicted
observables.

5.2. Results

First, we look at both systems with kBT = 10−1. In the Hertzian case, shown in Fig. 9, we find good
agreement between our prediction and the validation data over a wide range of times. In biases as high as
χ = 10.0, the curves track well, and we can observe dramatically slower dynamics as indicated by the slopes
of MSD in Figure 9(a,b). From Figure 9(a) we can see in our simulation of Ṽ (black dashed line) initially
diffusive behavior until t ∼ 0.2, followed by a period of slight sub-diffusivity, and the reemergence of diffusive
behavior after t ∼ 3.0. As we increase χ, the dynamics become more sluggish until we observe a prolonged
plateau for χ > 5.0. We find the same signatures of caged dynamics in Q(0.1) shown in Figure 9(c). The
length of time before the accuracy of the method breaks down is strongly dependent upon the value of χ
used, where a χ of 10.0 breaks down at t ∼ 0.2, while χ = 1.259 is accurate well beyond t = 10.0. While the
caging plateau seen beyond χ ∼ 5.0 appears to be just out of reach, the sub-diffusive behavior that we can
predict is still strong evidence for predicting the onset of caged dynamics from diffusive dynamics.
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Figure 10: Observables for the Lennard-Jones case with kBT = 10−1, highlighting the transition to caging. Mean squared
displacement (a,b) and particle overlap (c) calculated from Ṽ (black dashed line) and validation datasets (bold lines). Prediction
points in which |N −1| < 0.1 are plotted with solid dots, otherwise they are plotted with faint lines to highlight the prediction’s
deviation from validation. (d) Deviation in N from unity, indicating when we can be confident in the accuracy of the predicted
observables.

Similar tends are seen in the data from the Lennard-Jones model, shown in Figure 10. We find that
the predictions break down at shorter times than seen in the Hertzian case. This is likely due to the more
rapid emergence of large forces in the Lennard-Jones model compared to the Hertzian system when deviating
from the minima of the potential. To further explore this relationship between the potentials, dynamics, and
confidence in our predictions, we compute the instantaneous diffusion coefficients D from our MSD curves
using a simple forward difference method as D(tn) =

(
MSD(tn+1)−MSD(tn)

)
/(4∆t). In Figure 11 we see

that the softer repulsion of the Hertzian model leads to a gradual reduction of the diffusion coefficient as the
configurations escape the minima, but we find this drop in D to happen more rapidly in the Lennard-Jones
model. Surprisingly, we find that the breakdown of our prediction appears to occur universally when D
drops below ∼ 0.003. This cutoff appears to be set by both the number of realizations and the temperature
used for our simulation.
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Figure 11: Instantaneous diffusion coefficient calculated for both the Hertzian (a) and Lennard-Jones (b) models, at kBT =
10−1. Prediction points are plotted as dots, and validation as solid lines. Y-scales in both plots are shared. The predictions
appear to breakdown at a fixed diffusion rate of about D ∼ 0.003 that is independent of the potential employed.

Lastly, we examine how these behaviors change through lowering ǫ̃ and kBT simultaneously by an order of
magnitude. By reducing the temperature of the system to kBT = 10−2, we observe improved accuracy in our
results given the same length of time in our simulations at kBT = 10−1. In Figure 12(a,b), our predictions
track almost perfectly at all observed χ for both the Hertzian and Lennard-Jones models. Though this is
mostly unsurprising, as we expect this equal reduction in the temperature and energy scale to yield a similar
effective temperature of simulations and push our observations out farther in time. In Figure 12(c,d), we find
that the threshold D in which we observed the breakdown in our predictions is further reduced by an order
of magnitude, matching well with our reduction in temperature. This is a curious result, as it seems that
this method of modeling possesses an inherent limitation on the slow dynamical processes we can resolve
that is dependent on our choices of temperature and realizations employed.
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Figure 12: MSD for the Hertzian (a) and Lennard-Jones (b) models, at kBT = 10−2. Corresponding instantaneous diffusion
coefficient in the Hertzian (c) and Lennard-Jones (d) models. Y-scales in both sets of plots are shared. In all cases, prediction
points are plotted as dots, and validation as solid lines.
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Figure 13: Validation of the uncertainty estimates for the Hertzian potential with (a) χ = 1.26, (b) χ = 10, and for the
Lennard-Jones potential with (c) χ = 1.26, (d) χ = 10. The time discretization for these estimates is set as nT = 100 and the
reference trajectory is chosen as the initial configuration.

5.3. Uncertainty quantification

In the following, we compare the UQ estimates for the standard deviation of Pbias with the data, for the
two extreme biases considered, i.e., χ = 1.26 and χ = 10.0, of the Hertzian and the Lennard-Jones systems.
These are shown in Figure 13 for both temperatures studied, i.e., kBT = 0.1 and kBT = 0.01. Here, we
use nT = 100 for the time discretization and choose the initial (equilibrium) configuration as the reference
trajectory. We recall that such estimates were built upon a quadratic approximation of the bias potential,
while the biases for the systems considered are themselves Hertzian and Lennard-Jones. These potentials
deviate from simple quadratic forms, particularly the Hertzian, which does not have a unique minimum but
rather an extended zero plateau beyond a certain threshold. Moreover, the phenomenon here studied is that
of diffusion, whereby particle trajectories will visit all parts of the potential, as opposed to be constrained
to the neighborhood of a given position. Yet, despite all these rather unfavorable circumstances, the UQ
estimates provide remarkably good predictions of the Lennard-Jones system, and mostly results within the
same order of magnitude for the Hertzian system. To be more specific, we provide in Table 1 below the
ratio between the data and the predictions for σPbias

at two significant times of the predictions for all cases
shown in Figure 13. These times are chosen to be the lowest time depicted (t = 10−2) and the time prior to
the plateau and subsequent decay of the standard deviation of Pbias observed in the data (this time is case
dependent, and hence specified in the table). This behavior is a strong signature of the reduced number of
relevant trajectories participating in the ensemble averages, which in turn implies that the estimate of σPbias

obtained from the data ceases to be accurate. Comparisons between the data and the predictions beyond
this point are therefore not meaningful.

Finally, we make some remarks regarding the computation of the UQ estimates. These calculations were
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σPbias
(data)/σPbias

(predictions)
χ = 1.26 χ = 10.0

low time large time low time large time

Lennard-Jones
kBT = 0.01 1.10 (t = 0.01) 2.60 (t = 10) 1.12 (t =0.01) 2.84 (t = 0.3)
kBT = 0.1 1.34 (t = 0.01) 2.69 (t = 1) 1.70 (t = 0.01) 5.29 (t = 0.03)

Hertzian
kBT = 0.01 2.97 (t = 0.01) 2.52 (t = 10) 2.96 (t = 0.01) 23.5 (t = 1)
kBT = 0.1 2.95 (t = 0.01) 8.10 (t = 10) 3.02 (t = 0.01) 25.2 (t = 0.1)

Table 1: Ratio of the standard deviation of Pbias between the data and UQ prediction for the Lenard-Jones and Hertzian
potentials.

found to be extremely fast and only requiring about a minute for each case in Matlab on a laptop. This is
for the time discretization used, nT = 100, which was sufficient to guarantee convergence in all cases, and for
∼100 time points. Yet, it is important to remark that, as the difference between the target and simulated
potentials increases, or as time increases, the spectrum of the eigenvalues of matrix Asq become increasingly
large, which can lead to a poorly conditioned matrix and associated numerical issues. Indeed, a direct
evaluation of Eq. (25) using Matlab, will not produce results after a given time, as could be implied from
Figure 13. Although these numerical issues could be potentially resolved by recourse to more sophisticated
strategies, these were not pursued here, as the time range of the predictions already surpassed the point of
failure of the path reweighting strategy.

6. Conclusions

In this paper, we provide a statistical mechanics approach with quantified uncertainty to extrapolate
material behavior to distinct loading conditions or material systems. The approach is based on reweighting
the probability density for trajectories, building up on the ideas of Chen and Horing (2007), and enables
the calculation of ensemble averages of arbitrary observables of system/process S from simulations (or,
potentially, experimental data) of system/process S̃. The formalism is a priori exact and possesses many
attractive features, such as acceleration of the dynamics under a suitable choice of the bias potential,
enabling trivial time parallelization, or the full exploration of a family of potentials at virtually zero added
computational cost. Yet, it suffers from sampling issues as the “distance” between the predicted and
simulated system increase, which become more apparent for large times or large particulate systems. In
other words, for a fixed number of realizations of system S̃, the uncertainty in the predictions for S become
increasingly large with the bias potential for a fixed time, or with time, for a fixed bias potential. Remarkably
though, the uncertainty of such predictions can be estimated a priori without requiring any simulations of
S. Specifically, analytical formulas for estimating the uncertainty were derived here based on a quadratic
approximation of the bias potential (defined as the difference between the potentials of systems S̃ and S).
These estimates proved to be remarkably accurate for systems with a strong quadratic bias (and markedly
more accurate than classical formulas for the propagation of uncertainty), and deliver estimates for the
errors within good order of magnitude for realistic potentials.

The above path reweighting strategy and uncertainty quantification estimates have been applied to two
illustrative examples. The first example is a one-dimensional mass-spring chain, often used as a prototype
for polymer chains or biological macromolecules. This simple example is used to showcase the versatility
of the approach, both in the type of observables that can be predicted (microscopic or macroscopic, and
instantaneous or path dependent), and the types of inference that can be made from one system to another
(e.g., from one potential to another, from equilibrium to non-equilibrium, or the extreme case of predicting
the non-equilibrium behavior of an interacting particle system from independent Brownian particles). The
second example is a two-dimensional glass-forming system with Hertzian or Lennard-Jones potential, where
the emergence of particle caging is predicted from the liquid phase as the strength of the potential is
increased. These two rather distinct examples (one elastic and the other diffusive) illustrate the possibility
of extrapolating under far-from-equilibrium conditions with a high degree of accuracy, for small systems and
short times.
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Appendix A. Path integral representation of Langevin dynamics

We here consider the main equation discussed in the narrative, mainly,

ηẋ = −∂V

∂x
+
√
σ ξ̇, (A.1)

where, for convenience, we restrict ourselves to the one dimensional case, and denote σ = 2kBTη. This
stochastic differential equation has additive noise, i.e., σ is independent of x, and hence, its Itô and
Stratonovich interpretation coincide.

In this appendix we derive the path integral representation of Eq. (A.1) (Chernyak et al., 2006; Kieninger
and Keller, 2021), following both the Itô and Stratonovich interpretation, and demonstrate their equivalence.

Beginning with the Itô interpretation, we discretize Eq. (A.1) with a constant time step ∆t, according
to the Euler-Maruyama scheme

η(xn+1 − xn) = −V ′(xn)∆t+
√
σ(ξn+1 − ξn), (A.2)

where the superscript n+1 is associated to time step tn+1 = tn+∆t and V ′ = ∂V/∂x. Then, the probability
of seeing a trajectory {x}nT

0 := {x0, x1, ...., xnT } given the initial conditions, is given by the product of the
transition probabilities Qn(n+ 1, n) from each point xn to the next

P
(
{x}nT

0 |x0
)
=

nT−1∏

n=0

Qn(n+ 1, n). (A.3)

Each transition probability Qn(n + 1, n), may be computed by means of a change of variables from
the probability distribution of ∆ξn = ξn+1 − ξn (Elber and Shalloway, 2000). In particular, since ∆ξn

is sampled from a Gaussian distribution with variance ∆t, P(∆ξn) =
(

1
2π∆t

)1/2
e−

(∆ξn)2

∆t . Hence, using
Eq. (A.2), Qn(n+ 1, n) will be of the form

Qn(n+ 1, n) =
1

Zn
exp

[
− 1

2σ

(
η
xn+1 − xn

∆t
+ V ′(xn)

)2

∆t

]
, (A.4)

where the factors Zn must ensure that the probability distribution is normalized to 1, i.e.,

Zn =

ˆ ∞

−∞
exp

[
− 1

2σ

(
η
xn+1 − xn

∆t
+ V ′(xn)

)2

∆t

]
dxn+1. (A.5)

These are simple Gaussian integrals, which can be readily computed as

Zn =

√
2πσ∆t

η
. (A.6)

Hence, the path probability distribution reads

P
(
{x}nT

0 |x0
)
=

(
nT−1∏

n=0

η√
2πσ∆t

)
exp

[
− 1

2σ

nT−1∑

n=0

(
η
xn+1 − xn

∆t
+ V ′(xn)

)2

∆t

]
, (A.7)
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or equivalently,

P
(
{x}nT

0 |x0
)
=

(
nT−1∏

n=0

η√
2πσ∆t

)
e−βI , with I =

1

4η

nT−1∑

n=0

(
η
xn+1 − xn

∆t
+ V ′(xn)

)2

∆t. (A.8)

If, in contrast, we had started with a Stratonovich interpretation of Eq. (A.1), then, its discretized version
would read

η(xn+1 − xn) = −V ′(xn+1/2)∆t+
√
σ(ξn+1 − ξn), (A.9)

where xn+1/2 is defined as xn+1+xn

2 . The probability of observing a trajectory would then be expressed as

P
(
{x}nT

0 |x0
)
=

nT−1∏

n=0

Qn(n+ 1, n), with

Qn(n+ 1, n) =
1

Zn
exp

[
− 1

2σ

(
η
xn+1 − xn

∆t
+ V ′(xn+1/2)

)2

∆t

]
.

(A.10)

Similarly, the normalization factors Zn must satisfy

Zn =

ˆ ∞

−∞
exp

[
− 1

2σ

(
η
xn+1 − xn

∆t
+ V ′(xn+1/2)

)2

∆t

]
dxn+1. (A.11)

We approximate this integral by doing a Taylor expansion of V ′(xn+1/2) around xn, as

V ′(xn+1/2) ≃ V ′(xn) + V ′′(xn)
(
xn+1/2 − xn

)
≃ V ′(xn) + V ′′(xn)

xn+1 − xn

2
. (A.12)

Then, a simple Gaussian integration delivers

Zn ≃
√
2πσ∆t

η
(
1 + V ′′(xn)∆t

2η

) . (A.13)

The term in parenthesis may be further approximated by an exponential, and similarly, V ′′ may be evaluated
at xn+1/2 to first order, i.e.

Zn ≃
√
2πσ∆t

η
exp

[
− 1

2η
V ′′(xn+1/2)∆t

]
. (A.14)

The path probability distribution (to first order in ∆t in the exponential) may then be expressed as

P
(
{x}nT

0 |x0
)
=

(
nT−1∏

n=0

η√
2πσ∆t

)
exp

[
− 1

2σ

nT−1∑

n=0

(
η
xn+1 − xn

∆t
+ V ′(xn+1/2)

)2

∆t+
1

2η
V ′′(xn+1/2)∆t

]
.

(A.15)
Although this expression is, in appearance, distinct to Eq. (A.7), their exponents are actually identical to

first order in ∆t. Indeed, after expanding the squares in (A.15), the cross term is the only one that requires
special consideration. In particular, from Itô’s formula, it follows that

2η
xn+1 − xn

∆t
V ′(xn+1/2) ≃ 2η

xn+1 − xn

∆t
V ′(xn) + 2η

xn+1 − xn

∆t
V ′′(xn)

xn+1 − xn

2
+O(

√
∆t)

≃ 2η
xn+1 − xn

∆t
V ′(xn) +

σ

η
V ′′(xn) +O(

√
∆t).

(A.16)

The second term involving V ′′(xn) then cancels with the last term in the exponent of Eq. (A.15), recovering
Eq. (A.7). In views of its simplicity, Eq. (A.7) is chosen for implementation purposes, as well as in the
derivations in the following appendices.
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Appendix B. Path integral transformation under change of potential

Following the discrete representation of the path integrals in Itô form used in Appendix A, we here prove
Eq. (4), for N = 1 in one dimension, without lost of generality. Towards that goal, we define Vbias = Ṽ − V
and replace V by Ṽ − Vbias in the rate functional Ibias of Eq. (A.8), and expand the squares as

I =
1

4η

nT−1∑

n=0

(
η
xn+1 − xn

∆t
+ Ṽ ′(xn)− V ′

bias(x
n)

)2

∆t

=
1

4η

nT−1∑

n=0

[(
η
xn+1 − xn

∆t
+ Ṽ ′(xn)

)2

+ (V ′
bias(x

n))
2 − 2V ′

bias(x
n)

(
η
xn+1 − xn

∆t
+ Ṽ ′(xn)

)]
∆t.

(B.1)

Here, Ĩ may be readily identified in the first term, and hence

Ibias = I − Ĩ =
1

4η

nT−1∑

n=0

V ′
bias(x

n)
[
V ′
bias(x

n)∆t− 2
√
2kBTη

(
ξn+1 − ξn

)]
, (B.2)

where we have used the Langevin equation associated to Ṽ .

Appendix C. Nonlinear uncertainty quantification estimate

In this appendix we provide the detailed calculations that lead to the variance estimate for Pbias, given
by Eq. (25) in the narrative.

We begin by deriving an approximation for Pbias resulting from the expansions given in Eqs. (12) and
(13). Directly inserting such expansions into the integrand of Ibias, this may be approximated as

∇Vbias(x
n, tn) ·

(
∇Vbias(x

n, tn)∆t− 2
√
σ∆ξn

)

≃
∥∥∥∇Vbias|xn

r
+ ∇∇Vbias|xn

r
δxn

∥∥∥
2

∆t

− 2
(
∇Vbias|xn

r
+ ∇∇Vbias|xn

r
δxn

)
·
[
η
(
∆xn

r + δxn+1 − δxn
)
+ ∇Ṽ

∣∣∣
xn
r

∆t+ ∇∇Ṽ
∣∣∣
xn
r

δxn∆t

] (C.1)
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Expanding the products, and noting that Vbias − Ṽ = −V ,

∇Vbias(x
n, tn) ·

(
∇Vbias(x

n, tn)∆t− 2
√
σ∆ξn

)

≃
∥∥∥∇Vbias|xn

r

∥∥∥
2

∆t− 2 ∇Vbias|xn
r
·
[
η∆xn

r + ∇Ṽ
∣∣∣
xn
r

∆t

]

+ 2 ∇Vbias|xn
r
·
(
∇∇Vbias|xn

r
δxn∆t

)

− 2 ∇Vbias|xn
r
·
[
η
(
δxn+1 − δxn

)
+ ∇∇Ṽ

∣∣∣
xn
r

δxn∆t

]
− 2

(
∇∇Vbias|xn

r
δxn

)
·
[
η∆xn

r + ∇Ṽ
∣∣∣
xn
r

∆t

]

− 2
(
∇∇Vbias|xn

r
δxn

)
·
[
η
(
δxn+1 − δxn

)
+ ∇∇Ṽ

∣∣∣
xn
r

δxn∆t

]

+
∥∥∥∇∇Vbias|xn

r
δxn

∥∥∥
2

∆t

=
∥∥∥∇Vbias|xn

r

∥∥∥
2

∆t− 2 ∇Vbias|xn
r
·
[
η∆xn

r + ∇Ṽ
∣∣∣
xn
r

∆t

]

− 2 ∇Vbias|xn
r
·
[
η
(
δxn+1 − δxn

)
+ ∇∇V |xn

r
δxn∆t

]
− 2

(
∇∇Vbias|xn

r
δxn

)
·
[
η∆xn

r + ∇Ṽ
∣∣∣
xn
r

∆t

]

− 2
(
∇∇Vbias|xn

r
δxn

)
·
[
η
(
δxn+1 − δxn

)
+ ∇∇Ṽ

∣∣∣
xn
r

δxn∆t

]

+
∥∥∥∇∇Vbias|xn

r
δxn

∥∥∥
2

∆t

(C.2)

Next, we define δyn =
(
η/

√
σ∆t

)
δxn and recall that form the definition of σ, β

4η = 1
2σ . Then, Pbias

may be approximately written as

Pbias = e−βIbias = exp

[
− 1

2σ

nT−1∑

n=0

∇Vbias(x
n, tn) ·

(
∇Vbias(x

n, tn)∆t− 2
√
σ∆ξn

)
]

≃ exp

[
−

nT−1∑

n=0

{
1

2σ

[∥∥∥∇Vbias|xn
r

∥∥∥
2

− 2 ∇Vbias|xn
r
·
(
η
∆xn

r

∆t
+ ∇Ṽ

∣∣∣
xn
r

)]
∆t

−
√

∆t

σ

[
∇Vbias|xn

r
·
(
δyn+1 − δyn + ∇∇V |xn

r
δyn∆t

η

)
+
(
∇∇Vbias|xn

r
δyn

)
·
(
∆xn

r + ∇Ṽ
∣∣∣
xn
r

∆t

η

)]

− 1

η

(
∇∇Vbias|xn

r
δyn

)
·
[
δyn+1 − δyn +

1

η
∇∇Ṽ

∣∣∣
xn
r

δyn∆t

]
∆t

+
1

2η2

∥∥∥∇∇Vbias|xn
r
δyn

∥∥∥
2

∆t2
}]

.

(C.3)

We now assume that xr(t
0) = x(t0) such that δy0 = η/

√
(σ∆t)δx0 = 0, and define ∆

(
∇Vbias|xn−1

r

)
:=
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∇Vbias|xn
r
− ∇Vbias|xn−1

r
, to rewrite the exponent in Pbias in a quadratic form, i.e.,

Pbias ≃ exp

{
− 1

2σ

nT−1∑

n=0

[∥∥∥∇Vbias|xn
r

∥∥∥
2

− 2 ∇Vbias|xn
r
·
(
η
∆xn

r

∆t
+ ∇Ṽ

∣∣∣
xn
r

)]
∆t

+

√
∆t

σ

nT−1∑

n=1

[
−∆

(
∇Vbias|xn−1

r

)
+ ∇∇V |xn

r
∇Vbias|xn

r

∆t

η
+ ∇∇Vbias|xn

r

(
∆xn

r + ∇Ṽ
∣∣∣
xn
r

∆t

η

)]
· δyn

+

√
∆t

σ
∇Vbias|xnT −1

r
· δynT

+
1

2

nT−1∑

n=1

1

η

(
∇∇Vbias|xn

r
δyn

)
·
[(

−2I∆t+
2

η
∇∇Ṽ

∣∣∣
xn
r

∆t2 − 1

η
∇∇Vbias|xn

r
∆t2

)
δyn

]

+
1

2

nT−1∑

n=1

2

η

(
∇∇Vbias|xn

r
δyn

)
· δyn+1∆t

}
.

(C.4)

We recall that the path probability distribution for x(t) in system S̃ is

P̃
(
x|x0

)
=

(
η√

2πσ∆t

)NdnT

exp

(
− 1

2σ∆t

nT−1∑

n=0

∥∥∥η∆xn +∇Ṽ (xn, tn)∆t
∥∥∥
2
)
. (C.5)

Expanding ∇Ṽ with respect to the reference path, and using the change of variables previously introduced,

δyn =
(
η/

√
σ∆t

)
δxn, the path probability distribution for δy(t) reads

P̃
(
δy(t)|δy0

)
≃
(

1√
2π

)NdnT

exp


−1

2

nT−1∑

n=0

∥∥∥∥∥
η√
σ∆t

∆xn
r +

√
∆t

σ
∇Ṽ

∣∣∣
xn
r

+ δyn+1 − δyn +
∆t

η
∇∇Ṽ

∣∣∣
xn
r

δyn

∥∥∥∥∥

2

.

(C.6)
We remark that the prefactor has been modified as well to ensure that the probability distribution is
normalized to one. Expanding the squares in the exponential, one obtains

P̃
(
δy(t)|δy0

)
≃
(

1√
2π

)NdnT

exp

{
− 1

2σ

nT−1∑

n=0

∥∥∥∥η
∆xn

r

∆t
+ ∇Ṽ

∣∣∣
xn
r

∥∥∥∥
2
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−
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√
∆t

σ

(
η
∆xn

r

∆t
+ ∇Ṽ
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·
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∇∇Ṽ
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− 1

2
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∥∥2 − 2δyn+1 ·

((
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∇∇Ṽ
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∇∇Ṽ
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∇∇Ṽ
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∇∇Ṽ
∣∣∣
xn
r

)
δyn

)]}

(C.7)

Similarly to what we did for Pbias, we assume δy0 = 0, and manipulate the exponent to convert it into
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a quadratic form in δyn, i.e.,

P̃
(
δy(t)|δy0

)
≃
(

1√
2π

)NdnT

exp

{
− 1

2σ

nT−1∑
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∥∥∥∥
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∇∇Ṽ
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∣∣∣
xn
r

)
δyn

)

+δyn ·
((

2I− 2
∆t

η
∇∇Ṽ
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(C.8)
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Therefore, the average of Pbias can be approximated as,

〈Pbias〉S̃ =

ˆ

· · ·
ˆ

PbiasP̃
(
δy(t)|δy0

)
dδy1 · · · dδynT

≃
ˆ

· · ·
ˆ
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∥∥∥
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(C.9)
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Recalling that Ṽ − Vbias = V , the resulting expression may be simplified to

〈Pbias〉S̃ ≃
ˆ

· · ·
ˆ

(
1√
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)NdnT
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{
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=
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(C.10)

where c is a constant defined as,

c = − 1

2σ

nT−1∑

n=0

∥∥∥∥η
∆xn

r

∆t
+ ∇V |xn

r

∥∥∥∥
2

∆t. (C.11)

Both vectors y and b consist of nT small Nd-dimensional vectors,

δy =




δy1

δy2

...
δynT


 and b =




b1

b2

...
bnT


 , (C.12)

where,

bn =





−
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∆t

σ
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∇∇V |xn
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η
∆xn

r

∆t
+ ∇V |xn
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)
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(
η
∆xn−1
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+ ∇V |xn−1

r
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, n < nT

−
√
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σ

(
η
∆xnT−1
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+ ∇V |

x
nT −1
r

)
, n = nT

(C.13)

The matrix A is written as,

A =




A11 A12 · · · A1nT

A21 A22 · · · A2nT

...
...

. . .
...

AnT 1 AnT 2 · · · AnTnT


 (C.14)
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with each Nd×Nd matrix block defined as,

Apq =





I+ ΓnΓn, (p, q) = (n, n) with n = 1, · · · , nT − 1

− Γn, (p, q) = (n+ 1, n) or (n, n+ 1) with n = 1, · · · , nT − 1

I, (p, q) = (nT , nT )

0, otherwise

(C.15)

with

Γn = I− 1

η
∇∇V |xn

r
∆t. (C.16)

The matrices Γn are symmetric, and, hence, so is the matrix A. Furthermore, det (A) = 1, as is shown
bellow following an iterative procedure, by which we add row n, multiplied by Γn−1, to row n − 1 from
n = nT to n = 2. That is,

det(A) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

I+ Γ1Γ1 −Γ1 0 · · · 0 0 0
−Γ1 I+ Γ2Γ2 −Γ2 · · · 0 0 0
−0 −Γ2 I+ Γ3Γ3 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · I+ ΓnT−2ΓnT−2 −ΓnT−2 0
0 0 0 · · · −ΓnT−2 I+ ΓnT−1ΓnT−1 −ΓnT−1

0 0 0 · · · 0 −ΓnT−1 I

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

I+ Γ1Γ1 −Γ1 0 · · · 0 0 0
−Γ1 I+ Γ2Γ2 −Γ2 · · · 0 0 0
−0 −Γ2 I+ Γ3Γ3 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · I+ ΓnT−2ΓnT−2 −ΓnT−2 0
0 0 0 · · · −ΓnT−2 I 0
0 0 0 · · · 0 −ΓnT−1 I

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

I+ Γ1Γ1 −Γ1 0 · · · 0 0 0
−Γ1 I+ Γ2Γ2 −Γ2 · · · 0 0 0
−0 −Γ2 I+ Γ3Γ3 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · I 0 0
0 0 0 · · · −ΓnT−2 I 0
0 0 0 · · · 0 −ΓnT−1 I

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= · · ·

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

I 0 0 · · · 0 0 0
−Γ1 I 0 · · · 0 0 0
−0 −Γ2 I · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · I 0 0
0 0 0 · · · −ΓnT−2 I 0
0 0 0 · · · 0 −ΓnT−1 I

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 1.

(C.17)

Next, we show that bTA−1b+2c = 0, which leads to 〈Pbias〉S̃ = 1. To do so, we introduce a vector u with
dimension NdnT such that Au = b. Then, using as previously the notation ∆xn = xn+1 − xn and defining
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a backward finite difference ∆bx
n = xn − xn−1, and hence ∆b∆xn = ∆bx

n+1 −∆bx
n = xn+1 − 2xn + xn−1,

the nth timestep of Au = b reads

(Au)n = −Γn−1un−1 + (I+ ΓnΓn)un − Γnun+1

= −∆b∆un +
∆t

η

[
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r
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∇∇V |

x
nT −1
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= bnT = −
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σ

(
η
∆xnT−1

r
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+ ∇V |

x
nT −1
r

)
, for n = nT .

(C.18)

Here, it is assumed that u0 = 0 so that the expressions remain valid for n = 1. Equivalently, dividing by
∆t2 and ∆t, respectively, these equations may be written as
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(C.19)

Introducing the following two operators,

L+
n =

∆

∆t
+

1

η
∇∇V |xn

r
and L−

n =
∆b

∆t
− 1

η
∇∇V |xn

r
, (C.20)

the above equations can be simplified as,




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nL

+
nu

n = − 1√
σ∆t
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(
η
∆xn

r

∆t
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η
∆xnT−1

r

∆t
+ ∇V |

x
nT −1
r

) (C.21)

By inspection, this second order equations can be simplified to a first order equation as,

L+
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n = − 1√
σ∆t

(
η
∆xn
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∆t
+ ∇V |xn

r

)
, for n < nT . (C.22)
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Moreover,
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The previous to last equality represents the discrete analogue of integration by parts, while for the last
equality we have made use of Eq. (C.22). Therefore bTA−1b + 2c = 0, which leads to 〈Pbias〉S̃ = 1, as
previously anticipated.

Next, we follow a similar procedure to find the ensemble average of P2
bias as
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Recalling that Ṽ −Vbias = V , and denoting by Γ̃ = I− 1
η ∇∇Ṽ

∣∣∣
xn
r

∆t in analogy to (C.16), the resulting

expression may be simplified to
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∣∣∣
xn
r

)(
η
∆xn

r

∆t
+ ∇Ṽ
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where the new coefficients Asq, bsq and csq can be expressed as,

Asq = 2A− Ã,

bsq = 2b− b̃,

csq = 2c− c̃.

(C.26)

Here, Ã, b̃ and c̃ are the defined as the analogues of A, b, and c, respectively, with the potential V replaced
by Ṽ .

Therefore, the variance of the bias probability is,

σ2
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=
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1√

det(Asq)
e

1
2b

T
sqA

−1
sq bsq+csq − 1.

(C.27)

Appendix D. From the nonlinear to the linear uncertainty quantification estimate

This appendix provides a detailed calculation of Eqs. (27) and (28) provided in Section 3.3. Following
the approximations given by Eq. (26) for the the integrand of Ibias and the ones described right after, Pbias
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may be approximated by

Pbias = e−βIbias = exp
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Next, the last two sums over n and m can be interchanged (
∑nT−1
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m=0 =

∑nT−2
m=0

∑nT−1
n=m+1) and the

labels m and n can be swapped, leading to
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Recalling now that the path probability density for the noise ∆ξ can be formally written as
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the average of Pbias can be found by
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Similarly, the average of P2
bias is given by
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recovering the sought-after expressions.
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