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Legacy waste from the decommissioned A-1 nuclear power plant in the Slovak Republic is scheduled for immobilisation 

within a tailored alkali borosilicate glass formulation, as part of ongoing site cleanup. The aqueous durability and characteri-

sation of a simulant glass wasteform for Chrompik III legacy waste, was investigated, including dissolution experiments up 

to 112 days (90°C, ASTM Type 1 water). The wasteform was an amorphous, light green glassy product, with no observed 

phase separation or crystalline inclusions. Aqueous leach testing revealed a suitably durable product over the timescale 

investigated, comparing positively to other simulant nuclear waste glasses and vitreous products tested under similar condi-

tions. Iron and titanium rich precipitates were observed to form at the surface of monolithic samples during leaching, with 

the formation of an alkali deficient alteration layer behind these at later ages. Overall this glass appears to perform well, and 
in line with expectations for this chemistry, although longer-term testing would be required to predict overall durability. This 

work will contribute to developing confidence in the disposability of vitrified Chrompik legacy wastes.
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1. Introduction

The safe conditioning and disposal of nuclear wastes 

is of paramount importance for hazard minimisation on 

nuclear licensed sites. Legacy materials, especially if aris-

ing from novel process or experimental reactors, can prove 

challenging to manage owing to their different chemistries, 
physical properties, or due to historical poor documenta-

tion. Certain waste materials arising from the A-1 nuclear 

power plant in the Slovak Republic fall into this category, 

with quantities of liquid / sludge wastes generated of an 

atypical chemistry arising from the now closed reactor of 

novel design.

The A-1 power plant was a KS-150 design gas-cooled 

(CO2), heavy water moderated reactor utilising natural 

uranium metallic fuel in a magnesium-beryllium cladding. 

The plant was built at Jaslovské Bohunice, Slovak Repub-

lic (formerly Czechoslovakia) with commercial operations 

commencing in 1972 [1]. The plant was closed in 1977 fol-

lowing an accident during a refuelling procedure in which 

fuel cladding was damaged, resulting in the contamination 

of several coolant facilities. The cost of the required repair 

and clean up, to enable recommissioning and reactor opera-

tion, was considered prohibitive [2, 3]. During commercial 
operation, and post-operation, some spent fuel assemblies 

(including damaged fuel) were stored in a mix of potassium 

chromate and dichromate aqueous solution (referred to as 

Chrompik), as a cooling medium for up to 20 years, prior to 

transfer of the fuel to Russia for processing. These subop-

timal fuel storage conditions resulted in the accumulation 

of legacy liquids and sludges that require conditioning to 

reduce associated hazards [4, 5].
The original Chrompik solution consisted of either 

1–3wt% potassium dichromate (K2Cr2O7) with 0.5wt% 
potassium fluoride (KF) or 1–3wt% potassium chromate 
(K2CrO4), and was used for short-term cooling, with waste 

Chrompik solution having an activity of ~1 GBq‧dm−3 for 

137Cs. These wastes, now owned by JAVYS (Jadrova a 

vyrad’ovacia spoločnost – Nuclear and Decommissioning 

Company), were vitrified at the VICHR plant (Vitrification 
facility of Chrompik) by 2001 [6]. A batch melting process 

is employed, with both the fine sludge and liquids treated 
together, and the vitrified product cast into steel contain-

ers [4]. The glass frit utilised is a typical sodium-lithium 
borosilicate, but with significant TiO2 and Fe2O3 additions 

[7]. This facility was licenced for solutions that contain up 

to 100 GBq‧L−1, and thus, legacy wastes containing higher 

activities (> 100 GBq‧L−1) have been awaiting conditioning 

[5]. The more challenging waste is designated as Chrompik 

III – having been used for long-term fuel storage, recording 

100 GBq‧dm−3 137Cs. The Cr content of this material is much 

lower than the vitrified wastes, as the result of chromium 
reduction, forming insoluble Cr(III) compounds, which are 

one component of the sludge located at the bottom of the 

storage tank. Due to the increased activity and different 
chemistry of this material, modification of the existing vit-
rification rig has be required before processing of Chrompik 
III waste [6], with Chrompik III processing on the vitrifica-

tion rig since 2017.

This study focusses on the characteristics and durability 

of a simulated Chrompik III glass wasteform, as part of a 

research programme undertaken by Vuje to determine the 
optimum processing conditions for the remaining Chrompik 

III liquors. This simulant Chrompik III vitrified product was 
characterised, and subjected to standardised leaching tests 
up to 112 days, both as a crushed powder and as monolithic 

glass blocks to determine the formation of any alteration 

layers which may affect longer term aqueous durability.

2. Experimental Methodology

2.1 Materials

Surrogate inactive Chrompik III glass materials were 

produced by Vuje using a mixture of glass frit, additives 
(aluminosilicates to reduce Cs volatility during melt), and 

Chrompik surrogate solution (composition in Table 1) in 
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a ratio of 40:17:43 [8]. The material was mixed and then 
dried in an oven at 100°C for 24 h. The mix was melted at 
a maximum temperature of 1,020°C, stopping and holding 

at various temperature points as described in Fig. 1. The 
molten material was cast in metal moulds, and annealed at 

550°C for 4 hours to yield a green Chrompik III simulant 
wasteform; the glass transition temperature was previously 

determined to be 490–515°C [8].

2.2 Analysis Methods

X-ray diffraction data were collected using a Bruker D2 
PHASER diffractometer (Cu Kα, 1.5418 Å), with a Ni foil 
to filter Kβ radiation. Diffraction patterns were collected 
between 5−70° 2θ, with a step size of 0.02° and a dwell of 1 
s per step, with powder samples crushed in an agate mortar 

prior to analysis. 

Scanning electron microscopy (SEM) and elemental 

mapping utilised a Hitachi TM3030 scanning electron mi-
croscope (backscattered electron mode, 15 kV accelerating 

voltage), coupled with a Bruker Quantax 70 Energy Disper-
sive X-ray Spectrophotometer (EDX). Monolith samples 
were either mounted on carbon tabs for surface analysis as-is, 

or mounted in epoxy resin and ground using progressively 

finer SiC grit paper, and ultimately polished to a 1 µm finish 
using diamond suspension, then carbon coated for analysis.

The durability assessment for Chrompik III was under-

taken on both crushed (using both the ASTM C1285 PCT-B 

(Product Consistency Test) methodology, and a non-stan-

dard modified PCT-B methodology utilising a lower sur-
face area and larger particle size), and monolithic materials 

(using ASTM C1220 MCC-1 (Materials Characterization 

Center) methodology). For the ASTM PCT-B protocol, ma-

terial was crushed and sieved to between 75–150 µm, then 
washed with isopropyl alcohol (IPA) to remove fines. The 
required quantity of sieved and washed material was add-

ed to cleaned PFA (PerFluoroAlkoxy) vessels with ASTM 
Type 1 water to achieve a surface area to volume (SA/V) 

ratio of 2,000 m−1. The SA/V was calculated assuming geo-

metric surface area (density acquired via helium pycnom-

etry using a Micrometrics Accupyc II). Static leaching was 

undertaken at 90 ± 3°C for up to 112 days, with triplicate 
sampling at regular intervals. As part of a multi-partner test-

ing programme under the EC THERAMIN project (Euro-

pean Commission – THErmal treatment for RAdioactive 

waste MINimisation and hazard reduction), comparing this 

to other thermally treated wasteforms [9], a second PCT-B 

test was performed using a size fraction of 125–250 µm, at 
a SA/V of 10 m−1 (conditions which required less material 

for testing, and may be more suitable for heterogeneous ma-

terials). In this test, leaching was undertaken at 90 ± 2°C for 

Chrompik III solution K (7.6 g‧L−1), HCO3
− (7.3 g‧L−1), CO3

2− (1.8 g‧L−1), Cr (0.06 g‧L−1)

Glass frit SiO2 (57wt%), B2O3 (14.8wt%), Na2O (8.5wt%), TiO2 (5.5wt%), Al2O3 (5.3wt%), 
Fe2O3 (4.5wt%), Li2O (3.5wt%)

Additives Aluminosilicate / geopolymer material

Table 1. Surrogate material composition [8]

Fig. 1. Temperature profile for Chrompik III glass simulant laboratory 
fabrication.
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up to 28 days, with duplicate sampling at regular intervals.

Monolith Chrompik III specimens were tested accord-

ing to ASTM C1220 (MCC-1), with monoliths sectioned 

using a Buhler Isomet Slow Saw and a diamond wafering 

blade, then ground down with progressively finer SiC grit 
paper, and polished to a 1 µm finish using diamond suspen-

sion. Monolith samples were placed in PFA baskets inside 
cleaned PFA vessels, filled with 40 mL ASTM type 1 wa-

ter, and subject to static leaching at 90 ± 3°C for up to 112 
days, with duplicate sampling at regular intervals. The tar-

get SA/V ratio was ~10 m−1, but varied slightly depending 

on the actual monolith dimensions.

At each sampling time point, vessels were removed 

from the oven and allowed to cool to room temperature. 

Aliquots of leaching solution were extracted from each ves-

sel and filtered using 0.45 µm cellulose acetate filters. The 
pH was measured using a 3-point calibrated pH probe, then 
each aliquot was acidified with ultrapure nitric acid (VWR, 
ultrapure NORMATOM, 67–69% HNO3), and analysed by 

inductively coupled plasma – optical emission spectrom-

etry (ICP-OES, Thermo Fisher iCAP Duo 6300). The nor-
malised mass loss was calculated using elemental data ob-

tained via X-Ray fluorescence analysis (XRF), relative to 
the calculated SA/V, as calculated via equation 1:

 NLi = 
Ci (sample)

(ƒi)∙(
SA

V
)

   (1)

Where NLi is the normalised elemental mass loss (gwaste 

form/m2); Ci (sample) is the concentration of element i in the 

solution (gi/m
3); ƒi is the mass fraction of the element i in 

the unleached waste form (g/gglass); and SA/V is the surface 

area divided by the leachate volume (m2/m3).

3. Results

3.1 Glass Characterisation

The Chrompik III glass used in this study comprised 

several cast bars, green in colour with the presence of some 

fine bubbles throughout (Fig. 2). X-ray diffraction (Fig. 
3) and SEM/EDX of the glass (Fig. 4) did not reveal any 
significant crystalline component or phase separation, just 
a singular amorphous product with diffuse scattering evi-
dent in XRD data between 15° ≤ 2θ ≤ 40° and a uniform  
elemental distribution at the micro scale in SEM/EDX.

The elemental composition of the Chrompik III glass 

was determined by XRF spectroscopy to be a sodium-po-

tassium aluminoborosilicate glass, with notable concentra-

tions of Fe2O3 (3.08wt%), Li2O (2.40wt%), PbO (1.35wt%)  
and TiO2 (3.32wt%), amongst some other minor elements 
(Table 2). This composition is comparable to established 

borosilicate radioactive waste glass analogues SON68 
and MW25, though with some key differences. The 
Chrompik III glass contains a lower proportion of B2O3 

and more Al2O3 compared to SON68 and MW25 (French 
and UK nuclear waste glasses, respectively), along with 

an overall low level < 1wt% of divalent alkaline earth el-
ements, and a higher proportion of monovalent alkaline  

Fig. 3. X-ray diffraction pattern of Chrompik III simulant glass monolith.
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elements (Li2O + Na2O + K2O = 21.34wt%) [10, 11]. An 
additional difference in this glass is the presence of PbO, 
at 1.35wt%.

3.2 Durability Assessment

The aqueous durability of the simulant Chrompik glass 

was assessed by three separate leaching methods to build a 

comprehensive assessment of its overall durability. Two of 

these methods (MCC-1 and PCT-B) were conducted up to 

112 days and according to ASTM standards, while the mod-

ified PCT (THERAMIN variant) test was only conducted 
up to 28 days. The latter was run in-parallel to other experi-

ments performed on simulant nuclear waste glass formula-

tions, enabling direct comparison to other vitreous products.

3.2.1 Powdered Material Durability (PCT-B) 

PCT-B dissolution testing resulted in a rapid increase in 

the leaching medium pH, reaching pH 10.4 ± 0.0 within the 
first day, before rising to pH 11.4 ± 0.0 after 28 days, and 
remaining at pH > 11 for the duration of the test, as shown 

Oxide (wt%)

Al2O3 7.20

B2O3 7.71

BaO 0.26

CaO 0.30

Cr2O3 < 0.10

Fe2O3 3.08

K2O 7.78

Li2O 2.40

MgO 0.10

Mn3O4 < 0.10

Oxide (wt%)

Na2O 11.16

P2O5 < 0.10

PbO 1.35

SiO2 52.06

SrO < 0.10

TiO2 3.32

V2O5 < 0.10

ZnO 0.20

ZrO2 < 0.10

Table 2. XRF composition for Chrompik III simulant glass  
(error ± 5% of stated value)

Fig. 4. Scanning electron micrograph, and elemental maps and EDX spectra of the bulk Chrompik III simulant glass monolith.
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in Fig. 5. The relatively high surface area of the PCT-B test-
ing (2,000 m−1) contributed to this increased pH.

The normalised elemental mass loss (NLi) can be split 

into two periods for the Chrompik III glass: 1) 1–21 days, 

and 2) 21–112 days, as shown in Fig. 6. The initial period 
of up to 21 days was characterised by a rapid release of ele-

ments into solution, with B and Li being the most readily 

released. B is a useful indicator of glass dissolution, as it is 

not considered to form precipitates or be retained within an 

alteration layer [10, 12], therefore, B can be used as a proxy 

for overall glass dissolution. The NLSi and NLAl at 21 days 

of 0.21 ± 0.01 and 0.20 ± 0.01 g∙m−2 respectively, were low-

er than NLB of 1.65 ± 0.03 g∙m−2. This implies incongruent 

dissolution and the existence of an aluminosilicate altera-

tion layer, which retains the Si and Al close at the glass / so-

lution interface. Even lower elemental release was observed 

for NLFe, NLPb and NLTi (0.09 ± 0.01 g∙m−2, 0.110 ± 0.002 

g∙m−2, and 0.07 ± 0.02 g∙m−2 respectively), which is likely 

due to their relatively low aqueous solubility at this pH [13]. 
After 112 days, NLB and NLLi reached 2.59 ± 0.01 and 2.00 

Fig. 5. pH values from Chompik III glass dissolution (PCT, MCC-1 and  
10 m−1) between durations of (a) 1–28 days and (b) 1–112 days. Errors 

represent the standard deviation of replicate measurements.

Fig. 6. Normalised elemental mass losses (NLi) for (a) B and Li and, 

(b) Si, Al, Ti, Fe and Pb from PCT-B testing up to 112 days.
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± 0.02 g∙m−2 respectively, while the normalised mass loss 

for Si and Al (along with Fe, Pb and Ti) remained the same 
(or slightly lower than) than that recorded at 21 days (NLSi 

0.211 ± 0.001 and NLAl 0.180 ± 0.001 g∙m−2). These two dif-

ferent regions are clearly demonstrated by the variation in 

normalised elemental release rates (NRi) for B and Si (Ta-

ble 3), which changed between days 1–21 and days 21–112. 
The NRSi became effectively zero from (0.0047 ± 0.0011) to 
(−0.0001 ± 0.0000) g∙m−2‧d−1, with an associated reduction 

in B release from (0.0648 ± 0.0050) to (0.0084 ± 0.0009) 
g∙m−2‧d−1. This rate turnover is indicative of solution satura-

tion and the formation of a semi-protective alteration layer, 

which mitigates the transfer of ions to and from the pristine 

glass surface – further evidenced by a reduction in NRLi, 

which follows the same trend as B (Table 3).
Durability comparisons with other glass wasteforms are 

challenging due to the varied glass compositions and leach-

ing conditions investigated in the literature. UK simulant 

MW-blend HLW glasses tested under similar conditions typ-

ically released NLB = 1−8 g∙m−2 after 28 days and up to NLB = 

10 g∙m−2 after 110 days, with NLSi < 1 g∙m−2 for the duration, 

though with large variation depending on glass formulation 

and waste loading [14]. Simulant full Magnox (non-blended) 
glasses released up to NLB = 20 g∙m−2 after 28 days, with 

NLB = 45 g∙m−2 after 110 days (though the high magnesium 

content is considered to enhance dissolution, and variations 

in Li2O and waste content may result in reduced extent of 
dissolution) [14]. Recently, Barlow et al. compiled literature 

from a range of sources where UK and French nuclear waste 
glass simulants were tested under similar conditions (90°C, 

ASTM Type 1 water), finding NLB release ranging from ~1 

g∙m−2 to ~10–20 g∙m−2 after reaching pseudo-equilibrium 

[15]. All of the normalised mass loss data available in the 

literature place Chrompik III elemental release firmly within 
the lower end of the expected range of a nuclear waste glass-

es that are considered acceptable for geological disposal.

3.2.2 Monolith Material Durability (MCC-1) 

Dissolution of monolith material using the MCC-1 
methodology typically results in very different leaching rates 
compared to powdered PCT-B samples, due to the much 

lower surface area and more dilute leaching medium which 

keeps the solution under saturated with regards to silica for 

a longer period of time. As with the PCT-B testing, Li and 

B are most readily released into solution, indicative of con-

tinued glass dissolution up to 112 days. As shown in Fig. 5, 
the release of alkalis into solution resulted in the increase of 

solution pH to pH 9. In Fig. 7, Si and Al continued to be re-

leased uniformly during the dissolution test, albeit at a lower 

rate than B and Li, up to 84 days. Unlike the PCT-B testing, 
the B release rate do not reduce to a slow residual rate (Ta-

ble 3), indicating the leaching solution remains sufficiently 
dilute enough to maintain dissolution though at a reduced 

rate (NRB 0.2067 ± 0.0244 g∙m−2‧d−1 for 2–21 days, com-

pared to NRB 0.0744 ± 0.0105 g∙m−2‧d−1 for 21–112 days). 

Si elemental concentration (along with Al) does remain  

(g·m−2·d−1) PCT MCC-1 Modified PCT (10 m−1)

1–21 days 2–21 days 1–21 days

B 0.0648 ± 0.0050 0.2067 ± 0.0244 0.2629 ± 0.0222

Li 0.0493 ± 0.0050 0.4031 ± 0.0454 0.2589 ± 0.0256

Si 0.0047 ± 0.0011 0.0986 ± 0.0127 0.1498 ± 0.0079
21–112 days 21–112 days

B 0.0084 ± 0.0009 0.0744 ± 0.0105
Li 0.0065 ± 0.0010 0.0759 ± 0.0065

Si −0.0001 ± 0.0000 0.0475 ± 0.0061

Table 3. Elemental release rate data for the PCT, MCC-1 and modified PCT (10 m−1) dissolution 
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similar between 84 and 112 days, however PHREEQC 
modelling of the solution at 112 days suggests it remains 

under saturated in silica, therefore further sampling time 

points would be required to determine if release continues.

Release of the other less soluble elements was sub-

stantially lower, with Pb, Fe, and Ti all recording very low 
release into solution throughout the duration of the test, 

reaching a normalised mass loss at 112 days of NLPb 0.188 

± 0.001 g∙m−2, NLFe 0.06 ± 0.06 g∙m−2, and NLTi 0.02 ± 0.02 

g∙m−2. This was expected due to their low solubility within 

this pH range [13]. Simulant UK HLW glasses undergo-

ing MCC-1 testing under similar conditions have shown 

NLB release of between ~17 to 100 g∙m−2 after 42 days, but 
was very dependent on chemical composition, with one 

formulation substantially reducing the dissolution rate after 

21 days, with the other continuing dissolution (albeit at a 

slightly slower rate) [14]. Chrompik III elemental release 
values appear at the lower end of this comparative range.

3.2.3 Modified PCT (THERAMIN Dissolution Test)

This modified-PCT dissolution test was part of a wid-

er suite of characterisation applied under the THERAMIN 

project, assessing the durability of thermally treated wastes 
across Europe. This utilised a PCT-B methodology, but with 

a larger particle size, potentially more appropriate for hetero-

geneous materials, and a SA/V similar to the MCC-1 method. 

These data were only acquired up to 28 days (Fig. 8), 
however, to aid comparison data from other vitrified waste-

forms tested under identical conditions are included for 

comparison (Fig. 9). These other wasteforms include the 
International Simple Glass (ISG, a simplified borosilicate 
glass [16, 17]), In Container Vitrified material (ICV, vitrified  
soil, glass frit, and simulant intermediate level waste [18]), 

and plasma vitrified simulant Plutonium Contaminated  

Fig. 7. Normalised elemental mass losses (NLi) for Al, B, Li and Si from 

MCC-1 testing up to 112 days.

Fig. 8. Chrompik III normalised elemental mass losses (NLi) for (a) B, K, 

Li and Na and, (b) Al, Fe, Pb, Si and Ti at 10 m−1 for 28 days.
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Material (PCM, a low alkali aluminosilicate glass [19]).

In Fig. 8, the elemental release from the Chrompik III 
glass using this testing method was similar to that from the 

MCC-1 method, albeit with lower overall normalised el-

emental mass loss. B release occurred at a rate of 0.2629 

± 0.0222 g∙m−2‧d−1, similar to that of K, Li and Na (Fig. 8), 
although K release deviated after 14 days. These elemental 
releases resulted in a pH of around pH 9.0 for the dura-

tion of the experiment (Fig. 5(a)). The elemental release of 
Al and Si largely followed a continuous increasing trend 

(NRSi 0.1498 ± 0.0079 g∙m−2‧d−1), with the obvious excep-

tion of 28-day test data. Whether this is indicative of a rate 

turnover, would require further time points to ascertain. In 

agreement with the MCC-1 test (Fig. 7), the NLFe, NLPb, 

and NLTi were extremely low throughout the test duration, 

with 28 day values at 0.06 ± 0.01, 0.110 ± 0.002, and 0.038 
± 0.004 g∙m−2, respectively.

A direct comparison between the durability characteris-

tics of the Chrompik III glass and other vitreous wasteform 

simulants is obtained by comparison between the elemen-

tal release values in Fig. 8 and Fig. 9. The elemental re-

lease was observed to vary greatly depending on the glass  

Fig. 9. Comparison of normalised elemental mass losses (NLi) at 10 m−1 for simulant wasteforms (a) ISG, (b) ICV, (c) PCM with (d) pH, up to 28 days.
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formulation, as is to be expected. For example, the B, Na 
and Si normalised mass loss from Chrompik III were all 

substantially lower than those for ISG after 28 days at; NLB 

5.4 ± 0.2 g∙m−2, NLNa 7.6 ± 0.2 g∙m−2, NLSi 3.1 ± 0.1 g∙m−2 

(Chrompik III) compared to NLB 28.2 ± 0.1 g∙m−2, NLNa 

43.1 ± 0.3 g∙m−2, and NLSi 17.41 ± 0.01 g∙m−2 for ISG. It 

should be noted ISG is not designed as a final wasteform, 
rather as a simplified borosilicate nuclear glass for study of 
dissolution mechanisms. 

The release of elements from Chrompik III was similar 

to that observed for the ICV and PCM samples, particu-

larly for Si release (both ICV and PCM have higher NLNa,  

though a broadly similar pH (Fig. 9(d)) for much of the 
test period). The ISG, ICV and PCM samples exhibited a 

lower Al release than their corresponding Si release, un-

like Chrompik III, where the elemental release for Si and Al 

were in tandem. This may be due to the lack of appreciable 

Ca or Mg within the Chrompik III (unlike ISG, ICV and 

PCM), which would otherwise encourage the formation of 

aluminium-rich siliceous alteration layers, reducing the re-

lease of Al into solution [14, 20].
The normalised elemental mass losses for this modified-

PCT test were somewhat lower than those from the MCC-1 

test, despite similar nominal surface area to volume ratio 

(10 m−1 SA/V, assuming a geometric surface area), although 

the same trends in elemental release are followed. The rea-

son for these differences in the absolute values is likely due 
to differences in the geometric surface area estimation, and 
changes in the SA/V ratio during the dissolution test.

3.3 Post Dissolution Characterisation

At each sampling time point, powders (PCT-B) and 

monolithic samples (MCC-1) were removed from solution, 

providing the opportunity for post-dissolution characteri-

sation of the altered glasses. X-ray diffraction was under-
taken on both types of materials, as shown in Figs. 10−11. 
All altered Chrompik III presented only diffuse scattering 
between 15° ≤ 2θ ≤ 40°, characteristic of an amorphous  

material. In Figs. 10–11, there were no Bragg reflections 
indicative of the presence of significant crystalline altera-

tion products.

A more detailed analysis of any alteration character-

isti cs can be obtained via electron microscopy analysis 

of cross-sectioned monolithic samples. Electron micro-

graphs, and accompanying elemental X-ray maps shown 

in Fig. 12 revealed that surface alteration was present 
from 7 days onwards. At 7 days (Fig. 12(a)), only minor 

Fig. 10. X-ray diffraction patterns of Chrompik III simulant glass, post 
dissolution, up to 112 days PCT testing.
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Fig. 11. X-ray diffraction patterns of Chrompik III simulant glass 
monolith up to 112 days MCC-1 testing.
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surface alteration was visible, with all elements uniformly 

distributed within the sample. A thin alteration band (up 

to 1 µm) may be observed between the pristine glass (light 
grey, left hand side) and the epoxy resin (dark grey, right 

hand side). After 84 days leaching (Fig. 12(b)), there was 

evidence of surface precipitates on the outer surface of the 

altered glass, along with a disc-shaped feature. This feature 

may be the edge of a bubble formed within the glass, or a  

region which has undergone preferential dissolution, being 

deficient in Si, Al, Na and K (though still retaining Fe, Ti 

Fig. 12. Scanning electron micrographs and elemental maps of Chrompik III simulant glass after MCC-1 dissolution testing at 
(a) 7 days, (b) 84 days and, (c) 112 days.
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Fig. 13. (a) Scanning electron micrograph of Chrompik III simulant glass after MCC-1 dissolution testing at 84 days, with elemental line scan data in 
(b) and (c). The scan area is noted by the arrow in (a).
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and Ca), which can be observed by the relevant elemental 

maps in Fig. 12(b). The precipitates forming at the glass face 
are clearly enriched in Fe and Ti, without appearing to be as-

sociated with any other elements – clearly demonstrated by 

elemental line scan data in Fig. 13(b), (c). These may be 
iron and titanium oxides/oxy-hydroxides that have precipi-

tated after glass dissolution, which has been noted in some 

basaltic glass and nuclear glass dissolutions [21, 22]. These 

elements have a very low aqueous solubility and were only 

found at low concentrations in the leachate despite contin-

ued glass dissolution evidenced by boron release (Fig. 7). 
By 112 days leaching (Fig. 12(c)) a thick alteration lay-

er, 30 µm thick, had formed at the glass surface, along with 
Fe/Ti precipitates. This alteration layer appears deficient in 
Na, but remained relatively rich in Si, Al, Fe and Ti. This 
correlates well with the dissolution data, where Si and Al 

release was slower (though still increasing) than B and Li, 

leaving an alteration layer rich in Si and Al (note, however, 

B and Li are unable to be detected via conventional desktop 

SEM-EDX analysis). The continued presence of enriched 
Fe/Ti precipitates was also consistent with their very low 
level of detection within the bulk dissolution liquid.

In Fig. 14, photographs of the monoliths after removal 
from the dissolution medium reveal a progressively dete-

riorating glass surface (with day 84 an obvious exception), 
becoming opaque or tarnished as more glass is dissolved. 

This is indicative of the formation of an alteration layer. Un-

polished SEM-EDX analysis of the surfaces at 1, 28, and 
84 days shows clear evidence of precipitates forming at the 
glass surface. Grooves visible from 1 day are artefacts from 

grinding/polishing surfaces prior to leaching. The precipi-

tates were observed to form by 7 days as minor clusters, 

and were widespread by 84 days, and appeared clearly en-

riched in Fe and Ti, in agreement with the SEM-EDX of the 
mounted and polished monolith samples in cross section 

(Fig. 12).

Fig. 14. Photographs of Chrompik III simulant glass monoliths after MCC-1 leach testing up to 112 days and 
SEM-EDX at the monolith surface (unpolished) at (a) 1 day, (b) 28 days and, (c) 84 days.
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4. Conclusions

The characteristics and aqueous durability of a 

Chrompik III glass was assessed via three different leach-

ing methodologies, two with powdered material, one us-

ing monolithic samples. Dissolution results in the release 
of more mobile elements (B, Na, K, Li) into solution, along 

with a slower release of Si and Al, with only minor release 

of less soluble elements (Fe, Ti, Pb). These dissolution 
mechanisms were broadly similar to those expected for an 

alkali borosilicate glass wasteform, and have been shown 

to compare favourably to several other vitreous simulant 

wasteforms and simulant nuclear glasses. The dissolution 

of this glass results in the formation of an interfacial alter-

tion layer by 112 days of leaching, with the presence of 

fine Fe/Ti rich precipitates appearing from at least 28 days 
onwards, progressively coating the surface of the glass. No 

large crystallites, or presence of any other crystalline prod-

ucts (zeolites, etc.) were detected. Overall the conventional 
dissolution mechanisms observed in this study should bring 

confidence in the durability of this simulant glass waste-

form, however with the understanding that longer term 

durability assessments are required to understand the full 

long-term performance of this material.
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