
This is a repository copy of Behavior and design of cold-formed steel bolted connections 
subjected to combined actions.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/181963/

Version: Accepted Version

Article:

Mojtabaei, S.M. orcid.org/0000-0002-4876-4857, Becque, J. and Hajirasouliha, I. 
orcid.org/0000-0003-2597-8200 (2021) Behavior and design of cold-formed steel bolted 
connections subjected to combined actions. Journal of Structural Engineering, 147 (4). 
04021013. ISSN 0733-9445 

https://doi.org/10.1061/(asce)st.1943-541x.0002966

This material may be downloaded for personal use only. Any other use requires prior 
permission of the American Society of Civil Engineers. This material may be found at 
https://doi.org./10.1061/(ASCE)ST.1943-541X.0002966.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



1 

 

Behavior and Design of Cold-Formed Steel Bolted Connections 

Subjected to Combined Actions 

Seyed Mohammad Mojtabaei1, Jurgen Becque2, Iman Hajirasouliha3  

1Ph.D. Researcher, Dept. of Civil and Structural Engineering, Univ. of Sheffield, Sheffield S1 3JD, UK 

(corresponding author). ORCID: https://orcid.org/0000-0002-4876-4857. Email: smmojtabaei1@sheffield.ac.uk 
2Lecturer, Dept. of Engineering, Univ. of Cambridge, Cambridge CB2 1PZ, UK. Email: 

jurgen.becque@eng.cam.ac.uk 
3Senior Lecturer, Dept. of Civil and Structural Engineering, Univ. of Sheffield, Sheffield S1 3JD, UK. ORCID: 

https://orcid.org/0000-0003 -2597-8200. Email: i.hajirasouliha@sheffield.ac.uk  

Abstract 

Cold-formed steel (CFS) moment connections are often formed by bolting the webs of the connecting elements 

to a stiffened gusset plate, and local buckling of the web adjacent to the connection typically governs their 

capacity. This paper aims to study this failure mode in case the connection is subject to combined axial 

compression, shear and bending moment. In a  first step, the case of pure compressive loading was investigated. 

Validated GMNIA Finite Element (FE) models were used to investigate the effects of different design variables, 

including the cross-sectional geometry and thickness, the bolt group configuration and the bolt group length. The 

results were then used to develop design equations for the compressive capacity of CFS bolted connections. In a 

next step, the FE models were used to assess the capacity of CFS bolted connections subject to combined bending 

and shear, and combined axial compression, bending and shear. Suitable interaction equations were proposed 

and reliability analyses were performed within the framework of both the Eurocode and the AISI standards. It was 

concluded that a linear equation accurately captures the interaction between bending moment and axial force, 

while the effects of a shear force smaller than half of the shear capacity on the bending moment capacity can be 

neglected.  

Keywords: cold-formed steel (CFS); bolted connection; Finite Element (FE) modelling; bolt group length; 

reliability; interaction equations 

1 Introduction 

Over the past decades few materials have seen as dramatic an expansion in their range of application as cold-

formed steel (CFS). Originally almost exclusively confined to secondary members (such as purlins, side rails and 
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cladding) in industrial buildings, CFS nowadays is a prominent building material, owing to the recognition of its 

multitude of advantages. An example of this development is the emergence of residential and office buildings 

with up to seven storeys constructed entirely out of CFS, including the load-bearing stud walls, floor systems and 

strap or K-bracings. In this case, the primary incentive for choosing CFS, apart from it being cost-competitive, is 

its unrivalled construction speed, driven by off-site fabrication which enables a panelized or even modular 

approach. CFS structural members characteristically exhibit high strength-to-weight ratios, which originate from 

using slightly higher steel grades (e.g. 450 MPa) for the initial flat plate, combined with the added benefit of work-

hardening during cold-rolling, as well as from the slender make-up of the cross-section which results in 

advantageous cross-sectional properties despite the increased susceptibility to local and/or distortional buckling. 

When also accounting for their recyclability without loss of quality and their improved durability (due to their 

galvanized coating) CFS members can boast important sustainability credentials, an important factor in today’s 

world and one which is only expected to increase in importance.  

Over the past decades CFS has also conquered an increasingly important market share in the construction of 

portal frames. Portal frames are the pre-eminent structural system when large open spaces are required, for 

instance for sports and event centres, industrial halls, indoor markets and warehouses. Also in this area has CFS 

construction undergone a staggering increase in physical scale. Where early applications mainly involved short 

span (e.g. 5-7 m) frames composed of single lipped channels, several innovative (and often proprietary) CFS 

systems can nowadays provide span lengths of up to 50-60 m, where the rafters often comprise CFS trusses. In 

the intermediate span range columns and rafters composed of back-to-back lipped channels are very popular and 

they form the main focus of this paper (Fig. 1). Lipped channel sections with depths of up to 500 mm and a 

thickness of 4 mm are available in the UK. While span lengths of up to 25 m are theoretically within reach, they 

are most often limited to about 15 m, as there is still a great deal of unease among manufacturers with respect 

to the portal frame connections, both in terms of their rotational stiffness and their capacity, as insufficient 

knowledge is available. The eaves and apex connections in CFS portal frames are fundamentally different from 

the rigid connections typically encountered in hot-rolled frames. The CFS community is quite averse to welding, 

in part because the galvanizing produces heavily toxic fumes when heated, but also because of the technical 

difficulties in welding thin-walled elements (distortions, burn-through, etc.). A much preferred, and at the same 

time quick and convenient way of assembling CFS portal frames on site therefore consists of bolting the columns 
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and rafters to stiffened gusset plates (‘brackets’) through their webs (Fig. 1) (Lim and Nethercot, 2002). However, 

this arrangement requires all actions in the elements (axial force, shear and bending) to be transferred into the 

gusset plate by the web. As a result, localized web buckling adjacent to the gusset plate has been observed to be 

the governing failure mode in experimental research by Kirk (1986), Chung and Lau (1999), and Lim and Nethercot 

(2003), as well as in full-scale portal frame tests by Dubina et al. (2009). A comprehensive study of the 

phenomenon was carried out by Lim and Nethercot (2003, 2004), including four-point bending tests on apex 

connections, numerical studies and a proposed design equation. The design aspects of this failure mode were 

further explored by Lim et al. (2016), who attributed premature failure in the web to a combination of a major 

axis bending moment and a bimoment equal to the product of the reaction force with the distance from the web 

(where the reaction is introduced) to the shear centre of the individual channel. These topics were further 

investigated in a precursor to the current paper (Mojtabaei et al., 2020), based on parametric studies using an FE 

model which was first validated against the experiments by Lim and Nethercot (2003). The research pertained to 

CFS portal frame connections between back-to-back lipped channels under uniform bending and led to the 

following important conclusions: 

 In doubly-symmetric sections the reduction of the cross-sectional capacity at the connection is due to the 

localized introduction of the load causing a shear lag effect, rather than to the workings of a bi-moment. 

 The eccentricity between the web of an individual channel and its centroid is an important but previously 

overlooked parameter determining the connection capacity. Consequently, the equations proposed in (Lim 

and Nethercot, 2003) have limited scope. 

 The connection capacity converges exponentially to the full cross-sectional capacity when the length of the 

bolt group is increased, rather than logarithmically, as previously thought. 

New design equations were proposed for CFS connections transferring a uniform bending moment, taking account 

of the above conclusions. While this is a step in the right direction, it does not rectify the lack of design guidance 

for practical applications. Indeed: 

 Portal frame members are never subject to uniform bending. Instead, both the columns and the rafters 

typically carry a combination of bending, shear and axial load.  
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 Any proposed design equations accounting for combined loading subsequently need to be verified by a 

reliability analysis to ensure that, when combined with prescribed safety factors, they possess the right 

margin of safety. 

Both issues are addressed in this paper.  

Numerous previous studies have focused on the tensile behaviour of eccentric bolted CFS connections, with 

appropriate consideration of shear lag effects. Early work in this area was conducted by Munse and Chesson 

(1963) on bolted and riveted tension members, and further extended by Easterling and Gonzalez (1993), who 

investigated welded connections, and by Kulak and Wu (1997) on the topic of bolted angle connections. Orbison 

et al. (2002) experimentally investigated the influence of varying the connection eccentricity and the connection 

length on the tensile capacity. More recently, Teh et al. (2012, 2013a, 2013b) experimentally evaluated the 

accuracy of the equations specified by the North American (AISI, 2007) and Australian codes (AS/NZS 4600, 2005) 

to determine the net section tensile capacities of CFS angles bolted at one leg, flat steel sheets and channel 

sections, and subsequently proposed more accurate design equations. In another relevant study Bolandim et al. 

(2013) performed a reliability analysis on the results of a comprehensive experimental programme on CFS bolted 

connections and proposed a reduced safety factor compared to the one specified by the AISI rules. 

Despite this rather large body of research on the tensile capacity of eccentric CFS bolted connections, no studies 

could be found on their compressive capacity, where the additional complexity of local web buckling has to be 

accounted for. Addressing this gap in knowledge was therefore the first point of focus in the current study. The 

capacities of CFS bolted connections in pure compression and pure bending (obtained from previous research 

(Mojtabaei et al., 2020)) then formed the building blocks to study the capacity under combined actions. The 

influence of various parameters on the connection capacity (in particular the cross-sectional geometry and 

thickness, and the bolt group configuration and length) were investigated by means of detailed finite element 

studies, accounting for geometric and material non-linearity, imperfections, contact and non-linear bolt 

behaviour, after validating the model against previous experimental research. The main contribution of the study 

consists in presenting design interaction equations to predict the capacity of typical bolted CFS portal frame 

connections subject to combined bending and shear, and combined axial compression, bending and shear, 

validated by reliability analyses. No such equations are currently available. 
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It is reiterated that the scope of the investigation is limited to failure by cross-sectional instability of the connected 

member and that other possible failure modes pertaining to the bolts (e.g. bearing failure, shear failure of the 

bolts, block tear-out), the gusset plate (e.g. lateral-torsional buckling, local buckling) or the member (e.g. net 

section failure) are assumed to be non-governing by way of appropriate design.  

2 Finite element model  

Finite element (FE) modelling is a well-established tool in the analysis of CFS bolted connections (Lim and 

Nethercot, 2003, Lim and Nethercot, 2004, Bagheri Sabbagh et al., 2013, Bučmys et al., 2018, Mojtabaei et al., 

2018, Ye et al., 2018a, Ye et al., 2019, Mojtabaei et al., 2020, Ye et al., 2020, Phan et al., 2020) and good agreement 

between FE predictions and the experiment has previously been reported. In this study an FE model previously 

developed by the authors in (Mojtabaei et al., 2020) and validated against the experiments by Lim and Nethercot 

(2003) was utilized to simulate the behaviour of connections in compression, combined shear and bending, and 

combined shear, bending and axial compression. The software package ABAQUS (2014), alongside its Python 

scripting interface, was employed to develop the FE models, which accounted for geometric and material non-

linearity, as well as imperfections. The main features of the models are briefly summarized below. 

2.1 Geometry and boundary conditions 

The FE model of a typical CFS bolted connection is shown in Fig. 2 and consists of CFS back-to-back lipped 

channels connected to a gusset plate. A ‘hard’ surface-to-surface contact was defined between the channels and 

the gusset plate. Fully clamped (fixed) boundary conditions were applied to the end of the gusset plate. At the 

opposite end of the member the degrees of freedom of the nodes of the free end section were coupled to those 

of a reference point located at the centroid of the whole cross-section. In the case of a connection in pure 

compression all degrees of freedom of the reference point were restrained except for the axial (Y-) translation, 

which was increased in magnitude during the simulation (Fig. 2). In the case where the capacity of the connection 

against combined (major axis) bending and shear was investigated, an increasing horizontal Z-displacement was 

imposed at the reference point, while the X-displacements and the rotations about the minor principal axis and 

the longitudinal axis were prevented (Fig. 3a). Finally, in the most general case of a connection subject to bending, 

shear and compression, an axial compressive load was first applied to the reference point, followed by a second 



6 

 

analysis step with an imposed horizontal Z-displacement under constant axial load (Fig. 3b). The X-displacements 

and the rotations about the Y- and Z-axes of the reference point were again prevented.  

    In all loading cases the longitudinal web edges were prevented from moving out of their plane in order to 

prevent global instabilities of the CFS member (i.e. flexural, torsional or flexural-torsional buckling). The modelled 

length of the CFS member (exclusive of the connection zone) was taken as 6 times the web height h, following a 

sensitivity study in (Mojtabaei et al., 2020). This length is sufficient to allow shear lag effects at the connection to 

develop unimpeded. 

2.2 Element type and material properties  

A four-noded shell element with reduced integration (S4R) was used, which has three translational and three 

rotational degrees of freedom at each node. This element accounts for finite membrane strains and arbitrarily 

large rotations, and is therefore suitable for large-strain analyses and geometrically non-linear problems. It also 

accounts for transverse shear deformations, although these were not deemed to be important for the problem 

under consideration. This particular element was previously shown by various researchers to yield accurate 

predictions when modelling CFS thin-walled structural elements (e.g. (Becque and Rasmussen, 2009, Ye et al., 

2018b, Roy et al., 2019, Ye et al., 2018c)). 

   Following a mesh sensitivity analysis, an appropriate mesh size was identified to be of the order of 20×20 mm2. 

Further refinement of the mesh size had a negligible effect on the prediction of the connection capacity, while 

increasing computational time. 

    The stress-strain relationship of the material was modelled using a bi-linear diagram with an initial elastic 

modulus 𝐸=210 GPa, followed by a linear hardening range with a slope of 𝐸/100. This model was previously used 

by Haidarali and Nethercot (2011). The yield stress 𝑓𝑦 and the Poisson’s ratio   were taken as 313 MPa and 0.3, 

respectively (Mojtabaei et al., 2020).  

2.3 Modelling of the bolts 

The bolts were modelled as realistically as possible using ‘discrete fastener’ elements from the ABAQUS library 

(2014). These elements are a computationally cost-effective alternative to explicitly modelling the bolts using 

solid elements, especially in connections with a large number of bolts (Ye et al., 2020). Discrete fasteners make 

use of attachment lines between user-defined fastening points on selected faces of surfaces to create connectors. 
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A ‘radius of influence’ is assigned to each connector and the displacements and rotations of the nodes within this 

radius are coupled to the displacements and rotations of the fastening point in order to avoid excessive stress 

concentrations. A sensitivity study, varying this radius of influence between 5 mm and 30 mm, was carried out, 

which indicated that the results were relatively insensitive to this parameter. A value of 8 mm, equal to half the 

bolt shank diameter, as recommended in (Abaqus/CAE User's Manual, 2014) was adopted. Discrete fastener 

elements allow the actual inelastic bolt hole elongation behaviour to be incorporated into the model. In this study 

the bearing behaviour of the bolts was modelled using the equations proposed by Fisher (1964):   

( /25.4)
1

    
br

B ultR R e                                                                                                                                                                       (1) 

2.1ult uR d t F                                                                                                                                                                                        (2) 

where 𝛿𝑏𝑟 is the bearing deformation (in mm), 𝑅𝑢𝑙𝑡 is the ultimate bearing strength, 𝑡 is the web thickness, 𝑑 is 

the bolt diameter and 𝑅𝐵 is the bearing force. 𝐹𝑢 is the tensile strength of the web material, while 𝜇=5 and 𝜆=0.55, 

according to Uang et al. (2010). The bolt diameter was assumed to be 16 mm. It should be noted that bolt slippage 

caused by bolt hole clearance was ignored in this study. The bearing behaviour of the bolts against steel plates of 

different thickness is shown in Fig. 4.  

    It should also be mentioned that the modelled load-elongation behaviour of the bolts has a profound influence 

on the connection deformations, but a negligible effect on the connection capacity where it is governed by web 

buckling (Bučmys et al., 2018). Consequently, the choices of the above parameters were not critical for this 

research study. 

2.4 Imperfections 

The bolted connections in this study failed by cross-sectional instability adjacent to the first row of bolts, while 

global buckling of the CFS member was prevented. Therefore, only a localized imperfection was incorporated into 

the model, obtained by conducting an elastic buckling analysis in ABAQUS (2014) and using the scaled first 

eigenmode as the shape of the initial imperfection. For cross-sections with a thickness (𝑡) smaller than 3 mm, the 

local imperfection amplitude was taken as 0.34𝑡 and, where a distortional influence was noticeable, as 0.94𝑡. 

These values are based on the work by Schafer and Pekӧz (1998) and represent the 50% values of the cumulative 

distribution functions of experimentally measured imperfection data (which only included thicknesses below 3 
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mm). For cross-sections with a thickness (𝑡) larger than 3 mm, the imperfection magnitude was instead 

determined using the equation proposed by Walker (1975): 

0.2%0.3 0.3d s

cr

t t
 


                                                                                                                                                   (3) 

where 𝜎0.2% and 𝜎𝑐𝑟 are the 0.2% proof stress of the material and the elastic critical local/distortional buckling 

stress of the cross-section, respectively, and 𝜆𝑠 is the cross-sectional slenderness, given by:  

/
s y cr

f                                                                                                                                                                                              (4) 

The elastic buckling stress cr can be computed using software such as CUFSM (Li and Schafer, 2010), which is 

based on the Finite Strip Method. 

It should also be mentioned that the imperfection sensitivity of the failure mode under consideration (i.e. 

localized web buckling) was found in a previous study (Mojtabaei et al., 2020) to be very moderate. 

2.5 Validation 

    The FE model presented in the previous sections was validated against experimental results by Lim and 

Nethercot (2003), who subjected CFS bolted connections to a state of pure bending. The specimens were 

composed of back-to-back lipped channels and all connections failed by local buckling of the web. The complete 

details of this validation process are documented in (Mojtabaei et al., 2020). A summary of the results is provided 

in Table 1, where lb is the length of the bolt group, h is the depth of the cross-section, 𝑀𝑚𝑎𝑥𝑒𝑥𝑝
 is the experimentally 

determined moment capacity of the connection and 𝑀𝑚𝑎𝑥𝐹𝐸  is the corresponding capacity obtained from the FE 

models. It is seen that the predictive capability of the model can be judged as very effective, since the average 

ratio of the FE predicted capacity to the experimental result is 1.02, with a standard deviation of 0.018.  

3 Connections subject to pure compression 

3.1 Methodology 

The behaviour and capacity of a range of different CFS bolted connections subject to pure compressive loading 

were investigated using the developed FE models. The following parameters were varied in this study: (a) the 

cross-sectional dimensions, (b) the cross-section thickness, (c) the bolt group length, and (d) the bolt group 
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configuration. Conventional back-to-back lipped channel sections with five different sets of dimensions were 

considered, as shown in Fig. 5. They were selected to provide a wide range of eccentricities (𝑋), calculated from 

the centroid of a single channel to the web centreline (see Table 2). It was previously demonstrated that this 

parameter has a crucial influence on the severity of the shear lag effect in the connection (Mojtabaei et al., 2020). 

Four different wall thicknesses 𝑡=1, 2, 4 and 6 mm were used for the channels, to offer a range of different web 

slenderness values 𝜆𝑤 (𝜆𝑤 = ℎ/𝑡, where ℎ is the web height), as listed in Table 2. Three rectangular bolt array 

configurations (2x2, 3x3 and 4x4 bolts) with 11 different lengths 𝑙𝑏 were considered. The length 𝑙𝑏 was defined as 

the distance between the outer bolt rows (Fig. 6) and values of  𝑙𝑏 ℎ⁄  ranging from 0.5 to 3.0 in intervals of 0.25 

were studied. The height of the bolt group was defined by the constant ratio ℎ𝑏 ℎ⁄ = 0.8 (Fig. 6) for all 

connections.  

Since a large number of connection models were needed to consider all combinations of the selected design 

variables (660 in total), the ABAQUS Python scripting interface (Abaqus/CAE User's Manual, 2014), which is an 

extension of the Python object-oriented programming language, was used.  

3.2 Results   

Cross-sectional instability originating in the web was observed to be the governing failure mode in all FE 

models. Fig. 7 shows a typical connection at failure. 

The compressive capacity of the CFS member at the connection was compared to the full cross-sectional 

capacity of the member (𝑃𝑢) for each configuration. In order to determine the latter, additional FE models were 

constructed to simulate stub column tests. These models were similar in features to the models previously 

introduced in Section 2, in particular with respect to the element type and size, the material model and the 

imperfections. Overall buckling was again prevented by restraining the out-of-plane displacements of the web 

edges. However, the bolted connection was omitted from the model, with the bottom end of the column stub 

instead fixed against all displacements. An example of these FE models is depicted in Fig. 8. The length of the 

column stub was taken as three times the distortional buckle half-wavelength, calculated using the CUFSM (Li and 

Schafer, 2010) software, as suggested by Shifferaw and Schafer (2012). The resulting cross-sectional capacities 𝑃𝑢 

are listed in Table 2. 
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The axial compressive capacity of a CFS bolted connection (𝑃𝑐) was related to 𝑃𝑢 through the following 

equation: 

c uP RP                                                                                                                                                                                                    (5) 

where 𝑅 is a reduction factor applied to the cross-sectional compressive capacity to account for the fact that 

local web buckling adjacent to the connection under a non-uniform stress distribution influenced by shear lag 

may prevent the full cross-sectional capacity from being reached. 𝑅 was assumed to be a function of the studied 

variables, namely the bolt group length 𝑙𝑏, the bolt group configuration and the cross-sectional geometry through 

the eccentricity 𝑋, the thickness 𝑡 and the web slenderness value 𝜆𝑤 = ℎ/𝑡. 

The R values resulting from the 660 FE simulations covering all possible combinations of the design parameters 

(including 5 cross-sections, 4 thicknesses, 3 bolt group arrays and 11 bolt group lengths) are graphically presented 

in Figs. 9-11 for a 2×2, 3×3 and 4×4 bolt group, respectively. These graphs emphasize the importance of the bolt 

group length 𝑙𝑏, with the capacity of the CFS member converging to the full cross-sectional capacity as 𝑙𝑏 

increases. This convergence is exponential, as can be seen when plotting ln(1-R) against 𝑙𝑏/ℎ. This is illustrated in 

Fig. 12 for the data pertaining to a 4×4 bolt group. A ‘fan’ of straight lines is thus obtained, which appear to all 

intersect the vertical axis at approximately the same ordinate. This suggests that an equation of the following 

form can be used to fit the data:  

𝑅 = 1 − 𝐴𝑒(𝑙𝑏ℎ ).𝑆
                                                                    (6) 

where 𝐴 is a constant and 𝑆 is the slope of the lines in Fig. 12. The slopes 𝑆 of the various lines are plotted as a 

function of the dimensionless variable 𝑡/𝑋 for the data related to the 4×4 bolt group in Fig. 13a. It is seen that the 

trend lines for the various cross-sectional geometries are approximately parallel, but their point of intersection 𝑆0 with the vertical S-axis differs. Given that the various cross-sections have a different eccentricity 𝑋, as well as 

a different web depth ℎ,  𝑆0 is plotted against ℎ/𝑋 in Fig. 13b. It is concluded that both variables are proportional. 

This reveals the following equation for the slope 𝑆: 

𝑆 = −𝐵 ℎ𝑋 − 𝐶 𝑡𝑋                                                                    (7) 

where 𝐵 and 𝐶 are (positive) constants. Substituting Eq. (7) into Eq. (6) yields: 
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𝑅 = 1 − 𝐴𝑒−(𝑙𝑏𝑋 )(𝐵+𝐶𝑡ℎ)
                                                                            (8) 

Eq. (8) shows that the reduction factor 𝑅 is a function of 𝑙𝑏/𝑋 (rather than 𝑙𝑏/ℎ) and the web slenderness ℎ/𝑡. 

This is not entirely surprising, since the AISI (AISI S100-12) design guidelines for eccentric bolted connections in 

tension identify 𝑙𝑏/𝑋 as the parameter controlling their capacity. In addition, since connections in compression 

are susceptible to local buckling of the web, the web slenderness ℎ/𝑡 appears in the equation.  

The constants 𝐴, 𝐵 and 𝐶 in Eq. (8) were determined using a genetic algorithm optimization process in Matlab 

(Mathworks, 2015) in order to minimize the standard deviation of the ratio 𝑅𝑝𝑟𝑒𝑑/𝑅𝐹𝐸 (where 𝑅𝑝𝑟𝑒𝑑 follows from 

Eq. 8 and 𝑅𝐹𝐸 is the value determined from the FE models). The optimization was carried out for each bolt group 

configuration separately. The resulting equations are as follows and their statistical indicators are presented in 

Table 3: 





( )(0.053 1.074( ))

1- 0.39
bl t

X hR e                                                                                                                                                (9) 





( )(0.085 2.577( ))

1- 0.46
bl t

X hR e                                                                                                                                             (10) 





( )(0.097 3.571( ))

1- 0.51
bl t

X hR e                                                                                                                                            (11) 

When compared to the FE simulations, the average ratio of the predicted capacity to the FE result is very close to 

1.0 for each of the bolt group configurations, with a typical standard deviation of only 0.03. A graphical 

comparison is also provided in Figs. 9-11. Eqs. (10) and (11) lead to nearly identical predictions, while the 

predictions of Eq. (9) are slightly lower. An optimized data fitting applied to the complete data set including all 

bolt group configurations (2×2, 3×3 and 4×4), in a similar way as carried out for the individual ones, led to the 

following alternative equation for 𝑅: 





[( )(0.072 2.465( ))]

1- 0.44
bl t

X hR e                                                                 (12) 

The average ratio of the capacity predicted by Eq. (12) to the FE result is 1.005 with a standard deviation of 0.03.  

3.3 Cross-sectional stress profiles 

In order to shed more light on the phenomena at hand, Fig. 14 presents the longitudinal stress profile over the 

cross-section for various bolt group lengths, cross-sectional shapes and thicknesses. The stress profiles were 
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extracted from the FE model in the initial pre-buckled elastic range of loading and pertain to the cross-section in 

the CFS member at the end of the gusset plate. This cross-section was located a distance of 1.5𝑑 away from the 

first bolt row (where 𝑑 is the diameter of the bolt) and is representative of the location of failure.  All results relate 

to a 3×3 bolt group. 

When comparing the stress profiles for a bolt group length 𝑙𝑏 = 0.5ℎ to those for 𝑙𝑏 = 3ℎ a clear conclusion 

emerges across all geometries and thicknesses: a much more pronounced shear lag effect is present for the short 

bolt groups, with the flange tips and lips carrying significantly less stress than the web-flange junction. Within 

each cross-section a higher thickness leads to a more uniform stress distribution in the flanges and lips, although 

this improvement is less pronounced in cross-sections with a higher eccentricity (Ch.4 and Ch.5) and for short bolt 

groups. For the thickest sections (t = 6 mm) and longest bolt group (𝑙𝑏 = 3ℎ) the stress distribution in the flanges 

and lips is nearly uniform. These observed trends are completely concurrent with the influence of the variables 

as indicated by Eq. (9-12).    

It should also be noted that the stress distribution in the web of the channels actually becomes less uniform as 

the thickness increases (independently of the bolt group length). This can be attributed to the amplitude of the 

imperfection introduced into the models, which increases dramatically from 0.34 mm for 𝑡 = 1  mm (according 

to the equations in (Schafer and Peköz, 1998)) to 2.04 mm for 𝑡 = 6 mm (according to Eq. 3). This imperfection 

reduces the effective stiffness at the centre of the web (note that a geometrically non-linear analysis was 

performed), shifting the stresses towards the web-flange junction. The concentrated forces originating from the 

bolts, of course, also contribute to this non-uniformity.  

4 Connections subject to combined bending and shear 

To evaluate the capacity of bolted CFS portal frame connections subject to a combination of bending moment and 

shear, further FE simulations were conducted. The model previously introduced in Fig. 3a was used, where a 

horizontal z-displacement was imposed at the cantilever tip to achieve both major axis bending and shear at the 

connection. The parameters describing the configuration (i.e. the cross-sectional geometry and thickness, and the 

bolt group configuration and length) were again varied over the same ranges. However, with respect to the bolt 

group length only the boundaries of  𝑙𝑏/ℎ = 0.5 and 𝑙𝑏/ℎ = 3 were considered. The results are plotted in Fig. 15 

in the form of an 𝑀/𝑀𝑛 versus 𝑉/𝑉𝑛 diagram. 𝑀 and 𝑉 are the combinations of applied bending moment and 
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shear causing failure, where 𝑀 is calculated as the product of 𝑉 with the distance from the tip of the cantilever 

to the location of failure (taken as the cross-section at the end of the gusset plate). 𝑀𝑛 is the moment capacity of 

the CFS member at the connection in a state of pure bending and can be determined based on previous research 

(Mojtabaei et al., 2020): 

𝑀𝑛 = 𝑅𝑀𝑀𝑢                                                                                                                                       (13) 

In Eq. (13) 𝑀𝑢 is the cross-sectional moment capacity of the CFS member and 𝑅𝑀 is a reduction factor accounting 

for the effects of shear lag and premature buckling of the web. 𝑅𝑀 can be determined using the following 

equations: 


-11.9( )( )

1- 0.43
blt

X h
MR e                               for a 2x2 bolt group                                                                                                          (14) 


-14.9( )( )

1- 0.40
blt

X h
MR e                          for a 3x3 bolt group                                                                                         (15) 


-14.5( )( )

1- 0.42
blt

X h
MR e                             for a 4x4 bolt group                                                                                                    (16) 

𝑉𝑛 is the capacity of the CFS member at the connection in pure shear. Since the web of the member naturally 

carries almost all of the shear, a reasonable assumption is made that the capacity of the cross-section in pure 

shear is unaffected by the particular method of connecting the member through the web only (a routinely implied 

assumption in the design of steel connections). In case the AISI (AISI S100-12, 2012) provisions are used, 𝑉𝑛 is 

given by the following equations: 

if     : 0.6V

n y w

y

EKh
V f A

t f
                                                                                                                                                                (17) 

if   
0.6
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/
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t f h t
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where 𝐴𝑤 is the area of the web and 𝐾𝑉 is the shear buckling coefficient of the web. For unreinforced webs the 

AISI rules prescribe: 𝐾𝑉=5.34. In case the European EN1993-1-3 (CEN, 2005a) provisions are used, the shear 

resistance of the cross-section (𝑉𝑛) can be determined by: 

sin
n bv

h
V tf


                                                                                                                                                                                           (20) 

where 𝜑 = 90° is the slope of the web relative to the flanges and 𝑓𝑏𝑣 is the shear strength of the web considering 

shear buckling:  

if 0.83: 0.58w bv yf f                                                                                                                                                                                 (21) 

if 
0.48

0.83:
y

w bv

w

f
f


                                                                                                                                                                            (22) 

In Eq. (22) 𝜆̅𝑤 is the shear slenderness, which is determined using the following equation for webs without 

longitudinal stiffeners:  

0.346
y

w

fh

t E
                                                                                                                                                                                   (23) 

All data points resulting from the FE simulations are plotted in Fig. 15. In Fig. 15a 𝑀𝑛 and 𝑉𝑛 were calculated 

according to the AISI design rules, i.e. 𝑀𝑢 in Eq. (13) was determined using the effective width based design rules 

in (CEN, 2005a) and Vn was determined from Eqs. (17-19). In Fig. 15b 𝑀𝑛 and 𝑉𝑛 were calculated according to EN 

1993-1-3 (in particular, Eqs. (21) and (22) were used to obtain 𝑉𝑛). A significant difference in the distribution of 

the results is noticed when comparing Figs. 15a and 15b. This discrepancy can mainly be attributed to the 

difference in 𝑉𝑛 values resulting from both standards. Eqs. (21) and (22) implicitly take into account the end 

stiffening effect resulting from the gusset plate, while the AISI equations (17-19) do not. When this effect is 

neglected in the Eurocode, very similar values of 𝑉𝑛 are obtained from both standards. 

After inspection of the data in Figs. 14a and 14b the following interaction equation was proposed, to be used in 

conjunction with either the AISI or the Eurocode provisions:  

2 2

1
n n

M V

M V

   
    

   
                                                                                                                 (24) 
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The above equation is consistent with the AISI approach for cross-sections subject to combined bending and shear 

in limit state design. It is seen in Figs. 14a and 14b that all data points are situated above this curve. However, in 

the AISI framework Eq. (24) appears to be conservative for connections subject to high shear forces. Both Figs. 

14a and 14b indicate that very little reduction in moment capacity is to be expected when the shear force 

increases. Similar observations were made by Pham and Hancock (2012). From a physical point of view this can 

be explained by the fact that the bending moment stabilizes the tension zone, which impedes the development 

of a shear buckle over the full height of the web. The observations from the numerical simulations indicate that 

failure always remains flexure dominated.  An alternative design approach was therefore explored, where the 

presence of the shear force is simply neglected in the determination of the moment resistance for connections 

within the considered parameter range. A reliability analysis will be carried out in Section 6 to confirm whether 

this approach leads to a safe design methodology. 

5 Connections subject to combined compression, bending and shear 

The FE model previously introduced in Fig. 3b was employed to study CFS bolted connections in beam-column 

members simultaneously subjected to compression, bending moment and shear force. The selected design 

parameters were as follows: 

1) three different levels of axial compressive load: 𝑃/𝑃𝑐 = 0.25, 0.5 and 0.75; 

2) three different beam-column cross-sections: Ch.1, Ch.2, and Ch.3 (see Fig. 5);  

3) four different cross-sectional thicknesses: 𝑡 = 1, 2, 4 and 6 mm; 

4) three different bolt group lengths: 𝑙𝑏/ℎ = 0.5, 1.5 and 3.  

The FE analyses required three consecutive analysis steps:  

1) an ‘Elastic Buckling’ analysis to provide the shape of the imperfection;  

2) a ‘Static General’ analysis to incrementally apply the axial compressive load up to its final value;  

3) a ‘Static General’ analysis to impose a horizontal displacement at the cantilever tip in the presence of the 

(constant) axial compressive load.   

Both analyses (2) and (3) accounted for material and geometric non-linearity. 

     The results of these simulations are presented in Figs. 15 and 16 in the form of 𝑀/𝑀𝑛 versus 𝑉/𝑉𝑛 interaction 

diagrams for various levels of axial pre-load 𝑃/𝑃𝑛. 𝑃, 𝑀 and 𝑉 are the combinations of the applied compressive 
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force, moment and shear force causing failure. It is thereby noted that the bending moment 𝑀 was calculated 

based on the applied transverse load and the distance from the end section to the location of failure (at the end 

of the gusset plate, a distance of 1.5𝑑 away from the first bolt row), and also accounted for the contribution of 

the axial load due to the deflection of the cantilever tip (P- effect). In Fig. 16 the AISI rules were used and the 

axial compressive capacity of the connection 𝑃𝑛 was calculated according to Eq. (5), in combination with Eqs. (9-

11). The flexural capacity of the connection 𝑀𝑛 was determined according to Eqs. (13-16) and the shear capapcity 𝑉𝑛 was calculated according to Eqs. (17-19). In Fig. 17, 𝑃𝑢,  𝑀𝑢 and 𝑉𝑛 were calculated according to EN 1993-1-3 

instead. Fig. 18 also presents the results as 𝑀/𝑀𝑛  versus 𝑃/𝑃𝑛 diagrams, according to the AISI rules (Fig. 18a) 

and the Eurocode rules (Fig. 18b). 

The AISI provisions currently do not provide an interaction equation for combined axial compression, bending 

moment and shear force in beam-column cross-sections. While such an equation is provided by EN 1993-1-3 

(CEN, 2006), its applicability to web-based connections is questionable since it relies in part on the bending 

moment resistance of a virtual cross-section consisting of the flanges only (which are subject to a significant shear 

lag effect in portal frame connections and do not fully contribute). It is also immediately seen from Figs. 15 and 

16 that a quadratic interaction equation of the form:  

 

2 2 2

1
n n n

P M V

P M V

     
       

     
                                                                                                   (25) 

inspired by Eq. (24), is unsafe, since most of the data points are located inside the domain bound by the equation. 

This suggests that the interaction between axial load, bending moment and shear is clearly more detrimental than 

the interaction between bending moment and shear alone. From a physical point of view this comes as no surprise 

since the axial load not only (partly or wholly) negates the beneficial effect of the tensile zone created by bending, 

but also promotes local buckling of the web under combined actions. A linear interaction equation is therefore 

proposed instead: 

1
n n n

P M V

P M V

     
       

     
                                                                                                                   (26)     

The above equation is plotted in Figs. 15-17. It can also be observed from these diagrams that, similar to Section 

4, the effect of a shear force on the bending moment capacity cannot be distinguished with confidence. Therefore, 
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an alternative design approach where the effect of a shear force is neglected, effectively transforming Eq. (26) 

into: 

1
n n

P M

P M

   
    

   
                                                                 (27) 

is also considered in the reliability analysis carried out in the next section of this paper.  

6 Reliability analysis 

The proposed design equations (Eqs. (5), (24), (26) and (27)) were subjected to reliability analyses within the 

frameworks of both the Eurocode (CEN, 2002) and the AISI specifications (Hsiao et al., 1988) to ensure that they 

provide the required level of safety when combined with the code prescribed safety factors. The reliability 

analyses necessarily required the consideration of various uncertainties associated with the material properties, 

dimensions and loading, as well as modelling uncertainties inherent in the FE analyses and the proposed equations 

themselves.   

 To ensure a sufficiently small probability of failure the reliability index 𝛽 must exceed a specific target value. 

For new structures with a design working life of 50 years and a consequence class rated as CC2 (moderate 

consequences of failure), the Eurocode prescribes a reliability index of 3.8 (CEN, 2002), while the AISI 

specifications stipulate lower bounds of 2.5 for CFS members and 3.5 for connections (Hsiao et al., 1988). The 

former value of 2.5 was adopted in the AISI calculations, since failure occurs in the CFS member adjacent to the 

connection, rather than in the connection itself. Moreover, unlike typical connection failures such as bolt shear 

or block tear-out, local buckling failures generally occur with ample warning, are reasonably ductile in comparison 

and do not immediately compromise the integrity of the structure. 

It is noted that nominal capacities are divided by a partial safety factor 𝛾 in the Eurocode approach, while in 

the AISI specifications they are multiplied by a resistance factor 𝜙. In both cases it is assumed that the factored 

(design) resistance matches the factored (design) loads. The governing load combination was further assumed to 

be comprised of dead load 𝐷 and live load 𝐿, with nominal values 𝐷𝑛 and 𝐿𝑛, respectively: 

n
D n L n

r
D L 


   (Eurocode)        or     n D n L nr D L     (AISI)                                                                                         (28)    
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In the Eurocode: 𝛾𝐷=1.35 and 𝛾𝐿=1.5, while in the North-American code: 𝛾𝐷=1.2 and 𝛾𝐿=1.6. In Eq. (28) rn is the 

nominal resistance. 

Based on Annex D of Eurocode 0 the design resistance 𝑟𝑑 can be written as: 

2
, , 1 1 1 ,n 2 2 2[ 0.5 ]

1 2
. . . d rt rt d n dk Q k Q k Q Q

d m
r b b r e                                                                                                                           (29) 

where 𝑏1and 𝑏2 account for model uncertainties, respectively the deviations of the resistance predicted by the 

design equation from the FE model, and the deviations of the FE model from the experiment. In Eq. (29) 𝑟𝑚 is the 

resistance determined using the mean values of all relevant variables. In this respect the probabilistic distributions 

of the basic variables are listed in Table 4, based on literature data (Young and Hancock, 2001, Meza et al., 2020). 

According to EC 0 the target calibration level 𝑘𝑑,∞ = 𝛼𝑅𝛽=3.04, where 𝛼𝑅 = 0.8. The factor 𝑘𝑑,𝑛1 depends on the 

number of FE results the design equation is validated against, which is 660, 220 and 108, respectively, for the 

connections in (i) pure compression, (ii) bending and shear and (iii) compression, bending and shear. Table D2 of 

Eurocode 0 recommends 𝑘𝑑,𝑛1= 3.04 for all the above mentioned cases. The factor 𝑘𝑑,𝑛2 depends on the number 

of experiments used to validate the FE model, which is four (Section 2.5). Since the number of experiments is 

relatively low, a conservative value of 𝑘𝑑,𝑛2 =11.4 is prescribed by Table D2 of Eurocode 0. The validation process 

in Section 2.5 also yields the factor 𝑏2 in Eq. (29) as the slope of the least squares regression line in the  𝑀𝑇𝑒𝑠𝑡 

versus 𝑀𝐹𝐸 diagram: 

2 2

( . )
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M M
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M



                                                                                                                                                                                    (30) 

 𝑀𝑇𝑒𝑠𝑡 is the flexural capacity obtained from the experiment and 𝑀𝐹𝐸 is the corresponding capacity predicted by 

FE analysis (Table 1). 

In the case of connections under pure compressive loading, the factor 𝑏1 can similarly be obtained as the slope 

of the least squares regression line in the 𝑃𝐹𝐸 versus 𝑃𝑐 diagram: 

1 2

( . )

( )

c FE

c

P P
b

P
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

                                                                                                                                                                                               (31) 

where 𝑃𝑐 and 𝑃𝐹𝐸 are the compressive capacities of the connection determined by the design equation and the 

FE model, respectively.  
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In the case of connections under combined bending moment and shear, the interaction equation contains two 

independent variables (i.e. 𝑀/𝑀𝑛 and 𝑉/𝑉𝑛). This additional complexity is circumvented by using the ratio of the 

distances 𝑑2/𝑑1 for each data point in the M/Mn vs. V/Vn diagram, as shown in Fig. 19, as a substitute for the ratio 

of the predicted resistance over the FE result.  The same approach, using the 3D 𝑀-𝑉-𝑃 surface defined by Eq. 

(26), was used for the case of combined bending moment, shear and axial compression. Eq. (31) then becomes: 

2 1

1 2

2
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( )

d d
b

d



                                                                                                                                                                                                            (32) 

Eurocode 0 further requires that error terms 𝛿1 and 𝛿2 be calculated, defined as:  

1

1

FE

c

P

b P
                                                                                                                                                                                                     (33) 

for the case of compression, or analogously: 

1

1

1 2

d

b d
                                                                                                                                                                                                  (34) 

for combined actions, and: 
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2
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M
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The parameters 𝑄𝑟𝑡, 𝑄𝛿1, 𝑄𝛿2 and 𝑄 in Eq. (29) represent the standard deviation of the resistance calculated 

using the proposed design equation, the standard deviations of the error terms 𝛿1 and 𝛿2 and the overall standard 

deviation of the resistance. They are calculated as follows:  

2
ln( 1)

rt rt
Q V                                                                                                                                                                                        (36) 

2

1 1
ln( 1)Q V                                                                                                                                                                                                    (37) 

2

2 2
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2 2 2 2

1 2r rt
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2
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where 𝑉𝑟𝑡, 𝑉𝛿1 and 𝑉𝛿2 are the coefficients of variation (COVs) of the calculated resistance and the error terms 𝛿1 

and 𝛿2, respectively. The Eurocode 0 guidance is to calculate 𝑉𝑟𝑡 using a Taylor series approximation, while 

maintaining the first term in each basic variable 𝜅𝑖. The variables 𝜅𝑖  include in this case: t (channel thickness), ℎ 

(web depth),  𝑏 (flange width), 𝑐 (lip width), 𝐸 (modulus of elasticity) and 𝑓𝑦 (yield stress):  
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                                                       (41)            

In the above equation, 𝜎𝑖 is the standard deviation of the variable 𝜅𝑖, obtained from Table 4. The partial derivatives 

in Eq. (41) were calculated using finite differences. It is noted that for the cases of combined actions, 𝑃𝑐 in Eq. (41) 

was replaced by d2. 

The parameters 𝛼𝑟𝑡, 𝛼𝛿1 and 𝛼𝛿2 featuring in Eq. (29) are weighting factors for 𝑄𝑟𝑡, 𝑄𝛿1 and 𝑄𝛿2, respectively, 

obtained as: 

rt
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Q
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The partial safety factor 𝛾 was then determined as: 

n

d

r

r
                                                                                                                                                                                                          (45) 

The calculations are summarized in Table 5. It is noted that for the case of pure compression two sets of 

calculations were carried out, corresponding to: (i) the case where the individual equations for different bolt 

group configurations (Eqs. 9-11) were employed, and (ii) the case where the general Eq. (12), applicable to all bolt 

group configurations, was used. An average partial safety factor 𝛾 of 1.05 was obtained in both cases. In addition, 
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𝛾=1.02 and 𝛾=1.05 were obtained for the connections under combined bending and shear, and combined 

bending, shear and compression, respectively.  

In addition to Table 5, and further to the observations in Sections 4 and 5, the option was explored to neglect the 

influence of a shear force in the design of portal frame connections altogether. Practically, this means that 

connections subject to bending moment and shear only have to satisfy: 

1
n

M

M
                                                                   (46) 

and that connections subject to combined axial force, bending moment and shear can be designed using Eq. (27). 

The results of a reliability analysis according to the previously explained principles are listed in Table 6. It is seen 

that similar (and even slightly lower) safety factors are obtained compared to the ones listed in Table 5, proving 

that this is a viable design approach when combined with the appropriate safety factors. However, this method 

needs to be restricted to the parameter range considered in this study and the following condition is proposed 

for use in the context of the Eurocode (see Fig. 15b):  

0.5 nV V                                                                      (47) 

Eq. (47) is consistent with the design approaches in EN 1993-1-1 (CEN, 2005b), EN 1993-1-3 (CEN, 2005a) and EN 

1993-1-5 (CEN, 2006) for cross-sections subject to combined bending moment and shear. 

When applying the AISI (Hsiao et al., 1988) framework the resistance factor 𝜙 is obtained as: 

2 2 2 2 2
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
                                                                                                                                (48) 

where 𝐶𝜙=1.52 for LRFD design. Moreover, 𝑀𝑚=1.1 and 𝐹𝑚=1.0 are the mean values of the material and 

fabrication factors, and 𝑉𝑀=0.1 and 𝑉𝐹=0.05 are the corresponding coefficients of variation (Hsiao et al., 1988, 

Pham and Hancock, 2012). The professional factor 𝑃𝑚 in the original AISI equation was substituted with the 

product of 𝑃𝑚1 and 𝑃𝑚2 in Eq. (48). 𝑃𝑚1 is the mean ratio of the FE predicted capacity to the capacity determined 

by the proposed design equation (i.e. 𝑃𝐹𝐸/𝑃𝑐 for compression and 𝑑1/𝑑2 for combined actions), and 𝑃𝑚2 is the 

mean ratio of the capacity obtained from the experiments to the corresponding FE prediction (i.e. 𝑀𝑇𝑒𝑠𝑡/𝑀𝐹𝐸). 
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𝑉𝑝1 and 𝑉𝑝2 are the COVs of 𝑃𝑚1 and 𝑃𝑚2, respectively, and 𝑉𝑄= 0.21 is the COV of the loading (Hsiao et al., 1988). 

In addition, the correction factors 𝐶𝑃 take into account the number of test samples (𝑛), according to the equation:  

1 1
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 
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
                                                                                                                                                                (49) 

The factor 𝐶𝑃1 accounts for the number of numerical simulations, which is: 660, 220 and 108 for the connections 

under pure compression, combined bending and shear, and combined bending, shear and compression, 

respectively. This results in respective values of 𝐶𝑃1=1.005, 𝐶𝑃1=1.025 and 𝐶𝑃1=1.028. The factor 𝐶𝑃2 depends on 

the number of test results in the validation procedure and was calculated to be 3.75. 

The resistance factors calculated using Eq. (48) for the proposed design equations are summarized in Table 7. It 

is noted that the AISI rules provide two separate methodologies to calculate the cross-sectional compressive 

capacity Pu in Eq. (5): the effective width concept (EW) and the Direct Strength Method (DSM). Both methods 

were considered when evaluating the design approach proposed for compression. The EW concept was employed 

when considering combined actions. It is concluded that all resistance factors exceed the AISI prescribed factors 

of c = 0.85 for compression, V = 0.95 for shear and b = 0.95 for bending. Thus, the proposed design equations 

can safely be used within the AISI framework in conjunction with the usual resistance factors. In particular, 

neglecting the influence of shear (Eqs. 27 and 46) leads to acceptable predictions, although the range of validity 

of this latter approach should cautiously be restricted to: 

33.3 300
h

t
                                                                         (50) 

7 Summary and conclusions 

The focus of this paper is on the behaviour, capacity and design of CFS moment connections under combined 

loading (bending, shear and axial force), but limited in scope to those failing by local buckling of the web. The 

investigation was conducted by means of systematic parametric studies using detailed finite element models, 

validated against experiments.  

For the case of connections subject only to compression it was found that the cross-sectional capacity of the 

connected member may be significantly reduced due to the presence of a shear lag effect. However, the capacity 

of the connected member exponentially converges to the full cross-sectional capacity with increasing values of 
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lb/X (i.e the ratio of the bolt group length to the eccentricity of the connection) and decreasing values of the web 

slenderness h/t. 

For the case of combined bending and shear a quadratic interaction equation was proposed. On the other hand, 

the interaction of axial compression with bending and shear was found to be far more detrimental and a linear 

interaction was instead presented. In both cases, the influence of the shear force was found to be small within 

the range of parameters studied. The effect of shear can be safely neglected when smaller than half of the shear 

capacity. 

The proposed design equations were subjected to a reliability analysis within the framework of both the Eurocode 

and the AISI specifications. Appropriate safety factors are presented in Tables 5-7 for use in practical design.  
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List of tables 

Table 1. Comparison between the flexural capacity of connections obtained from tests (Lim and Nethercot, 2003) and 

FE models 

connection 

(*) 

lb 

(mm) 
lb/h 

Mmaxexp
 

(kN.m) 

MmaxFE  

(kN.m) 
MmaxFE /Mmaxexp

 

A 315 0.94 75 76.01 1.01 

B 390 1.16 77.5 80.72 1.04 

C 465 1.38 82.5 82.5 1.00 

D 615 1.83 87.5 88.02 1.01 

Average     1.02 

St. dev     0.018 

       (*) with reference to (Mojtabaei et al., 2020) 

Table 2. Eccentricity, slenderness and compressive capacity of CFS back-to-back sections  

Cross-sections 
X         

(mm) 

t         
(mm) λw 

Pu 

(kN) 

Ch.1  11.11 

1 300 37.89 

2 150 127.24 

4 75 343.27 

6 50 679.89 

Ch.2   15.71 

1 250 40.12 

2 125 134.10 

4 62.5 408.16 

6 41.67 734.77 

Ch.3   20.83 

1 250 42.61 

2 125 142.65 

4 62.5 447.38 

6 41.67 798.71 

Ch.4   23.44 

1 200 45.75 

2 100 151.63 

4 50 454.86 

6 33.33 749.36 

Ch.5   33.33 

1 200 50.54 

2 100 167.85 

4 50 487.33 

6 33.33 827.57 

Table 3. Proposed reduction factors for different bolt group configurations 

Equation 
Bolt group 

configuration 

Rpred/RFE 

Average Standard 

deviation 

(Eq. 9) 2x2 1.007 0.03 

(Eq. 10) 3x3 1.004 0.03 

(Eq. 11) 4x4 1.001 0.03 
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Table 4. Statistical distributions used in reliability analysis 

Variable Distribution Nominal Mean SD COV References 

E Normal E E 0.03E 0.03 
Young et al. (Young 

and Hancock, 2001) 

fy Lognormal fy 1.1fy 0.0693fy 0.063 
Young et al. (Young 

and Hancock, 2001) 

t Normal t t 0.005t 0.005 
Meza et al. (Meza et 

al., 2020) 

h Normal h h 0.005h 0.005 
Meza et al. (Meza et 

al., 2020) 

b Normal b b 0.002b 0.002 
Meza et al. (Meza et 

al., 2020) 

c Normal c c 0.02c 0.02 
Meza et al. (Meza et 

al., 2020) 

 

Table 5. Reliability calculations according to Eurocode 

Loading b1 b2 Vδ1 Vδ2 Vrt Qδ1 Qδ2 Qrt Q γP (Eqs. 9-11) 1.11 0.99 0.05 0.02 0.05 0.05 0.02 0.05 0.07 1.05 P (Eq. 12) 1.11 0.99 0.05 0.02 0.05 0.05 0.02 0.05 0.07 1.05 M + V (Eq. 24) 1.29 0.99 0.08 0.02 0.05 0.08 0.02 0.05 0.10 1.02 P + M + V (Eq. 26) 1.38 0.99 0.12 0.02 0.07 0.12 0.02 0.07 0.14 1.05 

 

Table 6. Reliability calculations according to Eurocode without accounting for shear 

Loading b1 b2 Vδ1 Vδ2 Vrt Qδ1 Qδ2 Qrt Q γM + V (Eq. 46) 1.32 0.99 0.08 0.02 0.06 0.08 0.02 0.06 0.1 1.00 P + M + V (Eq. 27) 1.43 0.99 0.1 0.02 0.06 0.10 0.02 0.07 0.12 0.98 

 

Table 7. Resistance factors for various types of loading for use with AISI design rules 

Loading Vp1 ϕP (EW)             (Eqs. 9-11) 0.11 0.98 P (DSM)           (Eqs. 9-11) 0.05 1.03 M + V              (Eq. 24) 0.15 1.01 P + M + V      (Eq. 26) 0.24 1.00 M + V              (Eq. 46) 0.08 1.00 P + M + V      (Eq. 27) 0.12 1.00 
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