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Effect of Cap Thickness on InAs/InP Quantum Dots
Grown by Droplet Epitaxy in Metal–Organic Vapor Phase
Epitaxy

Elisa M. Sala,* Max Godsland, Aristotelis Trapalis, and Jon Heffernan

1. Introduction

Owing to their appealing physical properties, semiconductor
quantum dots (QDs) have attracted great attention for a broad

range of applications, ranging across lasers and amplifiers,[1–3]

nanomemories,[4–6] and recently as efficient sources of single and
entangled photons for quantum information technologies.[7–10]

III–V QDs fabricated by droplet epitaxy (DE) have shown a great
degree of flexibility in terms of variety of nanostructures possible

and material choice,[11–14] resulting in improved compositional
homogeneity and symmetry, and reduced strain.[11,15,16] Also,

the method allows for increased control of the associated wetting
layers in QD growth.[17–19] Such properties are particularly

appealing for their application as building blocks for quantum

information platforms where exceptionally
high quality QDs are required. DE has been
extensively explored by molecular beam
epitaxy (MBE)[11–14] It is only more recently
that it has been successfully applied to
MOVPE, where promising results have
been obtained: for instance, InAs/InP
QDs grown via DE in MOVPE have been
used in the first entangled quantum light-
emitting diode (QLED) emitting in the
telecom C-band[15] and in qubit teleporta-
tion.[17,19] Our recent study of growth
conditions for DE of InAs/InP QDs demon-
strated the ability to form QDs in local
etched pits,[18] creating the possibility to
engineer through the epitaxy process more

complex and novel nanostructures.
Here, we apply an epitaxial engineering technique to InAs/

InP DE QDs, namely, the variation of the InP capping layer thick-
ness deposited above the QDs, to obtain broad emission wave-
length tuning. This is an important element in the scale-up
and exploitation of QD-based photonic devices. Epitaxially grown
III–V QDs are commonly overgrown by a thin capping layer, typ-
ically of the same material as the substrate and usually at the
same QD growth temperature, to bury the QDs before further
growth. This epitaxial technique can be used to induce shape
modifications in the dots and control the emission wave-
length.[20–27] Occasionally, also different materials are explored
for strain engineering and/or to intentionally alter the QD com-
position.[28–32] This technique has been used for QDs grown via
Stranski–Krastanov (SK) in MOVPE[28,29,31,32] and MBE[20–24] or,
less commonly, by DE in MBE.[33] In this work, we demonstrate
the possibility to use capping layer engineering for DE QDs
grown by MOVPE. To study the effect of the capping layer thick-
ness, buried QDs have been grown with a low-temperature InP
layer cap whose thickness varies from 8 to 20 nm and is
deposited just after the QD crystallization step. The QDs have
been characterized morphologically with transmission electron
microscopy (TEM), and optically with room-temperature photo-
luminescence (RT–PL) and low-temperature micro-PL (LT-μPL).

2. Sample Fabrication

All samples were grown in a close-coupled showerhead (CCS)
MOVPE reactor, using H2 as carrier gas. Indium droplets were
first deposited on an InP buffer layer of thickness 300 nm which
grown at 600 �C. The droplets were deposited at 320 �C and
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InAs quantum dots (QDs) are grown on bare InP(001) via droplet epitaxy (DE) in

metal–organic vapor phase epitaxy (MOVPE). Capping layer engineering, used to

control QD size and shape, is explored for DE QDs in MOVPE. The method

allows for the tuning of the QD emission over a broad range of wavelengths,

ranging from the O- to the L-band. The effect of varying the InP capping layer is

investigated optically by macro- and micro-photoluminescence (PL, μPL) and

morphologically by transmission electron microscopy (TEM). A strong 500 nm

blueshift of the QD emission wavelength is observed when the capping layer is

reduced from 20 to 8 nm, which is reflected by a clear size reduction of the buried

QDs.
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thereafter crystallized into InAs QDs under an AsH3 flow whilst
ramping the temperature to 520 �C. The choice of this specific
crystallization temperature proved to be the optimum for obtain-
ing high-quality QDs in our growth experiments.[18] We note that
these growth parameters yield a QD density of�9� 108 cm�2.[18]

After complete crystallization, an InP capping layer with variable
thickness was grown at the same temperature of 520 �C and the
structures were completed with an 80 nm InP layer grown at
600 �C. For additional details on the growth sequence, we refer
to our previous work.[18]

3. Results and Discussion

A first insight into the effect of the capping layer on the buried
QDs is found through TEM analysis. Figure 1,2 show TEM
images of buried InAs/InP QDs corresponding to QD samples
with varying capping thickness in the range of 8–20 nm. TEM
images are taken under (002) dark-field diffraction conditions
allowing layers structure and compositional information to be

distinguished by dark/bright contrast. Such imaging conditions

are sensitive not only to compositional variations but also par-
tially to strain fields.[34] Here, regions showing darker contrast

correspond to As-containing material, and contrast well with
the lighter InP background. Overall, no defects or dislocations

can be found, revealing the high quality of the grown material.
Figure 1 a,b shows QDs with 20 and 15 nm capping layers,

respectively.
The images show the presence of QDs having truncated-

pyramidal shapes, as is typically observed for buried
QDs.[22,25,35] In fact, during the capping procedure, III–V In-

based QDs normally undergo shape modification and material
redistribution[20,22,25] with the original QD height decreasing

during the cap material deposition as indium outdiffuses toward
the QD’s lateral flanks.[22,25] This process results in the formation

of the typical truncated-pyramid shape.[22,25,35] A thick capping
layer generally ensures this process is fully developed and results

in formation of large QDs. In Figure 1,2, we also observe “halos,”

i.e., bright and dark diffused regions around each QD, especially
for the thicker capping layers of 20 and 15 nm. These are ascribed

Figure 1. a,b) TEM images of buried InAs/InP QDs having variable capping layer thicknesses of 20 nm (a) and 15 nm (b), taken under dark field (002)

diffraction conditions.

Figure 2. a,b) TEM images of buried InAs/InP QDs having variable capping layer thicknesses of 10 nm (a) and 8 nm (b), taken under dark field (002)

diffraction conditions.
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to variations of the strain field close to the QDs. In fact, the (002)

family planes around the QDs bend due to strain effects, while
additional dynamical effects involving the more strain-sensitive

(004) diffracted beams take place.[34] As a result, halos become
visible, being more pronounced for thicker parts of the speci-

men.[34] Nevertheless, this phenomenon does not affect our abil-
ity to estimate the size of the QDs at first order. For all

investigated samples, there is a 2D nonstoichiometric
InAs

x
P1�x

quasi-wetting layer, which is formed in-between the

QDs[15,16,18] due to exposure of the InP interdot surface during

the crystallization phase.[18] This is also visible as a straight line
in-between the QDs in TEM. However, we note in Figure 1a that

this layer appears to bend close to the QD on the left-hand side,
illustrated by the red dotted lines as a guide for the eye. We see

the same effect around a QD with a thinner cap of 8 nm in the
left-hand side of Figure 2b which we ascribe to the dot sitting in

an etched pit. Although difficult to precisely address such fea-

tures with TEM, we can reasonably infer that this effect corre-
sponds to the local etching of the 2D layer around the QDs

discussed in our previous work.[18] The reduction of the capping
layer grown above the QDs has a strong impact on their size. The

QDs visibly shrink with thin capping layers, especially for 10 and
8 nm, as shown in Figure 2a,b. Here, the QDs (highlighted with

red squares) appear as much flatter objects compared with those
shown in Figure 1a,b. Also, the diffused “halo” regions around

them are suppressed. This points to a decreased strain field, which

is consistent with the reduced size of the QD for thinner caps.
Figure 3a shows the trend of the QD heights and widths against

the capping layer thickness, from the analysis of a number of QDs.
Compared with surface QDs measured by atomic force micro-

scopy (AFM),[18] which showed free-standing heights of �10–

15 nm, the buried QD heights are overall strongly reduced.
We also observe QDwidths to be dependent on capping thickness

starting with a width of �60 nm for 20 nm capping layer and

reducing to �40 nm for an 8 nm cap. Therefore, we directly

observe that the capping process strongly modifies the shape

and size of the QDs. We propose a mechanism for the capping
process, as shown in Figure 3b–d. The capping process begins

with the supply of InP at a low temperature of 520 �C.[18]

Indium outdiffuses from the QD apex and flows toward the

QD flanks, as shown in Figure 3b, similar to what is observed
for other III–V QD systems, for instance, InAs/GaAs QDs.[22]

Thereby the dissolution of the QD has started, and its height grad-
ually reduces while the capping layer is growing and both In and

As are released. In Figure 3b, we include the presence of arsenic

with yellow circles and assume the surface is As-terminated
because we know that the 2D layer of InAsP is formed during

the preceding crystallization process.[18] Next, the released In
accumulates at the QD base and contributes to its width increase

by bonding with the arsenic available on the surface
(see Figure 3c). Once the capping layer deposition has completed,

the InP supply ceases, and the temperature is ramped up to

620 �C in preparation for the growth of the high-temperature
InP burying layer that completes the structure and provides

for good optical properties in surrounding layers.[18] During this
high-temperature growth, phosphorous is continuously supplied

for surface stabilization. The phosphorous supply together with
the rise in temperature can easily destroy the remaining

uncapped parts of the QD protruding through the capping layer
by enhancing the As–P exchange[26] and thermally inducing In

desorption. Here, it is important to point out that the heights

of the final capped QDs are significantly smaller than the nominal
thickness of the deposited InP as capping material. For instance,

for 20 nm nominal capping the resulting QDs are�5 nm high, as
shown in Figure 3a, and their heights decrease further with the

nominal cap thickness reduction. We believe the actual thickness
of the capping layers is smaller than the nominal thickness. The

growth rate for the low-temperature capping layers was calibrated
using thick layers and not on QD/2D surface. When thin caps are

grown on a surface containing significant amounts of excess

Figure 3. a) Plot of QD height and width versus capping thickness. b–d) Sketch of the capping process for a single QD capped with InP. The QD is

represented by the orange (truncated) pyramid. The circles represent In and P supplied as capping material, in red and blue, respectively. The yellow

circles represent As released during the QD demolition and the excess As present on the surface.
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arsenic on the 2D InAsP layer, we believe the growth rate to be
reduced. This would then explain why even in the case of a nom-
inally 20 nm capping layer the dots are only 5 nm high after the
capping process, something we would not expect if the cap was
indeed 20 nm thick because no part of the QD would protrude
above the cap during the high-temperature growth. This conjec-
ture is supported by evidence in Figure 1a,b which shows a
slightly darker contrast in the first 10–12 nm of the InP above
the dots (shown by the dotted red line) (also sketched in
Figure 3d). We believe this is due to the incorporation of surface
As into the InP cap during growth. We expect this only occurs
during the cap growth and hence suggests the real thickness
of InP is around half the nominal thickness and possibly less.

Figure 4 shows RT–PL spectra of the QDs. The measurements
were conducted by using a 645 nm diode laser with 75W cm�2

power density. The emission around 920 nm, detected for all sam-

ples, is ascribed to the InP substrate,[36] while the broader peak at
longer wavelengths is identified as the QD emission.[18] Varying
the cap thickness between samples, in the nominal range 8–
20 nm, leads to a dramatic redshift of the ensemble dot emission
by approximately 500 nm, covering wavelengths from 1200 to

2400 nm. The observed redshift in PL is consistent with the
increase in QD size seen in TEM and the effects of quantum con-
finement.[20–24,37]

Next, the same QD samples have been investigated via μPL at
4 K. For μPL, the samples were excited using a fiber-coupled

635 nm diode laser at power densities of approximately 2.24
and 717W cm�2 at low- and high-power measurements, respec-
tively. The PL was collected using a 100� objective (Mitutoyo M
Plan Apo NIR 100X, numerical aperture [NA]¼0.5) and the
collection area was approximately 5 μm in diameter. The corre-

sponding spectra are shown in Figure 5a,b.
Figure 5a shows that emission from single QDs is detected in

a range of �500 nm as observed in macro-PL measurements at
room temperature, although the spectra are considerably more
complicated than the ensemble macro-PL. Capping the QDs with
layers as thick as 20 nm results in single-dot emission at 4 K at

the telecom C-band and up to the 1600 nm detector cutoff. The
general trend previously observed in RT–PL can be found also for
single-dot emission, where QDs capped with 8 and 10 nmmostly
emit at short wavelengths up to �1400 nm (spectral regions

marked with “A” and “B” in Figure 5a. However, in high-excita-
tion μPL shown in Figure 5b, we observe the presence of a long-
wavelength emission emerging as the cap thickness is increased
from 10 nm caps upward. We attribute this to the emergence of
electronic states in the C-band, belonging to small QDs not fully

formed when thin capping layers are used and thus not yet

Figure 4. PL spectra at room temperature of QD ensembles with varying

cap thickness ranging from 8 to 20 nm.

Figure 5. a) Low-excitation μPL measurements conducted at 4 K of the QD samples having cap thickness of 8–20 nm. Indication of the cap thickness is

provided in each frame. b) Corresponding high-excitation μPL (log scale). Same color scale as in Figure 4.
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detectable as efficient single-dot lines in the low-excitation μPL.
The dense single lines detected in regions A and B, for thin caps
we ascribe to two phenomena: 1) emission from small QDs and
2) exciton trapping at monolayer (ML) fluctuations of the 2D non-
stoichiometric InAs

x
P1�x

quasi-wetting layer, formed during the
QD crystallization phase.[18,38,39] This is most evident in the
strong emission seen around 900–1100 nm in the high-excitation
region in Figure 5b. We note that many of the short wavelength
single lines of region A are quenched with thicker caps and for 15
and 20 nm caps, the QD lines in region B are also quenched and
the emissions in region C starts to dominate. At 20 nm, the short-
wavelength PL in A and B is almost completely quenched and
single-dot lines are observed mostly at long wavelengths up to
1600 nm. As it is not expected that the thicker caps effect the
2D InAsP layer, this behavior suggests a preferential carrier
capture and recombination into larger QDs.[37] Overall, the
RT–PL and μPL investigations presented here find good agree-
ment with the TEM analysis discussed earlier, where we found
that reducing the thickness of the low-temperature capping
layers grown above the QDs leads to a size reduction of the
buried QDs.

4. Conclusions

We applied a capping layer engineering method to InAs/InP
QDs grown by droplet epitaxy in MOVPE. Morphological inves-
tigations of buried QDs via TEM showed a strong dependence of
QD size on capping layer thickness which led to a tuning of
the QD emission wavelength over 500 nm, including the O-
and L- and C-bands. We demonstrated for the first time the
possibility to use the capping layer engineering for InAs/InP
QDs fabricated by droplet epitaxy in MOVPE, which can be used
as an on-demand tuning of the emission wavelength of such QDs
over a broad range of technologically relevant wavelengths.
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