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Abstract

Introduction: Accurate prediction of patient prognosis can be especially useful for the selection of best treatment protocols.
Machine Learning can serve this purpose by making predictions based upon generalizable clinical patterns embedded within
learning datasets. We designed a study to support the feature selection for the 2-year prognostic period and compared the
performance of several Machine Learning prediction algorithms for accurate 2-year prognosis estimation in advanced-stage high
grade serous ovarian cancer (HGSOC) patients.

Methods: The prognosis estimation was formulated as a binary classification problem. Dataset was split into training and test
cohorts with repeated random sampling until there was no significant difference (p = 0.20) between the two cohorts. A ten-fold
cross-validation was applied. Various state-of-the-art supervised classifiers were used. For feature selection, in addition to the
exhaustive search for the best combination of features, we used the-chi square test of independence and the MRMR method.

Results: Two hundred nine patients were identified. The model’s mean prediction accuracy reached 73%. We demonstrated
that Support-Vector-Machine and Ensemble Subspace Discriminant algorithms outperformed Logistic Regression in accuracy
indices. The probability of achieving a cancer-free state was maximised with a combination of primary cytoreduction, good
performance status and maximal surgical effort (AUC 0.63). Standard chemotherapy, performance status, tumour load and
residual disease were consistently predictive of the mid-term overall survival (AUC 0.63–0.66). The model recall and precision
were greater than 80%.

Conclusion: Machine Learning appears to be promising for accurate prognosis estimation. Appropriate feature selection is
required when building an HGSOC model for 2-year prognosis prediction. We provide evidence as to what combination of
prognosticators leads to the largest impact on the HGSOC 2-year prognosis.
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Introduction

Cancer of the fallopian tube, ovary or peritoneum ranks as the
seventh most common cancer in women and the eighth most
common cause of cancer death.1 It yet remains one of the most
difficult cancers to combat with most patients relapsing within
3 years of diagnosis.2 The majority (90%) of these cancers are
epithelial ovarian cancers (EOCs). High-grade serous ovarian
cancer (HGSOC) is the most prevalent form among EOCs and
is now recognised as a single entity. Indeed, of the women who
die of HGSOC, 93% present with advanced-stage (Interna-
tional Federation Obstetrics and Gynaecology FIGO stage-III
or IV) disease.3 Interestingly, HGSOC women who receive
surgical treatment have better long-term survival than those
who do not, despite being diagnosed at an advanced stage.4

The cornerstones of advanced-stage HGSOC treatment are
surgical cytoreduction and platinum-based backbone che-
motherapy, either as treatment following surgery (adjuvant) or
as treatment both before and after surgery (neoadjuvant,
NACT).5 Optimal cytoreduction and initial tumour load are
the most significant modifiable markers of survival.6,7 Fol-
lowing recent publications of landmark randomised studies
demonstrating non-inferiority of NACT over primary surgery,
it appears that NACT achieves higher complete cytoreduction
(R0) rates, but the survival rates are comparable.6,8 Even when
EOC patients undergo complete surgical cytoreduction and
systemic chemotherapy, the risk for tumour relapse remains
high.

Accurate estimation of EOC patient prognosis can be
particularly useful for enhancing diagnostic precision and
selection of best treatment protocols. Due to the EOC het-
erogeneity, a one-size-fits-all FIGO staging system approach
is not justified. As the number of clinical and biological
parameters under investigation increases daily, it becomes
critical to assemble a large and heterogeneous amount of data
and construct appropriate models.9 Prognosis estimation can
be difficult with conventional statistics because patient
characteristics show multidimensional and non-linear rela-
tionship. To develop personalised treatment plans, computa-
tional approaches, such as Machine Learning (ML) models
can serve the purpose by making predictions using multiple
processing layers, including complex structures or multiple
non-linear transformations. The evolution of ML technology
in the field of gynaecological oncology has been described.10

We previously demonstrated the feasibility of using a ML
approach, the k-NN model, which is very much reflective of
‘previous clinical experience’ for accurate prediction of
complete cytoreduction in advanced-stage HGSOC surgery.11

We aimed to develop a data-driven framework by using
modern ML to predict the survival outcomes of HGSOC

patients from many clinical patient-specific features. We
hypothesised that the prognosis prediction of HGSOC patients
is multifactorial and could be accurately predicted by using
ML algorithms. We performed a comparative analysis to
examine the mid-term contribution of selected clinical vari-
ables to define their relative survival impact. When developing
a cancer prognosis prediction model, model performance is
not the sole goal but also extracting the most relevant features
to better understand the data and the underlying process.
Feature selection is a key step in many classification prob-
lems.12 The study was designed to support the feature se-
lection for different prognostic periods, using the
prospectively registered data of HGSOC women, who re-
ceived surgical treatment. The primary outcome was factor
analysis using the Maximum Relevance Maximum Redun-
dancy (MRMR) method for different prognostic periods.13

The secondary outcome was the performance comparison
amongst several ML prediction methods, based on a set of
performance metrics,14 including the accuracy, the sensitivity
and specificity of the model, the precision and recall, the f-
score and the g-score (or Fowlkes–Mallows index15) for
different prognostic periods. These results were directly
compared to conventional Logistic Regression.

Study Design

The study was structured in two basic workflows, which
ultimately integrated into one: the clinical and the engineering
workflows. The clinical workflow consisted of the patient
input, the patient–clinician interaction and the hospital site
part. Most processes in the clinical workflow were related to
the data-acquisition, data cleaning, data pre-processing and
statistical compilation before feeding them in the engineering
workflow. The engineering workflow included all processes
related to the data processing feature extraction and ML-based
feature selection and prognosis prediction. The workflow,
outlined here and described in detail below, is illustrated in the
conceptual diagram in Figure 1.

Prospective registered data in the hospital-wide Patient
Pathway Manager (PPM) database from 209 HGSOC women
undergoing cytoreductive surgery at St James’s University
Hospital, Leeds from January 2015 to December 2018 were
analysed. This database was developed internally for clinical
trials and integrated with an electronic patient record system.
Our hospital is a tertiary centre, recently accredited by the
European Society of Gynaecologic Oncology (ESGO) as a
centre of excellence for ovarian cancer surgery. Inclusion
criteria included women >18 years of age and FIGO stage
III–IV HGSOC. Excluded were women with non-serous and
non-epithelial histology, and those undergoing secondary
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cytoreductive surgeries for recurrent disease. The study was
conducted according to the guidelines of the Declaration of
Helsinki and approved by the Leeds Teaching Hospitals
Trust Institutional Review Board (MO20/133163/
18.06.20), and informed written consent was obtained.
All patients were discussed at the central gynaecological
oncology multidisciplinary team (MDT) meeting prior to
treatment. Contrast-enhanced Computed Tomography (CT)
of the thorax, abdomen and pelvis was performed within a
month prior to treatment initiation, interpreted and reported by
an MDT radiologist. Three pre-treatment imaging dissemi-
nation patterns were identified; intraperitoneal (Group 1),
intraperitoneal and lymphatic (Group 2) intraperitoneal and
haematogenous patterns (Group 3), respectively. This was
confirmed by final histology. Descriptive cohort statistics were
summarised by frequency and percentages for binary and
categorical variables, and by means and standard deviations
(SD) or medians (with lower or upper quartiles) for con-
tinuous variables (Table 1). Survival data were summarised
using the Kaplan–Meier method. A Cox proportional hazard
regression analysis was performed to identify prognostic
factors. Statistical tests were two-tailed with a significance
level set at P<.05. All analyses were performed using SPSS
26® package.

For the prognosis classification, 2 groups were defined
using patient survival data; patients who did not relapse or
survived beyond 2 years were labeled in the positive class, and
patients who relapsed or died before reaching that period were
considered in the negative class.

The study was restricted to the most common prognostic
variables and focused on predictive model comparisons
(Table 1). Blood biomarkers such as preoperative Hb and
Ca125 were not included as they appear more reliable to
predict surgical outcomes or simply predict malignancy in
women with adnexal masses.16,17 Equally, surveillance
modalities are not used to comprehensively evaluate the
prognosis of the HGSOC patients provided that the primary
objective of follow-up is to detect disease that if treated early
can extend survival. It is not to prolong time living with the
knowledge that cancer has relapsed without extending
survival.18 Performance variables included age, Eastern
Cooperative Oncology Group (ECOG) performance status
(PS), radiological intraperitoneal dissemination patterns
(IDP), surgical complexity score (SCS),19 residual disease
(RD), chemotherapy regimens, timing of surgery (primary
debulking surgery (PDS) or interval debulking surgery
(IDS)) and intra-operative disease score (DS), which is a
reflection of the tumor burden. Surgical outcomes included:
complete cytoreduction (R0), optimal cytoreduction (R1, 1–
10 mm) or inadequate cytoreduction (R2>10 mm).20 The
SCS was assigned based on the Aletti classification as low,
intermediate and high.19 The response to chemotherapy and
disease progression was defined according to RECIST
criteria.21 The DS was assigned as follows: pelvic disease,
lower abdominal, upper abdominal inclusive of miliary
disease, as women with miliary disease often have disease in
the upper abdomen,22,23 Progression-free survival (PFS)
was defined as the time from the date of diagnosis until

Figure 1. Workflow showing integration of ML algorithms to analyse comprehensive resource of clinical, radiological and surgical data for
the development of prognostic ovarian cancer models. The framework for building the predictive ML model comprised 5 steps.
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relapse or death. Overall survival (OS) was defined as the
time from the date of diagnosis until death.

The dataset was split into training and test cohorts (80%:
20% ratio) with repeated random sampling, until there was no
significant difference (P = .20) between the two cohorts, with
respect to all variables. Subjects with missing values were
omitted. Following the pre-processing stage, all quantitative
variables were normalised. Categorical variables were trans-
formed into binary dummy variables. Next, different subsets
of data were labelled to solve the prognosis prediction
problem. For a given time T, subjects were included or dis-
carded from the subset. To test the HGSOC prognosis, 3
values of the prognosis period T were chosen, namely, one,
two and three years. The 5-year prediction was not considered
owing to data immaturity. Following preliminary testing, due
to unbalanced classes, it was not possible to train a good model
for the 1-year and 3-year prognosis prediction. Therefore, we
focused on the 2-year prediction analysis. Only subjects with
fully curated data were eligible for the 2-year prognosis
prediction analysis. The prognosis prediction was then for-
mulated as a binary classification problem. The correction for

class imbalance was applied only on our efforts with the 3-year
and 5-year prognosis prediction. It was applied before training
the models. A repeated random selection of the prevailing
class was performed to ensure statistical validity (100 itera-
tions). For the results presented here, we did not apply any
such correction on the dataset.

To address data collinearity, feature selection techniques
measured the importance of a feature or a set of features
according to a given measure. For feature selection, in ad-
dition to the exhaustive search for the best combination of
features, we used the chi square test of independence24 and
the MRMR method,13 as typically recommended for cate-
gorical data. The outcome of these methods is a feature
ranking that shows the weighted importance of the indi-
vidual features. Both methods were applied for the 2-year
prognosis. The resulting rankings were used to select the set
of features that led to the highest prediction accuracy. The
validity of the feature selection was verified by comparing it
to the exhaustive search and regularization methods. Sub-
sequently, the optimal number of important features that
would result in the highest prediction accuracy was iden-
tified. For this step, a forward selection was followed by
starting with the feature of highest importance and subse-
quently adding features, until we reached the maximum
classification accuracy.

The prognosis estimation problem was formulated as a
binary classification problem. Various state-of-the-art su-
pervised classifiers, suitable for the type and size of the
dataset, were trained and tested, including Support-Vector-
Machines (SVMs),25 K-Nearest Neighbors (K-NNs),26

Ensemble Classifiers,27 Naı̈ve Bayes,28 and Logistic Re-
gression.29 The SVMs are highly accurate even for non-linear
problems. Different kernels SVMs are flexible to identify
the optimum hyperplane, to best separate the data into their
categories, albeit slow for large datasets. The K-Nearest
Neighbors are robust classifiers for low-dimensionality
classification problems. Ensemble methods are frequently
used for categorical data due to their inherent properties.
They combine several different decision trees to produce
better predictive performance compared to single decision
trees. Bagging is a combination of decision trees to optimise
the variance. We also experimented with probabilistic
techniques for classification, such as Naı̈ve Bayes and
Logistic Regression. Naı̈ve Bayes algorithms are built on
the concept of conditional probability; these classifiers are
computationally efficient, thus scalable to the size of the
dataset and the feature set cardinality. Similarly, Logistic
Regression, conventionally used in the clinical setting,
gives off fast results, but has the difficulty of capturing non-
linear relationships in the dataset. Due to the limitations of
the dataset with respect to its size and the classes’ cardi-
nality, ‘data-hungry’ deep-learning based classification
methods were not included in this comparison. We con-
sidered Logistic Regression as our benchmark method. To
promote reproducibility, the code and the model parameters

Table 1. Descriptive Statistics of the Advanced-HGSOC Cohort.

Variables (n = 209) Frequency Percent (%)

Age, year, mean, SD (range) 64.6±10.6
(41–85)

Surgical Complexity Score (SCS)
Low (1–3) 124 59.3
Moderate (4–7) 76 36.4
High (8–12) 9 4.3

Radiological dissemination patterns
Intraperitoneal 134 64.1
Intraperitoneal and lymphatic 59 28.2
Intraperitoneal and haematogenous 16 7.7
Operation time, mean, SD (min-max) 177±77

(45–485)
Disease score

Pelvis (1) 10 4.8
Lower abdomen (2) 187 89.5
Upper abdomen (3) 12 5.7

Timing of surgery
PDS 46 20
IDS 163 80

Residual disease
R0 160 76.5
R1 39 18.7
R2 10 4.8

Chemotherapy
Carboplatin+Taxol 134 64.1
Carboplatin+Taxol+Bevascusimab 22 10.5
Carbo+Taxol+PARP inhibitor 25 12.0
Carboplatin only 22 10.5
No 6 2.9
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promotes were made publicly available: https://github.com/
AngKats/OCPrognosis

Results

A total of 209 HGSOC patients were identified from the
hospital-wide database PPM. The cohort characteristics are
summarised in Table 1. The median age and median SCS were
66 (41–85) years and 3 + 1 (1–8), respectively. Of these
patients, 46/209 (20%) underwent PDS and 163/209 (80%)
underwent IDS, respectively. Complete (R0) and optimal (R1)
cytoreduction was achieved in 160/209 (76.5%) and 39/209
(18.7%) patients, while 10/209 (4.8%) had RD>1 cm (R2).
Cox regression analysis for PFS and OS identified significant
prognostic variables (Table 2). The median PFS and OS for the
entire cohort were 19 months (95% CI 16.4–21.6) and
38 months (95% CI 34.4–41.6), respectively. In the complete
cytoreduction group, the median PFS and OS were 20 months
(95% CI 16.8–23.3) and 41 months (95% CI 30.5–51.5),
respectively. In the incomplete cytoreduction group, the
median PFS and OS were 18 months (95% CI 14.3–21.7) and
28 months (95% CI 18.3–37.6), respectively, (Figure 2A and
B). Women with intraperitoneal-only pattern of their disease

distribution had the highest rate of complete cytoreduction
(77.9%), resulting in markedly improved OS compared to the
other subgroups (P: .05) (Figure 2C and D). 172/209 patients
with fully curated data were eligible for the 2-year prognosis
prediction analysis. 104/172 (60%) and 55/172 (32%) patients
had disease recurrence or died of disease within 2 years,
respectively.

We estimated the relative importance of the features using
the chi-square test and the MRMR approaches. The results are
shown in Figure 3. For the 2-year survival prediction, the
mean predictive accuracy of the ML models reached 73%. As
expected, the feature importance between PFS and OS out-
comes was not identical. For the 2-year OS prognosis pre-
diction, the two best performance results were achieved with
the SVM –Quadratic Kernel classifier using the top-3 features
(standard chemotherapy, low DS and increased SCS) selected
by the MRMR algorithm Area-Under-Curve (AUC = .66) and
the k-NN (5 Neighbors) with the top-4 features (standard
chemotherapy, no RD, PS and low DS selected by the chi-
square test [AUC = .63]) (Figure 4). The combination of good
PS, PDS and increased SCS best predicted 2-year PFS with the
accuracy reaching 63.5% (AUC = .62) by the SVM – Qua-
dratic Kernel – classifier.

Table 2. Cox-Regression with Progression-Free Survival and Overall Survival as Outcomes.

Progression-free survival (PFS) Overall survival (OS)

Variables
Univariate analysis Multivariate analysis Univariate analysis Multivariate analysis

HR P 95% CI HR P 95% CI HR P 95% CI HR P 95% CI

Age .997 .742 .983–1.01 .995 .661 .971–1.019 1.004 .672 .98–1.03 .983 .284 .951–1.015
ECOG performance status
(PS) (0)

1.000 .133 1.000 .19 1.000 .002 1.000 .131

ECOG performance status
(PS) (1)

0.5 .085 .23–1.1 .46 .08 .2–1.1 .289 .006 .12–.69 .39 .061 .14–1.04

ECOG performance status
(PS) (2)

.52 .115 .24–1.15 .55 .17 .23–1.3 .367 .027 .15–.91 .53 .23 .2–1.49

ECOG performance status
(PS) (3)

.75 0.5 .32–1.73 .71 .44 .3–1.7 .716 .47 .29–1.71 .71 0.5 .26–1.94

IP dissemination (1) 1.000 .158 1.000 .188 1.000 .009 1.000 .007
IP dissemination (2) 0.1 .630 .357–1.1 .734 .336 .392–1.378 0.5 .048 .25–.99 .556 .127 .262–1.182
IP dissemination (3) .49 .811 .44–1.48 1.035 .919 .534–2.01 .957 .904 .46–1.95 1.226 .603 .570–2.637
PDS 1.43 .084 .95–2.14 1.610 .039 1.026–2.529 1.648 .087 .93-2.92 2.008 .039 1.035–3.894
Residual disease (RD) .671 .034 .464–.97 .656 .046 .433–.992 .422 <.001 .27-.66 .437 .001 .264–.724
Surgical complexity score
(SCS)-low

1.000 .494 1.000 .852 1.000 .763 1.000 .825

Surgical complexity score
(SCS)-intermediate

.98 .958 .452–2.12 1.102 .865 .359–3.387 1.173 1.173 .36–3.75 .596 .535 .116–3.061

Surgical complexity score
(SCS)-high

.795 .574 .358–1.76 .926 .957 .377–2.43 .99 .99 .29–3.27 1.226 .572 1.67–2.685

Operation time 1.000 .921 .998–1.02 1.001 .686 .997–1.004 .708 .999 .997–1.01 .999 .522 .994–1.02
Carboplatin and Taxol 25,04 .03 2.93–213.7 34.56 .002 3.83–311.65 18.09 .008 2.11–155.1 43.77 .001 4.45–430.19
Disease score (DS) (1) 1.000 .947 1.000 .810 1.000 .592 1.000 .516
Disease score (DS) (2) .941 .914 .31–2.83 1.292 .676 .389–4.28 .483 .308 .12–1.95 .717 .671 .154–3.332
Disease score (DS) (3) .883 .884 .38-2.01 .984 .972 .41–2.364 .671 .442 .24–1.85 .552 .287 .185–1.649
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To fully evaluate the effectiveness of the model, we con-
sidered other performance metrics that could also capture the
balance of the data classes, irrespective of the prediction accuracy.
Therefore, we calculated and reported in Table 3, an extended set
of metrics such as precision (positive predictive value), recall
(sensitivity), f-score, g-score and the AUC classes’ values.30

Discussion

Women with HGSOC have a heterogeneous response to treat-
ment and prognosis. Establishing the prognosis of HGSOC
women remains a critical part of their evaluation. Machine
Learning appears a promising approach for accurate prognosis
estimation.31We demonstrated the feasibility and validity of using
feature selection algorithms to ensure the highest performance of
the 2-year prognosis ML prediction model. We employed the chi-
square test of independence24 and the MRMR method13 for
categorical data in a stepwise fashion, and verified the validity of
the feature selection by comparing it to the exhaustive search
method. After applying feature ranking with the described
methods, we followed a feed-forward selection approach,32

considering the ranking of the features for each different ML
model. Forward selection is an iterative method in which, at each
iteration, we continue to add the feature which best improves our
model, until an addition of a new variable does not improve the
performance of the model. The feed-forward selection helped

define the set of lower number of features that provided the
highest accuracy of prediction.

Classification problems typically involve a high time
complexity and low performance when many features are used
but will have a low time complexity and high performance for
a minimum size and the most effective features.33 HGSOC
prognosis is a complex matter and failure to address this, can
lead to a less meaningful interpretation of outcome data.
Nevertheless, our effort allowed us to minimise redundancy
and identify those discriminant features with the maximal
relevance to the 2-year prediction estimation.

We adopted a binary classification approach to exploit the
use of predictive ML models. Several different ML models
were explored and tested. The SVM and k-NN algorithms
outperformed the Logistic Regression model with respect to
prediction accuracy indices. The maximum accuracy reached
73%. The predictive accuracy of the 2-year PFS was lower
than the 2-year OS for all models due to cardinality of the
classes. Firstly, the data classes were imbalanced, as indicated
for the 2-year prognostic periods. Unbalanced classes lead to
insufficient training for the less populated class, thus biasing
the prediction towards the more populated class. This was
reflected in the difference between the AUC values for the 2
classes, but also in the wide variation amongst other classi-
fication performance metrics, against the accuracy, as reported
in Table 3. This justified the use of AUC as a performance

Figure 2. Cohort survival outcomes. Kaplan–Meier curves demonstrating (A) PFS and (B) OS analysed by complete and incomplete
cytoreductive outcomes. (C) Stratification of residual disease according to intraperitoneal dissemination pattern. (D) Kaplan–Meier curves
demonstrating OS according to IDP. Haematogenous metastases negatively affect OS, potentially highlighting difficulty to achieve complete
cytoreduction (p:0.000).
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indicator. The accuracy may not be often adequate for assessing
model performance, as it tends to give advantage to models that
always output the class with the highest frequency. Secondly,
AUC is independent of cut-off point choices, and hence keeps
the choice of clinical applications open beyond the analysis.
Another explanation for the results comes from the inherent
nature of the predictive parameters. Progression-free-survival is
by nature heavily quantised, as time to relapse is potentially
associated with the pre-scheduled screening. On the other hand,
by definition, OS has a higher temporal resolution. For those
cases where the data classes were unbalanced, the tested
methods performed similarly to Logistic Regression.

The mean prediction accuracy figures indicate the potential
in building eventually a combinational classifier that could
potentially outperform conventional Logistic Regression,
which is commonly used in the clinical setting. A maximum
accuracy at 73% is satisfactory, but closer to 80% would have
been preferable. The size of the dataset and the inherent
characteristics of the categorical data are the main reasons for

these results. Another reason may be the high correlation
amongst the variables that may render the model partly unstable
due to collinearity (which further exists when the variables are
increased. To address this, we examined the correlation amongst
the variables and produced a correlation heatmap of the features
included in the models. A rather weak correlation amongst
features was demonstrated (Figure 5). Only in the 2 cases where
we chose to include both categorical and the continuous vari-
able, for example, age and age category, did we observe high
correlation values. The low correlation indicates that we do not
need to apply feature selection to alleviate features for their
collinearity, but rather to identify the combination of features
that can provide a reliable prognosis prediction.

We acknowledge the complexity of the predicting vari-
ables; some were not ready-made and converted into cate-
gorical classifiers. Starting with simple classifiers and then
gradually proceeding with more complex classifiers, remains
one of the ML principles, which could potentially affect the
prediction accuracy of the model.33 Nonetheless, the ML

Figure 3. Feature ranking graphs for 2-year PFS: (A) Univariate feature ranking for classification using chi-square tests. (B) Multivariate
feature ranking using MRMR algorithm; feature ranking graphs for 2-year OS: (C) Univariate feature ranking for classification using chi-
square tests. (D) Multivariate feature ranking using MRMR algorithm.
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approach is proving versatile. Both recall and precision,
often inversely related, were greater than 80%. In this way,
many potential clinical applications could be captured by
this model, should this be used in a cancer diagnostic
system, where sensitivity and positive predictive value are
greatly appreciated.

Enshaei et al. compared a variety of algorithms and
classifiers with conventional Logistic Regression statistical
approaches to demonstrate the role of ML in providing
prognostic and predictive data for ovarian cancer patients.34

In a cohort of 668 patients, he demonstrated that an artificial
neural network algorithm could predict OS with high ac-
curacy (93%) and an AUC of .74, which outperformed Cox
regression. Novel ‘radiomic’ descriptors of ovarian tumour
phenotype and prognosis have been recently validated in a
reliable and reproducible fashion.35,36 The value of ML and
conventional systems to provide critical diagnostic and
prognostic prediction for patients with EOC before initial
intervention based on blood biomarkers has been also
demonstrated.37 Cohort expansion to a larger sample size is
expected to improve predictability.

In addition to performance comparison, we identified the
features with the highest discriminant power (top-4) for the 2-
year HGSOC prognosis prediction. Although the list for
features was slightly different between chi-square test and the
MRMR algorithm, some features were common for both
methods. Equally, we compared our feature selection methods
with regularization methods, such as Lasso,38 and Elastic
Net,39 as shown in Figure 6. As expected, these methods
resulted in a different ranking of the features, as they are
usually applied on higher dimensional feature space. Never-
theless, the result confirmed a common subset of features
including RD, ECOG PS and DS that appeared on the top-5
from all tested methods, thus confirming the validity of the
employed feature selection methods (Figure 6).

The probability of achieving a cancer-free state (PFS)
was maximised through a combination of primary surgery,
good ECOG status, IDP and maximal surgical effort. In the
era of precision medicine, the use of either NACT or PDS
with no definite mechanisms to predict outcomes can lead to
significant variations in practice. Previously, patient strat-
ification was proposed according to patterns of tumour

Figure 4. Example of a confusion matrix showing a) prediction accuracy for 2-year OS by use of (A) the SVM classifier with Quadratic Kernel
(AUC: .66) (B) the k-NN (AUC: .63). The example shows that the prediction is more accurate for the negative class compared to the
positive class.
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spread (reflecting the biologic behaviour of HGSOC), re-
sponse to chemotherapy and prognosis to make a more
rational decision between PDS and NACT-IDS.40 Our data
may provide the potential for more tailored approaches. The
value of RD following PDS remains less diluted than
following IDS and does carry the anticipated survival ef-
fect.41 Both NACT and PDS have the same efficacy when
used at their maximal possibilities, but their toxicity profile
is different.42 Nevertheless, most patients with advanced-
stage HGSOC should benefit from primary surgery.

For the 2-year OS period, only PS retained its survival
benefit, in addition to standard chemotherapy, status of
complete cytoreduction and the tumor burden. Good per-
formance status remains pivotal and, efforts to optimise
baseline functional status and minimizing surgical com-
plications may improve discharge rates and post-operative
functional status.42 The extent of disease at surgery (DS), in
line with current literature, was more prognostic of OS than
PFS. Indeed, the finding of bulky and diffuse disease spread
may reflect high biological aggressiveness or long disease
existence, allowing for advanced growth.43 At a second
glance, this is all interesting, as the factors predicting re-
currence and death would not be separable, under the
proportional hazard’s assumption. We surmise that surgery
and good medical health confer a transient survival benefit,
but for overall prognosis, factors suggestive of the tumour
biological behaviour including response to standard che-
motherapy may be equally influential.

In our study, complete surgical cytoreduction remained
an independent determinant of survival, potentially on the
presumption of increased surgical effort.44 Where surgery
results in residual disease, the survival advantage from
surgery is lost (Figure 6). Whilst we acknowledge that such
results may be influenced by patient selection and che-
motherapy exposure, they are comparable to international
peers. In our cohort, the prolonged median overall survival
of up to 38 months was comparable with that reported in
the SCORPION trial45 and substantially better than the
27 months from the individual patient meta-analysis of the
EORTC and CHORUS trials.46 Complete surgical resec-
tion, to ‘reset the clock’, may partly overcome the negative
effect of tumour load, in line with a recent study.47 Standard

Table 3. Predictive Accuracy of the ML Models and Comparisons with Conventional Logistic Regression for the 2-Year PFS and OS.

OS 2-years
Model Accuracy AUC_P AUC_N Precision Recall F-score G-score
SVM – Quadratic Kernel 72.9% .66 .418 .7182 .9076 .8018 .8074
SVM – Cubic Kernel 68.2% .58 .41 .7252 .8719 .7917 .7951
Logistic Regression 66.5% .59 .413 .7209 .9169 .8071 .8130
Gaussian Naı̈ve Bayes 66.0% .63 .463 .6934 .9879 .8148 .8276
KNN – 5 neighbors 71.8% .63 .443 .7009 .8656 .7742 .7787
KNN – 10 neighbors 69.4% .62 .433 .7081 .8350 .7661 .7688
Ensemble – Bagged Trees 68.8% .60 .432 .7086 .8425 .7695 .7725
Ensemble – Subspace Discriminant 71.8% .61 .411 .7154 .9270 .8071 .8141
PFS 2-years
Model Accuracy AUC Precision Recall F-score G-score
SVM – Quadratic Kernel 65.50% .62 .469 .5160 .8893 .6530 .6774
SVM – Cubic Kernel 58.20% .52 .485 .4309 .7286 .5415 .5603
Logistic Regression 56.50% .58 .468 .5049 .8478 .6384 .6619
Gaussian Naı̈ve Bayes 58.80% .55 .49 .4356 .8373 .5731 .6039
KNN – 5 neighbors 57.60% .54 .452 .4574 .5834 .5127 .5165
KNN – 10 neighbors 56.18% .58 .446 .4643 .5947 .5214 .5254
Ensemble – Bagged Trees 55.30% .52 .494 .4180 .7497 .5367 .5598
Ensemble – Subspace Discriminant 59.40% .58 .475 .5112 .9096 .6546 .6819

Figure 5. Correlation heatmap of the features included in the ML
models demonstrating the correlation amongst the features using
a variation of Pearson’s R correlation coefficient. The colours in the
heatmap represent the correlation coefficients. A weak correlation
amongst features was demonstrated.
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chemotherapy does not reduce the eventual likelihood of
death from ovarian cancer per se. Despite the generally
accepted use of chemotherapy, delayed initiation of che-
motherapy is associated with adverse clinical outcomes. It
is advocated to start adjuvant chemotherapy within five to
six weeks following debulking surgery.48

Strength of this study was the feature selection, aka the
selection of the prediction variables, prior to building the
classifiers. Except for our exhaustive search for the best
combination of features, the literature is rich in various
methodologies, including forward selection and recursive
feature elimination.49 In that sense, we focused solely on
clinical pre-operative and intra-operative features, which was
perhaps more practical and easier to obtain than molecular,
genomic or radiomic features, thus the developed models are
expected to have more clinical applicability. We did not ad-
dress the value of surveillance modalities to detect recurrence
during follow-up as we religiously follow the international
guidelines. Another strength was the inclusion of initial dis-
ease distribution imaging data that proved more simplistic but
useful than potential integration of ‘radiomics’ data. In our
prognostic model, we included IDPs, which were pathologically
verified, to demonstrate the anatomical extent of disease. Such
preoperative imaging information is essential for prognostication
and can be used to predict surgical resectability. Baseline IDP can
be a prognostic factor, potentially addressing the aggressiveness
of the disease and the difficulty to achieve complete cytor-
eduction (Figure 2C and D). Classification of such patterns can
help counsel patients initially on their prognosis and identify
those who might benefit from intraperitoneal chemotherapy
to complement their treatment.50

This analysis comprised a homogenous fully curated co-
hort, which enabled a close collaboration with computer
engineers toward prognosis improvements using multifactor
analysis.51 The stimulating debate whether ML-based algo-
rithms are ‘smarter’ than human brains is largely irrelevant.
The algorithms are reproducible because ML retains the
strength of the structural model used for the prognosis pre-
diction, even when applied in other populations and reveal
different prediction features. Our effort represented a single
institution experience, albeit we acknowledge the different
practices worldwide, deriving from varying interpretations of
evidence. Standardisation of surgical practice and identifi-
cation of centres of excellence will potentially benefit patients
from a maximal effort approach at all possible levels.52

Conclusions

We investigated the prediction of survival in advanced-stage
HGSOC using clinical variables. We focused our analysis on
the comparison of several classification models, including
conventional regression analysis, under the same resampling
conditions. Appropriate feature selection is required when
building an HGSOC model for 2-year prognosis prediction by
ML. For HGSOC prognosis, one should consider not only the
patient’s disease burden but also their overall medical status
and ability to undergo extensive surgery, resulting in survival
benefits alongside with standard chemotherapy.
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