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ABSTRACT

Spline-basedmeshes allow for a higher inter-element continuity. For coupled problems, e.g. poroelasticity, differentmeshes with different orders
of interpolation are normally used for the various fields in order to avoid spurious oscillations. When including discontinuities in these meshes,
there exist several options for the discretisation. Herein we will discuss two options which use T-splines, one aiming at a minimum number
of degrees of freedom around the crack tip, the other trying to maximise this number. Both meshes retain a higher-order continuity along the
fracture, but the mesh whichmaximises the number of degrees of freedommesh introduces two additional degrees of freedom around the crack
tip to allow for a sharper crack. The two discretisations are used to simulate a pressurised fracture inside a poroelastic material and the results are
compared to results obtained using a Non-Uniform Rational B-Spline (NURBS) mesh. A comparison between the two discretisations shows
the effect of including additional degrees of freedom close to the crack tip. However, both meshes yield similar results further away from the
crack tip. It is shown that both T-spline meshes capture a fully closed discontinuity at the fracture tip, whereas the NURBS mesh retains a small
opening due to the discontinuity which exists for the cracked as well as the intact elements. A fully closed fracture aperture results in T-splines
with a lower discontinuity pressure compared to NURBS, making T-splines more suitable for simulations in which the fracture propagation is
limited by the fluid transport within the fracture.

KEYWORDS: T-splines, isogeometric analysis, fracture, poroelasticity

1. INTRODUCTION

Anadvantage of using spline-based interpolation functions com-
pared to standard Lagrangian polynomials is their increased
inter-element continuity. When simulating fluid flows within
poroelastic materials, this increased continuity allows for con-
tinuous fluid fluxes between the elements [1], thereby fulfilling
conservation ofmass not just on a per-element basis, but also lo-
cally across element boundaries. Moreover, this increased con-
tinuity allows for more advanced models for the simulation of
fluid flows within fractures [2], since the fluid velocity is contin-
uous rather than discontinuous as would be the case when using
standard Lagrangian polynomials.
Poroelastic problems are typically solved using a

displacement-pressure (u − p) formulation. A requirement
is then that the Ladyzhenskaya–Babuška–Brezzi (or inf-sup)
condition [3–5] is satisfied, which typically results in the use
of unequal order meshes to prevent spurious oscillations [6].
Similar oscillations are encountered in other fields, e.g. fluid
mechanics, when equal-order meshes are used for the pressure
and the velocity [7, 8].While it is possible that these oscillations
do not occur when using equal order meshes, they tend to
dominate the solution when they occur. This necessitates the
use of complex stabilisation schemes to retain usable results
when using the same interpolants for the displacements and
pressure [9–11]. Non-Uniform Rational B-Splines (NURBS)

meshes using different interpolation function orders for the
displacements and pressures can be easily generated through
p-refinement [12]. This ease of generating unequal order
meshesmakesNURBSwell-suited for the simulation of coupled
problems such as poroelasticity.
NURBS are defined using global knot vectors, allowing for

smaller and deformed elements only if the number of elements
in the horizontal and vertical directions remains constant. As
a result, mesh refinement near areas of interest is normally not
possible without introducing new elements throughout the do-
main. Furthermore, when simulating fractures using interface el-
ements they need to be inserted along a line crossing the entire
domain. This creates further issues, requiring a dummy stiffness
and lumped integration schemes to be used to prevent traction
and fracture inflow oscillations [13, 14]. Furthermore, special
integration schemes are needed near the fracture tip to prevent
non-physical amounts of fluid from entering the fracture [14].
There exist splinediscretisation schemeswhich allow formesh

refinement. Hierarchical NURBS permit smaller elements to be
used near areas of interest [15, 16], but do not allow for a single
interface element to be inserted to propagate a fracture [17]. T-
splines also allow for mesh refinement [18–21], and also make
it possible to insert single interface elements [22, 23].
In this paper, we will describe how to generate meshes of

unequal order T-splines which include discontinuities. The
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670 • Unequal order T-spline meshes for fracture in poroelastic media

Figure 1 Possibilities to create interface elements for a cubic mesh in index (outer coordinate numbering) and parametric (inner coordinate
numbering) spaces. Black lines are meshlines, red lines are reduced continuity lines, markers are control points/anchors, blue squares are
elements and dotted lines are interface elements.

use of T-splines allows for several options with regard to the
representation of discontinuities, of which two possible discreti-
sation options are explored. These two meshes are used to sim-
ulate a typical poroelasticity case, and their results are compared
to a discretisation using NURBS, showing the impact of the dif-
ferent discretisation choices, and highlighting the advantages of
T-splines.

2. MESH GENERATION

T-spline meshes are defined through a T-mesh, given in an in-
dex/parametric space [18]. On this mesh, the anchors corre-
spond to control points in thephysical space.These anchors each
have their own local knot vector, which are defined through the
mesh lines. An example of a T-mesh in index space is given in
Fig. 1. By having multiple mesh lines in the index space corre-
sponding to the same value in the parametric space, knots are
repeated and the continuity is reduced at the location of the re-
peated knots [24]. Since themesh lines forT-meshes are allowed
to start and stop at each perpendicular mesh line, a C−1 conti-
nuity can be inserted between elements to represent a fracture
without creating aC−1 continuity between elements that do not
represent the fracture, which is different fromNURBS.

The shape functions created through theknot vectors occupy a
square spanned by these knot vectors. This introduces a reduced
continuity at the edge of the space occupied by the shape func-
tion. For most cases, this reduced continuity coincides with a
mesh line, whichwere inserted on purpose to create this reduced
continuity.However, whenmesh lines terminate, the shape func-
tions using those mesh lines will create additional reduced con-
tinuity lines, as shown in Fig. 1. To use T-splines in a similar
manner as NURBS and standard Lagrangian finite elements, el-
ements are defined on the T-mesh. These elements are enclosed
by the combination of mesh lines and reduced continuity lines,
creating an element when a non-zero area is covered in the para-
metric space [25]. Similarly, interface elements are createdwhen
a non-zero length is covered by the mesh lines and reduced con-
tinuity lines together representing a C−1 continuity [24].
This makes it possible to choose how the interface elements

are used to represent the fracture. The approach taken by [22–
24] is to isolate the fracture from the still-to-fracture part by
inserting a C0 continuity line perpendicular to the fracture, as
shown inFig. 1a. Interface elements only correspond to themesh
lines, while the reduced continuity lines are contained by the
C0 continuity line.When the fracture is propagated, the reduced
continuity is left in place, resulting in a reduced continuity in be-
tween the interface elements.
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Figure 2 Example of mesh refinement layers for a cubic mesh. Black lines are meshlines, red lines are reduced continuity lines, markers are
control points/anchors, blue squares are elements, and dotted lines are interface elements.

Figure 3 Possibilities to create interface elements for a quartic mesh, compatible with the mesh from Fig. 1b.

An alternative approach is to insert interface elements at the
mesh lines and reduced continuity lines, as shown inFig. 1b.This
has as major advantage that the higher-order continuity is pre-
served, both around the fracture tip in the porous material and
between the interface elements at the fracture.However, this lim-

its the number of shape functions near the crack tip, slightly re-
ducing the possibility to represent the interstitial pressure jump
close to the crack tip. This disadvantage is smaller when finer
meshes are used, but the reduced continuity resulting from the
first approach remains. Therefore, the second approach will be
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672 • Unequal order T-spline meshes for fracture in poroelastic media

used as it will result in a continuous fluid velocity within the
fracture.
For mesh refinements near the discontinuity and areas of in-

terest a similar consideration is possible. Either isolate the differ-
ent refinement layerswithC0 continuity layers, or utilise reduced
continuity lines to define some of the smaller elements. While
complicating the mesh generation, the last option preserves the
higher inter-element continuity and is therefore used here, with
an example of the refinement layers shown in Fig. 2a. It should
be noted that care has to be taken when combining mesh refine-
ment layers with interface elements. For a cubic mesh, layers of
at least three small elements need to surround the discontinu-
ity to isolate the discontinuity from the coarser elements. For
example, the interface elements defined through reduced con-
tinuity lines are defined through the anchor at (4,21) and (5,21)
(among others). If only a 2-element refinement layer were used,
Fig. 2b, the anchor at (4,21) would suddenly use the coarser ele-
ment size to create reduced continuity lines at the discontinuity,
forcing the discontinuity to propagate two interface elements at
a time.

2.1. Unequal ordermeshes

Next to a cubic mesh for the interstitial fluid pressure, a quar-
tic mesh is needed for the solid displacement. This quartic mesh
needs to represent the exact same geometry and elements as the
cubic mesh to enable the coupling between the solid and fluid.
Therefore, the quartic mesh requires the same inter-element
continuity as the cubic mesh, and thus requires additional mesh
lines such that every mesh line and reduced continuity line is re-
peated once.
Since reduced continuity lines for both quartic and cubic

meshes have the same length in the index space, and since each
mesh line is repeated for the quartic mesh, the reduced conti-
nuity lines have different lengths in the parametric (and there-
fore in the physical) space. Cubic meshes contain two addi-
tional interface elements due to these reduced continuity lines,
as shown in Fig. 1b, whereas only a single additional inter-
face element is created for the quartic mesh, Fig. 3. This is re-
solved by inserting additionalmesh lines at the discontinuity, re-
sulting in equal discontinuity length for the quartic and cubic
meshes.
The discontinuity near the fracture tip is allowed to contain

an extra mesh line, as shown in Fig. 3. While this extra mesh line
does not add an extra interface element due to the repeated knot,
it does add an extra control point for the quartic mesh. This in-
troduces an extra interpolation function, as shown in Fig. 4, and
allows for a sharper fracture tip. Both meshes in the parametric
space result in the samemesh and interface elements in the phys-
ical space. In the next section, the effect of this choice on the re-
sulting fracture opening will be analysed.
Similar issues arise for mesh refinement, as shown in Figs. 9

and 10. Additional mesh lines now need to be inserted
tangentially to the refinement layer in order to match the ele-
ments and inter-element continuity between the meshes. The
repeated mesh lines in the parametric space offer a choice at
this point, allowing for an extra layer of anchors/mesh lines to
be inserted while still corresponding to the discretisation of the
cubicmesh.Herein, the choice has beenmade to use aminimum

Figure 4Discontinuous interpolants at the interface, and values
across the discontinuity by imposing−1, 1 at all control points.
Results use the parametric coordinate x, corresponding to the
horizontal axis in the referenced figures.

required number of anchors instead of using an additional layer,
mainly to limit thenumber of degrees of freedomassociatedwith
the solid displacement (which has much more anchors/control
points due to the repeated mesh lines).

2.2. Discontinuity specific degrees of freedom

When simulating pressurised fractures, the pressure inside the
fracture is defined through separate degrees of freedom, which
are solely defined on the discontinuity. If these degrees of free-
dom were solely added to the discontinuous control points, the
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Figure 5 Example of the interpolants used for the discontinuity
pressure.

pressure at the fracture tip would be forced to be equal zero.
To allow the fracture pressure at the fracture tip to be non-zero,
discontinuity pressure degrees of freedom are added to all the
control points located at the bottomof the interface elements, ir-
respective whether they are duplicated with a top node to create
aC−1 discontinuityor are stillC0 continuous.Theparts of the in-
terpolation functions that are not contained within an interface
element are disregarded, and are only included when the frac-
ture propagates to create new interface elements covering their
length. The resulting interpolation functions and the “ ignored”
parts of these functions are shown in Fig. 5.

2.3. Fracture propagation

The fracture is propagated by creating new interface elements
throughmesh line insertions, as shown inFig. 6.To limit remesh-
ing, a C0 continuity line is inserted at the future fracture path
when the mesh is generated. This simplifies mesh line insertion,
since only the location of the anchors in the parametric space is
changed, but not the location of the control points in the phys-
ical space. The Bézier extraction operators for the interior ele-
ments are not changed by propagating the fracture along the pre-
insertedC0 continuity line. Furthermore, theBézier extractor for
the newly created interface elements can be directly taken from
the neighbouring interior elements.
The discontinuity inside the cubic mesh is propagated by in-

serting a single mesh line one interface element behind the frac-
ture tip, as shown in Fig. 6a. This creates a new anchor at the end
of this mesh line and creates a new interface element to propa-
gate the fracture. The control point corresponding to this newly
created anchor is initialised by setting the displacements and in-
terstitial fluid pressure equal to the pre-existing control point at
the same location, now belonging to the bottom of the disconti-
nuity.A similar procedure is applied to thequarticmeshes,where
inserting twomesh lines and two anchors creates a single new in-
terface element and two new control points, as shown in Fig. 6b.

3. POROELASTICITY

To compare the differentmeshes, a poroelastic case is simulated.
The porous material is governed by the momentum balance of

Figure 6 Fracture propagation by inserting the green mesh lines for the cubic and quartic meshes from Figs. 1b and 3b.
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674 • Unequal order T-spline meshes for fracture in poroelastic media

Figure 7T-spline and NURBSmeshes used for the example case in physical space.

the combined solid and fluid [26, 27]:

∇ · (σs − αpI) = 0, (1)

using the linear-elastic stresses in the porous solid σs, the inter-
stitial fluid pressure p and the Biot coefficient α. In addition, the
mass balance for a Newtonian fluid is given by:

1

M
ṗ+ α∇ · u̇ + ∇ ·

(

−
k

μ
∇p

)

= 0, (2)

with BiotmodulusM, intrinsic permeability k and fluid viscosity
μ. Theboundary conditions for these equations are given for the
external boundaries Ŵ by:

u = u or σs · n = τ, (3)

p = p or −
k

μ
∇p · n = q, (4)

using the prescribed displacements and pressures u and p, re-
spectively, and theprescribed tractions andfluid inflows,τ andq,
respectively. The tractions at the discontinuity Ŵd are governed
by:

τd = τs([[u]]) − pdnd, (5)
using an exponential traction-separation law to relate the dis-
placement jump [[u]] to the solid interface traction τs. The fluid
pressure within the fracture, pd, is treated as an independent de-
gree of freedom, resulting in a discontinuous pressuremodel be-
ing used for the fracture [14, 28]. This allows the fracture inflow
onŴd to be given by:

qd = ki (p− pd) , (6)

using a constant interface permeability ki. This is appendedwith
the mass balance within the fracture:

ki(2pd−p+
−p−)−

∂

∂xd

(

(nd · [[u]])3

12μ

pd

∂xd

)

+
nd · [[u]]

∂t
=0,

(7)

with the gradients of the pressure determined along the fracture
in the fracture-local coordinate xd.
These equations allow for a poroelastic material to be de-

scribed using the interstitial and discontinuity pressures, and the
solid displacement. Both pressures are discretised using cubic
T-splines, with the interstitial fluid pressure discretised on the
complete domain while the discontinuity pressure is solely rep-
resented on the discontinuity. The displacements are discretised
using quartic T-splines, in an attempt to satisfy the inf-sup con-
dition and to prevent possible non-physical oscillations.

4. EXAMPLE

We simulate a typical hydraulic fracturing case consisting of a
square 0.25 m × 0.25 m domain, with an initial fracture of
Lfrac = 5mmat the centre of the left boundary as shown in Fig. 8.
A fluid inflowQin = 10−5 m2/s is imposed on the left, with this
fluid inflow driving the fracture along a horizontalC0 continuity
line. The solidmaterial is characterised through aYoung’smodu-
lus E= 25.85GPa, a Poisson ratio ν = 0.18 and a bulk modulus
Ks = 13.46GPa. A water-like fluid is simulated, using a vis-
cosity μ = 0.5 mPa s and a bulk modulus Kf = 0.2 GPa.
The fracture is characterised through an exponential traction-
separation law, using a tensile strength ft = 1.7MPa and
a fracture energy Gc = 0.2 kN/m, and a constant interface
permeability ki = 10−10 m/Pa s to govern the fracture outflow.
Finally, three different intrinsic permeabilities are used for the
porousmaterial, k= 10−16 m2, k= 10−17 m2 and k= 10−18 m2,
respectively, allowing to investigate the influence of fluid
leak-off.
The domain is discretised using three distinct layers of ele-

ments: 248 × 6 square elements near the discontinuity (with
the elements slightly deformed such that the initial discontinu-
ity length corresponds to 5 elements), surrounded by layers of
124 × 3 and 62 × 9 elements, as shown in Fig. 7a. The result-
ing cubic mesh used for the fluid is shown in Fig. 2, and the
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Figure 8Geometry used for the poroelastic example case.

two quartic meshes used for the solid displacement are shown
in Fig. 9 for the mesh using the minimum amount of degrees of
freedomat the fracture tip, andFig. 10 for themaximumamount.
These meshes result in a total of 29 782 and 29 784 degrees of
freedombefore fracture propagation, respectively. The temporal
discretisation has beendone through anEuler backward scheme,
using a constant time step�t= 1ms. The results are compared
with the NURBS-based solution from [14], which used 250 ×

20 rectangular elementswith a total of 52854degreesof freedom
(Fig. 7b).

4.1. Results

The fracture propagation is shown in Fig. 11 for the two
T-spline meshes and for the NURBS reference case. The
two T-spline meshes result in the same fracture length,
while the NURBS mesh matches for the high permeabil-
ity, but is a few elements ahead for the medium and lower
permeabilities.
The fracture aperture, Figs. 12 and 13, shows the influence of

the interpolants near the fracture tip.BothT-splinemeshes result
in a fracture opening height that approaches zero at the fracture
tip, with the mesh with the maximum number of discontinuity
lines resulting in a slightly higher opening within the two closest
elements to the tip. The NURBS mesh, however, yields a small
displacement jump ahead of the fracture tip in the still intact
material. This is caused by the interface elements having been
inserted for the fractured and the not yet fractured elements,
the used dummy stiffness not being able to completely enforce
a closed fracture at the fracture tip.
These differences in fracture aperture influence the pressure

within the discontinuity, Fig. 14. The T-spline meshes result
in similar values for the pressure, indicating that the minor

Figure 9Quartic mesh using the minimum amount of discontinuity lines, as used for the example case.
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Figure 10Quartic mesh using the maximum amount of discontinuity lines, as used for the example case.

Figure 11Comparison between the fracture propagation length obtained using the minimal and maximum amount of continuity lines, and a
NURBS-based mesh.

differences in opening height for the two elements closest to
the fracture tip do not significantly alter the fluid flowing within
the fracture. However, the larger opening heights obtained us-
ing NURBS allow the fluid to flow more easily through the
fracture, increasing the pressure near the crack tip com-

pared to T-splines. This explains the difference between using
T-splines and NURBS in propagation velocity for the lower
values of the permeability, where the propagation is lim-
ited by the pressure and the fluid transport inside the frac-
ture. For the high value of the permeability, propagation is
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Figure 12Comparison between the interface displacement at t= 0.25 s obtained using the minimal and maximum amount of continuity lines,
and a NURBS-based mesh.

Figure 13Comparison between the interface displacement at t= 0.25 s for the k= 10−17 m2 simulations. The fracture length is indicated with
solid black lines.

Figure 14Comparison between the discontinuity pressure at t= 0.25 s for the k= 10−17 m2 simulations.

instead limited by the fluid leak-off from the fracture, and
therefore this case is less sensitive to the opening height near
the crack tip, yielding closer results between NURBS and
T-splines.

5. CONCLUSIONS

We have shown how to generate unequal order T-splinemeshes.
By combining a cubic mesh for the interstitial fluid pressure
with a quartic mesh for the solid displacement, the inf-sup
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condition can be fulfilled and non-physical pressure oscillations
are normally prevented. Interface elements are created to re-
tain the higher-order inter-element continuity, with the inter-
face being described throughmesh lines and reduced continuity
lines. By propagating this discontinuity along a pre-determined
C0 continuity line, the Bézier extraction operators of the ele-
ments remain constant, and the Bézier extraction operator for
the newly created interface element could be obtained in a
straightforward manner.
Unequal order meshes allow for several choices of the quartic

mesh near the discontinuity: either using aminimum amount of
mesh lines to match the discontinuity between the two meshes,
or adding an extra mesh line to increase the degrees of free-
dom near the fracture tip. These two choices have been com-
pared, showing near to no difference on the overall results and
only slight differences in the fracture opening height close to the
crack tip.
Comparing the T-spline meshes with a mesh generated with

NURBS, the advantages of T-splines are clear: The T-spline
meshes allow for smaller elements near the discontinuity, and
larger elements for the remainder of the domain. By contrast, the
NURBSmesh requires mesh refinements for the entire domain.
Furthermore, T-spline meshes allow using interface elements
only for the fracture. Comparing NURBS and T-splines shows
that T-splines result in a completely closed fracture at the crack
tip, whereas the dummy stiffness used with NURBS yields a
slightly open fracture at the crack tip. This difference in fracture
opening height alters the discontinuity pressure near the fracture
tip, slightly changing the fracture propagation velocity for cases
limited by the fluid transport within the fracture. This shows
T-splines are not only useful in avoiding the need for in-
terface elements for the intact material, but that using T-
splines can result in more correct results when the fluid
transport at the crack tip is dominant. However, when
fluid leak-off is the dominating mechanism, NURBS and T-
splines are equally suitable for simulating fracturing porous
materials.
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