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Weak imposition of Dirichlet boundary conditions for analyses
using Powell-Sabin B-splines

Lin Chen, René de Borst∗

University of Sheffield, Department of Civil and Structural Engineering, Sheffield S1 3JD, UK

SUMMARY

Powell-Sabin B-splines are enjoying an increased use in the analysis of solids and fluids, including fracture
propagation. However, the Powell-Sabin B-spline interpolation does not hold the Kronecker delta property
and, therefore, the imposition of Dirichlet boundary conditions is not as straightforward as for the standard
finite elements. Herein we discuss the applicability of various approaches developed to date for the weak
imposition of Dirichlet boundary conditions in analyses which employ Powell-Sabin B-splines. We take
elasticity and fracture propagation using phase-field modelling as a benchmark problem. We first succinctly
recapitulate the phase-field model for propagation of brittle fracture, which encapsulates linear elasticity,
and its discretisation using Powell-Sabin B-splines. As baseline solution we impose Dirichlet boundary
conditions in a strong sense, and use this to benchmark the Lagrange multiplier, penalty and Nitsches
methods, as well as methods based on the Hellinger – Reissner principle, and the linked Lagrange multiplier
method and its modified version. Copyright c© 2018 John Wiley & Sons, Ltd.

Received . . .
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1. INTRODUCTION

Powell-Sabin B-splines are bivariate splines defined on unstructured triangulations [1] yielding

C1 continuity. Compared with tensor product B-splines, Powell-Sabin B-splines allow for a

straightforward adaptive refinement of the mesh. Indeed, remeshing is standard since established

algorithms for remeshing of triangles in the physical domain can be exploited. For this reason,

they can be used straightforwardly in two-dimensional analyses of solids and fluids. For instance,

Speleers et al. [2] have employed Powell-Sabin B-splines to solve advectiondiffusionreaction

problems, while Giorgiani and co-workers [3] have developed a Powell-Sabin scheme for the

solution of the 2D Euler equations in the supersonic regime. May et al. have utilised Powell-Sabin

B-splines to analyse bending of Kirchhoff-Love plates and damage evolution [4, 5]. Also Chen and

de Borst used for the propagation and damage evolution problems [6–9].

A disadvantage of Powell-Sabin B-splines is that they do not hold the Kronecker delta property.

Thus, the imposition of Dirichlet boundary conditions is not as straightforward as in finite element

methods. Speleers et al. [10, 11] treated Dirichlet boundary conditions imposed on Powell-Sabin B-

splines in the context of a finite element framework. Speleers et al. employed [2] Hermite basis

functions instead of B-spline basis functions to define the Powell-Sabin splines. However, the

Hermite basis does not form a partition of unity. Da Veiga et al. [12] used the Powell-Sabin B-

splines to address the Reissner-Mindlin plate problem, in which the Dirichlet boundary conditions
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2 LIN CHEN, RENÉ DE BORST

are imposed in a combination of strong format and weak form (Nitsche type). Giorgiani et al. [3]

used a strong format to impose Dirichlet boundary conditions, which is possible when an analytical

solutions is available for the problem. May et al. [5] and Chen et al. [6] used a linear interpolation

function to approximate the boundary values of Powell-Sabin B-splines. However, a systematic

study of the imposition of Dirichlet boundary condition when using Powell-Sabin B-splines is not

available.

In recent years many techniques have been developed for the implementation of Dirichlet

boundary conditions in numerical techniques which are non-interpolatory such mesh-free methods.

These techniques modify the weak form of the problem at hand by adding terms to the energy

functional. Examples are the Lagrange multiplier and penalty methods, Nitsche’s trick, the Hellinger

- Reissner (H-R) principle, and the linked Lagrange multiplier (LLM) method and its modified

version [13]. The aim of this contribution is to compare these techniques for the imposition

of Dirichlet boundary conditions when using Powell-Sabin B-splines. Furthermore, we link the

parametric behaviour of some methods with convergence theories, which provides guidance on the

choice of the algorithmic parameters.

Fracture propagation is taken as a benchmark problem to illustrate the concept of imposing

Dirichlet boundary conditions. For this reason we present a concise summary of phase-field

approximations of brittle fracture in anisotropic materials, followed by a review of the construction

of Powell-Sabin B-splines. Subsequently, we review and compare the aforementioned techniques

based on a modification of the weak form to impose Dirichlet boundary conditions. Two case studies

subsequently illustrate the numerical performance of these approaches: convergence aspects, and the

capturing of a characteristic physical phenomenon like crack kinking and zigzag crack propagation.

Figure 1. Two-dimensional crack (Γ) with a unit vector n normal to the crack path and the boundary.

2. PROBLEM STATEMENT

Figure 1 illustrates a cracked domain Ω, bounded by Γb such that, Γb = Γt

⋃

Γu. Γu is the Dirichlet

boundary with prescribed displacements û. Γt denotes the Neumann boundary with prescribed

tractions. Γ is the set of cracks where displacement fields u ∈ H1 (Ω \ Γ) can jump. H1 denotes

the Sobolev space of functions with square integrable first derivatives. n is the unit vector normal to

the surfaces.

A quasi-static crack propagation problem is considered as a representative example. A phase-field

model is used herein for modelling the fracture propagation. The phase-field approach to brittle

fracture has its origins in the so-called variational approach to fracture [14]. In it, crack initiation

and propagation are considered as a minimisation problem of a Griffith-like energy functional. The

Copyright c© 2018 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2018)
Prepared using nmeauth.cls DOI: 10.1002/nme



WEAK IMPOSITION OF DIRICHLET BOUNDARY CONDITIONS 3

total energy functional for the cracked body then reads:

E (u,Γ) = Eu (u,Γ)−Wext + Es (Γ)

=

∫

Ω\Γ

W(u) dΩ−

∫

Γt

u · t̂ dΓ +

∫

Γ

Gc(n) dΓ,
(1)

where the first term denotes the elastic energy, with W(u) being the energy density function. In this

contribution, isotropic linear elasticity is used such that W(u) = µ ε(u) · ε(u) + λ/2 tr(ε(u))2 with

εεε the small-strain tensor, and λ and µ Lamé’s constants. The second term is the potential energy of

external forces. The last term represents the anisotropic surface energy required to create the crack

according to the Griffith criterion. Gc(n) is an orientation-dependent fracture toughness.

Due to unknown locations of the displacement jump in the Griffith’s energy functional we must

reformulate Equation (1) in a regularised form: cracks are represented by a scalar phase field variable

d, ranging from 0 (away from the crack) to 1 (completely broken state):

E (u, d) = Eu (u, d)−Wext + Es (d)

=

∫

Ω

W(u, d) dΩ−

∫

Γt

u · t̂ dΓ +G0

∫

Ω

γ(d) dΩ,
(2)

where G0 is a scaling factor with the dimension of energy per unit surface, γ(d) being the crack

density function per unit volume. Obviously, in the absence of damage (d = 0), Equation (2)

becomes the classical linear-elastic energy functional.

A staggered approach is adopted for the solution of the coupled non-linear problem in Equation

(2) [15]. In the time-discrete evolution, given the displacement field u
(i−1) and the phase field

d(i−1) at time ti−1, the solution at time ti is obtained by solving the stationarity conditions for the

functional, Equation (2), under the unilateral constraint dn ≥ d(i−1), n being the iteration number.

The problem is hence split into a ‘displacement’ sub-problem and a ‘damage’ sub-problem. At each

time, the two sub-problems are solved iteratively until a convergence criterion is met.

The ’displacement’ sub-problem consists of the minimisation for uh when the phase-field variable

dh has been fixed:

u = Arg min
u∈Su

{Eu (u, d)−Wext} , (3)

where Su =
{

u ∈ H1(Ω), u|Γu = û
}

and û represents the prescribed displacements at Γu. For the

’damage’ sub-problem, the solution for dh is obtained through the minimisation of Equation (2) at

a fixed uh:

d = Arg min
d∈Sd

{Eu (u, d) + Es (d)} , (4)

where Sd =
{

d ∈ H1(Ω), d|Γd = d̂
}

and d̂ denotes the phase-field at Γd. For conciseness we herein

do not consider phase-field boundaries Γd.

In the present study Powell-Sabin B-splines have been used to discretise the solution space.

They describe the geometry and interpolate the displacement field u and the phase field d in an

isoparameteric sense:

x =

Nv
∑

k=1

3
∑

j=1

N j
kX

j
k = NeXe

u =

Nv
∑

k=1

3
∑

j=1

N j
kU

j
k = NeUe d =

Nv
∑

k=1

3
∑

j=1

N j
kd

j
k = Nede, (5)

where X
j
k represent the coordinates of the corners Q

j
k of Powell-Sabin triangles, Figure 2. U

j
k

and αj
k denote the degrees of freedom at Q

j
k and Nv is the total number of vertices. The indices

j = 1, 2, 3 imply that three Powell-Sabin B-splines are defined on each vertex k. Ne, Xe, Ue and

de are shape functions, coordinates, and degrees of freedom associated with each element e.

We now give a succinct description of Powell-Sabin B-splines [16]. We consider a triangulation T
with L triangles and Nv vertices, denoted by thick black lines in Figure 2(a). The triangulation T can

Copyright c© 2018 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2018)
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4 LIN CHEN, RENÉ DE BORST

Figure 2. Example of a triangulation T (thick black lines), Powell-Sabin refinement T ∗ (thin black lines) of
T , Powell-Sabin triangles (red) and Powell-Sabin points (blue). In (b) each triangle e is subdivided into six

mini-triangles. In (c) each mini-triangle has a barycentric coordinate system τ̄ .

be generated by any package for standard triangular elements, such as Gmsh [17]. To derive Powell-

Sabin B-splines, each triangle e is divided into six (n = 1, 2, · · · , 6) mini-triangles, cf. Figure 2(b).

This yields the Powell-Sabin refinement T ∗. For each vertex k of the triangulation T , we can obtain

the Powell-Sabin points (shown in green in Figure 2(a)) by the vertex itself and points lying at

the centre of the edges of T ∗. To obtain positive basis functions, we introduce a Powell-Sabin

triangle (shown in red in Figure 2(a)) to comprise all the Powell-Sabin points. Herein, we employ

the algorithm of [18] to find the minimum area triangle which encloses the convex polygon defined

by Powell-Sabin points. We further constrain Powell-Sabin triangles on the boundary as follows:

(1) for an angle of γ < 180◦ two edges of the Powell-Sabin triangle lie on the boundary; (2) for an

angle of γ = 180◦ one edge of the Powell-Sabin triangle lies on the boundary, cf. Figure 3.

After obtaining the Powell-Sabin triangle for each vertex k, the basis functions can be computed.

Three Powell-Sabin B-splines N j
k , j = 1, 2, 3, are defined on each vertex k with coordinates

Vk =
(

xk
1 , x

k
2

)

. Powell-Sabin B-splines have the following properties. For any Vk 6= Vl we have:

N j
k (Vl) = 0,

∂

∂x1
N j

k (Vl) = 0,
∂

∂x2
N j

k (Vl) = 0, (6)

and otherwise

N j
k (Vk) = ηjk,

∂

∂x1
N j

k (Vk) = βj
k,

∂

∂x2
N j

k (Vk) = γj
k, (7)

with
3

∑

j=1

ηjk = 1,

3
∑

j=1

βj
k = 0,

3
∑

j=1

γj
k = 0. (8)

The coefficients ηjk, βj
k and γj

k are obtained for each vertex k by solving:





η1k η2k η3k
β1
k β2

k β3
k

γ1
k γ2

k γ3
k









xk,1 yk,1 1
xk,2 yk,2 1
xk,3 yk,3 1



 =





xk yk 1
1 0 0
0 1 0



 , (9)

where Q
j
k =

(

xk,j , yk,j
)

are the coordinates of the Powell-Sabin triangle corners associated with

vertex k. When the coefficients ηjk, βj
k and γj

k have been determined we can compute the Bézier

Copyright c© 2018 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2018)
Prepared using nmeauth.cls DOI: 10.1002/nme



WEAK IMPOSITION OF DIRICHLET BOUNDARY CONDITIONS 5

extraction operator Ce for element e. This allows for an efficient computation of basis functions

and their derivatives as a traditional finite-element data structure can be employed. For instance, the

basis functions Ne in Equation (5) are computed from:

Ne = CeB, (10)

with the six Bernstein polynomials, contained in the vector B [6].

Normally, the shape function inside a triangular element is associated with 3× 3 Powell-Sabin

triangle corners or degrees of freedom. Here, the first ’3’ represents the three Powell-Sabin triangle

corners of each vertex, while the second ’3’ links to the three vertices of each triangle element. The

dimension of the vector Ne and the matrix Ce are 9× 1 and 9× 6, respectively. Each row of Ne

and Ce denotes the contribution of the Powell-Sabin triangle corner related to the element vertex.

A special case arises when computing the shape function along the triangle element boundary,

e.g., on the side V1V2 in Figure 2(b). The boundary shape function is then only related to the two

vertices at the element boundary itself, for instance vertex V1 and V2 on side V1V2, which yields

3× 2 degrees of freedom. Then, Equations (5) and (10) reduce to:

[Ne
b ]6×1 = [Ce

b ]6×6[B]6×1, xb = Ne
bX

e
b , (11)

with Ne
b the boundary shape function vector, Ce

b the Bézier extraction operator which comprises

the coefficients of the Powell-Sabin triangle corners linked to the element boundary vertices only,

and xb and Xe
b denote the coordinates at the element boundary and the coordinates of Powell-Sabin

triangle corners linked to the element boundary vertices, respectively.

3. IMPOSING DIRICHLET BOUNDARY CONDITIONS

Equations (7) and (8) show that Powell-Sabin B-splines do not hold the Kronecker-delta property

and are non-interpolatory at the vertex. Thus, imposing u = û on Γu is not as trivial as in standard

finite elements, and the weak form defined by Equation (2) cannot be employed. In this section, we

will discuss methods for imposing Dirichlet boundary conditions which circumvent this issue. For

conciseness we only consider displacement-type Dirichlet boundary conditions. Correspondingly,

the ’damage’ sub-problem in Equation (4) remains unchanged. Only the ’displacement’ sub-problem

(3) must be modified to enforce the displacement boundary conditions.

Figure 3. Imposing Dirichlet boundary conditions strongly at the corners of a Powell-Sabin triangle on
boundary vertices with an angle different from π (left) and equal to π (right).

3.1. Imposing Dirichlet boundary conditions strongly

When an analytical solution is available one can impose Dirichlet boundary conditions strongly [10].

This is done as follows. In Section 2 a special choice of the Powell-Sabin triangle is given along the

boundary: (i) for vertex k with an angle γ < 180◦, with two sides of the Powell-Sabin triangle placed

Copyright c© 2018 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2018)
Prepared using nmeauth.cls DOI: 10.1002/nme



6 LIN CHEN, RENÉ DE BORST

along two boundary edges, see Figure 3(left); (ii) for vertex k with an angle γ = 180◦ one side of

the Powell-Sabin triangle lies at the boundary edge, see Figure 3(right). Reformulating Equation (9)

in terms of the nodal degrees of freedom U results in:





ηak ηbk ηck
βa
k βb

k βc
k

γa
k γb

k γc
k









Uk,a

Uk,b

Uk,c



 =







Uk

∂Uk

∂x1

∂Uk

∂x2






, (12)

where Uk,i is the nodal degree of freedom of the Powell-Sabin triangle corner i (i = a, b, c),

associated with vertex k, Uk denoting the displacement at vertex k. ▽Uk =
[

∂Uk

∂x1

∂Uk

∂x2

]

is the

gradient of Uk.

For the case γ < 180◦, the coefficients ηik, βi
k and γi

k (i = a, b, c) satisfy:

ηak = ηck = 0, ηbk = 1,
[

βa
k

γa
k

]

· t = 0,

[

βc
k

γc
k

]

· v = 0,
(13)

with t and v being unit vectors along the boundary, see Figure 3(left)

t =
xa − xb

‖xa − xb‖
, v =

xc − xb

‖xc − xb‖
(14)

From Equations (12) and (13), we have:

Uk,b = Uk, Uk,a = Uk +
▽Uk · v
[

βa
k

γa
k

]

· v

, Uk,c = Uk +
▽Uk · t
[

βc
k

γc
k

]

· t

(15)

For the case γ = 180◦ the coefficients ηik, βi
k and γi

k (i = a, b, c) guarantee

ηak 6= 0, ηbk 6= 0, ηck = 0,
[

βc
k

γc
k

]

· v = 0,
(16)

where v denotes the unit vector along the boundary given in Equation (14), see Figure 3(right).

Equations (12) and (16) lead to:

Uk,a =
Uk∆1 − ηbk▽U

k · v

ηak∆1 − ηbk∆
, Uk,b =

−Uk∆+ ηak▽U
k · v

ηak∆1 − ηbk∆
, (17)

with ∆ =

[

βa
k

γa
k

]

· v, ∆1 =

[

βb
k

γb
k

]

· v.

Remark 1: Once Uk,i has been obtained, we can apply it directly in the system of equations like

in standard finite elements. We consider this way of imposing Dirichlet boundary conditions be a

strong format comparing to following approaches which employ a weak imposition of the boundary

conditions. The displacement Uk,i at each Powell-Sabin triangle corner is derived analytically in

Equations (15) and (17). We refer to this solution as the optimal solution.

3.2. Lagrange multiplier method

Dirichlet boundary conditions can be enforced weakly by introducing Lagrange multipliers λ to the

energy functional related to the displacement sub-problem (3), as follows:

EL (u, d,λ) = Eu (u, d)−Wext + El (u,λ)

=

∫

Ω

W(u, d) dΩ−

∫

Γt

u · t̂ dΓ +

∫

Γu

λ · (u− û) dΓ,
(18)

Copyright c© 2018 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2018)
Prepared using nmeauth.cls DOI: 10.1002/nme



WEAK IMPOSITION OF DIRICHLET BOUNDARY CONDITIONS 7

so that the ’displacement’ sub-problem (3) is reformulated as:

(u, λ) = Arg min
u∈H1(Ω)

max
λ∈H−1/2(Γu)

{

Eu (u, d)−Wext +

∫

Γu

λ · (u− û) dΓ

}

(19)

Lagrange multipliers λ introduce an additional unknown at the boundary Γu, which can be

interpreted as a traction, i.e. λ = σ (u) · n on Γu.

We discretise the Lagrange multipliers λ and the displacement field u on Γu using Powell-Sabin

B-splines:

λ =

Nbv
∑

k=1

3
∑

j=1

N j
kλ

j
k = Ne

bλ
e
b, u =

Nbv
∑

k=1

3
∑

j=1

N j
kU

j
k = Ne

bU
e
b , (20)

with Nbv the total number of vertices on the Dirichlet boundary Γu. The element shape function

matrix Ne
b has been given by Equation (11). λe

b and Ue
b denote the degrees of freedom associated

with the element boundaries. With this discretisation the ’displacement’ sub-problem (19) yields the

following system of equations:
[

K G

GT
0

] [

u
e

λe

]

=

[

F

FL

]

, (21)

where

K =

∫

Ωe

BTD(d)B dΩ G =

∫

Γe
u

NTNb dΓ F =

∫

Γe
t

NT
t̂ dΓ FL =

∫

Γe
u

NT
b û dΓ, (22)

and N , Nb the shape functions related to the element (Equation (10)) and the element boundary

(Equation (11)), respectively. D(d) is the phase-field based element stiffness matrix, which relates

the stress σσσ(u, d) to the strain εεε(u). In Voigt notation:

σσσ = [σx, σy, τxy]
T
=

∂W(u, d)

∂εεε(u)
= D(d)εεε(u) = D(d)Bu

e and εεε(u) = [εx, εy, γxy]
T

(23)

with B = L(N) the strain-nodal displacement matrix where

L =





∂/∂x 0
0 ∂/∂y

∂/∂y ∂/∂x



 (24)

As is well-known, the dimension of the system of equations (21) increases when adopting the

Lagrange multiplier method. Moreover, the resulting stiffness matrix is no longer banded, nor

positive definite.

3.3. Penalty method

By introducing a penalty parameter β, the ’displacement’ sub-problem (3) can be modified as:

u = Arg min
u∈H1(Ω)

{

Eu (u, d)−Wext +
β

2

∫

Γu

(u− û)2 dΓ

}

, (25)

which yields the following system of equations:

(K +Kp)u
e = F + Fp (26)

with

Kp = β

∫

Γe
u

NTN dΓ Fp = β

∫

Γe
u

NT
û dΓ (27)

Clearly, the dimension of the system of equation is now not increased. Moreover, the resulting

matrix is symmetric and positive definite, provided that K is symmetric and β is sufficiently large.

Copyright c© 2018 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2018)
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8 LIN CHEN, RENÉ DE BORST

However, when increasing β, the system matrix will become ill-conditioned. A convergence rate of

the order h(2p+1)/3 in the energy norm can be achieved when [19]:

β = ηh−(2p+1)/3, (28)

h being the element size and p being the order of the basis function order (here: p = 2). The constant

η should be large enough to enforce the required boundary condition.

3.4. Nitsche’s method

Nitsche’s form for the ’displacement’ sub-problem (3) can be stated as:

u = Arg min
u∈H1(Ω)

{

Eu (u, d)−Wext −

∫

Γu

σσσ(u, d) · n · (u− û) dΓ +
β

2

∫

Γu

(u− û)
2

dΓ

}

, (29)

yielding
[

K +Kp −
(

KN +KT
N

)]

u
e = F + Fp − FN (30)

with

KN =

∫

Γe
u

BTD(d)n̂TN dΓ FN =

∫

Γe
u

BTD(d)n̂T
û dΓ (31)

where

n̂ =

[

nx1
0 nx2

0 nx2
nx1

]

(32)

n = [nx1
, nx2

] being the normal vector of Dirichlet boundary Γu.

Like in the penalty method the dimension of the system of equations remains the same as that

of K. Also, the system of equations remains symmetric and positive definite, provided that K is

symmetric and β is large enough. However, the system equations may become ill-conditioned for

increasing values of β. An optimal convergence in the L2 and energy norms can be attained if β is

proportional to h−1, i.e. β = ηh−1 [20].

3.5. Hellinger-Reissner (HR) principle

The H-R principle is introduced by two separate unknown fields, i.e., the displacement field u and

the stress field σσσ, respectively. The energy functional related to the displacement sub-problem (3) is

given as

EH−R (u,σσσ, d) = E∗ (u,σσσ, d)−Wext + Eh−r(u,σσσ)

=

∫

Ω

W(u,σσσ, d) dΩ−

∫

Γt

u · t̂ dΓ−

∫

Γu

σσσ · n · (u− û) dΓ,
(33)

and

(u, σσσ) = Arg min
u∈H1(Ω)

max
σσσ∈L2(Γu)

EH−R (u,σσσ, d) (34)

The stress field is also discretised using Powell-Sabin B-splines:

σσσ =

Nv
∑

k=1

3
∑

j=1

N j
kσσσ

j
k = Ne

sσσσ
e, (35)

linking to the strain via εεε(u) = D(d)−1σσσ.

From Equation (33) the resulting system of equations becomes:

[

0 As

AT
s −Ks

] [

u
e

σσσe

]

=

[

F

−Fs

]

, (36)

Copyright c© 2018 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2018)
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with

Ks =

∫

Ωe

NT
s D(d)−1Ns dΩ Fs =

∫

Γe
u

NT
s n̂

T
û dΓ

As =

∫

Ωe

BTNs dΩ−Gs Gs =

∫

Γe
u

NT
n̂Ns dΓ

(37)

which leads to the following set of equations for the displacement:

AT
s u

e = KsA
−1
s F − Fs (38)

Obviously, no additional variables have been added in the assembled set of equations for u
e.

However, due to the inverse of element stiffness matrix D(d) in Ks, Equation (38) may lead to

unstable solution when the solid is nearly broken due to D(d)|d≈1 ≈ 0. We will show unstable

results in Section 4.2.

3.6. Linked Lagrange multiplier (LLM) method

The LLM method uses an additional stress field acting as Lagrange multipliers to impose the

Dirichlet boundary condition [21]. Its original form modifies the weak form of ’displacement’ sub-

problem (3) directly: Find u ∈ H1(Ω) and σσσ ∈ L2(Γu) such that

∫

Ω

εεε(δu) : σσσ(u, d) dΩ−

∫

Ω

δσσσ : (εεε(σσσ)− εεε(u)) dΩ−

∫

Γt

u · t̂ dΓ

−

∫

Γu

δu · σσσ · n dΓ−

∫

Γu

δσσσ · n · (u− û) dΓ = 0,

(39)

with σσσ(u, d) = D(d)εεε(u); εεε(σσσ) is a function of the independent variable σσσ, εεε(σσσ) = D(d)−1σσσ.

Employing the discretisation for the stress in Equation (35), the weak form (39) leads to:

[

K −Gs

AT
s −Ks

] [

u
e

σσσe

]

=

[

F

−Fs

]

, (40)

yielding:
(

K +GsK
−1
s AT

s

)

u
e = F +GsK

−1
s Fs (41)

The LLM approach resembles the H-R principle and the Lagrange multiplier method. The

classical Lagrange multiplier approach only addresses the variable difference (displacement) on

the Dirichlet boundary. The LLM approach enforces the variable difference (strain) in the whole

domain, see the second integral in Equation (39). Different from the H-R principle, the strain energy

in the first integral in Equation (39) is given as a function of the displacement. More importantly,

the inverse of Ks in Equation (41) fixes the issue in the Hellinger-Reissner principle when the solid

is nearly broken. Stable solutions are obtained in Section 4.2.

The LLM approach produces a non-symmetric system matrix (40). A modified version of the

LLM approach has been proposed in [22]. The independent variable σσσ is only defined in the domain

ΩΓu . ΩΓu is the set of discretised triangle elements with at least one node or one side touching

Dirichlet boundary Γu. The weak form in Equation (39) becomes:

∫

Ω

εεε(δu) : σσσ(u, d) dΩ−
1

m

[

∫

ΩΓu

δσσσ : (εεε(σσσ)− εεε(u)) dΩ−

∫

ΩΓu

εεε(δu) : (σσσ − σσσ(u)) dΩ

]

−

∫

Γt

u · t̂ dΓ−

∫

Γu

δu · σσσ · n dΓ−

∫

Γu

δσσσ · n · (u− û) dΓ = 0,

(42)

yielding
[

K −KΓu As2

AT
s2 −Ks2

] [

u
e

σσσe

]

=

[

F

−Fs

]

, (43)

Copyright c© 2018 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2018)
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which leads to the assembled system equation for the displacement:

(

K −KΓu +As2K
−1
s2 AT

s2

)

u
e = F −As2K

−1
s2 Fs (44)

where

KΓu =
1

m

∫

Ωe
Γu

BTD(d)B dΩ Ks2 =
1

m

∫

Ωe
Γu

NT
s D(d)−1Ns dΩ

As2 =
1

m

∫

Ωe
Γu

BTNs dΩ−Gs,

(45)

Clearly, the system equation (43) is symmetric and banded provided that K is symmetric and

banded. The modified LLM approach has been proven to be stable if m > 1 [23]. In addition, due

to the inverse of Ks2 in Equation (43), unstable solutions are avoided, see Section 4.2.

4. NUMERICAL EXAMPLES

To assess the accuracy of the methodologies provided in previous sections, we will present two

benchmark examples: a linear elastic problem with a known analytical solution, and a crack

propagation problem with kinked crack paths.

Provided that no damage evolves in the solid, d = 0, Equation (2) becomes the energy functional

for linear elastic problems. For the linear elastic problem given in Section 4.1, analytical solutions

are available in the literature [24]. The performance of the approaches presented in Section 3 is

assessed using the H1 error norm. The error of each element is computed as [25]:

‖u− ū‖H1(Ωe)
=

√

(
∫

Ωe

(u− ū)T · (u− ū) dΩ +

∫

Ωe

(u− ū)′
T
· (u− ū)′ dΩ

)

(46)

where u stands for the analytical solution, ū denotes the approximate solution, and (u− ū)
′

is

the derivative of (u− ū) with respect to x1 and x2, respectively. The domain error is obtained by

summing up the element error:

‖u− ū‖H1(Ω) =

√

∑

e

(

‖u− ū‖H1(Ωe)

)2

(47)

The second example is dealing with kinked crack paths in a square plate. The energy functional

in Equation (2) should be used fully with a strongly anisotropic surface energy model [8, 26]:

E (u, d) =

∫

Ω

a(d)W(u) dΩ−

∫

Γt

u · t̂ dΓ +
G0

̟ℓ

∫

Ω

(

w(d) + ℓ4 ∇2d : C : ∇2d
)

dΩ, (48)

where ℓ is a regularization length, governing the width of the distributed crack. a(d) = (1− d)2 is a

degradation function, w(d) = 9d is a monotonically increasing function which represents the energy

dissipation per unit volume, and ̟ = 4
∫ 1

0

√

w(d) dd = 96/5 is a normalisation parameter. ∇2d is

a Hessian, i.e. (∇2d)ij =
∂2d

∂xi∂xj
and C is a positive-definite fourth-order tensor with the same

symmetries as the linear elastic stiffness tensor [27]. Assuming a cubic symmetry, three material

constants, C1111, C1122 and C1212, suffice to define C. The damage evolution then follows from (in

a strong format) [26, 28]:

2ℓ4G0

̟

(

2 (C1122 + 2C1212)
∂4d

∂x2
1∂x

2
2

+ C1111

(

∂4d

∂x4
1

+
∂4d

∂x4
2

))

+W(u) a′(d)ℓ +
G0

̟
w′(d) = 0,

(49)

complemented by the irreversibility condition ḋ ≥ 0. The resulting anisotropic surface energy Gc(θ)
then takes the form [26, 28]:

Gc(θ) = G0
4

√

C(θ), (50)

Copyright c© 2018 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2018)
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with

C(θ) =
1

4
(3C1111 + C1122 + 2C1212)

(

1 +
C1111 − C1122 − 2C1212

3C1111 + C1122 + 2C1212
cos θ

)

. (51)

For crack propagation problem, two sub-problems in Equations (3) and (4) are solved iteratively.

The ’displacement’ sub-problem is constrained by Dirichlet boundary conditions. Section 3

addresses different approaches to enforce it. To assess the performance of these approaches, we

will compare the crack propagation direction and the load-displacement response.

For the crack propagation direction, Chambolle has suggested that the underlying crack path

selection is related to the generalised maximum energy release rate criterion (GMERR) [29].

The GMERR criterion postulates that the crack will propagate along the direction θ such that

G(θ)/Gc(θ) attains a maximum among all θ ∈ [−π, π]. We will consider the prediction of the

GMERR criterion as a reference solution for the crack propagation direction.

4

4
R = 1

T
x
= 1 0. 1

1

Lagrange

(a) problem definition of the plate (b) H1 error norm

Figure 4. Linear elasticity: infinite plate with a circular hole – problem definition and H1 error norm. For

the penalty method and Nitsche’s method, the penalty parameter is β = 105. In the figure, mLLM denotes
the modified version of LLM method with the parameter m = 10 [22], while SIP represents the approach of

strongly imposing Dirichlet boundary conditions.

4.1. Linear elasticity: infinite plate with a circular hole

We consider an infinite plate with a circular hole (radius R = 1 m), see Figure 4(a). For this problem,

Speleers et al. [30] employed a quarter of an annulus to represent the infinite plate problem. Here we

consider a square plate with a hole to address this problem. The material parameters are: Young’s

modulus E = 100 N/m2, Poisson’s ratio ν = 0.0, and the thickness h = 1 m. The exact solutions

for the radial and the tangential displacement are [31]:

ur =
Txrcos (2θ)

2E

[

(1 + ν) + 4
R2

r2
− (1 + ν)

R4

r4

]

+
Txr

2E

[

(1− ν) + (1 + ν)
R2

r2

]

uθ = −
Txrsin (2θ)

2E

[

(1 + ν) + 2 (1− ν)
R2

r2
+ (1 + ν)

R4

r4

] (52)

where θ is the azimuthal coordinate. From this, the stress components can be derived as:

σr =
Tx

2

(

1−
R2

r2

)

+
Txcos2θ

2

(

3R4

r4
−

4R2

r2
+ 1

)

σθ =
Tx

2

(

1 +
R2

r2

)

−
Txcos2θ

2

(

3R4

r4
+ 1

)

σrθ =
Txsin2θ

2

(

3R4

r4
−

2R2

r2
− 1

)

(53)
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The solution for this problem has a stress concentration at (x1, x2) = (0, 1), but no singularity.

Hence, an optimal rate of convergence k = −p/2 = −2/2 = −1 in the H1 norm should be attained,

see Figure 4(b). In the figure, most solutions approach the optimal solution where Dirichlet boundary

conditions are imposed in a strong sense. Due to the influence of the penalty parameter β, the results

of the penalty method diverge from the optimal convergence rate. The solution which derives from

the H-R principle approaches the optimal rate of convergence, but the solution is not optimal because

of the appearance of the inverse of D in Equation (37).

Figures 5 and 6 show the solution in increasing values of the penalty parameter β for the penalty

method and Nitsche’s method, respectively. Figures 5(a) and 6(a) present convergence curves of

different choice of β. The penalty method and Nitsche’s method converge with a rate close to

1 in the H1 error norm if the penalty parameter β is increasing. Due to the consistent term in

Equation (29), Nitsche’s method converges fast to the optimal solution when increasing β compared

to the penalty method. Figures 5(b) and 6(b) show the condition number of the stiffness matrix for

the penalty method and for Nitsche’s method when increasing β. The condition number grows

linearly with the penalty parameter. Obviously, the condition number becomes larger for denser

discretisations, rendering the matrix ill-conditioned. The ill-conditioning reduces the applicability

of the penalty method. For Nitsche’s method, one can choose a small penalty parameter β to reduce

the ill-conditioning at the expense of a reduced accuracy, see Figures 6(a) and 6(b). Figures 7 and 8

show the error of the maximum principle stress σ1 for the penalty method and for Nitsche’s method,

respectively. The figures show a significant error level around the hole, where local refinement is

essential to smoothen the stress gradient [6, 25].
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(a) H1 error norm (b) stiffness matrix condition number

Figure 5. H1 error norm for the penalty method and the condition number of the stiffness matrix.

4.2. Crack kinking in a square plate

We now consider a unit square domain with an initial crack under pure mode-I loading. Figure 9(a)

shows the geometry and the boundary conditions. We consider the displacement at the boundary

corresponding to the singular stress field (parameterised by the stress intensity factor KI) around the

initial crack tip. The asymptotic displacement fields are given by:

ux1
=

KI

2µ

√

r

2π
cos

θ

2
(κ− cos θ)

ux2
=

KI

2µ

√

r

2π
sin

θ

2
(κ− cos θ)

(54)

where µ = E/2(1 + ν), κ = 3− 4ν for plane strain and κ = (3− ν)/(1 + ν) for plane stress

conditions, and (r, θ) are polar coordinates with origin positioned at the crack tip. With a suitable

Copyright c© 2018 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2018)
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Figure 6. H1 error norm for Nitsche’s method and the condition number of the stiffness matrix.

(a) error in σ1 with Dofs=534 (b) error in σ1 with Dofs=210852

Figure 7. Error in maximum principal stress σ1 for the penalty method (penalty parameter β = 108).

(a) error in σ1 with Dofs=534 (b) error in σ1 with Dofs=210852

Figure 8. Error in maximum principal stress σ1 for Nitsche’s method (penalty parameter β = 108).

rescaling of the loading [32], we set the Young modulus E = 1. Poisson’s ratio is set to ν = 0.3.

Plane-stress conditions are assumed.

Here, we consider the scaling surface energy G0 = 1 and the strongly anisotropic surface energy

of the form Gc(θ) =
4

√

1 + 0.8 cos 4 (θ + θ0) by setting the parameters C1111 = 1.8, C1122 = −1.7
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Figure 9. (a) Geometry and boundary conditions for a square plate. The displacement is applied at the
boundary corresponding to the asymptotic crack field with a given mode-I (KI) stress intensity factor. The
initial crack is represented as two overlapping sides; (b) polar plot of the reciprocal surface energy 1/Gc(θ),

with Gc(θ) = 4

√

1 + 0.8 cos 4 (θ + θ0).

and C1212 = 0.15 in Eq. (50), and then apply the standard transformation for the rotation of C

over an angle θ0 [33]. θ0 denotes the material orientation with respect the x1-axis, see Figure 9(b).

θ0 = π/90 has been chosen. The regularisation length is given as ℓ = 0.02.

Figure 10. Load-displacement response and evolution of the elastic and surface energies. The force is
obtained by summation of the loads in the x2-direction along the top boundary. The displacement is
parameterised by the stress intensity factor KI, see Equation (54). For the penalty method and Nitsche’s

method, the penalty parameter is β = 108. mLLM denotes the modified version of LLM method with the
parameter m = 10 [22].

The computed load-displacement curve, as well as the elastic and surface energies are shown in

Figure 10. In general, a good agreement is obtained between different approaches, except for the

solution which derives from the H-R principle. Due to the inverse of D(d) in Equation (38), unstable

solutions are obtained when the solid is nearly broken, yielding D(d)|d≈1 ≈ 0.

In Figure 10, the jump in the force and the energies relates to the re-initiation of the crack

associated with an add-crack of a finite length appearing in a single time step [33], see Figure

11. The jump of the crack is consistent with theoretical analyses [29], which states that a kinking

crack must be associated with a jump in time and space of the crack propagation.

Figure 11 shows the crack kinking path obtained from the phase-field model. The figure also

presents the crack kinking angle θ derived from the GMERR criterion [33], indicated as the red

arrow. Obviously, the results of the phase-field simulations well match that of the GMERR criterion,

except for the solution which derives from the H-R principle because of the existence of the inverse

of D(d). In general, the algorithm of imposing Dirichlet boundary condition well captures the crack

Copyright c© 2018 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2018)
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kinking behaviour, and well resolves the crack path, again with exception of the solution which

derives from the H-R principle.

(e)(d)

(a) (b)

(f) (g)

(c)

Figure 11. Contour plot of phase field d under θ0 = π/90: (a) strongly imposing Dirichlet boundary
condition, (b) H-R principle method, (c) modified version of LLM method, (d) LLM method, (e) Nitsche’s
method, (f) penalty method, (g) Lagrange method. For the penalty method and Nitsche’s method, the penalty

parameter is β = 105. In the figure, the crack kinking angle θ from the GMERR criterion [33] is shown,
indicated as the red arrow. The crack kinking angle θ only presents in figures (a) and (b) for conciseness.

5. CONCLUDING REMARKS

Weak approaches allow Dirichlet boundary conditions to be imposed in Powell-Sabin B-spline

based analysis. In the current study, we have considered fracture problems using the phase field

method. We have discussed imposing Dirichlet boundaries in a strong sense, the Lagrange multiplier

and penalty methods, Nitsches method, the Hellinger-Reissner principle, the LLM method and its

modified version. We have compared them in two case studies to assess the versatility and accuracy

of these approaches.

For elastic problems, all approaches attain an optimal convergence rate. The penalty method and

Nitsche’s method require a special choice of the penalty parameter. The applicability of the penalty

method is reduced due to the ill-conditioning of the resulting matrix and the lack of consistency of

Copyright c© 2018 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2018)
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the weak formulation. Nitsche’s method introduces new terms in the weak form in order to maintain

consistency and coercivity of the bilinear form. The H-R principle does not give an optimal solution

due to the existence of the inverse of the stiffness matrix D. For fracture problems, most methods

well capture the crack propagation, agree well with the GMERR criterion, with exception of the

method which stems from the H-R principle because of the appearance of the inverse term D(d).

ACKNOWLEDGEMENT

Financial support from the European Research Council (ERC Advanced Grant 664734 PoroFrac) is

gratefully acknowledged.

DATA AVAILABILITY STATEMENT

Data sharing is not applicable to this article as no datasets were generated or analysed during this

study.

CONFLICT OF INTEREST

The authors declare that there is no conflict of interest regarding the publication of this paper.

REFERENCES

[1] Powell MJD, Sabin MA. Piecewise quadratic approximations on triangles. ACM Transactions

on Mathematical Software (TOMS) 1977; 3:316–325.

[2] Speleers H, Manni C, Pelosi F, Sampoli ML. Isogeometric analysis with Powell-Sabin splines

for advection-diffusion-reaction problems. Computer Methods in Applied Mechanics and

Engineering 2012; 221:132–148.

[3] Giorgiani G, Guillard H, Nkonga B, Serre E. A stabilized Powell-Sabin finite-element method

for the 2D Euler equations in supersonic regime. Computer Methods in Applied Mechanics

and Engineering 2018; 340:216–235.

[4] May S, Vignollet J, de Borst R. Powell-Sabin B-splines and unstructured standard T-splines

for the solution of Kirchhoff-Love plate theory using Bézier extraction. International Journal
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