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Integral Schur–Weyl duality for partition

algebras

Chris Bowman, Stephen Doty & Stuart Martin

Abstract Let V be a free module of rank n over a commutative ring k. We prove that tensor
space V

⊗r satisfies Schur–Weyl duality, regarded as a bimodule for the action of the group
algebra of the Weyl group of GL(V) and the partition algebra Pr(n) over k. We also prove a
similar result for the half partition algebra.

Introduction

A number of instances of Schur–Weyl duality (a bimodule for which the centraliser
of each action equals the image of the other) have been established in positive char-
acteristic over the past forty years, including: [3] (extending [6, 7, 19]) for general
linear and symmetric groups; [9] for symplectic groups and Brauer algebras; [15] for
orthogonal groups and Brauer algebras (characteristic not 2); [16] for special orthogo-
nal groups and the Brauer–Grood algebra; [8, 10, 11, 12] for general linear groups and
walled-Brauer algebras. In all these cases, semisimple versions of Schur–Weyl duality
were observed much earlier as an application of Artin–Wedderburn theory, and the
extension to positive characteristic (where representations tend to be non-semisimple)
is much more difficult to establish. This paper continues the above body of work, by
extending the Schur–Weyl duality between symmetric groups and partition algebras
to non-semisimple situations.

Let k be a commutative ring (always with 1). For G a group, we let kG denote
its group algebra. Fix a free k-module V of rank n, and fix a k-basis {v1, . . . , vn} of
V. As explained in Section 1, tensor space V⊗r is a (kWn, Pr(n))-bimodule, where
Wn is the Weyl group of GL(V). We identify V⊗r with V⊗r ⊗ vn ⊂ V⊗(r+1), which
becomes a (kWn−1, Pr+ 1/2(n))-bimodule by restriction.

The purpose of this paper is to show that Schur–Weyl duality holds for both
bimodule structures on V⊗r; that is, we have the following result.

Theorem (Schur–Weyl duality). Let k be a commutative ring. Then:

(a) The centraliser algebras EndPr(n)(V
⊗r), EndWn

(V⊗r) coincide with the im-

ages of the representations kWn → Endk(V⊗r), Pr(n)op → Endk(V⊗r), re-
spectively.
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(b) Similarly, the centraliser algebras EndPr+ 1/2(n)(V
⊗r), EndWn−1

(V⊗r)

coincide with the images of the representations kWn−1 → Endk(V⊗r),
Pr+ 1/2(n)op → Endk(V⊗r), respectively.

This result is well known in case k = C; it follows from standard facts in the theory
of semisimple algebras (see e.g. [20, Thms 5.4, 3.6]). Our contribution is to extend the
result to arbitrary commutative rings k. After this paper was written, Donkin [14]
found a different approach to our main result.

As an application of the main theorem, in [4, Cor. 7.6] we prove that the centraliser
algebras EndPr(n)(V

⊗r), EndPr+ 1/2(n)(V
⊗r) are cellular algebras over a commutative

ring, in the sense of [18]. See [13] for the cellularity of EndWn
(V⊗r). See also [1, 2]

for related results over fields of characteristic zero.
The proof of the theorem (for general k) is obtained as follows. First, the fact

that the images of the maps from the partition algebras coincide with the Wn and
Wn−1 centralisers already appears in the proof of [20, Thm. 3.6]; the combinatorial
argument there works for any commutative ring k. So we only need to consider the
representations of kWn and kWn−1. The proof that those representations surject onto
the appropriate centraliser algebras is Theorem 4.10 of this paper, our main result. In
particular, the centraliser algebras EndPr(n)(V

⊗r), EndPr+1/2(n)(V
⊗r) are spanned

over k by elements of the form P(w)⊗r, where w ∈ Wn, Wn−1 respectively. Here,
P(w) is the permutation matrix corresponding to w.

1. Tensor space

As above, k is a fixed commutative ring (with unit). We denote its zero by 0k and
its unit by 1k. We identify ordinary integers m ∈ Z with elements of k by means of
the canonical map Z → k defined by m 7→ m1k. In particular, this identifies 0, 1 ∈ Z

respectively with 0k, 1k ∈ k.
Throughout this paper, V denotes a fixed free k-module of rank n with a given

basis {v1, . . . , vn}, by means of which we identify V with kn. For any positive integer
r, the set

(1) {vi1
⊗ · · · ⊗ vir

: i1, . . . , ir ∈ {1, . . . , n}}

is a basis of the rth tensor power V⊗r. The general linear group GL(V) of k-linear
automorphisms of V acts naturally on the left on V; this action extends diagonally to
an action on V⊗r. The symmetric group Sr acts on the right on V⊗r by permuting
the tensor positions; this action is known as the place-permutation action, defined by

(2) (vi1
⊗ · · · ⊗ vir )σ = vi

1σ−1
⊗ · · · ⊗ virσ−1

, for σ ∈ Sr

extended linearly. (We write maps in Sr on the right of their arguments.) Thus
we have commuting actions of the groups GL(V), Sr on V⊗r, making V⊗r into
a (kGL(V),kSr)-bimodule. Classical Schur–Weyl duality is the statement that the
centraliser of each action is generated by the image of the other. It was proved origi-
nally over k = C by Schur, extended to infinite fields by J. A. Green and many other
authors, and extended to sufficiently large fields in [3].

Let Wn be the Weyl group of GL(V); that is, the group of elements of GL(V)
permuting the basis {v1, . . . , vn}. We identify Wn with the group of permutation
matrices, regarded as matrices with entries from k. By restricting the action of GL(V)
to Wn, we obtain left actions of Wn on V and V⊗r. To be explicit, w ∈ Wn acts by

(3) w(vj1
⊗ · · · ⊗ vjr

) = vw(j1) ⊗ · · · ⊗ vw(jr).

(We write maps in Wn on the left of their arguments.) Extended linearly, the action
of Wn defines a linear representation kWn → Endk(V⊗r) of the group algebra kWn.
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Schur–Weyl duality for partition algebras

Of course, Wn
∼= S

op
n , the opposite group. We distinguish these symmetric groups

notationally throughout this paper, because their actions on tensor space are very
different even when n = r.

Let Pr(δ) ⊃ Sr be the partition algebra (introduced independently by Paul P. Mar-
tin [24, 25] and V. F. R. Jones [22] in relation to the Potts model in particle physics)
on 2r vertices, with parameter δ ∈ k. The algebra Pr(δ) has a k-basis in bijection
with the collection of set partitions on

{1, . . . , r} ∪ {1′, . . . , r′}.

Each basis element d may be regarded as a graph with 2r vertices arranged in two
rows, with vertices numbered 1, . . . , r along the top and 1′, . . . r′ along the bottom.
Two vertices in the graph are connected by an edge if and only if they lie in the same
subset of the set partition d. Multiplication in the algebra may be defined on the
basis elements by stacking diagrams and removing any connected components that
contain no vertices from the top and bottom rows of the stack. After removing such
interior components, the result of stacking d1 above d2 is a new diagram d3, and the
multiplication is defined by

(4) d1d2 = δk d3

where k is the number of removed interior connected components. It can be checked
that this rule, extended linearly, defines an associative multiplication on Pr(δ).

Example 1.1. The following 3 diagrams all depict the same set partition:
{

{1, 3, 3̄, 4̄}, {2, 1̄}, {4}, {5, 2̄, 5̄}
}

.

Example 1.2. In the following example, the diagram on the right-hand side of the
equality is obtained by stacking the two diagrams on the left of the equality on top of
each other (with the leftmost diagram on top) and removing the singleton from the
middle of the diagram (at the expense of multiplication by the parameter δ1).

· = δ

The half partition algebra Pr+ 1/2(δ), introduced in [26], is the subalgebra of
Pr+1(δ) spanned by diagrams such that vertex r + 1 is connected to vertex (r + 1)′.

By specialising the parameter δ to n, we obtain a linear representation of Pr(n)op,
defined as follows. Let I(n, r) = {1, . . . , n}r be the set of multi-indices of length r. To
simplify the notation, we often write

i1 · · · ir instead of (i1, . . . , ir)

for an element of I(n, r). Elements of I(n, r) can also be written as i1′ · · · ir′ or
(i1′ , . . . , ir′). Connected components of a diagram are called blocks; they correspond
to the subsets of the underlying set partition. Following [20], we define a scalar

(d)i1···ir
i1′ ···ir′

∈ k, for a diagram d and any i1 · · · ir, i1′ · · · ir′ in I(n, r), by

(d)i1···ir
i1′ ···ir′

=

{

1 if iα = iβ whenever α 6= β are in the same block of d,

0 otherwise.

Algebraic Combinatorics, Vol. 5 #2 (2022) 373
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Here, the indices α, β may be primed or unprimed. The diagram d acts on V⊗r, on
the right, by the rule

(5) (vi1
⊗ · · · ⊗ vir

)d =
∑

i1′ ···ir′

(d)i1···ir
i1′ ···ir′

(vi1′
⊗ · · · ⊗ vir′

)

extended linearly. Note that if d ∈ Sr is a permutation diagram, then d acts by the
usual place-permutation action. Extended linearly, this action defines a linear rep-
resentation Pr(n)op → Endk(V⊗r). The commuting actions define a (kWn, Pr(n))-
bimodule structure on V⊗r. By identifying V⊗r with V⊗r ⊗ vn ⊂ V⊗(r+1), by re-
striction V⊗r may also be regarded as a (kWn−1, Pr+ 1/2(n))-bimodule, where Wn−1

is identified with the subgroup of Wn consisting of the permutations fixing n.
Because the actions commute, the representations kWn → Endk(V⊗r), Pr(n) →

Endk(V⊗r) induce k-algebra homomorphisms

(6)
Φn,r : kWn → EndPr(n)(V

⊗r),

Ψn,r : Pr(n)op → EndWn
(V⊗r)

into the respective centraliser algebras. Similarly, by restriction we have induced k-
algebra homomorphisms

(7)
Φn,r+ 1/2 : kWn−1 → EndPr+ 1/2(n)(V

⊗r),

Ψn,r+ 1/2 : Pr+ 1/2(n)op → EndWn−1
(V⊗r).

Schur–Weyl duality is equivalent to the surjectivity of these induced homomorphisms.
As noted above, the combinatorial argument given in [20, Thm. 3.6], which works over
any commutative ring k, proves the surjectivity of the maps Ψn,r, Ψn,r+ 1/2. Indeed,
the partition algebra was originally defined with that property in mind.

Thus, we only need to prove the surjectivity of the induced maps Φn,r, Φn,r+ 1/2

defined in (6), (7).

2. Generalised doubly-stochastic matrices

We denote the entry in the ith row and jth column of a matrix M by mi
j , and write

M = (mi
j). In this paper, we will always follow this convention of using bold letters

for matrices and lower case letters for their entries. It will be convenient to employ
the following terminology; see e.g. [5, 17, 21, 23].

Definition 2.1. An n×n matrix M =
(

mi
j

)

i,j=1,...,n
is generalised doubly-stochastic

(GDS) if there is some s = s(M) in k such that both:

(a)
∑n

j=1 mi
j = s, for all i = 1, . . . , n, and

(b)
∑n

i=1 mi
j = s, for all j = 1, . . . , n.

In other words, M is GDS if there is a common value for all its row and column
sums.

Lemma 2.2. Assume that n > 1. An n × n matrix M over the ring k is GDS if and
only if M commutes with the matrix Jn = (1)i,j=1,...,n of all ones.

Proof. The matrix JnM is the n × n matrix with the column sum coi(M) :=
∑

j mi
j

in each entry of the ith column. On the other hand, MJn is the n × n matrix with
the row sum roj(M) :=

∑

i mi
j in each entry of the jth row. So M commutes with Jn

if and only if coi(M) = roj(M) for all i, j = 1, . . . , n. Since n > 1, it follows that this
is so if and only if all the row and column sums have a common value. �
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Let M be a generalised doubly-stochastic matrix. If M is identified with the k-
linear endomorphism of V defined by vj 7→

∑

i mi
j vi, then s(M) is an eigenvalue

for the eigenvector v1 + · · · + vn. The proof is easy. This observation leads to the
following characterisation of GDS operators, where GDS operators on V are defined
to be linear operators whose matrices with respect to the basis {v1, . . . , vn} are GDS.

3. Description of the invariants Ek(n, r)

To ease the notation, we henceforth put Ek(n, r) = EndPr(n)(V
⊗r). Similarly, we set

Ek(n, r + 1
2 ) = EndPr+ 1/2(n)(V

⊗r). The purpose of this section is to describe Ek(n, r);

a description of Ek(n, r + 1
2 ) will be given in the next section.

We introduce some additional notation. For each multi-index i = i1 · · · ir in I(n, r),
σ in Sr, and w in Wn, we set

iσ = (i1 · · · ir)σ = i1σ−1 · · · irσ−1 , wi = w(i1 · · · ir) = w(i1) · · · w(ir).

The assignment (i, σ) 7→ iσ defines a right action (the place-permutation action) of the
symmetric group Sr on the set I(n, r); the assignment (w, i) 7→ wi defines a left action
of Wn on I(n, r). These left and right actions on I(n, r) commute: (wi)σ = w(iσ), for
all w ∈ Wn, σ ∈ Sr. Set:

(8) vi = vi1
⊗ · · · ⊗ vir .

Then the basis of V⊗r given in (1) is {vi : i ∈ I(n, r)}, and the commuting actions
of Wn and Sr on V⊗r considered in Section 1 are given by the rules (w, vi) 7→ vwi

and (vi, σ) 7→ viσ .
Orbits for the left action of Wn on I(n, r) are called value-types and may be iden-

tified with set partitions of {1, . . . , r}. The subsets in the value-type vt(i) = Λ of
i = i1 · · · ir record the positions at which the distinct values that appear are con-
stant. More precisely, we make the following definition.

Definition 3.1. Let i = i1 · · · ir ∈ I(n, r) be given. For each v = 1, . . . , n, let Λ′
v be

the set of all positions α = 1, . . . , r for which iα = v. Then {1, . . . , r} =
⋃n

v=1 Λ′
v.

Discard any empty Λ′
v to obtain the set partition Λ = {Λ′

v : Λ′
v 6= ∅} which defines

vt(i). Let ℓ(Λ) be the number of non-empty subsets in Λ.

For example, the multi-index i = abbcabc (for distinct elements a, b, c ∈ {1, . . . , n})
has value-type vt(i) = {{1, 5}, {2, 3, 6}, {4, 7}}.

Recall that orbits for the right action of Sr on I(n, r) are called weights and may be
identified with weak compositions of r of length at most n. To be precise, the weight
wt(i) of a multi-index i = i1 · · · ir is the composition wt(i) = (µ1, . . . , µn) where for
each value v = 1, . . . , n the statistic µv counts the number of positions α = 1, . . . , r
such that iα = v. In other words, µv = |Λ′

v| for each v = 1, . . . , n.
We also need to consider the set Ω(n, r) of orbits for the right action of Sr on

I(n, r) × I(n, r) defined by (i, j)σ = (iσ, jσ).
In order to describe the invariants EndPr(n)(V

⊗r) it suffices to consider a set of
generators. Halverson and Ram [20] showed that Pr(δ) is generated by the diagrams:

pα =

α

α′

. . .

. . .

. . .

. . .

pα,β =

α β

α′ β′

. . .

. . .

. . .

. . .

. . .

. . .
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sα,β =

α β

α′ β′

. . .

. . .

. . .

. . .

. . .

. . .

where 1 6 α < β 6 r. In fact, Pr(δ) is generated by the usual Coxeter generators
sα,α+1 for α = 1, . . . , r − 1 along with just one pα and one pα,β .

Let Gr(n), Hr, kSr be the subalgebras of Pr(n) respectively generated by the pα,
pα,β , and sα,β pictured above. Note that Hr is independent of n. We shall separately
consider the centraliser algebras of these three subalgebras:

Gk(n, r) = EndGr(n)(V
⊗r), Hk(n, r) = EndHr (V⊗r), Sk(n, r) = EndSr (V⊗r).

Then we have Ek(n, r) = Gk(n, r) ∩ Hk(n, r) ∩ Sk(n, r). Note that Sk(n, r) is the
classical Schur algebra appearing in [19]. Furthermore, we have H1 = kS1 = k and
thus Hk(n, 1) = Sk(n, 1) = Endk(V), which means that Ek(n, 1) = Gk(n, 1). By
Lemma 2.2, the algebra Gk(n, 1) coincides with the set of n × n GDS matrices con-
sidered in Section 2.

Henceforth, we write MatI(n,r)(k) for the set of nr × nr matrices over k, with rows
and columns indexed by the set I(n, r) according to the lexicographic ordering. We
always identify the matrix A = (ai

j) with the k-linear endomorphism of V⊗r defined

on basis elements by vj 7→
∑

i∈I(n,r) ai
j vi.

Proposition 3.2. Let Gk(n, r), Hk(n, r), and Sk(n, r) be the subalgebras of
Endk(V⊗r) consisting of the endomorphisms commuting with the action of all
the pα, pα,β, and sα,β respectively. Let A = (ai

j) ∈ MatI(n,r)(k). Then

(a) A belongs to Gk(n, r) if and only if for each place α = 1, . . . , r and for each
fixed p = i1 · · · iα−1iα+1 · · · ir, q = j1 · · · jα−1jα+1 · · · jr in I(n, r − 1) there is
some scalar bp

q(α) in k such that

n
∑

i=1

a
i1···iα−1 i iα+1···ir

j1···jα−1 j jα+1···jr
= bp

q(α), for any j = 1, . . . , n

and
n

∑

j=1

a
i1···iα−1 i iα+1···ir

j1···jα−1 j jα+1···jr
= bp

q(α), for any i = 1, . . . , n.

(b) A belongs to Hk(n, r) if and only if A preserves value-type, in the sense:
ai

j = 0 for all pairs (i, j) ∈ I(n, r) × I(n, r) such that vt(i) 6= vt(j).

(c) A belongs to Sk(n, r) if and only if A is constant on each place-permutation
orbit O in Ω(n, r), i.e. if ai

j = ak
l whenever (i, j) and (k, l) are in the same

orbit O ∈ Ω(n, r).

Proof. (a) Suppose that 1 6 α 6 r. By the definition in equation (5), the matrix
Ψn,r(pα) representing pα with respect to the basis {vi : i ∈ I(n, r)} has the form

(

δi1,j1
· · · δiα−1,jα−1

δiα+1,jα+1
· · · δir,jr

)

i,j∈I(n,r)×I(n,r)
.

More succinctly, the matrix can be written as (In)⊗α−1 ⊗ Jn ⊗ (In)⊗r−α, where Jn is
the n×n matrix defined in Section 2. It follows immediately from Lemma 2.2 that the
commutant Endpα

(V⊗r) of pα is the set of endomorphisms satisfying the displayed
condition in part (a) of the proposition. Thus, the centraliser Gk(n, r) of all the pα for
1 6 α 6 r is the set of endomorphisms satisfying the condition for all α. This proves
part (a).
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(b) Suppose that 1 6 α < β 6 r. By (5), the matrix Ψn,r(pα,β) representing pα,β

with respect to the basis {vi : i ∈ I(n, r)} is
(

δi1,j1
· · · δiα−1,jβ−1

δiα,iβ ,jα,jβ
δiα+1,jβ+1

· · · δir,jr

)

(i,j)∈I(n,r)×I(n,r)
.

Here δiα,iβ ,jα,jβ
= δiα,iβ

δiα,jα
δiα,jβ

is a generalised Kronecker delta symbol, which is
1 if iα = iβ = jα = jβ and 0 otherwise. So the matrix Ψn,r(pα,β) is a diagonal matrix
with (i, i)-entry equal to

{

1 if iα = iβ ,

0 otherwise,

for i = i1 · · · ir in I(n, r). If we reorder I(n, r) so that all the nonzero diagonal entries
come before the zero ones, then the matrix Ψn,r(pα,β) has the block form

[

I 0

0 0

]

and an easy calculation with block matrices shows that the commutant Endpα,β
(V⊗r)

of pα,β consists of all block matrices of the form
[

A 0

0 B

]

where A, B are arbitrary matrices (of the relevant sizes). So pα,β sends all vi satisfying
the condition iα = iβ to a linear combination of vj such that jα = jβ and sends the
vi satisfying iα 6= iβ to a linear combination of vj such that jα 6= jβ .

It follows that the centraliser algebra Hk(n, r), which is the intersection of the
commutants of the various pα,β for 1 6 α < β 6 r, is the algebra of all value-type
preserving endomorphisms. This proves part (b).

(c) The proof of part (c) is well known and can be found, for instance, in [19]. �

Definition 3.3. Let i = i1 · · · ir, j = j1 · · · jr be given multi-indices. Suppose that
α ∈ {1, . . . , r} is a place. The row and column α-slices of A determined by (i, j) are
respectively the n-vectors

(

a
i1···iα−1 i iα+1···ir

j1···jα−1 jα jα+1···jr

)

i=1,...,n
and

(

a
i1···iα−1 iα iα+1···ir

j1···jα−1 j jα+1···jr

)

j=1,...,n
.

We denote these vectors respectively by the suggestive shorthand notations

a
i1···iα−1 ∗ iα+1···ir

j1···jα−1 jα jα+1···jr
and a

i1···iα−1 iα iα+1···ir

j1···jα−1 ∗ jα+1···jr
.

Putting a
∑

symbol in front of a slice implies a sum over the elements of the slice.
We also extend this notation in the obvious way to allow two or more ∗s to appear;
we call them double slices, etc.

Here are some basic properties of invariants in Ek(n, r), for r > 2. (If r = 1,
invariants in Ek(n, r) are just n × n GDS matrices; see Section 2.)

Proposition 3.4. Suppose that r > 2 and that A is an element of Ek(n, r). Then:

(a) For any p, q ∈ I(n, r − 1), the scalars bp
q(α) appearing in Proposition 3.2(a)

are independent of α. That is, all the slice sums determined by p, q have the
same value bp

q .

(b) For any p, q ∈ I(n, r − 1), let Ap
q be the n × n block Ap

q = (ap i
q j)i,j=1,...,n.

Then Ap
q is GDS, with common row and column sums equal to bp

q .

(c) If i = i1 · · · ir, j = j1 · · · jr are in I(n, r) and vt(i) 6= vt(j) then ai
j = 0.

(d) If i = i1 · · · ir, j = j1 · · · jr are in I(n, r), vt(i) = vt(j), and ir appears in
p = i1 · · · ir−1, then jr also appears in the same place in q = j1 · · · jr−1, and
ai

j = bp
q .
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Proof. (a) Since Ek(n, r) is the intersection of Gk(n, r), Hk(n, r), and Sk(n, r) it is
clear that A must be constant on place-permutation orbits, by Proposition 3.2(c).
This immediately implies that its slice sums are independent of α.

(b) This follows from part (a). Explicitly, for any α = 1, . . . , r and any given
p = i1 · · · iα−1iα+1 · · · ir, q = j1 · · · jα−1 jα+1 · · · jr in I(n, r − 1), part (a) says that
there exists a scalar bp

q in k such that
∑

a
i1···iα−1 ∗ iα+1···ir

j1···jα−1 j jα+1···jr
= bp

q and
∑

a
i1···iα−1 i iα+1···ir

j1···jα−1 ∗ jα+1···jr
= bp

q

for any i, j = 1, . . . , n. Part (b) is the particular case where p = i1 · · · ir−1, q =
j1 · · · jr−1.

(c) This is the same as part (b) of Proposition 3.2, repeated here for the sake of
convenience.

(d) This follows from parts (b) and (c). By part (c), under these hypotheses, all

terms except ap ir

q jr
of the slice sum

∑

ap ir
q ∗ = bp

q must be zero. �

Definition 3.5. Assume that r > 1. Let A ∈ Ek(n, r) be given. For any p, q ∈
I(n, r − 1) let bp

q be the common value of the slice sums in A indexed by p, q. (This
is a single scalar if r = 1.) The matrix B = (bp

q)p,q∈I(n,r−1) in MatI(n,r−1)(k) is the
restriction of A. We write ρ(A) = B for the restriction.

Proposition 3.4(b) says that the invariant A is obtained by “blowing up” its re-
striction B = ρ(A) by a process which replaces each matrix entry bp

q of B by an
n × n GDS matrix with row and column sums equal to bp

q . Of course, A must also be
invariant under place-permutations, so blowing up is not the only consideration.

Proposition 3.6. Let r > 1, and suppose that A ∈ Ek(n, r). Then the restriction
ρ(A) belongs to Ek(n, r−1). Thus, ρ is a k-linear map from Ek(n, r) into Ek(n, r−1).

Proof. Set B = ρ(A). If r = 1 then B is just a scalar and there is nothing to prove,
since Ek(n, 0) = k. For the moment, we assume that r = 2. Given any i1i2 ∈ I(n, 2),
we compute the double-slice sum

∑

ai1i2
∗∗ two ways, by applying the independence in

Proposition 3.4 and changing the order of summation:

∑

ai1i2

∗∗ =

n
∑

j=1

n
∑

j′=1

ai1i2

jj′ =

n
∑

j=1

bi1

j =
∑

bi1

∗

=

n
∑

j′=1

n
∑

j=1

ai1i2

jj′ =

n
∑

j=1

bi2

j′ =
∑

bi2

∗ .

Thus all the row sums in B have a common value. Similarly, by considering the double-
slice sum

∑

a∗∗
j1j2

we see that
∑

b∗
j1

=
∑

b∗
j2

, for arbitrary j1j2 in I(n, 2), so all the
column sums in B have a common value. Finally, for arbitrary i1, j2 = 1, . . . , n we
compute the mixed-double-slice sum

∑

ai1∗

∗j2
two ways:

∑

ai1∗

∗j2
=

n
∑

i=1

n
∑

j=1

ai1i
jj2

=
n

∑

i=1

bi
j2

=
∑

b∗
j2

=

n
∑

j=1

n
∑

i=1

ai1i
jj2

=

n
∑

j=1

bi1

j =
∑

bi1

∗ .

Thus
∑

b∗
j2

=
∑

bi1
∗ . This shows that all the row sums are equal to all the column

sums in B. In other words, B is GDS, and thus belongs to Ek(n, 1). This proves the
result in case r = 2.

Now assume that r > 2. We need to show that B satisfies the conditions of Propo-
sition 3.2(a)–(c). It is easy to see that conditions (b), (c) hold for B since they hold for
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A. Then calculations similar to the above (and place-permutation invariance) show
that B satisfies the slice-sum equations in part (a). Thus B belongs to Ek(n, r − 1) as
claimed. �

Going forward, we will often regard a given A = (ai1···ir
j1···jr

)i1···ir,j1···jr∈I(n,r) in

Ek(n, r) as the n × n block matrix

(9) A = (Ai
j)i,j=1,...,n =







A1
1 · · · A1

n
...

. . .
...

An
1 · · · An

n







where each block Ai
j is defined by Ai

j = (ai i2···ir
j j2···jr

)i2···ir,j2···jr∈I(n,r−1).

Remark 3.7. The block notation just introduced provides a convenient description
of the restriction map. Given A in Ek(n, r), we have

ρ(A) =
∑

Ai
∗ =

∑

A∗
j

for any i, j. That is, the restriction B = ρ(A) is the common value of the block row
and column sums in the block matrix (9).

Example 3.8. We now illustrate how, using only the value-type condition of Proposi-
tion 3.2(b) we can obtain general forms for the invariants Ek(n, r) for small values of
n and r (we will use blank entries to denote entries which are zero due to value-type
mismatches). The general form of invariants in Ek(2, 2), Ek(3, 2) are displayed below,
respectively:

1
1

1
2

2
1

2
2

11 ∗ ∗

12 ∗ ∗

21 ∗ ∗

22 ∗ ∗

,

1
1

1
2

1
3

2
1

2
2

2
3

3
1

3
2

3
3

11 ∗ ∗ ∗

12 ∗ ∗ ∗ ∗ ∗ ∗

13 ∗ ∗ ∗ ∗ ∗ ∗

21 ∗ ∗ ∗ ∗ ∗ ∗

22 ∗ ∗ ∗

23 ∗ ∗ ∗ ∗ ∗ ∗

31 ∗ ∗ ∗ ∗ ∗ ∗

32 ∗ ∗ ∗ ∗ ∗ ∗

33 ∗ ∗ ∗

.

The general form of invariants in Ek(4, 2) is displayed below:

1
1

1
2

1
3

1
4

2
1

2
2

2
3

2
4

3
1

3
2

3
3

3
4

4
1

4
2

4
3

4
4

11 ∗ ∗ ∗ ∗

12 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

13 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

14 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

21 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

22 ∗ ∗ ∗ ∗

23 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

24 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

31 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

32 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

33 ∗ ∗ ∗ ∗

34 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

41 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

42 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

43 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

44 ∗ ∗ ∗ ∗

.

In these depictions, starred entries can be non-zero, but they are not arbitrary, because
they must be invariant under place-permutations and their slice sums must satisfy
the GDS conditions in Proposition 3.4(b).

Let P(w) = Φn,1(w) be the permutation matrix representing w ∈ Wn. As a linear
endomorphism of V, P(w) is the linear map sending vj to vw(j), for j = 1, . . . , n. In
terms of matrix coordinates, P(w) = (δi,w(j))i,j=1,...,n. It follows that

(10) Φn,r(w) = P(w)⊗r =
(

δi1,w(j1) · · · δir,w(jr)

)j1···jr

i1···ir
.
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It is easy to compute the restriction of such matrices.

Lemma 3.9. For any w ∈ Wn and any r > 1, ρ(P(w)⊗r) = P(w)⊗(r−1). In particular,
ρ(P(w)) = 1.

Proof. Write A = P(w)⊗r. Express A as an n × n block matrix A = (Ai
j) as in (9).

Then by (10), Ai
j is given by

Ai
j = δi,w(j) P(w)⊗(r−1), all i, j = 1, . . . , n.

The result now follows by Remark 3.7. �

Since the actions of Wn and Pr(n) on V⊗r commute, we have induced left and
right actions of Wn on Ek(n, r) = EndPr(n)(V

⊗r), which are given by left and right
multiplication of the corresponding permutation matrices. Explicitly,

(11) (w, A) 7→ Φ(w)A = P(w)⊗rA, (A, w) 7→ AΦ(w) = AP(w)⊗r

defines the left and right actions, respectively. In other words, the algebra Ek(n, r)
is stable under row and column permutations by rth Kronecker powers of P(w) for
w ∈ Wn.

4. Description of the invariants Ek(n, r + 1
2)

We now study how the algebra Ek(n, r + 1
2 ) = EndPr+ 1/2(n)(V

⊗r) is related to

Ek(n, r) = EndPr(n)(V
⊗r). Recall that in this context we identify V⊗r with V⊗r ⊗vn.

The following terminology is useful for our study.

Definition 4.1.

(a) If i1 · · · ir ∈ I(n, r), and if j ∈ {1, . . . , n}, let Λj(i1 · · · ir) be the set of places
in which the value j appears:

Λj(i1 · · · ir) = {α ∈ {1, . . . , r} : iα = j}.

We say that i1 · · · ir contains j if Λj(i1 · · · ir) is non-empty.
(b) Fix i, j such that 1 6 i, j 6 n. Let Ek(n, r)i

j be the set of invariants A =

(ai1···ir
j1···jr

) in Ek(n, r) satisfying the following condition:

if ai1···ir
j1···jr

6= 0 then Λi(i1 · · · ir) = Λj(j1 · · · jr).

We call elements of any Ek(n, r)i
j special invariants. Note that Ek(n, r)i

j is a

k-module, for any i, j. For any i = 1, . . . , n, Ek(n, r)i
i is an algebra over k,

the algebra of vi-fixing invariants.

Lemma 4.2. Suppose that r > 1 and A is in Ek(n, r). If all blocks except for Ai
j in the

ith block row and jth block column are zero blocks, then A must be a special invariant
in Ek(n, r)i

j.

Proof. Suppose ai1···ir
j1···jr

6= 0. We must show that Λi(i1 · · · ir) = Λj(j1 · · · jr).

Case 1. Assume that i1 · · · ir contains i or j1 · · · jr contains j. Since A is invariant
under place-permutations we can assume that i1 = i or j1 = j. Then the hypothesis
implies that both i1 = i and j1 = j. Since A preserves value-type, it follows that the
places in i1 · · · ir containing i must agree with the places in j1 · · · jr containing j, so
Λi(i1 · · · ir) = Λj(j1 · · · jr).

Case 2. Otherwise, i1 · · · ir does not contain i and j1 · · · jr does not contain j. Again
Λi(i1 · · · ir) = Λj(j1 · · · jr), as both sets are empty. �

The next result says in particular that the blocks of any invariant are always special
invariants in the previous degree.
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Lemma 4.3. Suppose that r > 1 and that A is in Ek(n, r). For any fixed 1 6 i, j 6 n,

the block matrix Ai
j = (ai i2···ir

j j2···jr
)i2···ir, j2···jr∈I(n,r−1) belongs to Ek(n, r − 1)i

j, after
re-indexing its rows and columns via the forgetful map that omits the initial term of
each multi-index.

Proof. Clearly Ai
j belongs to Ek(n, r − 1), since it satisfies the conditions of Proposi-

tion 3.2. Furthermore, the fact that A preserves value-type implies that

if ai i2···ir
j j2···jr

6= 0 then Λi(i2 · · · ir) = Λj(j2 · · · jr)

since Λi(i i2 · · · ir) = Λj(j j2 · · · jr) by hypothesis. So Ai
j ∈ Ek(n, r − 1)i

j , as re-
quired. �

Lemma 4.4. Ek(n, r + 1
2 ) is isomorphic to Ek(n, r)n

n (as algebras). In particular,

Ek(n, r + 1
2 ) embeds in Ek(n, r).

Proof. This is more or less immediate from the definitions. Thanks to the identification
of V⊗r with V⊗r ⊗ vn, an invariant in

Ek

(

n, r +
1

2

)

= EndPr+ 1/2(n)(V
⊗r)

is a k-linear endomorphism of V⊗r ⊗ vn commuting with the action of Pr+ 1/2(n).
So it must preserve value-type, which means that it must fix vn in all tensor places,
since it does so in the last place. Also, it is constant on place-permutation orbits for
Sr acting on the first r places, and satisfies the slice equations in Proposition 3.2(a)
in all places. If we index rows and columns of the invariant by elements of I(n, r), by
forgetting the last tensor factor (of vn), then we get an invariant in Ek(n, r). �

Example 4.5. A special invariant in Ek(4, 2)4
4

∼= Ek(4, 2 + 1
2 ) is of the form

1
1

1
2

1
3

1
4

2
1

2
2

2
3

2
4

3
1

3
2

3
3

3
4

4
1

4
2

4
3

4
4

11 ∗ ∗ ∗

12 ∗ ∗ ∗ ∗ ∗ ∗

13 ∗ ∗ ∗ ∗ ∗ ∗

14 ∗ ∗ ∗

21 ∗ ∗ ∗ ∗ ∗ ∗

22 ∗ ∗ ∗

23 ∗ ∗ ∗ ∗ ∗ ∗

24 ∗ ∗ ∗

31 ∗ ∗ ∗ ∗ ∗ ∗

32 ∗ ∗ ∗ ∗ ∗ ∗

33 ∗ ∗ ∗

34 ∗ ∗ ∗

41 ∗ ∗ ∗

42 ∗ ∗ ∗

43 ∗ ∗ ∗

44 ∗

where all blank positions must be zero, and the starred positions can be non-zero.
This should be compared with Example 3.8. All special invariants in Ek(4, 2) look like
this, up to a reordering of rows and columns.

Notice that deleting the rows and columns indexed by labels containing 4 yields the
general form of an invariant in Ek(3, 2); see Example 3.8. This observation motivates
Proposition 4.6 below.

The reader may wish to refer to Example 4.5 when working through the proof of
the next result.

Proposition 4.6. Suppose that n > 2. For any 1 6 p, q 6 n, there is a k-linear
isomorphism

Ek(n, r)p
q

≈
−−→ Ek(n − 1, r)
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given by respectively excising all rows, columns labeled by a multi-index containing p,
q respectively and re-indexing the sets {1, . . . , p−1, p+1, . . . , n} and {1, . . . , q −1, q +
1 . . . , n} to match {1, . . . , n − 1}. In particular, we have a k-linear isomorphism

Ek

(

n, r +
1

2

)

≈
−−→ Ek(n − 1, r)

given by excising all rows and columns labeled by a multi-index containing n (with no
re-indexing needed).

Proof. We first prove the special case in which p = q = n. Suppose that A ∈
Ek(n, r)n

n. We obtain a corresponding invariant η(A) ∈ Ek(n − 1, r) by excising all
rows and columns of A indexed by a label containing n. This defines a k-linear map
η : Ek(n, r)n

n → Ek(n − 1, r).
For the opposite direction, suppose that C ∈ Ek(n − 1, r) is given. We define a

k-linear map θr : Ek(n−1, r) → Ek(n, r)n
n by induction on r, holding n fixed. If r = 1,

we set θ1(C) = A = (ai
j)i,j=1,...,n, where

ai
j =











ci
j if i 6= n and j 6= n,

s if i = n and j = n,

0 otherwise.

Here, s is the common value of the row and column sums in the given GDS matrix C.
If r > 1, we regard C = (Ci

j)i,j=1,...,n−1 as an (n−1)×(n−1) block matrix, where each

Ci
j = (bi i2···ir

j j2···jr
)i2···ir,j2···jr∈I(n−1,r), and then we set θr(C) = A = (Ai

j)i,j=1,...,n, again

as a block matrix, where the blocks Ai
j = (ai i2···ir

j j2···jr
)i2···ir,j2···jr∈I(n,r−1) are given by

Ai
j =











θr−1(Ci
j) if i 6= n and j 6= n,

S if i = n and j = n,

0 otherwise.

Here, S is the common value of the block sum of the first n − 1 block rows and
columns in A; that is, S =

∑

A∗
j =

∑

Ai
∗, for any i, j = 1, . . . , n − 1. Alternatively,

S = θr−1(S′), where S′ =
∑

Ci
∗ =

∑

C∗
j for any i, j = 1, . . . , n − 1.

Having defined θ = θr, we claim that θ is a two-sided inverse of η, so η is the desired
isomorphism (and η−1 = θ). Details are left to the reader. This proves the special
case. The general case, for arbitrary 1 6 p, q 6 n, follows from the special case by
re-indexing (interchange n with p and q in row and column indices, respectively). �

Remark 4.7. For general 1 6 p, q 6 n, whenever necessary we will denote the k-linear
isomorphisms η, θ in the above proof by ηp

q , θp
q respectively.

Lemma 4.3 tells us that blocks of any invariant are always special invariants. If
the given invariant is itself special, then we can be more precise about the nature
of its blocks. Let p be the image of p under the renumbering bijection {1, . . . , i −
1, i + 1, . . . , n} ∼= {1, . . . , n − 1}; similarly q is the image of q under {1, . . . , j − 1, j +
1, . . . , n} ∼= {1, . . . , n − 1}.

Proposition 4.8. If A ∈ Ek(n, r)i
j is a special invariant then with η = ηi

j we have:

(a) Ai
q = 0 for any q 6= j and A

p
j = 0 for any p 6= i.

(b) If p 6= i and q 6= j then η(Ap
q) ∈ Ek(n − 1, r − 1)p

q .

(c) ρ(A) = Ai
j. Thus ρ(A) ∈ Ek(n, r − 1)i

j .

Proof. (a) Clear from the definition of Ek(n, r)i
j .

(b) This follows from Proposition 4.6 and Lemma 4.3, applied to η(A).
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(c) Set B = ρ(A). By Remark 3.7, all the block row and column sums of A are
equal to B. Thus, by part (a), we have B = Ai

j . The last statement in (c) then follows
by Lemma 4.3. �

Note that Proposition 4.8 is well illustrated by Example 4.5.
We finish this section with the following observation.

Lemma 4.9. With θ = θi
j and η = ηi

j the following diagram commutes:

Ek(n − 1, r) Ek(n, r)i
j

Ek(n − 1, r − 1) Ek(n, r − 1)i
j

θ

ρ ρ

θ

.

In other words, the restriction map ρ commutes with θ. (It also commutes with η =
θ−1.)

Proof. Left to the reader. �

Restriction ρ : Ek(n, r) → Ek(n, r −1) gives a way of obtaining invariants in degree
r − 1 from invariants in degree r (for r > 1). The opposite problem is the extension
problem:

Given B in Ek(n, r − 1), find some A in Ek(n, r) such that ρ(A) = B.

A closely related problem is the decomposition problem:

Given A in Ek(n, r), write A as a sum of special invariants.

We will prove in Theorem 6.16 ahead that both problems can always be solved. We
show now that this implies the main result of this paper.

Theorem 4.10. Let k be a commutative ring. For any n > 2, r > 1 the maps Φn,r :
kWn → Ek(n, r) and Φn,r+ 1/2 : kWn−1 → Ek(n, r + 1

2 ) are surjective.

Proof. By Proposition 4.6, the surjectivity of Φn,r+ 1/2 follows from the surjectivity
of Φn−1,r, so it suffices to prove the surjectivity of Φn,r. This surjectivity is trivial
if r = 0 since Ek(n, r) ∼= k. We proceed by induction on n. Let A ∈ Ek(n, r). By
Theorem 6.16, we can write

A = A(1) + · · · + A(n)

where A(j) is in Ek(n, r)n
j for each j = 1, . . . , n. By Proposition 4.6 and the inductive

hypothesis, each ηn
j A(j) belongs to the image of Φn−1,r, for j = 1, . . . , n. This implies

that each A(j) = θn
j ηn

j A(j) belongs to the image of Φn,r. Hence so does A, and the
proof is complete. �

Remark 4.11. Another proof of Theorem 4.10 is based on the existence of extensions
(also proved in Theorem 6.16). First note that it is easy to prove Theorem 4.10 if
n = r, because after all we just need to solve the equation

A =
∑

w∈Wn
xwΦn,r(w).

When n = r the equation has at most one solution, given by setting

xw = a
w(1)w(2)···w(n)
12···n for each w ∈ Wn.

This works because only one permutation w can contribute to that entry in the matrix
A. It is not difficult to check that this is actually a solution. It follows immediately
(given the existence of extensions) that the “same” linear combination

A′ =
∑

w∈Wn

xwΦn,r+1(w)
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is the unique extension of A in Ek(n, n + 1). Repeating the argument inductively, we
see that Theorem 4.10 holds for all r > n.

Assume now that r < n, which is the difficult case. The existence of extensions
implies in particular that the restriction map ρ is always surjective. Thus the com-
mutative diagram

Ek(n, n) Ek(n, r)

kWn

ρn−r

Φn,n
Φn,r

expresses the map Φn,r as the composite of two surjections, hence it is a surjection,
and the theorem is proved. The idea behind this proof is: given A in Ek(n, r) we first
extend up to degree n, where we can read off a solution, and then restrict it back
down to degree r.

Corollary 4.12. The kernel of restriction ρ : Ek(n, r) → Ek(n, r − 1) is isomorphic
to Φn,r(ker Φn,r−1) ∼= (ker Φn,r−1)/(ker Φn,r).

Proof. Since Φn,r is surjective (by Theorem 4.10) and ρ is surjective (Remark 4.11),
the commutativity of the diagram

Ek(n, r) Ek(n, r − 1)

kWn

ρ

Φn,r
Φn,r−1

implies that ker ρ ∼= Φn,r(ker Φn,r−1). �

In [4], the authors find an explicit cellular basis for the kernel of Φn,r for all n, r.
This means that we have an explicit basis for the kernel of ρ in Corollary 4.12.

5. Extensions and decompositions

It remains to prove the existence of extensions and decompositions. This is the purpose
of Sections 5 and 6.

First we discuss the extension problem. Let B be a given fixed invariant in Ek(n, r−
1). Suppose that A ∈ Ek(n, r) is an extension of the given B, and write A =
(ai

j)i,j∈I(n,r). Then the matrix coordinates ai
j of A must satisfy the conditions:

a
(i1···ir−1ir−1)σ

(j1···jr−1jr−1)σ = b
i1···ir−1

j1···jr−1
for all σ ∈ Sr ,(I-1)

ai1···ir
j1···jr

= 0 whenever vt(i1 · · · ir) 6= vt(j1 · · · jr)(I-2)

for all i1 · · · ir−1, j1 · · · jr−1 in I(n, r − 1) and all i1 · · · ir, j1 · · · jr in I(n, r).
Condition (I-1) comes from Proposition 3.4(d), while condition (I-2) restates value-

type preservation, from Proposition 3.2(b) (also Proposition 3.4(c)). We call (I-1),

(I-2) initialisation conditions. They determine the value of all entries ai
j = ai1···ir

j1···jr
for

which either #(i) < r or #(j) < r, where we define #(i) to be the number of distinct
values appearing in the multi-index i.

Thus, to find an extension A of the given B, we start by initialising A ∈
MatI(n,r)(k) to satisfy (I-1), (I-2). Then it only remains to assign values to the ai1···ir

j1···jr

for which #(i1 · · · ir) = r = #(j1 · · · jr). In other words, if we set

I ′(n, r) = {i ∈ I(n, r) : #(i) = r}
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then we can focus just on how to assign entries ai
j such that i, j ∈ I ′(n, r). By

Proposition 3.2, those entries of A must satisfy the following conditions. For any
p = i1 · · · iα−1iα+1 · · · ir, q = j1 · · · jα−1jα+1 · · · jr in I ′(n, r − 1),

∑

a
i1···iα−1 i iα+1···ir

j1···jα−1 ∗ jα+1···jr
= bp

q for all i = 1, . . . , n(12)
∑

a
i1···iα−1 ∗ iα+1···ir

j1···jα−1 j jα+1···jr
= bp

q for all j = 1, . . . , n(13)

and for all i = i1 · · · ir, j = j1 · · · jr in I ′(n, r),

ai1···ir
j1···jr

− a
(i1···ir)σ

(j1···jr)σ = 0 all σ ∈ Sr.(14)

So finding an extension A of the given B is (after initialisation) equivalent to solving
the linear system given by equations (12)–(14).

Any special invariant A in Ek(n, r)i
j is necessarily an extension of its block Ai

j .
This follows from Proposition 4.8(a) and Remark 3.7. So we sometimes refer to such
special invariants as special extensions.

Our goal now is to establish the following four interrelated properties, the first of
which is about the existence of extensions. They will be established by an interleaved
double induction on n, r. Note that that each property is based on some fixed (but
arbitrary) block row or column.

Property 1 (extension property). For any B in Ek(n, r − 1), there exists some A

in Ek(n, r) such that ρ(A) = B. More precisely, for any fixed 1 6 i 6 n (respectively,
1 6 j 6 n), there exist A(j) (resp. A(i)) in Ek(n, r)i

j such that A = A(1)+· · ·+A(n).
Call such an A an ith block row (resp. jth block column) extension of B.

A priori, it is not clear that every extension can be constructed as a block row
or column extension. However, the next property guarantees that every extension so
arises.

Property 2 (decomposition property). For any given A in Ek(n, r) and any fixed
1 6 i 6 n (respectively, 1 6 j 6 n), there exist A(j) (resp. A(i)) in Ek(n, r)i

j such
that A = A(1) + · · · + A(n). Call such a decomposition an ith block row (resp. jth
block column) decomposition.

Property 1 for (n, r) immediately implies Property 2 for (n, r−1); this follows from
Remark 3.7, because if A is in Ek(n, r) and ρ(A) = B then the sum of any chosen
block row or column of A is equal to B. It should be noted however that we work in
the opposite direction: we need Property 2 for (n, r − 1) as an inductive hypothesis
in order to prove Property 1 for (n, r).

Now we introduce free patterns, which index a set of entries in a matrix which
can be freely assigned to arbitary values in the ring k. Free patterns correspond to
a choice of free variables in the solution of a consistent linear system. Once the free
pattern entries have been assigned, the system has a unique solution.

Property 3 (free patterns for extensions). For any fixed index 1 6 i 6 n (respectively,
1 6 j 6 n), there exists a subset F (n, r) of I ′(n, r) × I ′(n, r), possibly empty and
depending on the index, such that for any B in Ek(n, r − 1) and any assignment
f : F (n, r) → k there exists a unique A in Ek(n, r) with ρ(A) = B.

Remark 5.1. We often identify the elements of F (n, r) with the matrix entries they
index.

It follows from the symmetry in equations (12)–(14) or from the existence of the
actions in (11) that if F (n, r) is a given free pattern, then by applying an arbitrary
permutation y ∈ Wn to all its row or column indices, we obtain another free pattern.
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Furthermore, by interchanging row and column indices in F (n, r) (transposing) we
obtain another free pattern.

Property 4 (free patterns for decompositions). For any given A in Ek(n, r) and
any fixed 1 6 i 6 n (respectively, 1 6 j 6 n), there exists a subset D(n, r) of
{1, . . . , n} × I ′(n, r) × I ′(n, r) such that for any given assignment f : D(n, r) → k

there exist unique A(j) (resp. A(i)) in Ek(n, r)i
j such that A = A(1) + · · · + A(n).

Properties 3, 4 are refinements of Properties 1, 2 (respectively) that precisely quan-
tify the amount of freedom in constructing solutions to their underlying linear systems.

Suppose that A is in Ek(n, r). Fix i and consider its ith block row Ai
∗ = (Ai

j)n
j=1.

By Lemma 4.3, each block Ai
j of Ai

∗ gives an invariant B(j) in Ek(n, r − 1)i
j , and the

correspondence is given by

(15) ai i2···ir
j j2···jr

= b(j)i2···ir
j2···jr

as j runs from 1 to n. We let πi be the bijection between the set of pairs
(i i2 · · · ir, j j2 · · · jr) indexing entries of Ai

∗ on the left hand side of (15) and
the set of triples (j, i2 · · · ir, j2 · · · jr) indexing entries on the right hand side. Simi-
larly, transposing rows and columns and i, j we obtain a bijection πj between the
set of pairs indexing entries of the jth block column A∗

j and a corresponding set of
triples. The following lemma is immediate from Remark 3.7.

Lemma 5.2. Let A ∈ Ek(n, r) and set B = ρ(A) ∈ Ek(n, r −1). The map πi (resp. πj)
is a bijection between a set of labels for the entries of Ai

∗ (resp. A∗
j ) and a set of labels

for a solution B = B(1) + · · · + B(n) to the decomposition problem in degree r − 1.

Now suppose that F (n, r) exists, in other words, that the free extension pattern
for constructing A (from B) in Lemma 5.2 exists (note that F (n, r) is necessarily
based on a designated block row or column). If F (n, r) is based on the ith block row
(resp. jth block column) then we define

(16) F ′(n, r) = {(i1 · · · ir, j1 · · · jr) ∈ F (n, r) : i1 = i (resp. j1 = j)}.

Furthermore, we define F ′′(n, r) = F (n, r) r F ′(n, r), so that

(17) F (n, r) = F ′(n, r) ⊔ F ′′(n, r).

This disjoint decomposition is the crux of the interleaved induction that will prove
Properties 1–4. Of great importance for our results is the fact that the map πi

(resp. πj) in Lemma 5.2 restricts to a bijection

F ′(n, r) ∼= D(n, r − 1),

where the right-hand side is the free decomposition pattern for writing B = B(1) +
· · · + B(n) in Lemma 5.2. In particular, this means that Property 3 for (n, r) im-
mediately implies Property 4 for (n, r − 1). However, our induction proceeds in the
reverse direction, using the inverse of the above bijection to construct F ′(n, r) from
D(n, r − 1). Then we construct F ′′(n, r) and glue them together according to (17) in
order to obtain F (n, r). In this manner, we explicitly construct and interrelate the
free extension patterns and free decomposition patterns.

Definition 5.3. We order I(n, r) lexicographically, and we do the same for the row
and column indices of any matrix in MatI(n,r)(k). A free pattern F (n, r) is row-
initial (resp. column-initial) if, after identifying free-pattern elements with their cor-
responding matrix entries, free-pattern entries precede all other entries in each row
(resp. column) slice. Similarly, it is row-terminal (resp. column-terminal) if, after
identifying free-pattern elements with matrix entries, free-pattern entries come after
all other entries in each row (resp. column) slice.
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It is evident that free patterns F (n, 1) exist. Indeed, it is easily checked that

F (n, 1) = {(i, j) : 2 6 i, j 6 n}

is a row- and column-terminal pattern for (n, 1). To see this, notice that once an
assignment f : F (n, 1) → k has been chosen, there is a unique extension A in Ek(n, 1)
of any given b ∈ Ek(n, 0) = k satisfying ai

j = f(i, j) for all (i, j) ∈ F (n, 1). Note that

a1
i and ai

1 are then uniquely forced for i > 1. The first entry a1
1 is forced in two ways,

but easily seen to be well-defined.
By applying appropriate permutations to the rows and/or columns of F (n, 1) above,

one gets row- and column-terminal, row-initial and column-terminal, and row-terminal
and column-initial free patterns for (n, 1). Our proof of the four basic properties in
the next section will show that these variations of free patterns always exist, for any
(n, r). Note that the distinguished element w0 ∈ Wn given by w0(j) = n + 1 − j for
j = 1, . . . , n interchanges initial and terminal patterns.

We conclude this section with the following algorithm, which (as we show in Corol-
lary 6.6) determines a terminal (respectively, initial) free pattern in a randomly chosen
row or column of an extension A in Ek(n, r) of a given B in Ek(n, r − 1), assuming
that it is the first such row or column to be completed. The algorithm is independent
of Properties 1–4, and independent of the inductive proof of those properties.

Algorithm 5.4. The α-slices of I ′(n, r) = {i ∈ I(n, r) : #(i) = r} are the subsets

{i1 · · · iα−1 i iα+1 · · · ir : i = 1, . . . , n}

for α = 1, . . . , r. We start by listing the elements of I ′(n, r) in lexicographical order.
We recursively assign a colour (0 or 1) to each element of I ′(n, r) as follows.

As long as uncoloured elements exist, we find the largest (respectively, smallest) un-
coloured element, colour it, and repeat. Colouring an element consists of the following
two steps:

(a) Examine all the element’s slices. If the element is the only uncoloured element
in one of its slices, we say it is forced, and colour it 0. Otherwise, colour the
element 1 to indicate that it is free.

(b) If colouring the current element forces any additional elements in any of its
slices, then colour those elements as well. (This happens when there is just
one remaining uncoloured element in the slice, after the current element is
coloured.)

We note that colouring is a recursive process, because of (b). Let I ′
1(n, r) be the set

of elements of I ′(n, r) coloured 1 by the above procedure.

Example 5.5. By always choosing the largest uncoloured element, for the case of
I ′

1(5, 2) the algorithm produces the following colouring:

I ′
1(5, 2) : 1

2

1
3

1
4

1
5

2
1

2
3

2
4

2
5

3
1

3
2

3
4

3
5

4
1

4
2

4
3

4
5

5
1

5
2

5
3

5
4

0 0 0 0 0 0 1 1 0 1 1 1 0 1 1 1 0 1 1 1
.

Thus we have I ′
1(5, 2) = {54, 53, 52, 45, 43, 42, 35, 34, 32, 25, 24}.

Let B in Ek(n, r − 1) be given, and fix some index i (respectively, j) in I ′(n, r).
Then any assignment

f : {ai
j : j ∈ I ′

1(n, r)} → k (resp. f : {ai
j : i ∈ I ′

1(n, r)} → k)

determines the ith row ai
∗ (resp. jth column a∗

j) of a matrix A satisfying equa-

tions (12) (resp. (13)) with respect to the given B.
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Remark 5.6.

(i) In Corollary 6.6 we will show that that, under suitable inductive hypotheses,
there exists an extension A of the given B which agrees with the row or
column determined by the above algorithm.

(ii) We prefer to work with terminal free patterns, because they are compatible
with restriction, in the sense that by excising all indices containing an n we
obtain a free pattern for n − 1. This preference pervades all of the examples
and some of the proofs in the next section.

6. Proof of Properties 1–4

We remind the reader that k is an arbitrary commutative ring. Now we are ready to
start the inductive proof of the four properties. For each property, we need to assume
an earlier instance of one or more properties. We begin with Property 1.

Proposition 6.1. Assume Property 1 for (n − 1, r). Then:

(a) For any i, j with 1 6 i, j 6 n and any given B in Ek(n, r − 1)i
j, there exists

some A in Ek(n, r)i
j such that ρ(A) = B.

(b) (i) Fix some j in {1, . . . , n}. Suppose given the data

B(1), . . . , B(n)

with B(i) in Ek(n, r−1)i
j for i = 1, . . . , n. Then there exist corresponding

A(i) in Ek(n, r)i
j for i = 1, . . . , n such that ρ(A(i)) = B(i) for all i.

(ii) Similarly, fix some i in {1, . . . , n}. Suppose given the data

B(1), . . . , B(n)

with B(j) in Ek(n, r−1)i
j for j = 1, . . . , n. Then there exist corresponding

A(j) in Ek(n, r)i
j for j = 1, . . . , n such that ρ(A(j)) = B(j) for all j.

(iii) In either case (i) or (ii), the sum A(1) + · · · + A(n) extends B(1) + · · · +
B(n).

(c) If in addition Property 2 holds for (n, r − 1) then Property 1 holds for (n, r).

Proof. (a) This follows from Proposition 4.6, which reduces the question to the prob-
lem of extending from Ek(n−1, r−1) to Ek(n−1, r), which is solved by the hypothesis.

(b) is immediate from part (a) and the linearity of ρ.
(c) Let B in Ek(n, r − 1) be given. By the decomposition property for (n, r − 1),

we can find B(j) in Ek(n, r − 1)n
j for j = 1, . . . , n such that B = B(1) + · · · + B(n).

By part (b)(ii), there exist corresponding A(j) in Ek(n, r)n
j such that ρ(A(j)) = B(j)

for all j = 1, . . . , n. Put A = A(1) + · · · + A(n). Then by linearity of ρ it follows that
ρ(A) = B, as required. This shows that A is a last block row extension of B. The
proof for any other block row or column is similar. �

Having dealt with the existence of extensions, we now consider the question of their
uniqueness.

Lemma 6.2. Suppose that n 6 r. Then

(a) Extensions (if any) from Ek(n, r − 1) to Ek(n, r) are unique.
(b) Restriction ρ : Ek(n, r) → Ek(n, r − 1) is injective.
(c) 0 is the only extension in Ek(n, r) of 0.

Proof. (a) Suppose that A in Ek(n, r) extends B in Ek(n, r − 1). We use Propo-
sition 3.4. Let i = i1 · · · ir, j = j1 · · · jr be in I(n, r). If vt(i) 6= vt(j) then by
Proposition 3.4(c), ai

j = 0.
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So assume for the rest of the proof that vt(i) = vt(j). If i has a repeated value,
then by Proposition 3.4(d), ai

j = bp
q , where p, q are obtained from i, j by removing

one of the duplicate values (from the same place). So such entries of A are determined
by B. If r > n, then all multi-indices in I(n, r) must have at least one duplicate value,
so we are done in that case.

We are left with the case r = n and #(i) = n (i has no repeated values). Then the
same is true of j, and by Proposition 3.4(b), with p = i1 · · · in−1 and q = j1 · · · jn−1

we have
∑

ap ∗

q jr
= bp

q .

Exactly n − 1 of the possible n values from {1, . . . , n} appear in i; similarly for j.
Hence at most one term in the above sum can be non-zero, because of value-type, so
ai

j = bp
q . So in this case, A is also determined by B. This proves part (a).

(b) This follows from part (a). If A ∈ ker ρ, then A = 0 by uniqueness.
(c) This follows from part (b). �

Remark 6.3. Suppose that n 6 r + 1. If C is any invariant in Ek(n, r) with zero last
block row, then C = 0. The same holds for any other block row or column. This
follows from the proof of Lemma 6.2(a); the assumption of a zero block row removes
one degree of freedom from column slice sums, so the uniqueness conclusion is still
valid, so C = 0.

The next result gives conditions under which we can construct extensions with
prescribed partial information in a chosen block row or column. This is a crucial tech-
nical result needed to prove Property 2. The chosen block row or column is controlled
by its free-pattern F ′(n, r) ∼= D(n, r − 1). We say that the prescribed information is
compatible with the extension problem for a given B in Ek(n, r − 1) if there is some
partial assignment from a subset of some F ′(n, r) to k which gives the prescribed
information.

Lemma 6.4. Assume Property 1 for (n−1, r) and Property 4 for (n, r−1). Suppose that
B in Ek(n, r − 1) is given. Fix a choice of block row (respectively, block column) and
a choice of any number of compatible prescribed rows (resp. columns) in the chosen
block row (resp. column). Then there exists an A in Ek(n, r) satisfying ρ(A) = B

which agrees with the prescribed rows (resp. columns).

Proof. Suppose we have fixed on an ith block row extension (the argument for a block
column extension is similar and left to the reader). By hypothesis, a set D(n, r − 1)
exists satisfying Property 4 for (n, r − 1). Any assignment to this set determines
a decomposition of the given B, say B = B(1) + · · · + B(n) where each B(j) ∈
Ek(n, r − 1)i

j . We define F ′(n, r) to correspond to D(n, r − 1) under the bijection

πi of Lemma 5.2. Assignments to D(n, r − 1) correspond to assignments to F ′(n, r),
which complete the ith block row of A in a way that satisfies all relevant extension
equations. Under this correspondence, Ai

j = B(j) for each j = 1, . . . , n. Once the ith
block row of A is complete, we apply Proposition 6.1(b) to find special extensions
A(j) in Ek(n, r)i

j for all j such that A = A(1) + · · · + A(n) extends B.
To finish, we simply note that by hypothesis the prescribed rows in the ith block

row are compatible with the extension problem for the given B, so they are specified
by a partial assignment f ′ to some subset of some F ′(n, r). We can extend f ′ to an
assignment f : F ′(n, r) → k which then determines the ith block row of A as above,
in a way that coincides with the prescribed information. �
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Example 6.5. We illustrate the above proof. Take (n, r) = (4, 2), and suppose that
row 42 of an extension has been prescribed, for a given B in Ek(4, 1). The prescribed
row is part of the final block row, so we construct a final block row extension. The
following

F ′(4, 2) :

1
2

1
3

1
4

2
1

2
3

2
4

3
1

3
2

3
4

4
1

4
2

4
3

42 X X X X X

43 X X X X X

depicts a row- and column-terminal free-pattern F ′(4, 2) for the last block row of
our desired extension A, where the checkmarked entries correspond to elements of
F ′(4, 2), which can be freely assigned in order to determine the last block row of a
general extension. This free pattern is calculated in Example 6.14 below.

The prescribed 42-row merely determines the values of the five free entries in that
row. By assigning arbitrary values to the remaining five entries in F ′(4, 2) we complete
the last block row of A, and then complete A by choosing special extensions of each
block in the last block row, and summing, as in the first paragraph of the proof of
Lemma 6.4.

We note the following immediate consequence of Lemma 6.4, which was promised
in Remark 5.6.

Corollary 6.6. Assume the same hypotheses as in Lemma 6.4. Suppose that (ai
∗)

or (a∗
j) is a row or column (where i or j ∈ I ′(n, r)) determined by an assignment

to the variables in that row or column labelled by the set I1(n, r) in Algorithm 5.4.
Then that row or column is a row or column of some extension A of any given B in
Ek(n, r − 1).

Now we are ready to prove Property 2.

Proposition 6.7. Assume Property 1 for (n − 1, r) and Property 4 for (n − 1, r − 1).
Then Property 2 holds for (n, r).

Proof. Let A in Ek(n, r) be given. We choose to decompose A based on its last block
row. (The argument for any other block row or column is similar.) By Proposition 4.6,
the problem of extending from Ek(n, r − 1)n

j to Ek(n, r)n
j is equivalent to the problem

of extending from Ek(n − 1, r − 1) to Ek(n − 1, r). So by the first hypothesis and
Proposition 6.1(a),

(18) there exists A(j) in Ek(n, r)n
j such that ρ(A(j)) = An

j

for all j = 1, . . . , n. Any choice of A(j) satisfying (18) makes the last block row of
A agree with that of the sum A(1) + · · · + A(n), so that the last block row of the
difference C = A − A(1) − · · · − A(n) is zero. We need to show that it is always
possible to choose the A(j) satisfying (18) in such a way that C = 0.

Case 1. If n 6 r + 1 then C as above is an invariant whose last block row is zero.
The zero invariant 0 is another such invariant. By Remark 6.3, it follows that C = 0.
This completes Case 1.

Case 2. Assume for the rest of the proof that n > r + 1 (so n − r > 2). We aim to
show that A(j) for j = 2, . . . , n can be chosen satisfying (18) in such a way that all
but the last block of the first block column of A − A(2) − · · · − A(n) is zero. Working
in reverse order from right to left along the last block row of A, we choose A(j) for
j = n, n − 1, . . . , 2 satisfying (18) by the following process. For each j, assuming that
A(n), . . . , A(j) have already been chosen, we set C(j) = A − A(n) − · · · − A(j).

Step 1. First we choose arbitrary A(n), . . . , A(r + 2) subject only to condition (18).
This step is not inductive.
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Step 2. We proceed by reverse induction on j running from r + 1 down to 2. At each
stage, we claim that A(j) satisfying (18) can be chosen so that:

(19)
ηn

j (A(j)) agrees with ηn
j (C(j + 1)) on all columns indexed by a

label in Lj−1

where Lj = {j1 · · · jr ∈ I ′(n, r) : jα = α for all α = 1, . . . , j}. To see this, we apply
Lemma 6.4 in the case (n−1, r), since ηn

j (C(j+1)) belongs to Ek(n−1, r). (Property 1
for (n−1, r) implies the existence of special extensions for (n−1, r), which is equivalent
to Property 1 for (n − 2, r), so the hypotheses of Lemma 6.4 for the case (n − 1, r) are
satisfied.) By the lemma, we can find A′(j) in Ek(n − 1, r) which agrees on the image
under ηn

j of the columns of C(j) indexed by Lj−1. Then we set A(j) = θn
j A′(j). This

matrix satisfies (19), so the claim is proved.
At this point we have inductively chosen A(r + 1) down to A(2), and we are ready

for the final step, choosing A(1). Since L1 indexes all the non-initialised columns in
the first block column, the only nonzero block in the first block column of C(2) is
C(2)n

1 . By construction, the same is true of the blocks in the last block row. Thus,
we may apply Lemma 4.2 to conclude that C(2) belongs to Ek(n, r)n

1 , and hence by
setting A(1) = C(2) we are done. �

Step 2 above starts with the unique column in Lr = {1 · · · r}, which isn’t affected
by any special invariant in Ek(n, r)n

j for j < r+1. So the last opportunity to zero that
column is when we choose A(r + 1). Similarly, as the induction in Step 2 proceeds,
controlled by the nested sequence

Lr ⊂ Lr−1 ⊂ · · · ⊂ L1,

the new columns that are zeroed in the running difference are precisely those columns
that cannot be affected in subsequent steps.

Example 6.8. Assume that A ∈ Ek(4, 2). We illustrate Case 2 of the above proof for
a last block row decomposition, working from right to left through the last block row.
Step 1 consists of subtracting an arbitrary A(4) in Ek(4, 2)4

4 such that ρ(A(4)) = A4
4.

Referring to the matrix forms depicted in Examples 3.8, 4.5 we see that after Step 1,

C(4) = A − A(4) =

1
1

1
2

1
3

1
4

2
1

2
2

2
3

2
4

3
1

3
2

3
3

3
4

4
1

4
2

4
3

4
4

11 ∗ ∗ ∗ ∗

12 t1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

13 t2 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

14 ∗ s 0 ∗ ∗ 0 ∗ ∗ 0 ∗ ∗ ∗

21 t
′

1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

22 ∗ ∗ ∗ ∗

23 t
′

2 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

24 ∗ s
′

0 ∗ ∗ 0 ∗ ∗ 0 ∗ ∗ ∗

31 t
′′

1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

32 t
′′

2 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

33 ∗ ∗ ∗ ∗

34 ∗ s
′′

0 ∗ ∗ 0 ∗ ∗ 0 ∗ ∗ ∗

where blank entries represent zero as usual. We omit showing the last block row,
where there are no choices. The nine explicit zeros shown above are place-permutation
symmetric to entries of C(4)4

4, which is 0 by construction. We must have t1 + t2 = s,
t′
1 + t′

2 = s′, and t′′
1 + t′′

2 = s′′ thanks to local GDS conditions in the blocks.
The above equations imply that the image of column 12 under η4

3 is consistent
with that column of an extension of η4

3(A4
3). By Lemma 6.4, we can find an A(3) in

Ek(4, 2)4
3 such that ρ(A(3)) = C(4)4

3 and η4
3(A(3)) agrees with η4

3(C(4)) in column 12.
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(Note that L2 = {12}.) This implies that C(3) has the form

C(3) = C(4) − A(3) =

1
1

1
2

1
3

1
4

2
1

2
2

2
3

2
4

3
1

3
2

3
3

3
4

4
1

4
2

4
3

4
4

11 ∗ ∗ ∗ ∗

12 0 ∗ ∗ 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

13 0 ∗ ∗ 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

14 ∗ 0 0 ∗ 0 0 ∗ ∗ 0 ∗ ∗ 0
21 0 ∗ ∗ 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

22 ∗ ∗ ∗ ∗

23 0 ∗ ∗ 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

24 ∗ 0 0 ∗ 0 0 ∗ ∗ 0 ∗ ∗ 0
31 0 ∗ ∗ 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

32 0 ∗ ∗ 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

33 ∗ ∗ ∗ ∗

34 ∗ 0 0 ∗ 0 0 ∗ ∗ 0 ∗ ∗ 0

.

The explicit zeros in column 21 must be zero because invariants are place-permutation
invariant, and column 21 is place-permutation symmetric to column 12.

By Lemma 6.4 there exists an A(2) in Ek(4, 2)4
2 such that ρ(A(2)) = A4

2 and
η4

2(A(2)) agrees with η4
2(C(3)) in columns L1 = {1∗} = {12, 13, 14}. Hence the

difference C(2) = C(3) − A(2) satisfies the property

C(2)i
4 = 0 and C(2)4

j = 0 for all i, j < 4.

By Lemma 4.2 it follows that C(2) is in Ek(4, 2)4
1, so by setting A(1) = C(2) we obtain

the desired decomposition A = A(1) + · · · + A(4). This completes Example 6.8.

To prove Property 3 we need the following result, which describes how to construct
a free pattern for the special extension problem, for a given pair i, j of indices in the
set {1, . . . , n}. We remind the reader that, by Proposition 4.8(c), the restriction of any
A in Ek(n, r)i

j belongs to Ek(n, r − 1)i
j . Let θi

j be the isomorphism in Proposition 4.6.

Lemma 6.9. Assume Property 3 for (n − 1, r). Then F (n, r)i
j = θi

jF (n − 1, r) is a free

pattern for the problem of extending invariants from Ek(n, r − 1)i
j to Ek(n, r)i

j, in the

sense that for any given B in Ek(n, r − 1)i
j and any assignment f i

j : F (n, r)i
j → k,

there is a unique special invariant A in Ek(n, r)i
j such that ρ(A) = B.

Proof. Suppose some B in Ek(n, r − 1)i
j is given. To construct a special extension A

in Ek(n, r)i
j we must set Ai

j = B and all other blocks in the ith block row and jth
block column to 0. The rest of A is determined by place-permutation symmetry and
the isomorphism θi

j : Ek(n − 1, r) → Ek(n, r)i
j of Proposition 4.6, thus determined by

assigning values to images of the free variables in the free pattern F (n − 1, r). �

Now we are ready for the proof of Property 3.

Proposition 6.10. Property 4 for (n, r − 1) and Property 3 for (n − 1, r) imply
Property 3 for (n, r).

Proof. We choose to base the construction of F (n, r) on the last block row. The
argument for any other block row or column is similar. Let π = πn be the map
in Lemma 5.2. Set F ′(n, r) = π−1D(n, r − 1). Then F ′(n, r) is a free pattern for
completing the last block row of an extension A of B, because doing so is equivalent
to decomposing B along its last block row. Let {An

j : j = 1, . . . , n} be the last block
row determined by some chosen assignment f ′ : F ′(n, r) → k. Fix this choice of last
block row of A for the rest of the argument.

To find the desired extension A, we apply Proposition 6.1(a) to choose arbitrary
special extensions A(j) in Ek(n, r)n

j such that ρ(A(j)) = An
j for all j, and set A =

A(1)+· · ·+A(n). By Lemma 6.9, there exists a free pattern F (n, r)n
j for each j and an

assignment f(j) : F (n, r)n
j → k that determines An

j . Let F ′′(n, r) =
⋃n

j=1 F (n, r)n
j .
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To continue, we introduce the notation

AF ′′ := (ai
j)(i,j)∈F ′′(n,r)

for the restriction of A to F ′′(n, r), and similarly for each A(j). We have AF ′′ =
∑

j A(j)F ′′ , so the given assignments f(j) induce a corresponding assignment f ′′ :

F ′′(n, r) → k. For the given fixed last block row of A, it is clear that there is an
extension A whose restriction to F ′′(n, r) induces f ′′, for an arbitrary assignment
f ′′ : F ′′(n, r) → k, because we can choose the f(j) entries arbitrarily.

Every extension A of B with the specified last block row must be of the form
A = A(1) + · · · + A(n), where A(j) is in Ek(n, r)n

j and ρ(A(j)) = An
j for all j. This

follows from the hypotheses, which by Proposition 6.7 imply that the decomposition
property holds for (n, r).

To finish, we need to argue that A (with the fixed last block row) is uniquely
determined by its assignment f ′′. To see this, suppose that A′ is another extension of
B, with the same last block row, given by the same assignment f ′′. Then AF ′′ = A′

F ′′ .
Thus the equations A =

∑

j A(j), A′ =
∑

j A′(j) imply by restriction that

∑

j A(j)F ′′ =
∑

j A′(j)F ′′ .

Each entry of A(j), A′(j) is uniquely expressible by the same linear combination of
the free pattern variables a(j)i

j , a′(j)i
j indexed by the free pattern F (n, r)n

j . Hence,

any linear relations among the {A(j)}, {A′(j)} are determined by their restriction to
F ′′(n, r), which contains F (n, r)n

j . So the above displayed equality implies that

∑

j A(j) =
∑

j A′(j) .

Hence A = A′, as required. This proves the desired uniqueness statement. We have
now shown that F ′′(n, r) is a free pattern for constructing an extension A having the
specified last block row. Thus, the disjoint union F (n, r) = F ′(n, r) ⊔ F ′′(n, r) is a
free pattern for the extension problem (for the given B). �

We note the following immediate consequence of the above proof.

Corollary 6.11. Under the same hypotheses as the preceeding result based on an ith
block row (respectively, jth block column) construction,

F (n, r) = F ′(n, r) ⊔ F ′′(n, r)

where F ′′(n, r) =
⋃n

j=1 F (n, r)i
j (resp. F ′′(n, r) =

⋃n
i=1 F (n, r)i

j) and F ′(n, r) is de-

termined by the condition πF ′(n, r) = D(n, r − 1).

Example 6.12.

(a) We now construct F (4, 2), under the assumption that F (3, 2) and D(4, 1) ∼=
F ′(4, 2) are known. It is easy to check that F (3, 2) = {(32, 32)}. Hence

F ′′(4, 2) =
⋃

16j64

θj
4(F (3, 2)) =

⋃

16j64

θj
4{(32), (32)}

where θ1
4{32, 32} = {32, 43}, θ2

4{32, 32} = {32, 43}, θ3
4{32, 32} = {32, 42}, and

θ4
4{32, 32} = {32, 32}. We refer to Example 6.14 for F ′(4, 2). It follows that

F (4, 2) is as depicted below:

F (4, 2) :

1
2

1
3

1
4

2
1

2
3

2
4

3
1

3
2

3
4

4
1

4
2

4
3

32 X X X

42 X X X X X

43 X X X X X

.
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(b) Now we consider F (5, 3), under the assumption that F (4, 3) and D(5, 2) are
both known. It is easy to check that F (4, 3) = {(432, 432)}. It follows that

F ′′(5, 3) : 2
5

4

3
2

5

3
5

2

3
5

4

4
2

5

4
3

2

4
3

5

4
5

2

4
5

3

5
2

4

5
3

2

5
3

4

5
4

2

5
4

3

432 X X X X

since θ5
5(432, 432) = (432, 432), θ4

5(432, 432) = (432, 532), θ3
5(432, 432) =

(432, 542), and θ2
5(432, 432) = (432, 543). See Example 6.15 for F ′(5, 3). Tak-

ing the union of F ′′(5, 3) with F ′(5, 3) gives F (5.3) as depicted below:

F (5, 3) :
2

5
4

3
2

5

3
5

2

3
5

4

4
2

5

4
3

2

4
3

5

4
5

2

4
5

3

5
2

4

5
3

2

5
3

4

5
4

2

5
4

3

432 X X X X

532 X X X X X X X X X

542 X X X X X X X X X X X X X X

543 X X X X X X X X X X X X X X

.

This ends Example 6.12.

It remains to prove Property 4. The proof given below closely follows the proof of
Proposition 6.7.

Proposition 6.13. Property 3 for (n − 1, r) implies Property 4 for (n, r).

Proof. We need to prove the existence of the set D(n, r) satisfying Property 4. Prop-
erty 3 for (n−1, r) implies Property 4 for (n−1, r −1) and also implies Property1 for
(n − 1, r), so the hypotheses of Proposition 6.7 are satisfied, and hence its conclusion
holds. In other words, any given A in Ek(n, r) has a decomposition based on a chosen
block row or column. We assume for concreteness that it is based on the last block
row, as in the proof of Proposition 6.7. The argument closely follows the proof of that
proposition.

Case 1. If n 6 r + 1 then by Case 1 of the proof of Proposition 6.7, the desired
decomposition A = A(1) + · · · + A(n) is unique. Hence D(n, r) is empty in this case.

Case 2. Assume henceforth that n > r + 1. By Lemma 6.9 and the hypothesis, free
patterns

F (n, r)n
j = θn

j F (n − 1, r)

are available for any j = 1, . . . , n. We may assume that F (n − 1, r) is row- and
column-terminal.

Step 1. For each j = r + 2, . . . , n we choose arbitrary assignments F (n, r)n
j → k.

Each assignment uniquely determines a matrix A(j) in Ek(n, r)n
j . Therefore we define

D′(n, r) =
⋃

r+26j6n

{j} × F (n, r)n
j .

This set parametrises a set of free entries that uniquely determines matrices A(r +
2), . . . , A(n) in Case 2 of the proof of Proposition 6.7. Set C(j+2) = A−

∑n
j=r+2 A(j).

Step 2. Now we proceed by reverse induction on j running from r + 1 down to 2,
in order to identify a set D′′(n, r) of free entries parametrising the choice of A(j +
1), . . . , A(2) satisfying condition (19) in the proof of Proposition 6.7. Clearly the union

⋃

26j6r+1

{j} × F (n, r)n
j

is an upper bound on D′′(n, r). This bound is not tight due to linear dependencies

caused by the prescription of columns labelled by elements of Lj−1
Sr in the proof

of Step 2 of Proposition 6.7. We have to remove those additional dependencies in
order to obtain D′′(n, r).

We do this by applying a modified version of Algorithm 5.4. Namely, for each fixed
j = r + 1, . . . , 2 we initialise each entry j1 · · · jr of I ′(n, r) containing j to colour 0,
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and (following Step 2 in Case 2 of the proof of Proposition 6.7) do the same for each

entry belonging to Lj−1
Sr . Then we run Algorithm 5.4 to determine the independent

(free) columns in a generic row of an extension. Let I ′
j(n, r) be the set of elements

coloured 1 in that algorithm. We define

F (n, r)n
j = {(i1 · · · ir, j1 · · · jr) ∈ F (n, r)n

j : j1 · · · jr ∈ I ′
j(n, r)}.

and we accordingly set

D′′(n, r) =
⋃

26j6r+1

{j} × F (n, r)n
j .

We claim that the desired pattern D(n, r) is equal to the union

D(n, r) = D′(n, r) ∪ D′′(n, r).

To see this, observe that every decomposition A = A(1)+· · ·+A(n) in Proposition 6.7
determines a unique assignment

(20) f : D(n, r) → k

by setting f({j}×(p, q)) = a(j)p
q . Conversely, for each r+1 > j > 2, each assignment

to F (n, r)n
j along with the values in the prescribed columns indexed by Lj−1

Sr forces
a corresponding assignment to F (n, r)n

j . (Indeed, the algorithm was designed with
that purpose in mind.) It thus follows from the proof of Case 2 of Proposition 6.7
that each assignment as in (20) determines a unique decomposition of the form A =
A(1) + · · · + A(n) with the required properties. �

Example 6.14. To illustrate the above proof, we construct D(n, 1), assuming that
F (n − 1, 1) = {(i, j) : 2 6 i, j 6 n − 1}. For each j = 1, . . . , n we have

F (n, 1)n
j = {(p, q) : 2 6 p 6 n − 1, 2 6 q 6 n, q 6= j}.

Furthermore, F (n, 1)n
2 is obtained from F (n, 1)n

2 by excising all entries in its leftmost
column; that is,

F (n, 1)n
2 = {(p, q) : 2 6 p 6 n − 1, 4 6 q 6 n}.

Thus, as in the proof of Proposition 6.13, we obtain

D(n, 1) = {2} × F (n, r)n
2 ∪

⋃

36j6n

{j} × F (n, r)n
j .

For instance, when n = 4 this can be depicted by the following table:

D(4, 1) :

j = 1 2 3 4
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

1
2 X X X X X

3 X X X X X

4

in which the indices labelling checkmarked positions correspond to elements of D(4, 1).
By Lemma 5.2, it follows that F ′(4, 2) can be depicted by

F ′(4, 2) :

1
2

1
3

1
4

2
1

2
3

2
4

3
1

3
2

3
4

4
1

4
2

4
3

42 X X X X X

43 X X X X X

.

Example 6.15. We now compute D(5, 2), which is in bijection with F ′(5, 3). We first
run Algorithm 5.4 to calculate I ′

j(5, 2) for j = 3, 2:

I ′
3(5, 2) : 1

2

1
3

1
4

1
5

2
1

2
3

2
4

2
5

3
1

3
2

3
4

3
5

4
1

4
2

4
3

4
5

5
1

5
2

5
3

5
4

0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 1 0 1

I ′
2(5, 2) : 1

2

1
3

1
4

1
5

2
1

2
3

2
4

2
5

3
1

3
2

3
4

3
5

4
1

4
2

4
3

4
5

5
1

5
2

5
3

5
4

0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 1
.

Algebraic Combinatorics, Vol. 5 #2 (2022) 395



Chris Bowman, Stephen Doty & Stuart Martin

To justify this, we go through the algorithm for I ′
3(5, 2) a little more slowly. The initial

colouring is

1
2

1
3

1
4

1
5

2
1

2
3

2
4

2
5

3
1

3
2

3
4

3
5

4
1

4
2

4
3

4
5

5
1

5
2

5
3

5
4

0 0 0 0 0 0 0 0 0 0
.

We now list the colourings obtained after three complete iterations (doing both Steps 1
and 2) of the algorithm:

1
2

1
3

1
4

1
5

2
1

2
3

2
4

2
5

3
1

3
2

3
4

3
5

4
1

4
2

4
3

4
5

5
1

5
2

5
3

5
4

0 0 0 0 0 0 0 0 0 0 1

1
2

1
3

1
4

1
5

2
1

2
3

2
4

2
5

3
1

3
2

3
4

3
5

4
1

4
2

4
3

4
5

5
1

5
2

5
3

5
4

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1

1
2

1
3

1
4

1
5

2
1

2
3

2
4

2
5

3
1

3
2

3
4

3
5

4
1

4
2

4
3

4
5

5
1

5
2

5
3

5
4

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1

respectively. Thus we obtain

F (5, 2)5
3 :

1
2

1
3

1
4

1
5

2
1

2
3

2
4

2
5

3
1

3
2

3
4

3
5

4
1

4
2

4
3

4
5

5
1

5
2

5
3

5
4

32 X X

42 X X X

43 X X X

.

Now let j = 2. The initial colouring is

1
2

1
3

1
4

1
5

2
1

2
3

2
4

2
5

3
1

3
2

3
4

3
5

4
1

4
2

4
3

4
5

5
1

5
2

5
3

5
4

0 0 0 0 0 0 0 0 0 0 0 0 0 0
.

In Step 1 of the algorithm, we 1-colour 54. In Step 2 this forces us to 0-colour 53;
this in turn forces us to 0-colour 43; this in turn forces us to 0-colour 45; this in turn
forces us to 0-colour 35; this in turn forces us to 0-colour 34. Thus I ′

2(5, 2) = {54}.
Therefore we have

F (5, 2)5
2 :

1
2

1
3

1
4

1
5

2
1

2
3

2
4

2
5

3
1

3
2

3
4

3
5

4
1

4
2

4
3

4
5

5
1

5
2

5
3

5
4

32 X

42 X

43 X

.

We summarise this in the following table, where the last two blocks are determined
by F (4, 2) in Example 6.12(a):

D(5, 2) :

j = 2 3 4 5

5
4

2
5

5
2

5
4

2
5

3
2

3
5

5
2

5
3

2
4

3
2

3
4

4
2

4
3

32 X X X X X X X X X

42 X X X X X X X X X X X X X X

43 X X X X X X X X X X X X X X

in which we omit columns that have no information, in order to save space. We hence
obtain

F ′(5, 3) :

2
5

4

3
2

5

3
5

2

3
5

4

4
2

5

4
3

2

4
3

5

4
5

2

4
5

3

5
2

4

5
3

2

5
3

4

5
4

2

5
4

3

532 X X X X X X X X X

542 X X X X X X X X X X X X X X

543 X X X X X X X X X X X X X X

.

Theorem 6.16. All the Properties 1–4 hold for any n > 2, r > 1.

Proof. This follows from the results of this section by a double induction on n, r. To
be precise, we summarize the results proved in Propositions 6.1, 6.7, 6.10, and 6.13
in the table below:

Result Hypotheses Conclusion

6.1 Prop. 1(n − 1, r), Prop. 2(n, r − 1) Prop. 1(n, r)

6.7 Prop. 1(n − 1, r), Prop. 4(n − 1, r − 1) Prop. 2(n, r)

6.10 Prop. 3(n − 1, r), Prop. 4(n, r − 1) Prop. 3(n, r)

6.13 Prop. 3(n − 1, r), Prop. 4(n − 1, r − 1) Prop. 4(n, r)

.
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Properties 1 and 3 for (n, 1) are evident, for any n. Properties 2 and 4 hold vacuously
for r = 0, for any n, as there is nothing to do since Ek(n, 0) ∼= k. These serve as base
cases for the induction. �

Appendix A. Gibson’s theorem

We explain the connection to earlier work of P.M. Gibson [17]. Assume in this ap-
pendix that n > 1 and that k is a (not necessarily commutative) unital ring. Gibson
observed that the algebra Ek(n, 1) of n × n GDS matrices is free over the ring k and
spanned by permutation matrices, and he constructed an explicit basis of Ek(n, 1) of
permutation matrices.

In order to describe Gibson’s basis, we define i+1 mod n to be the unique element
t of {1, . . . , n} such that i ≡ t modulo n. Let

Qn =
(

δi, j+1 mod n

)

i,j=1,...,n

be the n×n circulant permutation matrix representing the descending n-cycle (n, n−
1, . . . , 1) ∈ Wn. For example, if n = 4 we have

Q4 =









0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0









.

Let mi
j be the (i, j)-entry of Qn + In, where In =

(

δi,j

)

i,j=1,...,n
is the n × n identity

matrix. Clearly

mi
j =

{

1 if i = j or i + 1 mod n = j,

0 otherwise.

There are two zero entries in each column of Qn + In =
(

mi
j

)

, one for each pair
(r, c) ∈ Γn, where we define Γn to be the set of (r, c) such that r = c or r+1 mod n = c.
So there are n(n − 2) zero entries in Qn + In. If mr

c = 0, there is a unique n × n
permutation matrix Gr,c =

(

gi
j

)

such that

gr
c = 1, and gi

j 6 mi
j for all (i, j) 6= (r, c).

In fact, one can show that the (n − 1) × (n − 1) submatrix obtained by removing row
r and column c of Gr,c is equal to

{

Qn−1 if r < c,

In−1 if c < r.

This provides a recursive description of Gr,c. We obtain n(n−2) linearly independent
permutation matrices Gr,c in this way, one for each (r, c) ∈ Γn. Gibson proved the
following result.

Theorem A.1 ([17, Thm. 2.1]). Let k be any unital ring. Then the set of permutation
matrices

{Gr,c : 1 6 r, c 6 n and (r, c) ∈ Γn} ∪ {Qn, In}

is a basis over k of Ek(n, 1). In particular, the algebra of all n × n GDS matrices is
free over k of rank (n − 1)2 + 1.

To express a given n × n GDS matrix A =
(

ai
j

)

as a linear combination of permu-
tation matrices, one sets

(21) B =
(

bi
j

)

= A −
∑

(r,c)∈Γn
ar

c Gr,c.

Algebraic Combinatorics, Vol. 5 #2 (2022) 397



Chris Bowman, Stephen Doty & Stuart Martin

Then it is easy to see that B − bn
1 Qn − bn

nIn = 0, so

(22) A = bn
1 Qn + bn

nIn +
∑

(r,c)∈Γn
ar

c Gr,c

is the desired linear combination. This shows that the proposed basis spans Ek(n, 1).
One easily checks that it is linearly independent.

Johnsen [21] found a different basis of permutation matrices for Ek(n, 1) under the
assumption that k is a field. In that case it suffices to focus on the doubly stochastic
matrices (with row and column sums equal to 1). See also [23] for related work.

Remark A.2. It follows from Gibson’s theorem that Ek(n, 1) is spanned by the set of
n × n permutation matrices. This is the r = 1 case of Theorem 4.10.

Acknowledgements. We are grateful to the organisers of the conference “Representa-
tion theory of symmetric groups and related algebras” at that venue, for providing
an opportunity for collaboration.
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