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Purpose: Recent developments in robotics and artificial intelligence (AI) have led to significant advances in healthcare technologies

enhancing robot-assisted minimally invasive surgery (RAMIS) in some surgical specialties. However, current human–robot interfaces

lack intuitive teleoperation and cannot mimic surgeon’s hand/finger sensing required for fine motion micro-surgeries. These

limitations make teleoperated robotic surgery not less suitable for, e.g. cardiac surgery and it can be difficult to learn for established

surgeons. We report a pilot study showing an intuitive way of recording and mapping surgeon’s gross hand motion and the fine

synergic motion during cardiac micro-surgery as a way to enhance future intuitive teleoperation.

Methods: We set to develop a prototype system able to train a Deep Neural Network (DNN) by mapping wrist, hand and surgical

tool real-time data acquisition (RTDA) inputs during mock-up heart micro-surgery procedures. The trained network was used to

estimate the tools poses from refined hand joint angles. Outputs of the network were surgical tool orientation and jaw angle

acquired by an optical motion capture system.

Results: Based on surgeon’s feedback during mock micro-surgery, the developed wearable system with light-weight sensors for

motion tracking did not interfere with the surgery and instrument handling. The wearable motion tracking system used 12 finger/

thumb/wrist joint angle sensors to generate meaningful datasets representing inputs of the DNN network with new hand joint

angles added as necessary based on comparing the estimated tool poses against measured tool pose. The DNN architecture was

optimized for the highest estimation accuracy and the ability to determine the tool pose with the least mean squared error. This

novel approach showed that the surgical instrument’s pose, an essential requirement for teleoperation, can be accurately estimated

from recorded surgeon’s hand/finger movements with a mean squared error (MSE) less than 0.3%.

Conclusion: We have developed a system to capture fine movements of the surgeon’s hand during micro-surgery that could

enhance future remote teleoperation of similar surgical tools during micro-surgery. More work is needed to refine this approach and

confirm its potential role in teleoperation.

Keywords: Robot-assisted surgery; minimally invasive surgery; machine learning; hand tracking; real-time low-cost hand tracking;

feature extraction.
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1. Introduction

Robot-Assisted Surgery (RAS) is preferred to conven-

tional surgery in several clinical applications including,

e.g. urology, cardiovascular, due to reduced invasiveness,

superior ergonomics, precision, dexterity and intuitive

interaction [1], resulting at times in shorter procedure

and hospitalization times [2]. Intuitiveness of surgical

teleoperation in RAS is essential in ensuring safety while

obtaining the right level of procedural accuracy and ef-

fectiveness. Effective teleoperation depends on accurate

mapping of the surgeon’s hand/fingers operating motion

and the flawless translation of these fine movements from

the surgeon’s master to the surgical instrument slave.

Sub-optimal teleoperation has limited the widespread

use of safe and effective RAS. For example, while RAS is

widely utilized in urology, its adoption is limited or

nonexistent in micro-surgical specialties. Another limiting

factor is that the surgeon’s master of current RAS

systems is very different from conventional microsurgi-

cal instruments which makes it difficult for established

surgeons to adopt RAS unless subjecting themselves to a

new training. Moreover, the precision of slave positioning

in, e.g. Da Vinci surgical robot is not sufficient for surgeries

requiring higher precision.

Cardiac surgery and other specialty areas have seen

little RAS penetration and some safety concerns [1,3]. In

cardiac surgery, for example, the limited access to the

heart, no space is available for the slave instrument ma-

neuvering and close proximity to other vital structures

requires finer slave instrumentmovements and a superior

teleoperation to that available in current robotic systems.

For example, the Da Vinci master console uses a pair of

handles [4] to control the slave end-effectorwith 3 degrees

of freedom (DOF), open/close grasper and 2 DOF in the

wrist.While this appears to be effective for urology, forMIS

tools that require higher complexity and dexterity, the

master side of the system should be refined to support the

feasibility, safety and efficacy of micro-surgery specialties

through smoother and more intuitive teleoperation.

Proposed methods to teleoperate a surgical robot

range from using handles at the surgeon’s master console

[4] to a touch screen control [5] supplemented with gaze,

voice and foot pedals control [6]. Commonly used master

stations in robotic surgery such as the Da Vinci master

station, Phantom Omni, haptic device neuroArm system

[7] were compared with novel approaches such as

wireless or wearable data gloves and upper-body exo-

skeleton masters, suggesting that future RAS technolo-

gies are more likely to use wearables as master device [4].

Hand/finger tracking has been investigated for

applications ranging from teleoperation to motion anal-

ysis. To this end, inertial measurement units (IMUs),

optical sensors, exoskeletons, magnetic sensing, and flex

sensors-based systems have been used [8]. IMUs have

also been used to complement or compensate errors of

Kinect depth camera for skeletal tracking [9]. However,

depth camera is vulnerable to occlusions which prevent

reliable pose estimation [10]. IMU sensors on thumb and

index finger are sufficiently precise to authenticate in-air-

handwriting signature using a support vector machine

(SVM) classifier [11].

The concept of Robotic Learning from Demonstration

(LfD) is attractive for teaching robot repetitive tasks from

expert surgeon’s demonstrations as shown in [12] for

RAMIS or using surgical instruments trajectories to ex-

tract key features during complex surgical tasks [13].

Machine learning classification methods to evaluate

surgeon’s skills by processing data extracted from the Da

Vinci system have been shown in [14] or by tracking MIS

tools in [15]. While in most studies, surgeon’s move-

ments have been used to analyze generated trajectories,

to the best of our knowledge, the actual dexterity of

surgeon’s hands/fingers during complex surgeries has

not been studied [16].

Control of robotic minimally invasive surgical system

using index finger and thumb gestures has been shown

in [17,18]. However, using gestures to teleoperate a

surgical robot is not intuitive or precise. In our earlier

studies, we designed a hand tracking wearable system

using IMU sensors placed on the hand digits and wrist to

control a 4 DOF da Da Vinci Endowrist instrument [19].

For this study, we implemented our 12 DOF tracking

wearable device to capture and analyze complex motion

of surgeon’s hand during cardiac surgery procedures

which helped us define the digits range of motion,

workspace and the motion rate of change [8].

Here, we show how surgeon’s hand and wrist motion

during open access micro-surgery is mapped to the

surgical instrument motion with the aim to enhance a

more effective, fine resolution, multi-DOF teleoperation

of surgical instruments for micro-surgery to be used in

future surgical robotic systems. To this end, our ultimate

goal was to develop the first anthropomorphic prototype

master concept based on learning the complexity of the

fine synergic micro-surgical motion.

Our results demonstrate how surgeon’s hand and

wrist motion during open access micro-surgery can be

mapped to the surgical instrument motion with the aim

to enhance a more effective, fine resolution, multi-DOF

teleoperation of surgical instruments for micro-surgery

to be used in future surgical robotic systems.

Our ultimate contribution presented in this paper is a

demonstration of the feasibility of using machine learning to

map the anthropomorphic master concept to the fine syn-

ergic micro-surgical instrument motion with multiple DOFs.

2. Methodology

To develop the anthropomorphic prototype master con-

cept based on mapping surgeon’s hands/fingers to the
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fine synergic motions of surgical instruments, we disre-

gard the gross motion of the robotic shaft holding the

surgical instrument. The approach used is illustrated in

Fig. 1.

A light weight wearable hand/finger/tool-status

(open/close) custom made tracking system based on

clinical feedback was designed to allow natural move-

ments during surgery and capture complex movements

generated during mock cardiac surgery scenarios. An

optimized ANN architecture based on deep learning was

built to estimate surgical tool position and orientation

and validate the proposed hand-tool relationship and

utilization of each hand/finger joint while performing the

tool motion in a specific surgical task.

First, we developed motion tracking systems of the

hand and the selected surgical tools — fine Castroviejos

needle-holder and surgical forceps operated through the

typical three-finger approach thumb, index and middle

finger. The tracking system captured two sets of data

during typical mock cardiac surgery procedure performed

by a senior heart surgeon. We derived a relationship

between the two consecutive experiments conducted

ex-vivo on animal samples using Castroviejos surgical tools.

Data capturing focused on surgeon’s hand/wrist move-

ments and concomitant Castroviejo tools poses. A trained

neural network was used to map the Castroviejo motion

using the hand joint angles. In addition, we used Gini

metrics of decision tree regressor learning approach [20] to

assess contribution of each finger and thumb joints in the

performed surgical tasks.

2.1. Hand and tool pose tracking

Surgical operations require complex dexterous manip-

ulations of both hands so merely tracking the digit joint

angles is not sufficient to fully represent hand poses and

map them to the tool. After initial observations and

analysis of cardiac open surgical procedures, the fol-

lowing key motion aspects were targeted to be captured:

(1) Surgeon’s hand joint angles (digit and wrist joints).

(2) Global position and orientation of surgeon’s hands.

(3) Global position and orientation of the surgical instrument.

(4) Surgical Instrument’s Jaw angle (opening/closing (O/C)

of the surgical instrument).

We used a chain of 12 IMUs to track hand and wrist joint

angles (Fig. 2(a)). Hand digits are comprised of three

joints, metacarpophalangeal (MCP), proximal interpha-

langeal (PIP), and distal interphalangeal (DIP) joint and

represented in the hand kinematic model shown in our

previous work [8]. Thumb joints are Carpometacarpal

(CMC), Metacarpophalangeal (MP), Interphalangeal (IP).

Our hand/wrist tracking system is comparable with the

latest commercial data gloves (e.g. VR Manus) but features

more sensing points in order to account for fine motion and

a larger number of DOFs. Therefore, the index and middle

finger and the thumb, with the key roles in fine grasping and

manipulation of Castroviejo instruments, are each tracked by

3 IMUs (Fig. 2(a)). Top side of the forearm (as a reference

point) and top side of the palm are each tracked by separate

IMUs in order to calculate wrist joints. The remaining IMU is

placed on the side of the palm parallel to the IMU attached

on the thumb metacarpal in order to better track the CMC

joint. The Castroviejo instrument is more complex for

tracking due to its shape and size, particularly its open/close

function for which we used four strain gauges attached to

each side of the Castroviejo instrument (Fig. 2(b)) in a full

Wheatstone bridge configuration.

The global position and orientation of surgeon’s hand

and the surgical instrument are recorded using a Polaris

Spectra optical sensor from Northern Digital Inc. (NDI) [21]

and a set of holders for reflective infrared markers designed

and attached to the wrist and the Castroviejo tool (Fig. 3

(right)). Polaris Spectra track the markers in 6 DOF and

acquire the hand pose data using the proprietary NDI track

software SawNDITracker library from Computer-Integrated

Surgical Systems and Technology (CISST) [22] publishes

data sent by NDI in the Polaris camera frame.

PC
T and PC

W are poses of the castro tool and the sur-

geon’s wrist in the camera frame, respectively. We then

calculate PT as a tool pose with respect to the wrist:

PT ¼ ½�TðtÞ; �TðtÞ;  TðtÞ�;
where �TðtÞ, �TðtÞ, and  TðtÞ are roll, pitch and yaw

angles of Castroveijho tool in space.

The system architecture is presented in Fig. 4. The

data are collected by: (1) IMU sensors, (2) strain gauges,

and (3) Polaris motion capture system. We used a

Fig. 1. The proposed concept: train a network during the

open surgery and using that to map the hand finger motions to

the surgical instrument. Network outputs: Four values. PC
T :

tool pose in camera frame, PC
W : wrist pose in the camera frame.

They will make PW
T as tool pose with respect to the wrist (). jawT :

tool jaw angle (opening closing of the tool). Network inputs: 15

joints in Euler angles. * l and n represent number of hidden layers

and number of neurons in each hidden layer, respectively.

Mapping Surgeon’s Hand/Finger Movements to Surgical Tool Motion During Conventional Microsurgery
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Robotic Operating System (ROS) [25] on Ubuntu 16.04

for data recordings and processing.

A custom data acquisition and data transmission

system was designed to capture finger and thumb joint

angles. Since middle and index fingers and thumb have

the key role in fine grasping and manipulation, we track

their poses alongside the wrist using IMU sensors

(BNO055 sensors from Bosch, see Fig. 2(a)). BNO055

chip has two different I2C bus address and we use

PCA9548A 8-channel I2C switch to connect every pair of

sensors to a single bus. Core of the system is a Micro-chip

ATSAMD21 (Arm Cortex-M0+ processor) running on

48MHz, which is responsible for setting a correct con-

figuration of the I2C switch, reading the orientation of

each sensor, and sending the values to the computer

through a USB port. All data captured by the board are

framed as JSON data structures. The micro-controller

also initializes all the sensors and puts them into cali-

bration mode, if required. I2C bus is operated at 400 KHZ

frequency. IMU sensors produce quaternions and their

relative values are calculated to obtain joint angles for

each finger/thumb/wrist joint. These joint angles are

then stored and visualized in Gazebo [23] and Rviz [26]

before used as inputs into the mapping model.

Fig. 3. Right: Hand pose and tool tracking using reflective markers, and Left: Gazebo simulation [23] of the acquired poses and

orientations represented using the Shadow hand model [24].

(a) 12 IMU sensor attachments on the hand with joint names. (Note the single

and double axis joint tracking. In the Middle Finger and the First Finger, j1 and j2
represent DIP and PIP joints, respectively, whereas j3 and j4 are two axes of the

MCP joint. In the Thumb, j1 and j2 represent IP and MCP joints, respectively,

whereas j3 and j4 are two axes of the CMC joint.)

(b) Top: Custom data acquisition board.

Bottom: Strain gauges attached to Castroviejo tool.

Fig. 2. Sensors and the board.
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One of the limitations of tracking accuracy is the IMU

drift. To solve this problem, we only used the relative

angle between two IMUs therefore reducing the effect of

drift. Another solution was to put the device into the

calibration mode after each sequence of recording

(approximately every 5 min).

Assuming q0 � q11 are corresponding quaternion

values from the 12 IMU sensors, a relative quaternion for

each joint can be calculated. For instance, q 1
0 represents

q0 with respect to q1 can be found as follows:

q 1
0 ¼ q1 � q�1

0 ; ð1Þ

where q�1
0 is inverse quaternion and can be found by

negating the w-component of quaternion:

q�1 ¼ ½qx; qy; qz;�qw�: ð2Þ

Calculating the relative angles in quaternion will help

us to avoid problems associated with Euler angles. Final

joint angles however are transformed to Euler angles

because of representation and matching with other signals.

Joint Angles ¼ ½ffj1; ffj2; ffj3; ffj4;mfj1;mfj2;

mfj3;mfj4; . . . ; thj1; thj2; thj3;

thj4; thj5;wrj1;wrj2�: ð3Þ

Data from the four strain gauges are sampled using an ADC

(HX711, AVIA Semiconductor [27]) with an on-chip active

low noise programmable gain amplifier (PGA) with a se-

lectable gain of 32, 64, and 128. jawTðtÞ is jaw angle of

castro tool which is represented in Euler. Assuming castro

tool’s jaw angle can vary between 30� and 0� in fully open

and close scenarios, jawTðtÞ can be calculated by linear

mapping measurements from strain gauges.

The main MCU synchronizes data from the strain

gauges and the IMU and sends them to the PC at the rate

of 50Hz through the USB.

2.2. Data collection

The motion tracking data were collected from an expe-

rienced cardiac surgeon performing typical cardiac tasks

(coronary and mitral valve repair surgery) on an ex-vivo

animal heart, which included all the different instances of

cutting, suturing and knotting. We made six recording

sequences of different duration which all added up to 1 h.

The obtained datasets were pre-processed to filter out

incomplete or missing data, e.g. occlusions of the tool or

wrist markers that occasionally caused data loss. In the

next stage, input and output values are normalized to get

better performance from neural network. All 10,000

samples at the sample rate of 30Hz in the dataset are

timestamped values of hand joint angles, tool orientation,

and tool jaw angle. The mock surgical experimental setup

for the data collection is shown in Fig. 5 with a repre-

sentative graph of the collected data shown in Fig. 6.

Fig. 4. System block diagram showing inputs of the neural

network (joint angles) and outputs of the network (orientation

of the surgical instrument and jaw angle of the instrument).

(a) Experimental setup with the optical tracker and camera.

(b) Hand tracking with the IMU chain and Polaris NDI marker tool

during typical open heart surgery tasks on an ex-vivo porcine heart.

Fig. 5. Data collection.

Mapping Surgeon’s Hand/Finger Movements to Surgical Tool Motion During Conventional Microsurgery
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2.3. Hand-tool modeling

Due to the nonlinear multi-input-multi-output nature of

the collected data, simple machine learning methods

such as multivariate linear regression, or Support Vector

Regression (SVR) do not provide satisfactory results.

A Deep Neural Network (DNN), however, can be efficiently

trained to map multi-DOF tool motion from the corre-

sponding hand motion. Here we use two types of neural

networks, Deep Feed-forward Neural Network (DFNN)

and a Long Short-Term Memory (LSTM) neural networks,

and compare their performance in terms of time and ac-

curacy. Deep Feed-forward Neural Network (DFNN) is an

FNN network that has more than two layers, which

enables the network to learn more complex patterns of

data. A Long-Short Term Memory (LSTM) neural network

is an artificial Recurrent Neural Network (RNN) that has

feedback connections between the layers which enables

learning a sequence of data without facing limitations of

the RNNs such as the vanishing gradient [28,29].

A DNN using Keras library in Python with n number of

neurons in each hidden layer and l number of hidden

layers is used here. We use both DFNN and LSTM neural

networks and compare their performance in terms of

time and accuracy.

Inputs of the neural network at a time of t are comprised

of 15 hand joint angle inputs in Euler representation:

XðtÞ ¼ ½ffj1; ffj2; ffj3; ffj4;mfj1;mfj2;

mfj3;mfj4; . . . ; thj1; thj2; thj3; thj4;

thj5;wrj1;wrj2�; ð4Þ

(see Fig. 2(a) for notation) and output of the network

during the training is comprised of

YðtÞ ¼ ½PTðtÞ; jawTðtÞ�

¼ ½�TðtÞ; �TðtÞ;  TðtÞ; jawTðtÞ�; ð5Þ

where PT is surgical tool pose and jawt is surgical jaw angle.

After the neural network is adequately trained, the

tracking markers and strain gauges attached on the tool

are not required. The surgeon controls the tool by

wearing the sensor chain while the neural network

determines the outputs only from JointAnglesðtÞ. The

outputs of the network are ½�dðtÞ; �dðtÞ;  dðtÞ; jdðtÞ�. This
is one of the benefits of the proposed method as using

vision-based tracking methods like Polaris would not

work when the markers are covered, and would need a

more complicated setup

Details of selected network configuration are as follows:

– Optimization method: Adam with default parameters

(learning rate (lr)¼ 0:001, �1 ¼ 0:9, �2 ¼ 0:999,
decay ¼ 0:0).

– Input neurons: 15 features (joint angles).

– Output neurons: 4 (3 neuron for tool orientation + 1

for jaw angle).

– Dataset size: 10,000 samples.

– Train test split: 80% for training, 20% for testing.

– Number of epoches: 200.

– Loss function: mse.

– FNN activation function: relu.

The rationale of these parameters was to achieve the

highest precision in estimating the tool orientation with a

smallest and therefore fastest network size.

We performed all the training and testing on a Mac-

Book pro Core i7 with the following specs:

– 2.6 GHz 6-Core Intel Core i7.

– Radeon Pro 555X 4GB Intel UHD Graphics 630

1536MB.

– 16GB 2400MHz DDR4.

Loss function:

Loss function quantifies the error between output of

the algorithm and the given target value. Mean Squared

Error (MSE) is the loss function used here.

Loss Function ¼

Pn
i¼1 ðYðiÞ �

^YðiÞÞ2

n
; ð6Þ

Fig. 6. Sample data collected during the surgery showing joints angles as input and tool orientation and tool jaw angle as output.
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where YðiÞ is the given output and ^YðiÞ is the predicted

output.

2.4. Feature importance

Feature importance identifies which joints are main con-

tributors in creating certain types of tool motion. Decision

Tree Regressor Gini importance or Mean Decrease in

Impurity (MDI) [29] was used to establish a correlation

between the hand joints and the tool variables.

2.5. Principal component analysis

We also used Principal Component Analysis (PCA) to

extract five principal components of the dataset to train

the two networks. LSTM networks are more complex

than their DFNN counterparts due to the recurrent layers

which consume more processing resources but they

usually have better performance when it comes to time-

series. The performed dimensionality reduction lowers

the network complexity while maintaining the output

accuracy, especially in LSTM networks. This is essential

in teleoperation where latency plays a crucial role in

the stability of teleoperation systems, specifically bi-

directional teleoperation systems that require fast loop

update rates.

3. Results and Discussion

In Fig. 7, we report mean squared error of estimated tool

pose compared to the ground truth obtained using Po-

laris sensor for different network depth and layer size for

both DFNN and LSTM architectures. As it can be seen,

having more than two deep layers increases the network

complexity and affects the processing time. However, it

appears that this does not reduce the error further. The

validity of the identified error for surgical robotics we

compared to [30] states the motion trajectories in cardiac

surgery for relevant movements to be 0.22 to 0.81mm in

the lateral plane (x/y-axis) and 0.52.6mm out of the

plane (z-axis). Our errors currently exceed the stated

values. Thus, increasing the number of the neurons over

20 in each layer does not improve networks efficiency.

Data shown in Fig. 8 demonstrate that the network can

accurately estimate tool orientation and jaw angle while

the results in Table 1 show an advantage of the LSTM

neural network in terms of accuracy accompanied with

Fig. 7. Effect of the number of neurons in each layer (n) and the number of hidden layers (l) on estimation accuracy (mean squared

error with normalized units) and execution time in seconds.

Fig. 8. (Color online) Surgical tool pose and jaw angle. Neural Network estimated values from unused data (red) and real data from

optical sensor as ground truth (blue) ½�TðtÞ; �TðtÞ;  TðtÞ; jawTðtÞ� (the same slice as in Fig 6).
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almost three times longer processing time. The close

match between the predicted and real data values pre-

sented in Fig. 8 is encouraging considering that the

predicted data were derived from the first prototype of

our system, which was clearly meant to provide proof of

concept data. We are confident that the existing dis-

crepancies can be reduced markedly with the refinement

of our prototype.

Table 1. Final results from LSTM and DFNN models.

Model
DFNN LSTM

joints �T �T  T jawT �T �T  T jawT

Root mean squared error 7:5� 7:0� 12:1� 3:1� 7:2� 6:1� 10:9� 1:8�

r2 score on training set 91% 92%

r2 score on testing set 90% 91%

Execution time 0.16 s 0.46 s

Fig. 9. Input feature importance with respect to corresponding outputs (tool orientation or jaw angle).

Fig. 10. Result of the neural network trained with reduced inputs (only five most important joints involved in surgery) (mean

squared error with normalized units).

Fig. 11. Result of the neural network trained with PCA (five principal components as an input) (mean squared error with

normalized units).
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The importance of the input features for each

output variable is shown in Fig. 9. It can be seen that thj2 ,
thj4, and ffj3 are most important features for jaw opening

of the tool while the tool orientation largely dependence

on the thj2, wrj2, and ffj1. This analysis also highlighted

the less important joints such as mfj2 which impact on

teleoperation of the surgical instrument can be mostly

neglected.

When the two networks were trained and tested

using only five most important joints, LSTM network

demonstrated a better performance compared to DFNN

as shown in Fig. 10. These findings can be particularly

useful in designing a new system with a reduced number

of tracked joints and interfacing hardware complexity.

Figure 11 shows the neural network trained with five

principal components of the dataset. The LSTM neural

network demonstrated slightly better performance in

estimating the tool orientation.

4. Conclusion and Future Work

In this paper, we tested the hypothesis that motion of

surgical instruments that perform fine movements in

cardio surgery can be mapped to the hand/wrist motion

of the surgeon. However, more work is needed to refine

this approach and confirm its potential to enhance tele-

operation. A wearable nonobstructive hand/wrist and

surgical tool tracking system that can collect accurate

multi-point data were built and tested. We created a

mock up cardiac surgery test-bed where an experienced

cardio surgeon performed typical surgical tasks. The

collected datasets of hand/wrist joints as inputs and tool

motion as outputs were used to train two types of DNNs

— LSTM and DFNN. We compared performance of the

two networks using all captured inputs but also identi-

fied importance of each hand joint on the tool motion.

Performance of the two networks was again compared

using the smaller number of salient inputs to reduce the

network complexity. The implemented optimization

allows the use of fewer joint angles as control inputs in

order to achieve the same output performance. This

means that the surgeon could teleoperate a Castroviejo-

like instrument using the same type of hand movements

as in open access surgery, potentially decreasing/elimi-

nating surgeon’s cognitive and muscular fatigue cur-

rently experienced with teleoperated surgical robots.

Developing this approach further can address the need

for surgical retraining to undertake same procedures

through a completely different set of movements re-

quired in surgical robot teleoperation. Teleoperating a

surgical robot using a wearable hand tracking system,

combined with a VR headset would, as presented in [31],

provides the surgeon with a unique ability to operate the

robot closer to the patient and operating theatre team or

from any remote sit [4].

Future advances in implementing the wearable

tracking to a wider range of fine motion surgical instru-

ments for cardiac and vascular surgeries would help

establish and test the wearable tele-operation control

concept. We have begun extending this framework to

other surgical areas like arthroscopy with the similarly

sized operating fields. While these results are encour-

aging, more relevant data are necessary to implement

machine learning techniques which focuses us on con-

ducting further user studies in this and other surgical

scenarios. Another important area to focus would be

smoothness of the predicted signal and effect of the

signal smoothness and noise on accurate performance in

microsurgical robotics.
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