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Abstract. The transportable volcanic materials of Mt. Marapi, which are deposited around the 

caldera, as a result from last eruption in November 2015, must be estimated as a first step to 

handle the lahar/ debris flow disaster.  In this research, the method used to determine the amount 

of river-based transportable volcanic material distribution was offered. The LIDAR Satellite 

DEM and TRMM data from Global Precipitation Climatology Project (GPCP) have been used 

to estimate the deposited volcanic materials. Based on the GPCP data analysis, it was found that 

the rainfall pattern distribute into two area, which are 0.52 mm/ hr on west side and 0.61 mm/ hr 

on east side relative to the mountain summit. The deposited materials from Mt. Marapi 14 

November 2015 eruption (volcanic boulders and lava) were located in the upstream of six 

prioritized watershed. The transportable volcanic material will predominantly flows to the South 

and North West direction. The potentially transported boulder and lava are around 80.33 % of 

the total erupted material that are deposited in the river upstream. Batang Kadurang Watershed 

has the highest transportable material of 1,905.18 m3. The results of study can be used as a rapid 

disaster countermeasure for lahar disaster mitigation.  

1.  Introduction 

Mt. Marapi, located close to Padang city in West Sumatera, Indonesia, has long history of eruptions that 

were ever recorded [1]. Instead of all these worrisome evidence, many people still choose to live in the 

mountain slope. It was noticed that there are about 57,453 inhabitants live within 10 km range from the 

mountain top in the recent period [2]. The eruption of Mt. Marapi volcano on November 14, 2015 had 

urge the river authority to prepare the lahar flow disaster mitigation strategy and planning in the region. 

In order to attain that objective, the river authority needs the estimation of transportable volcanic 

material distribution around the river on the volcano slope. The site visit to the volcanic material 

deposited area of Mt. Marapi on May 8, 2016 had shown that the material is very exposed to the rain 

triggered erosion [3]. The erupted materials that are mainly formed of sand, gravel, and boulders were 

depicted in Figure 1. The large amount of deposited materials on Mt. Marapi raises our research question 

on how the materials will be distributed into the watersheds within the mountain slope. There is no 

measurement at the top of Mt. Marapi. Therefore the method used in this paper aims to be an optimum 

solution when no erupted material deposit measurement data is available. This research proposes a new 

method on using the global free availability satellite data for river-based transportable volcanic material 

distribution analysis. 
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Figure 1. Sediment deposited in the top of Mt. Marapi volcano, West Sumatera, Indonesia.  

2.  Related works 

In the recent years, there are several data that are used for volcano erupted material deposition study. 

The common ground data collection is Thermal Infrared (TIR) sensor collected with airborne LiDAR 

(Light Detection and Ranging). The mentioned method will show the hot erupted material from the 

crater. The latest research demonstrates the use of cosmic-ray muon radiography (muography) that will 

produce a quantitative mass loss inside the crater during the eruption [4]. The two method utilize some 

sophisticated and exorbitant ground instrument risky operation within a volcanic eruption event. An 

approach in using the satellite imagery for estimating the volcanic erupted material volume had also 

been initiated. A recent paper mentions the use of ALOS Interferometric Synthetic Aperture Radar 

(INSAR) as an alternate for Advanced Spaceborne Thermal Emission and Reflection Radiometer 

(ASTER), Spinning Enhanced Visible and InfraRed Imager (SEVIRI), and Moderate Resolution 

Imaging Spectroradiometer (MODIS) [5]. However, these methods are highly dependent to the data 

availability within a certain spatial and temporal variability of the eruption event. In the case of 14 

November 2015 Mt. Marapi eruption event, the mentioned instruments and data are hardly available for 

the river authority. The most reasonable method that is practical to be used by the local river authority 

is the Volcanic Explosivity Index (VEI) approach. The VEI analysis then usually combined with the 

lahar source zone digitation in order to map the material dispersion [6]. The calculation of deposit areas 

and volumes in June 2011 from satellite imagery and the average deposits thicknesses estimations from 

the field for each affected river can be used to estimate the material distribution within the adjacent 

volcanic river [7]. This research is trying to involve the rainfall pattern in the volcanic area as a 

governing parameter for the river based transportable volcanic material distribution analysis. 
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3.  Methodology 

The LIDAR Satellite Digital Elevation Model (DEM) and Tropical Rainfall Measuring Mission 

(TRMM) data from Global Precipitation Climatology Project (GPCP) are used to estimate the 

transportable volcanic material into the watershed within a single phase of volcano activity. All the 

dataset from Mt. Marapi case study are recommended to have EPSG: 32747 - WGS 84/ UTM Zone 47S 

coordinate system projection, as previewed in Figure 2. In order to achieve the goal, the erupted volcanic 

material needs to be estimated using Volcanic Explosivity Index (VEI) [8] and visual eruption plume 

height measurement (simple classical method that is used by The Mt. Marapi Monitoring Station 

Personnel). The technique is explained in equation 1, as follows: 

 𝐸𝑃ℎ = (𝐷𝐶𝑜𝐸 × tan(𝜃𝑇𝑜𝑃)) − (𝑍𝑙𝑖𝑝 − 𝑍𝑠𝑡𝑎) (1) 

The eruption plume height (𝐸𝑃ℎ) is calculated by subtracting the visual plume height with the crater 

lip reference. The visual plume height can be calculated by multiplying the horizontal distance from the 

centre of eruption point to the monitoring station (𝐷𝐶𝑜𝐸) with tangent of top of plume viewpoint (𝜃𝑇𝑜𝑃). 

The 𝐷𝐶𝑜𝐸 can be quantified from the google earth measurement by knowing the centre of eruption 

coordinate from the seismic analysis. On the other hand, the 𝜃𝑇𝑜𝑃 was measured by the volcano 

monitoring person by using inclinometer. The elevation of the crater lip (𝑍𝑙𝑖𝑝) and the monitoring station 

(𝑍𝑠𝑡𝑎) is usually had been recorded before the eruption event. All of these variables were in SI Unit. On 

14 November 2015, the centre of eruption coordinate was projected at 0°23'28.44"S and 100°27'25.04"E 

with the crater lip elevation of + 2,716 m a.s.l. (metres above sea level). The 𝜃𝑇𝑜𝑃 is in the range from 

7.55º to 7.9º, while the 𝐷𝐶𝑜𝐸 was measured ± 17,270 m.  Meanwhile, the monitoring station is located 

at 0°27’20.3”S and 100°35’53.9”E with the elevation of + 472 m a.s.l. Therefore, the calculated 𝐸𝑃ℎ 

value is in the range 50 m to 150 m. The symbol’s indexes are available at https://goo.gl/PzOdSU. 

 

   
CNES ASTRIUM Image SRTM v.4.1 TRMM 3B43 

Figure 2. The open access satellite data that are available around the Mt. Marapi. 

3.1.  Satellite DEM analysis 

The DEM that is used in this research is CIGAR-CSI SRTM v.4.1 data. This Shuttle Radar Topographic 

Mission DEM version 4.1 is an improved version, where the no data grid had been filled with a certain 

interpolation algorithm [9]. The data can be freely downloaded from the official CGIAR CSI website 

(http://srtm.csi.cgiar.org/SELECTION/inputCoord.asp). Another alternative DEM data that has  

potential to be used is ASTER GDEM v.2 data [10]. 

High Low 0.52 mm/hr 0.61 mm/hr 
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 The elevation data that is encapsulated in the DEM and was analysed within the Geographical 

Information System Software (GIS). The input for the analysis is the watershed outlets within the radial 

range of 7 km from the Mt. Marapi crater. The DEM analysis outputs will be a sink filled raster, an 

AGREE surface reconditioned raster, a flow direction raster, a flow accumulation raster, a stream 

definition raster, a watershed definition raster, and a watershed boundary shapefile. In case of no 

watershed boundary was created, the selected watershed outlets must be shifted to exact overlaid the 

stream definition grid. The watershed boundary was used to calculate the watershed coverage area, to 

crop the GPCP data, and to determine the volcanic deposit watershed intersection area.  

3.2.  GPCP data analysis 

The precipitation pattern analysis elaborate the monthly TRMM data, which is also freely downloadable 

from NASA MIRADOR Data Access Website (http://mirador.gsfc.nasa.gov). In concurrence with the 

aim of only identifying the rainfall pattern, the 3B43: Monthly 0.25 x 0.25 degree merged TRMM data 

is considered to be chosen. The 3B43 TRMM data was merged from 3B-42 TRMM data with some rain 

gauge estimates improvements [11]. 

The rainfall data were correlated and accumulated to each watershed. The rainfall data of November 

2015 up to March 2016, which are 152 days in duration, in Mt. Marapi area were analysed based on the 

finding that hot pyroclastic material will not directly transported by rainfall occurrence until a certain 

period of time [12]. The first step before the rainfall accumulation step is to correlate the rainfall data 

with each watershed. This technique will result a rainfall intensity value that corresponds with each 

definite watershed. If there are more than one rainfall intensity value within a single watershed 

boundary, the final rainfall intensity value was weighted average rainfall data based on the rainfall value 

coverage area. The final step is to accumulate the rainfall within the selected period. It is necessary to 

remember that the rainfall unit in TRMM data is in mm/hr. Consequently, the accumulated rainfall 

within the month can be ensued by multiplying the rainfall intensity value with the number of days of 

the month and a constant of 24 (twenty four, which representing the number of hour in a day).  

3.3.  Transportable material estimation 

The transportable volcanic material estimation into each watershed was calculated based on equation 2. 

The area of the watershed has 20 % weight and the watershed deposit intersection was attributed with 

40 % weight. The reason is that the expected proportion of the material is about 59 % of boulders and 

41 % of lapilli and ash, which is a typical for a Strombolian eruption [13,14]. The rest of 40% weight 

was appointed to the rainfall distribution variable due to the concern that rainfall is the main triggering 

factor for transporting the deposited material. The watershed rainfall data was considered based on its 

deviation divided by sum of deviation, as stated on equation 2 and 3. 

 𝑉𝑖 = ((𝐴𝑖 . 𝐴𝑡𝑜𝑡
−1) × 20% + (𝐷𝑖 . 𝐷𝑡𝑜𝑡

−1) × 40% + 𝐼𝑖 × 40%) × 𝑉𝑡𝑜𝑡 (2) 

 𝐼𝑖 = (|𝑥𝑛 −𝑚(𝑋)|) × (∑ |𝑥𝑛 −𝑚(𝑋)|𝑛
1 )−1 (3) 

The mentioned variables are watershed index (i), rainfall period index (n), transportable volcanic 

material in each watershed in m3 (Vi), total volume of the erupted material in m3 (Vtot), a certain 

watershed area in m2 (Ai), sum of all watershed area in m2 (Atot), sum of all deposit area in (Dtot), rainfall 

deviation proportion for a certain watershed (Ii), rainfall in a certain period in mm (xn), and rainfall 

central tendency or rainfall data mean in mm (m(X)). The watershed deposited intersection (Di) is the 

intersection of watershed boundary and the deposited area boundary, measured in m2. The deposited 

area boundary is digitized based on Landsat 7 ETM+ SLC-OFF that was acquired on 23 June 2015, 

Landsat 8 OLI that was acquired on 14 April 2016, and Google Earth CNES Astrium that was taken on 

15 October 2015 from + 8,310 m a.s.l. The Landsat Satellite imagery is freely available from The USGS 

webpage (http://landsatlook.usgs.gov/viewer.html).  
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4.  Result and discussion 

The deposited materials from Mt. Marapi 14 November 2015 (volcanic boulders and lava) were 

identified in the upstream of 6 (six) prioritized watershed. The boulders and lava covered ± 2.36 km2 

area on the mountain top. The pyroclastic materials (lapilli, sand, and ash) were spread onto a total of 

28 lahar-risked watersheds around the volcano slope. The eruption has volcanic explosivity index of 1, 

with the plume height of ± 150 m [15,16]. These facts are used for estimating the deposited material in 

the mountaintop, which is resulting a maximum number ± 10,000 m3 total volcanic materials. The 

deposited material site within the volcano vicinity is appropriate presented on Figure 3. The thickness 

of the sediment deposition cannot be presented here due to the lack of sediment boring log data in the 

location. The Figure 3 also previews the separation of pyroclastic and lahar zone within the radial 

boundary of 3 km, 5 km, and 7 km from the mountain top. This boundary were generated based on the 

latest measured existing data in Mt. Marapi area [17]. 

The 6 (six) prioritized rivers that have volcanic boulder and lava deposition in the upstream acquire 

larger portion of estimated transportable volcanic material compared to the rest 22 (twenty two) rivers 

that have no volcanic boulder and lava deposition in their watersheds. The boulder and lava deposited 

at the upstream area of the rivers potentially transport 80.33 % of the total erupted materials as 

summarized at Table 1. Interestingly, Batang Kadurang Watershed has the highest transportable 

materials compared to the other prioritized rivers, followed with Batang Katik in the second rank. It 

means that the transportable volcanic material will predominantly flows to the South and North West 

direction relative to the mountain summit. The materials which have high probability flowing into the 

rivers in each watershed will not completely all transported, some of them remain at the top due to self-

consolidation burden [18]. 

 

 

Figure 3. Volcano risk map overlaid with prioritized watershed outlet. 
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Table 1. Transportable materials estimation based on Mt. Marapi 14 November 2015 eruption. 

Prioritized 

Watershed 

Outlet 

Coordinate 

Area Deposit 

intersection 

Rainfall 

accumulation 

Transportable 

material 

estimation 

[km2] [km2] [mm in 152 days] [m3] 

BA. Katik 100.418568ºE, 

0.346353ºS 

13.14 0.69  1,026.2   1,796.58  

B. Malana 100.507400ºE, 

0.436777ºS 

6.96 0.04  1,280.2   1,530.47  

B. Kadurang 100.455062ºE, 

0.454103ºS 

5.10 0.83  1,023.2   1,905.18  

B. Arau 100.440153ºE, 

0.448458ºS 

4.19 0.41  1,023.2   1,176.48  

BA. Siririt 100.431505ºE, 

0.443938ºS 

2.63 0.11  1,023.2   639.13  

B. Gantung 100.403345ºE, 

0.409848ºS 

5.72 0.28  1,023.2   984.45  

Others - 70.33 0  1,181.5   1,967.70  

Overall - 108.07 2.36  1,143.1   10,000.00  

Weight - 20 % 40 % 40 % - 

 

The transportable volcanic materials estimation that is developed in this paper has high correlation 

with material deposit extent situation. Therefore, the watershed that has no deposit intersection is 

presumed to have smaller amount that is transportable into its outlet. Most of the materials transported 

in the watershed that has no deposit intersection, are predicted to be lapilli and volcanic ashes. The lava 

and volcanic boulders may be transported in the watershed that has intersection with the deposit area. 

The rainfall distribution around Mt. Marapi area also gives some significant effect to the final predicted 

volcanic material volume. The use of TRMM 0.25º x 0.25º gridded precipitation data is quite enough in 

representing the rainfall distribution in Mt. Marapi into the east side and the west side rainfall 

distribution pattern. Finally, the proposed transportable volcanic material method still have 

uncertainties, which mainly caused by the total erupted material prediction. In case of disaster 

preparedness task force, it is suggested to use maximum possible erupted material for each class of 

Volcanic Explosivity Index.  

5.  Conclusion 

The river based transportable volcanic materials can be estimated by considering the area of deposited 

materials, watershed terrain profile, and rainfall pattern of the studied area. The web based free available 

satellite imagery, digital elevation model, and rainfall distribution data will be an alternative solution 

when there are no ground measurement data of the required input parameter, especially within the rapid 

disaster countermeasure program. This method can be used to identify the prioritized watershed that will 

transport the erupted materials in the watershed outlet, including the maximum estimated material. In 

the near future, it is recommended to calibrate the model by watershed outlet sediment transport 

measurement data or lahar flood occurrence record to enhance the model for wider application. 
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