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Abstract: In this paper, we propose a structured multiple-index model (SMIM)

for ultrahigh-dimensional data analysis. The proposed model takes many com-

monly used semiparametric models as its special cases, such as stochastic fron-

tier models, single-index model, additive-index models etc. We estimate all

of functions and parameters based on full likelihood-type function. As a re-

sult, the proposed estimators are shown to be semiparametrically efficient in

the sense of Bickel et al. (1993), as well as consistent in selection and estima-

tion and asymptotically normal. The computation is challenging due to the

combination of nonconvexity of the likelihood function, nonsmoothness of the

penalty term, and the large number of functions. To solve the computational

problem, we develop a technique of blending spline and kernel smoothing with

a majorized coordinate descendent algorithm, so that the implementation is
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easily performed by using the existing packages. Intensive simulation studies

also show that the proposed estimation procedure outperforms its alternatives

for various cases. Finally, we apply the proposed SMIM together with the

proposed estimation procedure to a real dataset from one of China’s largest

liquor companies, and successfully identify the 31, from 2051, most important

factors affecting the sale of liquor.

Key words and phrases: High-dimensional covariates, Maximum likelihood estimation,

Semiparametrical efficiency, Structured multiple-index models, Variable selection.

1. Introduction

Modern technologies yield abundant data with ultrahigh-dimensional risk pre-

dictors from diverse scientific fields. The estimation and variable selection of

ultrahigh-dimensional risk predictors are very sensitive to model identification.

Particularly, parametric models may lead to biased estimation and selection due

to the risk of misspecification, whilst nonparametric models could suffer from the

uninterpretability and instability of the resulting estimators due to “curse of di-

mensionality”. Semiparametric modelling comes as a sensible compromise. The

multi-index models, stimulated by dimension reduction, are important semipara-

metric models, and enjoy good asymptotic properties. However, when it comes to

application, they are not as useful as expected, because they would still come up

against “curse of dimensionality” when the number of indices is even moderate,
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say 3 or larger. A more useful approach would be kind of structured multi-index

models (SMIM). In the paper, motivated by the multi-index stochastic frontier

model described later, we consider the following model with known link:

Y = m {f1(X′β1), · · · , fd(X′βd), ε} , (1.1)

where Y is a response variable, X is a pn-dimensional vector of covariate, m is a

known link function of (d + 1) variables, fjs are unknown functions, βjs are un-

known vectors, and ε is a vector including random error and some latent variables.

To make model (1.1) identifiable, we assume, throughout this paper, that ‖βj‖ = 1

and the first component of βj is positive for j = 1, · · · , d.

The model (1.1) is structured by specifying the link function m which is helpful

to cooperate the information of the type of Y and can be seen from the special cases

of the model (1.1). Model (1.1) includes many commonly used models. For ex-

ample, the index heteroscedastic model (Zhu et al., 2013) for continuous response,

Y = f1(X
′β1) + f2(X

′β2)ε; and the generalized additive-index model for various

type of response, namely, Y follows the exponential family distribution with mean

m
{∑d

j=1 fj(X
′βj)

}
, where fj(·)s are unknown functions, m is a known link func-

tion and determined by the type of Y , e.g., a logit link for binary response, a

logarithmic function for count response and a linear function for continuous re-

sponse. Furthermore, the generalized additive-index models take many commonly

used models as their special cases, such as single index models and partial linear
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models. Literatures about this kind of models include Carroll et al. (1997); Xia

(2008); Ma and Zhu (2013); Liu et al. (2016); Guo et al. (2017); Ke et al. (2020);

Lian et al. (2021), and the references therein. Except for the single index models,

the existing works focus on fixed dimension of X.

The model (1.1) can not been straightforward addressed by the existing meth-

ods. Particularly, the existing studies on multiple-index models focus on the case of

the fixed dimension of covariates. The methods for high-dimensional single-index

model give estimation and selection and establish the asymptotical properties by

avoiding the estimation of the unknown link function so that the objective function

involves only high-dimensional parameters. The strategy for the high-dimensional

single-index model does not work for the model (1.1), which has multiple index-

es and specific structure. In the paper, we provide a semiparametrically efficient

and computationally convenient estimator for all of parameters and functions in

high-dimensional SMIM. The new estimation procedure is easy to implement, and

simulation studies show that it beats all its alternatives for the models from the

existing literature. On the theoretical front, we will show the estimators achieve

the semiparametric efficiency, in the sense of Bickel et al. (1993), which has not

been discussed for any high-dimensional semiparametric models as we have known.

As mentioned above, the study also is motivated by the multi-index stochastic

frontier model, which is used to analyze our real data from one of China’s largest
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liquor companies in western China. The purpose of the analysis is investigating

whether and how various factors affect the mean, frontier, inefficiency and uncer-

tainty of sales of liquor. The covariates include four parts: (1) the company’s

product information; (2) brewing industry information; (3) economic information

of related cities and towns; and (4) geographic information. Together with the

lagged variables, we have 2051 covariates and n = 1941 observations. The problem

of measuring production inefficiency has been an important issue in the econom-

ic, political and social fields. One of the most satisfactory models to analyse the

problem is the stochastic frontier model introduced by Aigner et al. (1977), which

is written as follows:

Yi = f(Xi,β) + αi + εi, αi ≤ 0, i = 1, · · · , n, (1.2)

where Xi is the covariate with fixed dimension, β is an unknown vector, εi is a

noise with normal distribution and αi is an unobservable random variable which

represents firm specific technical inefficiency. αi, εi and Xi are assumed to be

independent. The density of αi is considered to have the support (−∞, 0) and

is assumed from an N(0, 1) distribution truncated at 0, that is, αi ∼ −|N(0, 1)|.

This means that, neglecting the noise, f(x,β) is the maximum attainable output

with input x, called stochastic frontier function.

In the analysis of the model (1.2), a parametric functional form for f , which

is usually linear in β, has become a standard practice in efficiency measurement
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studies. Since the misspecification in f may lead to erroneous conclusions, Fan

et al. (1996) considered model (1.2) with completely unspecified f(·). Kumbhakar

et al. (2007) further generalized Fan et al. (1996) by allowing the variances of

inefficiency score αi and measurement error εi depending on Xi without making

any assumption on the variance functions. As a result, the problem of the curse of

dimensionality may arise in Fan et al. (1996) and Kumbhakar et al. (2007), even

when the dimension of covariates is slightly large, say larger than 3.

As a compromise between parametric and nonparametric modeling, we hence

consider the following high-dimensional multiple-index stochastic frontier model,

Yi = f1(X
′
iβ1) + f2(X

′
iβ2)αi + f3(X

′
iβ3)εi, αi ≤ 0, i = 1, · · · , n, (1.3)

where the dimension pn of Xi can be much larger than n, f1(·), f2(·) and f3(·) are

unknown functions, β1, β2 and β3 are unknown coefficients representing the effect

of Xi on the frontier, inefficiency and variance functions, respectively. Particularly,

the covariates which affect the frontier, inefficiency and variance may be different.

By identifying the zero component in β1, β2 and β3, we can select the subsets of

Xi that are significant for frontier, inefficiency and variance, respectively. It is also

remarkable that all unknown functions, f1(·), f2(·) and f3(·), are one-dimensional,

so it circumvents the problem of fitting high-dimensional surfaces and avoids the

so-called curse of dimensionality. It is easy to see model (1.3) is a special case of

(1.1) with εi = (αi, εi)
′.
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In this paper, we will focus on ultrahigh dimensional setting for (1.1) with

pn ≫ n, specifically, log(pn) = O(nr), 0 < r < 1. Although models (1.1) can be

viewed as an unified framework to accommodate some commonly used models, we

would like to stress the aim of this paper is not only to build a unified framework,

but also to develop new and efficient estimation procedure which applies to any

model in the unified framework.

The paper is organised as follows. We begin in Section 2 with a description

of the proposed estimation procedures and the algorithm to implement them. In

Section 3 we present the asymptotic properties of the resulting estimators, and

demonstrate that the estimators achieve the semiparametric efficiency. The per-

formance of the proposed estimation procedures is assessed by simulation studies

in Section 4. Through simulation we examine how well the proposed estimation

procedures work. In Section 5, we apply the proposed SMIM model together

with the proposed one-step estimation procedure to the real dataset from one of

China’s largest liquor companies to explore the important factors affecting the

sale of liquor. Technical proofs are relegated to the Appendix. A user-friendly

R package to implement the proposed method has been made available at http-

s://github.com/LinhzLab/SMIM2.git.
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2. Estimation procedure

We first introduce some notations. Let β = (β′
1, · · · , β′

d)
′ and f = (f1(·), · · · , fd(·))′.

To present the proposed estimation procedure in a more generic way, we assume

the objective function, based on (1.1), for the estimation is

L(β,f) =
1

n

n∑

i=1

Q
(
Yi, f1(X

′
iβ1), · · · , fd(X′

iβd)
)
. (2.4)

When the distribution of ε is given, this objective function is the conditional log-

likelihood function given (X1, · · · , Xn). When the distribution of ε is unknown,

it is some kind of negative loss function. For example, in model (1.3), when αi ∼

−|N(0, 1)|, εi ∼ N(0, 1) and αi, εi and Xi are independent, the objective function

L(β,f) = n−1
∑n

i=1Q(Yi, f1(X
′
iβ1), f2(X

′
iβ2), f3(X

′
iβ3)), where

Q(y, v1, v2, v3) = −1

2
log (v22 + v23)−

(y − v1)
2

2(v22 + v23)
+ log

(
1− Φ

{
(y − v1) v2

v3
√
v22 + v23

})

with Φ being the standard normal distribution function. Without any confusion,

throughout this paper, we call L(β,f) log likelihood function.

2.1 Kernel estimation

The proposed kernel estimation is based on the ideas of back-fitting and profile

likelihood estimation. The details are as follows. Pretending βks are known, we

apply the idea of back-fitting to estimate fk(·)s. Specifically,
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2.1 Kernel estimation

Step I. we assume fj(·) = f
[ℓ+1]
j (·), j = 1, · · · , k − 1, fj(·) = f

[ℓ]
j (·), j = k +

1, · · · , d, just after the ℓth iteration. In the ℓ+1th iteration, we update fk(·)

in the following way. For each given k, k = 1, · · · , d, and any given x, by

the Taylor’s expansion, we have fk(X
′
iβk) ≈ fk(x)+ ḟk(x)(X

′
iβk −x)=̂ηkx1+

ηkx2(X
′
iβk − x), when X′

iβk is in B(x), a small neighbourhood of x. In the

other words,

fk(X
′
iβk) ≈ {ηkx1 + ηkx2(X

′
iβk − x)} Iik(x) + fk(X

′
iβk) {1− Iik(x)} , (2.5)

for any i = 1, · · · , n and k = 1, · · · , d, where Iik(x) = I(X′
iβk ∈ B(x)).

Using (2.5), we extract information on (fk(x), ḟ(x)) from all of the samples

i = 1, · · · , n. Substituting (2.5) into L(β,f), we estimate ηkx = (ηkx1, ηkx2)
′

based on the following log likelihood function for ηkx,

1

n

n∑

i=1

Q
(
Yi, f1(X

′
iβ1), · · · , fk−1(X

′
iβk−1), Wix(βk)

′ηkxIik(x)

+ fk(X
′
iβk) {1− Iik(x)} , fk+1(X

′
iβk+1), · · · , fd(X′

iβd)
)
,

(2.6)

where Wix(βk) = (1, X′
iβk − x)′. It is worthy to mention that, with the ap-

proximation (2.5), our estimation for ηkx is based on full likelihood function,

rather than local likelihood function which is commonly used in the non-

parametric literature (Fan et al., 2006). Differentiating (2.6) with respect to

ηkx and noting that Iik(x)(1 − Iik(x)) = 0, we estimate ηkx by solving the
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2.1 Kernel estimation

following equations,

Lk(β,f ; x)=̂
1

n

n∑

i=1

Q(01,k)
(
Yi, f1(X

′
iβ1), · · · , fk−1(X

′
iβk−1),Wix(βk)

′ηkx,

fk+1(X
′
iβk+1), · · · , fd(X′

iβd)
)
Wix(βk)Kix(βk) = 0, (2.7)

with the indicator function Iik(x) replaced by a kernel function Kix(βk) =

Khk
(X′

iβk − x), where hk is a bandwidth and Q(01,k)(y,v) is component k of

∂Q(y,v)/∂v. By (2.7), the updated fk(x), f
[ℓ+1]
k (x), is obtained.

Step II. Continue Step I until convergence. We denote the converged f
[ℓ]
k (·) by f̂Ker

k (·;β).

We consider the estimation for β. The covariates are ultrahigh-dimensional

and an extra task is to select the important covariates. Replacing fk(·)s in (2.4)

by f̂Ker
k (·;β)s and applying penalised estimation, we have penalised likelihood,

1

n

n∑

i=1

Q
(
Yi, f̂Ker

1 (X′
iβ1;β), · · · , f̂Ker

d (X′
iβd;β)

)
−

d∑

k=1

pn∑

j=1

λnρλn
(|βkj|). (2.8)

where βkj is the jth component of βk, λn is a tuning parameter, and ρλn
(·)

is a penalty function. Maximise (2.8) with respect to βks subject to ‖βk‖ =

1 and βk1 > 0, k = 1, · · · , d. We use the resulting maximiser to estimate βks,

and denote them by β̂Ker
k s. Let β̂Ker be β with each βk being replaced by β̂Ker

k .

We use f̂Ker(·; β̂Ker) to estimate f(·), and denote it by f̂Ker(·), with f̂Ker
k (·) being

the kth component.

Whilst the kernel estimation enjoys good asymptotic properties, including con-

sistency, asymptotical normality and semiparametric efficiency, which are estab-
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2.2 Algorithm

lished in Section 3, it is difficult to implement it. In the paper, we provide an

algorithm that is practicable in computation and, at the same time, has the same

asymptotic properties as the kernel estimation.

2.2 Algorithm

The asymptotic theories for nonparameter estimators based on kernel smoothing

or local-polynomial smoothing are better understood and established than those

based on spline smoothing, whilst the computation based on spline smoothing is

more simple than those based on kernel smoothing, the algorithm introduced in

this subsection hence is an one-step kernel estimation based on the estimators

obtained from a B-spline method.

2.2.1 B-spline estimation

We denote U to be the bounded support set of Xβk, as defined in (C2) of Sup-

plementary Materials. Letting B(·) = (B1,m(·), · · · , Bqn,m(·))′ be the vector of

B-spline basis functions on U , we have

fk(x) ≈ fk,n(x) = B(x)′θk, k = 1, · · · , d, (2.9)
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2.2 Algorithm

where θk = (θk1, · · · , θkqn)′. Replacing the fk(·)s in (2.4) by their approximations

using (2.9) leads to the following penalised objection function for β and θks

1

n

n∑

i=1

Q
(
Yi, B(X′

iβ1)
′θ1, · · · , B(X′

iβd)
′θd

)
−

d∑

k=1

pn∑

j=1

λnρλn
(|βkj|), (2.10)

where βkj is the jth component of βk. Maximise (2.10) with respect to βks and

θks subject to ‖βk‖ = 1 and βk1 > 0, and denote the maximiser as β̃ks and θ̃ks.

The initial estimators of fk(·) and βk are taken to be f̃k(·) = B(·)′θ̃k and β̃k.

2.2.2 One-step kernel estimation

To ensure the good asymptotic properties, we update the B-spline estimation f̃k(·)s

and β̃ks by an one-step kernel estimation. We estimate fk(·)s first and then βks.

For each k, k = 1, · · · , d, and any given x, replacing βj in (2.4) by β̃j,

j = 1, · · · , d, and fj(·) by f̃j(·), j = 1, · · · , k − 1, k + 1, · · · , d, and applying

the local linear estimation, we obtain the local log likelihood function for fk(x)

1
n

∑n
i=1Q

(
Yi, f̃1(X

′
iβ̃1), · · · , f̃k−1(X

′
iβ̃k−1), Wix(β̃k)

′ηk,

f̃k+1(X
′
iβ̃k+1), · · · , f̃d(X′

iβ̃d)
)
Kix(β̃k).

(2.11)

Maximise (2.11) with respect to ηk, and the estimator of fk(x), f̂k(x; β̃k), is taken

to be the first component of the maximiser.

Once the estimators f̂k(·;β)s are obtained, we apply the penalised maximum

Statistica Sinica: Newly accepted Paper 

(accepted author-version subject to English editing) 



2.3 Computational issue and selection of tuning parameters

likelihood estimation to estimate β. Explicitly, we maximise

1

n

n∑

i=1

Q
(
Yi, f̂1(X

′
iβ1), · · · , f̂d(X′

iβd)
)
−

d∑

k=1

pn∑

j=1

λnρλn
(|βkj|). (2.12)

with respect to β. We use the resulting maximiser to estimate β, and denote them

by β̂. And define f̂(x) to be f̂(x; β̂), with f̂k(x) being the kth component.

2.3 Computational issue and selection of tuning parameters

When implementing the proposed estimation procedure, we have to deal with some

practical issues such as the maximisation of (2.10), (2.11) and (2.12), and the

selection of initial estimation, bandwidth, tuning parameter and penalty function.

We start with the initial estimation to address the maximisation of (2.10). For

this purpose, we note model (1.1) satisfies

E(Y |X) =m1

(
fk(X

′βk), k ∈ τ 1

)
, (2.13)

var(Y |X) =m2

(
fk(X

′βk), k ∈ τ 2

)
, (2.14)

where m1 and m2 are the known link functions, and τ 1 and τ 2 are the subscript

sets of the multiple indexes related to the conditional mean and the conditional

variance respectively. Without loss of generality, we suppose that the multiple

indexes in (2.13) and (2.14) share a common part, i.e., τ 1∩τ 2 = τ 3, with τ 1∪τ 2 =

{1, . . . , d}. Then, for k ∈ τ 1, based on (2.13), we obtain the initial estimators

β
(0)
k s by using package mave() in R software (Xia, 2008). It should be mentioned

Statistica Sinica: Newly accepted Paper 

(accepted author-version subject to English editing) 



2.3 Computational issue and selection of tuning parameters

that for ultrahigh dimensional case, package mave() first reduces the model to a

moderate scale of order n/ log(n) by adapting a screening procedure (Zhu et al.,

2011), and then estimates β based on the reduced model. After that, we get

θ
(0)
k s as the minimiser of

n∑
i=1

(
Yi − m1

(
B(X′

iβ
(0)
k )θk, k ∈ τ 1

))2
with respect to

(θk, k ∈ τ 1) by using optim() function in R software. The initial estimators of

fk(·), k ∈ τ 1 and E(Y |X) are then taken as f
(0)
k (·) = B(·)′θ(0)k and E(0)(Y |X) =

m1

(
f
(0)
k (X′β

(0)
k ), k ∈ τ 1

)
, respectively. Similarly, repeating the procedure above

with Yi replaced by Ỹi = (Yi −E(0)(Y |Xi))
2, we obtain β

(0)
k , θ

(0)
k and f

(0)
k (·) based

on (2.14) for k ∈ τ 2\τ 3.

Then the maximiser of (2.10) can be obtained through the following iteration.

(I) Substituting θ
(0)
k s for θks in (2.10), we have

1

n

n∑

i=1

Q
(
Yi, B(X′

iβ1)
′θ

(0)
1 , · · · , B(X′

iβd)
′θ

(0)
d

)
−

d∑

k=1

pn∑

j=1

λnρλn
(|βkj|).

(2.15)

Maximise (2.15) with respect to βks by taking β
(0)
k s as the initial values, and

denote the resulting maximiser by β
(1)
k s. This can be done by using the MM

principle (Lange et al., 2000) and grpref() function in R software.

(II) Substitute β
(1)
k s for βks in (2.10), and maximise (2.10) with respect to θks,

namely, maximise

1

n

n∑

i=1

Q
(
Yi, B(X′

iβ
(1)
1 )′θ1, · · · , B(X′

iβ
(1)
d )′θd

)
(2.16)
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2.3 Computational issue and selection of tuning parameters

This can be done by appealing optim() function in R software. Treat β
(1)
k

and the resulting maximiser as initial values of βks and θks, and repeat steps

(I) and (II) until convergence, we can get the maximiser of (2.10).

The maximisation of (2.11) can also be done by using optim() function, and

grpref() function in R software can be used to maximise (2.12).

In the proposed estimation procedure, different fk(·)s are allowed to have dif-

ferent bandwidths. For each fk(·), its bandwidth hk can be selected by a rule of

thumb, that is hk = bσ̂kn
−1/5 and σ̂k =

√
var(X′

iβ̃k), where β̃k is the initial esti-

mator of βk obtained in section 2.2.1, and b is selected by K−fold cross validation

(Fan et al., 2006). Our simulation studies show this bandwidth selection method

works very well.

There is much literature about penalised estimation, and various penalty func-

tions have been proposed. Examples include LASSO in Tibshirani (1996), SCAD

in Fan and Li (2001), MCP in Zhang (2010), the Elastic net in Zou and Hastie

(2005). In this paper, we use the MCP penalty. The tuning parameter λn in the

proposed estimation procedure plays a very important role. When the dimension

of the X is of polynomial order of sample size n, we apply BIC to select λn, see

(Fan and Li, 2001). When the dimension of the X increases with an exponential

order of sample size n, BIC would not work very well, we therefore appeal EBIC,

proposed in Chen and Chen (2008), to select λn.
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3. Asymptotic properties

To present our main asymptotic results, we first introduce some notations. De-

fine Ak and A as the non-zero index set of coefficients βk and β respectively.

Let sn = |A| be the cardinality of set A. We put a superscript 0 on a param-

eter/function to denote the true of this parameter/function, e.g. β0 and f 0 are

the true values of β and f , respectively. For simplicity, we also write g(β,f)

as g when the variable (β,f) takes the true value (β0,f 0). Let Fk = {fk :

fk has continuous rth order derivatives} for an integer r ≥ 2, and F = {f =

(f1, . . . , fd)
′ : fk ∈ Fk, k = 1, . . . , d}. Throughout the paper, C is a constant, it

may represent different values at different places.

We denote the score function by Sβk
(β,f) = ∂L(β,f)/∂βk and Sηk

(β,f ; x) =

∂Lk(β,f ; x)/∂ηkx. Let Ṡηkηk
(β,f ; x) = ∂2Lk(β,f ; x)/∂ηkx∂η

′
kx, Ṡηkβk̃

(β,f ; x) =

∂2Lk(β,f ; x)/∂ηkx∂β
′
k̃
and Ṡβkβk̃

(β,f) = ∂2L(β,f)/∂βk∂β
′
k̃
, k, k̃ = 1, . . . , d.

We use a capital letter to denote a random variable, its lowercase to denote its

expectation, e.g., sβk
(β,f) = ESβk

(β,f). The vector of {xj, j ∈ A} is denoted

by xA, and the matrix (Vij, i ∈ A, j ∈ A) by VAA. Denote

κ(ρλn
;β) = lim

ǫ→0+
max

1≤k≤d,1≤j≤pn
sup

|βkj |−ǫ<t1<t2<|βkj |+ǫ

{
− ρ̇λn

(t2)− ρ̇λn
(t1)

t2 − t1

}
,

κ0 = sup{κ(ρλn
;γ) : ‖γ − β0

A‖∞ ≤ mβ,γ ∈ Rsn},

mβ =
1

2
min
j∈A

|β0
j |, ϕn = ‖ − ṡ−1

βAβA
‖∞, µn = Λmin(−ṡβAβA

)− λnκ0,
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where Λmin(A) is the minimum eigenvalue of matrix A.

Before establishing the asymptotic properties of the proposed estimators f̂k(·)

and β̂k, we first illustrate the local convexity of the objective function M(β,f) =

L(β,f)− λn
∑d

k=1

∑pn
j=1 ρλn

(|βkj|).

Proposition 1. Under Condition (C2)-(C4) in the Supplementary Materials, if

n

(log sn)ι1

{
µ2
n

s2n
∧ µn

sn

}
→ ∞

with ι1 = (4 + ι)/ι, then Λmin

(
− ṠβAβA

(β0,f)
)
> λnκ0 holds with probability

tending to 1 for all f satisfying ‖f − f 0‖∞ = o
(
µn/{sn(log pn)2/ι}

)
.

Remark 1. Proposition 1 implies that Λmin(−ṠβAβA
(β0,f)) > λnκ0 ≥ λnκ(ρλn

;β0)

with high probability when µn, the gap between Λmin(−ṠβAβA
) and λnκ0, is positive

and does not shrink too fast. As shown in Lv and Fan (2009), κ(ρλn
;β) equals to

max
1≤k≤d,1≤j≤pn

−ρ′′(|βkj|), provided that ρ has a continuous second derivative. There-

fore κ(ρλn
;β) can be regarded as the local concavity of the penalty ρλn

at β = (βkj).

Noting that ṠβAβA
(β,f)) is the second order derivatives of L(β,f) with respect to

βkj ∈ A, the conclusion Λmin(−ṠβAβA
(β0,f)) ≥ λnκ(ρλn

;β0) guarantees the objec-

tive function M(β,f) = L(β,f)− λn
∑d

k=1

∑pn
j=1 ρλn

(|βkj|) is strictly convex with

respect to βA in the subspace {β ∈ Θ : βAc = 0} when (β,f) takes value in the

neighborhood of (β0,f 0). Hence, Λmin(−ṠβAβA
(β0,f)) ≥ λnκ(ρλn

;β0) guarantees

the objective function M(β,f) = L(β,f)−λn
∑d

k=1

∑pn
j=1 ρλn

(|βkj|) is strictly con-
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vex with respect to βA in the subspace {β ∈ Θ : βAc = 0} when (β,f) takes value

in the neighborhood of (β0,f 0). Furthermore, the second order Condition (C6) in

the Supplementary Materials ensures the maximiser of the objective function in the

subspace {β ∈ Θ : βAc = 0} is the optimal estimator over the space {β ∈ Θ} in

the neighborhood of (β0,f 0).

Now, we are at the position to show the asymptotic properties of the kernel

estimators, f̂Ker
k (·) and β̂Ker

k , and then prove that the estimators f̂k(·) and β̂k

based on the proposed algorithm have the same asymptotic properties.

Theorem 1. Under regularity Conditions (C1)-(C7) in the Supplementary Mate-

rials, if hn → 0, nhn/ log n→ ∞, ϕn ≤ Cn−γ and

n

(log pn)ι1

{
(ρ̇−1

λn
(mβ) ∧ nγ)2

ϕ2
ns

2
n

∧
ρ̇−1
λn
(mβ) ∧ nγ

ϕnsn

}
→ ∞,

n

(log sn)ι1

{
(ϕ−1

n ∧ µn)
2

s2n
∧ ϕ−1

n ∧ µn

sn

}
→ ∞,

nλ2n
(log pn)ι2

→ ∞,

{
n(1−2γ)/2λn
(log sn)ι2

∧ n1−2γλ2n
(log sn)ι2

}
→ ∞, mβ ≥ Cϕnλnρ̇(0+), snλn → 0,

{λn/nγ} ∧ {ϕn/sn}
h2n + (nhn)−1/2 log1/2(n)

→ ∞, ϕnλn ≤ C(h2n + (nhn)
−1/2 log1/2(n)),

(3.17)

with ι1 = (4 + ι)/ι and ι2 = (2 + ι)/ι, we have

(a) lim
n→∞

P (β̂Ker
Ac = 0) = 1.

(b) lim
n→∞

P (‖β̂Ker
A − β0

A‖∞ ≤ ϕnλnρ̇(0+)) = 1.
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(c) sup
x∈U

‖f̂Ker
k (x)− f 0

k (x)‖ → 0 in probability.

For bounded covariate, it can be seen that ι1 = 1 and ι2 = 1 by letting

ι → ∞. Then (3.17) holds when n
ϕ2
ns

2
n log pn

→ ∞, which holds if log pn = o(n)

and sn = o(
√
n) when ϕn takes a constant. This means the kernel estimation

procedure is applicable to ultrahigh dimensional case where the number of covari-

ates is of exponential order of sample size n. The last three conditions in (3.17)

guarantee the searching for the estimator of β in the neighborhood of the true

parameter by choosing the appropriate order of the tuning parameter. Theorem

1 (a) shows the kernel estimators, β̂Ker, enjoy selection consistency. (b) implies

the estimate consistency of β̂Ker, i.e., ‖β̂Ker
A − β0

A‖∞ → 0 in probability, when

√
(log pn)ι2/n ∧ (log sn)

ι2/n(1−2γ)/2 ≪ λn ≪ mβ/{Cϕnρ̇(0+)}. Therefore, Theo-

rem 1 guarantees the recovery of signals if mβ ≫ ϕn

√
(log pn)ι2/n under condition

(3.17). (c) illustrates the estimators f̂Ker
k (·)s of fk(·)s are uniformly consistent.

Let Σ1n = −ṡβAβA
+ ṡβAη ṡ

−1
ηη ṡηβA

, and Σ2n be the covariance matrix of mA,

the empirical efficient score for parameter βA, which are defined in the Sup-

plementary Materials. Denote Λ1n = Λmin(Σ1n), Λ2n = Λmin(Σ2n), and Λ3n =

Λmin(Σ
−1
1nΣ2nΣ

−1
1n ). The following theorem establishes the oracle property and asymp-

totic normality of the kernel estimators.
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Theorem 2. Under conditions of Theorem 1, if

Λ3nnh
2
n

sn(log n)2
→ ∞,

n+ h−4
n

(1 ∨ Λ3n)s3n
→ ∞,

Λ2
2n(n+ h−4

n )

s2n
→ ∞,

n(Λ2
1n − h4n)

s2n(log sn)
ι1

→ ∞,
Λ4

1nΛ3n(n+ h−4
n )

s3n
→ ∞,

nsnλ
2
nρ̇λn

(mβ)
2

Λ2
1nΛ3n

→ 0,

(3.18)

then

(a) for any u ∈ Rsn with ‖u‖2 = 1, when nh4n → 0, we have

√
nu′Σ

−1/2
2n Σ1n(β̂

Ker
A − β0

A)
d−→ N(0, 1).

(b) when sn = o(Λ−1
3n (nh

4
n + h−1

n )), we have

√
nhn

(
f̂Ker
k (x)− f 0

k (x)−
1

2
f̈ 0
k (x)ν2h

2
n

)
d−→ N(0, σ2

k(x)),

where σ2
k(x) = υ0e

−1
k (x)f−1

Xk
(x), ek(x) = −E(Q(02,k)(Yi, f

0
l (X

′
iβ

0
l ), l = 1, . . . , d)|X′

iβ
0
k =

x), ν2 =
∫∞

−∞
x2K(x)dx, and υ0 =

∫∞

−∞
K2(x)dx.

In the following, we are going to establish the asymptotic normalities for the

estimators, f̂k(x)s and β̂ks, resulted from the proposed algorithm.

Theorem 3. Under (3.18) and the conditions in Theorem 1,

(a) If sn = o
(
Λ3nnh

−1
n q

2(r−1)
n + Λ3nn

−1h−4
n q

4(r−1)
n

)
, snq

2
n(qn + sn) = o

(
Λ3nnh

−1
n

)
,

snq
4
n(qn + sn)

2 = o
(
Λ3nnh

−4
n

)
, nh4n → 0, r ≥ 2, we have

√
nu′Σ

−1/2
2n Σ1n(β̂A − β0

A)
d−→ N(0, 1), with ‖u‖2 = 1.
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(b) If qn(qn + sn)
1/2 = o(h−1

n n1/2a
1/2
n ), and sn = o(Λ−1

3n (nh
4
n + h−1

n )), we have

√
nhn

(
f̂k(x)− f 0

k (x)−
1

2
f̈ 0
k (x)ν2h

2
n

)
d−→ N(0, σ2

k(x)),

where an = h4n + (nhn)
−1 and σ2

k(x) is defined as in Theorem 2.

When eigenvalues Λj, j = 1, 2, 3 are bounded away from 0, it is easy to see part

(a) in Theorem 3 holds for sn = o(n1/3) if we take r = 2, qn = O(n1/3) and hn =

O(n−1/3); and part (b) holds for the theoretical optimal bandwidth hn = O(n−1/5)

of nonparametric estimation if we take qn = O(n1/5) and sn = o(n1/5). Theorem 3

implies that the proposed algorithm shares the same asymptotic distribution with

the kernel estimators.

Theorem 4. Let D0 = {ψ : ψ has a continuous derivative on Ud,
∫
Ud ψ(x)dx =

0}. Under the conditions for part (a) in Theorem 2, when the distribution of

ε is known, both
∫
Ud ψ

′
1(x)f̂

Ker(x)dx + ψ′
2β̂

Ker
A and

∫
Ud ψ

′
1(x)f̂(x)dx + ψ′

2β̂A

are efficient estimators of
∫
Ud ψ

′
1(x)f

0(x)dx + ψ′
2β

0
A, for any function ψ1 =

(ψ11, . . . , ψ1d)
′ ∈ D0 and ψ2 ∈ Rsn.

Theorem 4 indicates that both β̂Ker
A and β̂A are efficient estimators of β0

A by

taking ψ1(x) = 0, and f̂Ker(·) and f̂(·) are semiparametrically efficient estimators

of f 0(·), by taking ψ2(x) = 0, in the sense of Bickel et al. (1993).
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4. Simulation Studies

In this section, we conduct four simulations to investigate the performance of the

proposed method through the comparison between the existing competing proce-

dures in terms of bias, efficiency, predictive accuracy and selection accuracy. For

feasibility to compare, the settings, as well as evaluation criteria, of the first two

simulations are taken from the related literatures. Model (1.3) in Section 1 is new

and the corresponding Simulations 3 and 4 are conducted under the cases with

high-dimensional and ultrahigh-dimensional covariates, respectively. We adapt M-

CP selector to select important variables. Tuning parameter λn is determined by

using BIC and EBIC principles for high dimension and ultrahigh-dimensional cases

respectively.

Simulation 1. The setting is the same as Alquier and Biau (2013) to consider the

single-index models with pn = 10 or 50 and the sample size n = 50 or 100.

For each model, a training set of size n is generated to fit the model and the

mean squared prediction error (MSPE) is evaluated on a separate validation set

of the same size. We compare the results of proposed method with the Fouri-

er estimator f̂Fourier in Alquier and Biau (2013), the estimation f̂HHI in Härdle

et al. (1993), the LASSO estimator f̂LASSO and the standard kernel estimate f̂NW

(Nadaraya, 1964; Watson, 1964).
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The median, mean and standard deviation (SD) of MSPE based on 200 repe-

titions are shown in Table 1, which suggests that the proposed method has much

less predictive error than all the competing procedures. Compared with the LAS-

SO estimator, this result is natural since LASSO estimator does not enjoy vari-

able selection oracle property. In addition, the MSPEs of the propose estimators

f̂j, j = 1, 2, 3 with the smoothing parameter qn = 4, 5, 6 respectively are close,

suggesting that the proposed one step estimation is not sensitive to the initial

estimators.

Simulation 2. The setting is the same as Case 1 in Zhu et al. (2013), considering

the multi-index models Y = f1(X
′β1)+f2(X

′β2)ε. The simulation is repeated 1000

times with sample size n = 600.

We compare the proposed method with Zhu et al. (2013). Table 2 summarizes

the bias, the standard deviation (SD), the root of mean squared error (RMSE)

of the estimates for non-zero elements of β1 and β2. To see the performance of

estimators for both parameters and functions, we also calculate the average squared

errors defined as ASEj = n−1
n∑

i=1

(
f̂j(X

′
iβ̂j) − f 0

j (X
′
iβ

0
j)
)2
, j = 1, 2. From Table

2, we can see that the proposed method is much more efficient and accurate than

the method in Zhu et al. (2013), which may be attributed to that the proposed

method could select important variables and estimate parameters and functions

simultaneously whilst the estimating equation method in Zhu et al. (2013) only
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considers the parameter estimation.

Simulation 3. The data are generated from the multiple-index stochastic frontier

model (1.3), where the covariates X = (X1, . . . , X15)
′ are generated from an AR(1)

model with X1 ∼ N(0, 1) and Cov(Xj1 , Xj2) = 0.4|j1−j2| for j1, j2 = 1, . . . , 15

and then are trimmed into the range [−1, 1]. The coefficient is taken as β1 =

β3 = (1/
√
3, 1/

√
3, 1/

√
3, 0, . . . , 0)′ and β2 = (0, 0, 0, 1/

√
3, 1/

√
3, 1/

√
3, 0, . . . , 0)′

so that there are three important covariates in each functional components. The

functions are taken as f1(x) = exp(x/2)+2x2, f2(x) = ((x−1)2+1)/4, f3(x) =

((x+ 1)2 + 1)/4. The simulation is repeated 1000 times with sample size n = 600.

The simulation results are summarized in Tables 3 and 4 and Figure 1. Table

3 shows the results of variable selection including the number of selected variables,

true positive rate (TPR) and false positive rate (FPR). The numbers of selected

variables are closed to the true values, the TPR close to 1 and the FPR close

to 0. These suggest that the proposed method can not only select important

variables but also rule out unimportant variables with high probability. Table 4

gives the estimators of the parameters using the proposed method and the oracle

method, which is based on the model with only the important three covariates.

The results in Table 4 reveal the proposed estimators are approximately unbiased,

and their estimated standard errors (ESE) agree well with the sample standard

deviations (SD). Moreover, the proposed method produces coverage percentages of
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the 95% confidence intervals close to the nominal level. It is evident as well that

the proposed procedure performs comparably well with the oracle estimator.

Figure 1 (a) displays the estimated frontier function by the proposed method.

As we have known, neglecting the noise, the frontier function f1(x
′β1) is the max-

imum attainable output with input x. To see that, we further generated a vali-

dation data set with sample size 600 from the same model, which is displayed by

star point in Figure 1 (a). This plot shows that the statistical noise encompassing

in the nonparametric world does not affect the estimation.

To further evaluate the performance of nonparametric function estimators and

compare the prediction effect of the propsed method with the competing gradient

boosting approach, for each repetition of 1000 replications, we applied the fitted

model to predict a newly generated data set. Figure 1 (b) and (d) display the s-

catter plot of the true values of Yi against the fitted values of Ŷi = f̂1(X
′
iβ̂1)+ ûi of

the proposed method and the gradient boosting approach respectively, and Figure

1 (c) and (f) display the scatter plot of the true simulated ei against its predic-

tor êi = Yi − Ŷi of the proposed method and the gradient boosting approach

respectively, where ûi = σ̂iλ̂i

1+λ̂2

i

[
ϕ(−ξ̂iλ̂i/σ̂i)

Φ(−ξ̂iλ̂i/σ̂i)
− ξ̂iλ̂i

σ̂i

]
, σ̂2

i = f̂ 2
2 (X

′
iβ̂2) + f̂ 2

3 (X
′
iβ̂3),

λ̂i = f̂2(X
′
iβ̂2)/f̂3(X

′
iβ̂3), ξ̂i = Yi − f̂1(X

′
iβ̂1), following Jondrow et al. (1982).

From Figure 1 (b)-(f), we can see that the predictors using proposed method work

pretty well globally, and are comparable to those of the gradient boosting approach.
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In fact, the MSPEs based on 1000 newly generated data sets are 1.450 for the pro-

posed method with deviation 0.286, and 3.104 for the gradient boosting approach

with deviation 0.420. This shows that the proposed method possesses both high

prediction ability and interpretability at the same time.

Simulation 4. The data are generated as the same as in Simulation 3 excep-

t that we take pn = 1000, β1 = β3 = (1/
√
3, 1/

√
3, 1/

√
3, 0, . . . , 0)′ and β2 =

(0, 0, 0, 1/
√
3, 1/

√
3, 1/

√
3, 0, . . . , 0)′ to reflect ultra-high dimensional case. The

simulation results are summarized in Tables 3-4 and Figure 1 of the Supplemen-

tary Materials. Moreover, we also obtain the MSPEs based on 1000 newly generated

data sets being 2.716 for the proposed method with deviation 0.350, and 5.842 for

the gradient boosting approach with deviation 0.832. Therefore, we can draw the

similar conclusions as those in Simulation 3.

5. An Application

The proposed approach is now applied to analyze the data set from one of China’s

largest liquor companies in western China. The purpose of the analysis is inves-

tigating whether and how various factors affect the sales of liquor. The data set

includes monthly sales (Yi) and covariates information for n = 1941 observations

in 31 provinces of China from 2011 to 2018. The covariates include four parts. (1)

The company’s product information: price, advertising investment, reimbursement
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expense of dealers, etc. (2) Brewing industry information: monthly liquor yields,

monthly beer yields, beer import and export, monthly trading amounts of 12 stocks

of the brewing industry and profit of the affiliated companies, etc. (3) Economic

information of related cities and towns: per capita GDP, per capita disposable in-

come, consumer price index, retail price index, total retail sales of consumer goods,

housing sales price, residential investment, permanent population, and so on. (4)

Geographic information: monthly average temperature, monthly average relative

humidity, geographical division, distance from the liquor producing area, etc. To-

gether with the lagged variables, we have 2051 covariates. Log transformation

is taken to response variable and all of covariates and response are standardized.

Then, the multiple-index stochastic frontier model (1.3) and the proposed approach

are applied to the data. The bandwidths are taken as those described in Remark

3. The selected important variables and their regression coefficients estimates are

reported in Figure 2, and the estimated functions are displayed in Figure 3.

Figure 2 (a) displays the 13 important variables for the frontier of the sales.

Combining with the monotone increasing function of f1(·) displayed in Figure 3 (a),

the following conclusions are drawn. Firstly, the negative coefficients of both per

capita GDP (per capita gdp) and its lagged variable (per capita gdp lastyear) in-

dicate that consumers in cities with lower level of economic development buy more

of the liquor product which is consistent with the fact that the considered product

Statistica Sinica: Newly accepted Paper 

(accepted author-version subject to English editing) 



here is cheap and thus is popular among low consumption groups. Secondly, the

positive coefficients of residents and its last year’s value show that the greater the

population, the larger demand for the liquor. Thirdly, the sales in the past months

(SL lag1,2,4,5,6,7) have positive coefficients, which means that the larger the sales

in the past, the larger the sales in the current month, which is consistent with

intuition. Fourthly, the price (PRICE lag5) is statistically significant, because this

is a low-end liquor product targeting at price-sensitive low consumption groups.

Fifthly, the coefficient of liquor production (taking 1 or 0, whether the city belongs

to a province with large liquor production) is positive, which shows that people in

province with large liquor production tend to purchase more liquor. Sixthly, the

variable xlj sichuan (taking 1 or 0, whether the city belongs to Sichuan Province

where the liquor is produced) has quite large coefficient, reflecting that the product

is selling well in the area around the place of origin.

The 18 important variables selected for inefficiency function are showed in Fig-

ure 2 (b). Combining with the monotone increasing function of f2(·) displayed in

Figure 3 (b), the following conclusions are drawn. Firstly, subsidy reimbursement

expenses and its lagged variables (btl & btl lag1, 2 & btl three m) have positive

coefficients, illustrating that they are relatively inefficient input. This is because

the company subsidizes dealers based on their purchases before specific day and

dealers usually buy much more products than they can sell before that day, causing
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large inventories. Secondly, per capita GDP (per capita gdp) and its lagged vari-

able (per capita gdp lastyear) have negative coefficients, and thus have contrary

influence on sales compared with Figure 2 (a). This may be attributed to that c-

ities with higher GDP usually are more efficient in commercial operation. Thirdly,

GDP from primary industry, mainly agriculture, in this year and last year (gdp1

& gdp1 lastyear) with positive regression coefficients have negative effect on sales,

which may be a result of the fact that areas with high agricultural output usually

have low commercial operation ability. Fourthly, positive coefficients of sales in the

past 1 to 5 months (SL lag1-5) show that there may be some waste of costs in areas

with large sales in the past. Fifthly, cumulative expenses on meetings and events

such as wine expo during the past half year and the past year (prov meeting six m

& prov meeting twelve m) have positive effect on sales, reflecting that effective

promotional activities can increase the market share of the product. Sixthly, the

variable xlj hunan (taking 1 or 0), meaning whether the city belongs to Hunan

Province which is the province with the second largest sales, has positive regres-

sion coefficient and thus has negative effect on sales. The dealers in this province

may have some cost waste that actually has been noticed by the company.

Figure 2 (c) shows that per capita GDP (per capita gdp) and per capita GDP

last year (per capita gdp lastyear) have influence on the variance function, which

is estimated as quadratic form (Figure 3 (c)). This may be attributed to that
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consumers in the areas with higher level of economic development have more choices

of alcohol, increasing the uncertainty.

6. Concluding Remarks

To investigate whether and how ultrahigh-dimensional factors effect various of

measurements, for example, mean, frontier, inefficiency and variance, we propose

an ultrahigh-dimensional structured multiple-index models. We estimate all of

functions and parameters based on penalized full likelihood-type function. The

proposed estimators are shown to be consistent, asymptotically normal and semi-

parametrically efficient. To solve the computational problem caused by the com-

bination of nonconvexity of the likelihood function, nonsmoothness of the penalty

term, and the large number of functions and ultrahigh-dimensional predictors, we

develop a technique of blending spline and kernel smoothing with a majorized coor-

dinate descendent algorithm, so that the computation is easily performed by using

the existing software. The simulation studies show that our method outperforms

the existing methods in selection and estimation for all of the cases considered,

whose settings are taken from existing literature if available. We apply the pro-

posed method to a real data from one of China’s largest liquor companies, and

finds that 31 out of 2051 factors, including price, previous sales, per capita GDP,

residents, are important for mean, stochastic frontier, inefficiency and variance of
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the liquor sales.

There are several potential extensions of the model and estimation strategy.

We use the sparsity as a regularization strategy to solve the problem of ultra-

high dimension. The sparse assumption implies the correlation among the high-

dimensional covariates should be restricted. To handle with the correlated high-

dimension covariates, other regularization strategy, for example, low rank or fu-

sion method can be considered. Whether the procedure and associated theoretical

results hold for these regularization strategies is unclear and warrants a further

investigation.
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mixed effects models.
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Table 1: Numerical results in Simulation 1, with n = 50 and n = 100

n = 50 pn = 10 f̂Fourier f̂HHI f̂LASSO f̂NW f̂ (1) f̂ (2) f̂ (3)

Model 1 median 0.061 0.063 0.046 0.293 0.014 0.017 0.014

mean 0.061 0.063 0.047 0.290 0.014 0.018 0.015

SD 0.016 0.014 0.011 0.063 0.004 0.004 0.004

Model 2 median 0.050 0.067 0.307 0.198 0.062 0.072 0.062

mean 0.069 0.080 0.338 0.208 0.066 0.078 0.067

SD 0.081 0.057 0.082 0.072 0.032 0.037 0.029

n = 100 pn = 10 f̂Fourier f̂HHI f̂LASSO f̂NW f̂ (1) f̂ (2) f̂ (3)

Model 1 median 0.053 0.051 0.042 0.227 0.005 0.005 0.005

mean 0.056 0.050 0.043 0.237 0.005 0.005 0.005

SD 0.011 0.006 0.004 0.044 0.001 0.001 0.001

Model 2 median 0.047 0.052 0.332 0.209 0.030 0.030 0.022

mean 0.049 0.053 0.337 0.218 0.031 0.032 0.023

SD 0.009 0.012 0.063 0.045 0.012 0.012 0.009

n = 50 pn = 50 f̂Fourier f̂HHI f̂LASSO f̂NW f̂ (1) f̂ (2) f̂ (3)

Model 1 median 0.057 1.156 0.060 0.507 0.037 0.039 0.039

mean 0.095 1.124 0.066 0.533 0.038 0.040 0.039

SD 0.143 0.241 0.026 0.081 0.011 0.011 0.011

Model 2 median 0.150 0.502 0.795 0.308 0.114 0.118 0.114

mean 0.151 0.539 0.776 0.326 0.127 0.125 0.127

SD 0.111 0.200 0.208 0.109 0.053 0.053 0.058

n = 100 pn = 50 f̂Fourier f̂HHI f̂LASSO f̂NW f̂ (1) f̂ (2) f̂ (3)

Model 1 median 0.053 0.092 0.050 0.519 0.007 0.006 0.008

mean 0.054 0.100 0.050 0.508 0.007 0.006 0.008

SD 0.007 0.026 0.006 0.026 0.002 0.002 0.002

Model 2 median 0.047 0.242 0.503 0.329 0.061 0.067 0.075

mean 0.070 0.267 0.502 0.339 0.064 0.073 0.081

SD 0.099 0.111 0.106 0.073 0.024 0.025 0.029

f̂Fourier, f̂HHI , f̂LASSO and f̂NW are the estimates suggested in Alquier and Biau

(2013); f̂ (j)s, j = 1, 2, 3 represent the proposed estimate with the smoothing parameter

qn = 4, 5, 6 respectively.
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Table 2: Numerical results in Simulation 2

Method β̂11% β̂12% β̂13% β̂14% β̂21% β̂22% β̂28% ASE1% ASE2%

(Z3.1) Bias −0.04 0.03 0.06 −0.06 7.68 0.07 −13.56 3.83 98.56

SD 0.92 1.19 0.99 1.14 17.14 19.84 11.89

RMSE 0.92 1.19 0.99 1.14 18.78 19.84 18.03

(Z3.2) Bias −0.04 0.04 0.05 −0.06 2.62 0.62 −4.16 3.83 43.64

SD 0.91 1.18 0.98 1.13 9.67 11.45 5.88

RMSE 0.91 1.18 0.98 1.13 10.02 11.47 7.20

(Z3.3) Bias −0.05 0.04 0.05 −0.06 2.48 0.59 −4.04 3.84 43.24

SD 0.91 1.18 0.98 1.13 9.35 11.19 5.30

RMSE 0.91 1.18 0.98 1.13 9.67 11.21 6.66

Prop. Bias 0.06 −0.02 −0.09 −0.48 3.80 −0.14 0.41 1.08 2.03

SD 0.71 1.03 1.04 1.13 11.47 4.97 5.63

RMSE 0.71 1.03 1.05 1.23 12.09 4.97 5.64

(Z3.1)-(Z3.3) represent the estimating equation methods (3.1)-(3.3) in Zhu et al.

(2013); RMSE represents the root-mean-square error; ASE represents the average

squared error, defined by ASEj = n−1
n∑

i=1

(
f̂j(X

′
iβ̂j)− f0

j (X
′
iβ

0
j )
)2

.
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Table 3: Selection results for regression coefficients in Simulation 3.

Parameter #S TPR FPR

β1 3.009(0.151) 0.998 0.001

β2 3.055(0.908) 0.942 0.019

β3 3.334(0.987) 0.980 0.033

TRUE 3 1 0

#S means to the number of selected variables; selected standard errors are summarized

in parentheses; TPR (True positive rate) means the rate that the important variables

are selected; FPR (False positive rate) means the rate that the unimportant variables

are selected.

Table 4: Estimate results for regression coefficients in Simulation 3.

Parameter β̂ β̂OR

Bias SD ESE CP Bias SD ESE CP

β1 0.000 0.009 0.010 0.953 −0.000 0.010 0.011 0.949

0.000 0.011 0.012 0.957 0.001 0.012 0.012 0.952

−0.001 0.010 0.010 0.948 −0.001 0.012 0.011 0.949

β2 −0.028 0.127 0.117 0.936 −0.008 0.109 0.100 0.927

−0.006 0.133 0.114 0.931 −0.026 0.118 0.107 0.939

−0.014 0.123 0.119 0.947 −0.002 0.109 0.099 0.933

β3 −0.015 0.110 0.114 0.945 −0.004 0.096 0.090 0.951

−0.012 0.124 0.122 0.932 −0.015 0.117 0.103 0.933

−0.011 0.107 0.098 0.941 −0.013 0.097 0.092 0.954

β̂ represents the proposed estimator; β̂OR represents the oracle estimator; SD

represents the sample standard deviation of the estimates; ESE represents the sample

mean of the estimated standard errors; CP represents the empirical 95% coverage

probability.
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Figure 1: Plots of the nonparametric estimates in Simulation 3: true against esti-

mated values. (a) shows the plot of true frontier and the fitted frontier function;

(b) and (d) show the scatter plot of the true values and the fitted values of the

response variable using the proposed method and the gradient boosting approach,

respectively; (c) and (e) show the scatter plot of the true values and fitted values

of the residual using the proposed method and the gradient boosting approach,

respectively.
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