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Abstract—Drug-target interaction (DTI) prediction is impor-
tant in drug discovery and chemogenomics studies. Machine
learning, particularly deep learning, has advanced this area
significantly over the past few years. However, a significant gap
between the performance reported in academic papers and that
in practical drug discovery settings, e.g. the random-split-based
evaluation strategy tends to be too optimistic in estimating the
prediction performance in real-world settings. Such performance
gap is largely due to hidden data bias in experimental datasets
and inappropriate data split. In this paper, we construct a
low-bias DTI dataset and study more challenging data split
strategies to improve performance evaluation for real-world
settings. Specifically, we study the data bias in a popular DTI
dataset, BindingDB, and re-evaluate the prediction performance
of three state-of-the-art deep learning models using five different
data split strategies: random split, cold drug split, scaffold split,
and two hierarchical-clustering-based splits. In addition, we com-
prehensively examine six performance metrics. Our experimental
results confirm the overoptimism of the popular random split
and show that hierarchical-clustering-based splits are far more
challenging and can provide potentially more useful assessment
of model generalizability in real-world DTI prediction settings.

Index Terms—Drug-target interaction, data bias, data splitting
strategy, performance evaluation

I. INTRODUCTION

Predicting drug-target interaction (DTI) plays an important

role in the drug discovery process, where drugs are chemical

compounds and targets are usually proteins. The availability

of high-confidence DTI pairs is crucial for screening candidate

compounds in novel drug development and providing insights

on the causes of side effects between existing drugs. Tra-

ditional DTI prediction via in vitro experiments is reliable

but has high monetary cost and long development cycle,

preventing their usage on a large scale. Therefore, machine

learning-based in silico approaches have gained more attention

and developed rapidly over the past few years.

Recently, machine learning, particularly deep learning, has

advanced many areas such as knowledge discovery and natural

language processing. Machine learning methods can learn

powerful representations for discrete data, such as words

and entities. We can embed such discrete data into a low-

dimensional and dense vector space to capture their relation-
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ships [16]. Therefore, we can embed discrete drugs and targets

into vector spaces similarly. Furthermore, chemogenomics [1]

integrates the compound chemical space and protein genomic

space into a unified framework, enabling the development

of many machine learning-based methods for DTI prediction

[2,6,7,9]. Not only 3D structure information, but also various

chemical and genomic features have been introduced to train

predictive machine learning models, e.g. simplified molecular-

input line-entry system (SMILES) for compounds, and amino

acid sequence for proteins. These common input features

accelerated the development of machine learning methods on

large-scale DTI databases.

Despite the growing interests in machine learning for drug

discovery and the reported progress, a large performance gap

still exists between academic research and industrial appli-

cation, where academic results tend to be over-optimistic for

industrial settings [17]. Similar to the three pitfalls in machine

learning pointed out in [14], we identify three common pitfalls

that cause high-bias DTI performance evaluation.

Inappropriate data splitting. A common practice in ma-

chine learning research is to split training and test sets at

random and evaluate model performance by the accuracy on

the test set (under the assumption that the training and test data

have the same distribution). In the context of drug discovery,

such random split tends to overestimate model performance

in real-world settings. One important reason is that drug

compounds in the same series share the same scaffold or large

substructure, which is easy to learn as long as a few molecules

of this series are contained in the training set. However, in real

applications, chemists often need DTI prediction on a new

compound series different from known compounds, which is

more challenging and makes random split inappropriate.

Low-confidence negative samples. Although many public

databases exist for generating DTI data, researchers often

ignore hidden bias during model training. The lack of highly

confident negative samples is one of them. Machine learning

is a data-driven technique and model performance depends

heavily on data quality. DTI papers often randomly generate

negative samples from unobserved pairs for training and

evaluation, which leads to low confidence because they may

include some unknown true positive samples.
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Fig. 1: Bias control in a general DTI prediction workflow.

Drug-wise pair imbalance. The final important pitfall is

the hidden imbalance between positive and negative pairs for

each drug. In DTI datasets [4, 8, 18], it is common that most

drugs have only one type of pairs (positive or negative). For

these drugs, models can make correct prediction using only

drug information without learning appropriate DTI patterns,

leading to significant drug-wise pair imbalance. Subsequently,

the evaluation result is over-optimistic and the model has poor

generalization.
This paper focuses on addressing the three pitfalls above

to reduce bias in training and evaluating machine learning

models. We compare five different DTI data split strategies,

one of which is our newly proposed density-based hierar-

chical clustering split. The results show that different data

splits can significantly affect model performance comparison.

Clustering-based splits lead to more challenging tasks that

can better reward generalization rather than memorization.

In experiments, we strictly control the hidden data bias in

a benchmark dataset and experimentally validate all negative

DTI pairs to ensure both interaction types exist for each drug.

This leads to a low-bias dataset to encourage learning correct

interaction information for better DTI prediction.

II. MATERIALS AND METHODS

The DTI prediction task can be viewed as a binary classi-

fication of whether a drug forms biological interaction with

a target of interest or not. Drugs are commonly encoded as

1D sequences (SMILES) or 2D molecular graphs, and target

proteins are typically represented as amino acid sequences.

Figure 1 shows a general DTI prediction workflow and our

bias-controlled evaluation.

A. Low-bias dataset construction

Most DTI datasets are not originally designed for training

machine learning models. They have hidden data bias and tend

to produce over-optimistic results. We propose to reconstruct

the experimental datasets following two bias removal guide-

lines:

• High-confidence negative samples should be used. The

best option is to select experimentally validated pairs.

We can set a safe margin in measured binding affinity to

select negative samples [3]. We can also employ some

similarity-based DTI negative sampling algorithms [10].

• The number of drugs containing only one interaction type

should be removed or reduced. Many DTI experiments

only consider the imbalance between positive and neg-

ative pairs across the whole dataset, e.g., by keeping a

fixed ratio without considering the pair imbalance for

individual drugs, leading to prediction based only on drug

features rather than drug-target interaction.

B. Classic data split strategies

We introduce three classical and one clustering-based data

split strategies: random split, cold drug split, scaffold split and

single-linkage split [11].

• Random split is the most popular data split strategy. DTI

pairs are randomly split into train, validation, and test

with given ratios.

• Cold drug split first randomly splits drugs into

train/validation/test, and then puts all DTI pairs associated

with individual drugs in corresponding sets as the final

splits.

• Scaffold split is based on 2D molecular structures that

partition drugs into different bins according to their

Murcko scaffolds. These bins are then randomly split into

train/validation/test sets so that all drugs associated with a

bin are part of the same set. Next, all DTI pairs associated

with the drugs in a bin are assigned to the corresponding

sets.

• Single-linkage split is a clustering-based strategy to en-

sure that the distances between clusters are always larger

than a pre-defined threshold. This strategy can cluster

drugs by their chemical fingerprints such as ECFP4 [15]

in this study, and then apply Jaccard distance on binarized

ECFP4 to measure the pairwise distance between drugs.

For single-linkage hierarchical clustering, each cluster of

drugs will only be assigned to one of the train, validation

and test sets.

C. HDBSCAN for data split

However, single-linkage split uses a single distance thresh-

old that cannot separate clusters of different densities, which

are common in drug compound series. Therefore, we propose

a Hierarchical Density-Based Spatial Clustering of Applica-

tions with Noise (HDBSCAN) strategy [12] to split data.

HDBSCAN is a hierarchical clustering method that transforms

the original distances between data points to density. It is

designed for clusters of varying densities. We investigate the

performance differences between HDBSCAN split and other

split strategies. We review HDBSCAN briefly below.
1) Calculate the mutual reachability distance (MRD): To

find clusters, HDBSCAN first computes the MRD between

data points a and b as:

dk(a, b) = max {corek(a), corek(b), d(a, b)} , (1)

where k is a hyperparameter indicating the number of nearest

neighbors, corek(a) is the core distance between the core

a and its k-th nearest neighbor, and d(a, b) is the distance

between a and b with the original metric. This MRD metric

allows dense points with low core distance to remain at the

same distance from each other while sparse points with high

core distance are pushed away.



2) Build a minimum spanning tree (MST): After getting

MRD, an MST is built from a weighted graph. In this graph,

vertices are the data points and the weight of an edge between

any two points is their MRD. Then a tree is built one edge at

a time by adding the edge with the lowest weight. Meanwhile

this added edge needs to bridge the current tree and a vertex

that is not in this tree. Given the MST, the next step is to

convert it into cluster hierarchy. HDBSCAN sorts edges in

MST by distance with ascending order and then iterates to

create a new merged cluster for each edge.

3) Condense the cluster tree: A minimum cluster size

is introduced as a hyperparameter. At each hierarchy split,

the sizes of newly generated clusters are compared with the

minimum cluster size. If a new cluster has fewer points than

the minimum cluster size, HDBSCAN declares them to be

“points falling out of a cluster”. If the size of a new cluster is

equal to or larger than the minimum cluster size, HDBSCAN

treats it as a true cluster split to persist in the tree.

4) Compute the stability and extract clusters: To extract

clusters from the condensed cluster tree, HDBSCAN defines

a stability, which aims to choose clusters that persist and

have a longer lifetime. First, for a given cluster in hierarchy,

HDBSCAN defines a measure λ inversely proportional to the

distance threshold, so λbirth denotes the λ when the cluster is

split from its parent cluster. Each falling point p in the cluster

has a value λp so that each cluster c has a stability s:

s(c) =
∑

p∈c

(λp − λbirth) . (2)

Now traverse the condensed cluster tree from all leaf nodes

to root. If the sum of the stabilities of child clusters is greater

than the stability of their parent cluster, the parent cluster

stability is set to be the sum of the child stabilities. Otherwise,

the parent cluster is selected to be one of the final clusters.

III. EXPERIMENT AND RESULTS

A. Experimental setup

1) Dataset: we construct a low-bias version of binary

BindingDB [4, 5] dataset in this experiment. Following the

IC50 threshold used by Gao et al. [3], we consider a drug-

target pair to be positive if its IC50 is less than 100 nm, and

negative if its IC50 is greater than 10,000 nm, which is a 100-

fold difference.

2) Bias-reducing preprocessing: Due to the drug-wise pair

imbalance, 91% of drugs only have one type of pairs (positive

or negative) in the binary BindingDB dataset. This implies

that we can train a model to make right classification without

considering protein information for DTI pairs associated with

the 91% of drugs. High classification accuracy does not

indicate successful learning of correct DTI patterns.

Therefore, we further process the data by removing all DTI

pairs of drugs containing only one pair type. This gives us

a low-bias dataset with 29,674 positive samples and 32,752

negative samples. Figure 2a shows the drug probability distri-

bution in terms of log ratios of positive to negative samples

in the dataset, which is calculated as:

lni
ratio = ln

N i
pos

N i
neg

, (3)

where N i
pos is the number of positive interactions for drug i,

and N i
neg is the number of negative interactions. Following

the steps above, our constructed dataset addresses common

pitfalls and has the following benefits:

• The number of positive and negative samples is balanced.

• All negative samples are experimentally validated and

highly confident.

• The drug-wise pair imbalance in DTI pairs is removed.

Fig. 2: (a) Drug probability distribution in terms of

ln(N i
pos/N

i
neg) in the constructed low-bias dataset. The red

line indicates the mean log ratio for all drugs (mean=-0.07).

ln(N i
pos/N

i
neg) = 0 when the number of positive and negative

interactions are equal for drug i. (b) Comparison of three

models using five different split strategies.

3) Metrics: We use AUROC, AUPRC, and accuracy as the

major metrics to measure model performance. We also report

the sensitivity and specificity metrics at the best F1 score.

4) Split strategies: We study five split strategies in model

performance evaluation: random split, cold drug split, scaffold

split, single-linkage split, and HDBSCAN split, as detailed in

Section II.

We set the distance threshold to 0.5 for single-linkage split

and minimum cluster size to 5 for HDBSCAN split. Each split

strategy keeps a 7:1:2 ratio for training/validation/test sets. We

conduct five independent runs with different random seed for

each split. We compare three algorithms below on the same

splits.

5) Learning algorithms: Three state-of-the-art deep learn-

ing DTI models are selected for performance comparison:

• DeepConv-DTI [9] models DTI using convolutional neu-

ral network (CNN) and one global max-pooling layer to

learn protein sequence features, and one fully connected

layer to encode drug fingerprints ECFP4.

• DeepDTA [13] uses CNN on both drug SMILES string

and protein amino acid sequence to extract local residue

patterns. As the original DeepDTA is a regression model

to predict binding affinity. A sigmoid function is added

after the last layer of decoder for binary classification.

• MolTrans [6] adapts transformer architectures to encode

drug and protein information, and introduces an interac-

tion map module with a CNN layer to learn the interaction

between molecular substructures.



Split strategy AUROC AUPRC Accuracy Sensitivity Specificity Test loss

Random 0.946±0.003 0.935±0.004 0.874±0.003 0.838±0.01 0.914±0.007 0.469±0.019

Cold drug 0.921±0.003 0.909±0.006 0.841±0.004 0.798±0.009 0.889±0.005 0.67±0.052
Scaffold 0.893±0.006 0.874±0.004 0.804±0.005 0.736±0.012 0.882±0.014 0.797±0.099
HDBSCAN 0.821±0.024 0.778±0.031 0.724±0.037 0.581±0.091 0.891±0.03 0.936±0.328
Single linkage 0.768±0.024 0.717±0.025 0.676±0.032 0.483±0.077 0.894±0.023 0.959±0.224

TABLE I: MolTrans performance comparison with five different data split strategies (Best, Worst).

6) Implementation: We follow the same model hyper-

parameter settings described in the original papers. The batch

size is 64 and each model is allowed to run 100 epochs in each

independent training. The learning rate is set to 1e−5 with the

Adam optimizer. The test model is selected at the epoch giving

the best AUROC on the validation set. The selected model is

evaluated on the test set and metrics are reported.

B. Performance gap between different split strategies

To investigate whether there is a significant performance gap

for the same method with different data split strategies, Table

I shows the performance of MolTrans with different metrics

on the test sets generated by different strategies. As expected,

random split has significant information overlap between train-

ing and test sets, so it achieves the best performance across

all metrics. However, random split’s good performance on the

test set does not imply the same good performance in real

drug discovery, where it is unlikely to have so much prior

information while predicting a novel drug-target interaction

pair in reality. The performance declines differently in other

split strategies. Compared with random split, single-linkage

split has the largest performance drop of 18.8% in AUROC

and 23.3% in AUPRC.

For other split strategies, the performance drop is also

evident. Cold drug split has just a slight drop since it randomly

selects drugs without considering drug similarities. Scaffold

split further divides drugs by their shared scaffold, so it is

more challenging than the cold split. However, as scaffold split

considers only well-defined cyclic substructures connected

by the linkers, scaffolds that share the topology may still

be considered dissimilar. Thus, scaffolds proximal in the

fingerprint space can cause information leakage and model

bias if not found in either training or test set. As clustering-

based split strategies cluster similar compounds irrespective of

their scaffolds, and as part of the same subset, the potential

for data leakage is reduced.

We further study the influence of data split strategy on

performance of different models. Figure 2b plots AUROC

of MolTrans, DeepConv-DTI and DeepDTA on the five split

strategies. Although MolTrans always outperforms the other

two models, their performance gap gradually decreases with

the change of split strategies. Comparing random and single-

linkage split, the improvement of MolTrans over DeepDTA

drops from 4.4% to 1.1%. Moreover, DeepConv-DTI outper-

forms DeepDTA with random split, but DeepDTA outperforms

DeepConv-DTI with HDBSCAN split. This shows that the

better performance on random split strategy is over-optimistic

because the test set rewards more memorization rather than

generalization.

IV. CONCLUSION

This work studied low-bias evaluation of machine learning

models in DTI prediction. Experimental results showed that

traditional split strategies tend to overestimate predictive per-

formance and exaggerate performance gaps between different

models. We constructed a low-bias dataset, and adopted two

clustering-based split strategies toward more realistic evalu-

ation in drug discovery. Clustering-based splits created the

most challenging prediction tasks for evaluating real-world

DTI prediction performance.
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