
Graphs and Combinatorics (2018) 34:1333–1346
https://doi.org/10.1007/s00373-018-1967-8

ORIG INAL PAPER

Perfect k-Colored Matchings and (k + 2)-Gonal Tilings

Oswin Aichholzer1 · Lukas Andritsch2 · Karin Baur2 · Birgit Vogtenhuber1

Received: 20 July 2017 / Revised: 24 September 2018 / Published online: 10 November 2018
© The Author(s) 2018

Abstract
We derive a simple bijection between geometric plane perfect matchings on 2n points
in convex position and triangulations on n + 2 points in convex position. We then
extend this bijection to monochromatic plane perfect matchings on periodically k-
colored vertices and (k + 2)-gonal tilings of convex point sets. These structures are
related to a generalization of Temperley–Lieb algebras and our bijections provide
explicit one-to-one relations between matchings and tilings. Moreover, for a given
element of one class, the corresponding element of the other class can be computed
in linear time.

Keywords Triangulations · Perfect matchings · Temperley–Lieb algebras ·
Fuss–Catalan algebras

1 Introduction

The Fuss–Catalan numbers f (k,m) = 1
m

(km+m
m−1

)
are known to count the number

of (k + 2)-gonal tilings of a convex polygon of size km + 2 and go back to Fuss-
Euler (cf. [6]). Bisch and Jones introduced k-colored Fuss–Catalan algebras in [1] as
a natural generalization of Temperley–Lieb algebras. These algebras have bases by
certain planar k-colored diagrams withmk vertices on top and bottom. The dimension
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of such an algebra is f (k,m), with a basis indexed by these diagrams. We call these
diagrams plane perfect k-colored matchings or just k-colored matchings, assuming
from now on that they are plane and perfect. Since the number of (k+2)-gonal tilings
coincideswith the number of k-coloredmatchings, these sets are in bijection. Przytycki
and Sikora [6] prove this through an inductive implicit construction but do not give an
explicit bijection between the sets.

Furthermore, from work of Marsh and Martin [5], one can derive an implicit corre-
spondencebetween triangulations anddiagrams for k = 1.However, to our knowledge,
no explicit bijection is known.

In this paper, we will give bijections between these two sets of plane graphs on
sets of points in convex position. We first address the case k = 1 (Sect. 3) and then
treat the general case. Our main theorems are the explicit bijections between the set of
k-colored matchings and (k + 2)-gonal tilings (Theorems 1 and 3). A key ingredient
is the characterization of valid k-colored matchings in Theorem 2.

2 Algebraic Background

2.1 Temperley–Lieb Algebras

Temperley and Lieb introduced in [7] an algebra arising from a special kind of lattice
models, which is a key ingredient in statistical mechanics. Given a field K and an
element α ∈ K , the Temperley–Lieb algebra T Ln(α) is the algebra with identity I
with generators u1, . . . , un−1 , I , subject to the relations:

u2i = αui , 1 ≤ i ≤ n − 1 (1)

uiu j = u jui , |i − j | > 1, 1 ≤ i, j ≤ n − 1 (2)

uiui+1ui = ui , 1 ≤ i ≤ n − 2 (3)

ui+1uiui+1 = ui+1, 1 ≤ i ≤ n − 2. (4)

The basis of the algebra consists of all reduced words, i.e. words which can not be
further simplified using the relations. For example, a basis of TL3(α) over the field
k is {I , u1, u2, u1u2, u2u1}, independently of the element α. Kauffman introduced a
pictorial representation of the Temperley–Lieb algebras in [4]. Each generator corre-
sponds to a plane perfect matching with n vertices on the top and bottom of a rectangle
labelled v1, . . . , vn and vn+1, . . . , v2n in clockwise order. The identity consists of n
propagating lines, and the generator ui consists of n − 2 propagating lines and two
arcs between the pairs (vi , vi+1) and (v2n−i , v2n−i+1) respectively, see Fig. 1.
Products of generators of the algebra are obtained by concatenation of the correspond-
ing matchings from top to bottom. Any loop arising from this is removed and replaced
by a factor α, e.g. uiui = αui , see Fig. 2.
One can check that all the relations (1)–(4) are satisfied. Relation (3) is illustrated in
Fig. 3.
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v1 v2 v3 v4 v5 v6

v7v8v9v10v11v12

v1 v2 v3 v4 v5 v6

v7v8v9v10v11v12

Fig. 1 The identity I (left) and one of the generators, u2 (right), of TL6(α)

v1 v2 v3 v4 v5 v6

v7v8v9v10v11v12

v7v8v9v10v11v12

v1 v2 v3 v4 v5 v6

= α ·

Fig. 2 Loops are replaced by multiplication with the field element α, here: u22 = αu2

v1 v2 v3 v4 v5 v6

v7v8v9v10v11v12

v7v8v9v10v11v12

=

v1 v2 v3 v4 v5 v6

Fig. 3 The multiplication of generators (u2u3u2) is shown on the left. The leftmost element of a multipli-
cation always corresponds to the pictogram on the top

It is a well known result that the dimension of TLn(α) is equal to Cn = 1
n+1

(2n
n

)
, the

n-th Catalan number (see [1] for an example). We are only interested in the diagrams
and will from now on fix α = 1.

2.2 Fuss–Catalan Algebras

In [1], Bisch and Jones introduced a natural generalization of the Temperley–
Lieb algebras, the so called k-colored Fuss–Catalan algebras. These algebras,
which we denote by TLmk,k(α1, . . . , αk), can be defined using the same picto-
rial representation, now with mk vertices on the top and bottom. However, the
diagrams giving the basis must satisfy a further constraint. The vertices are col-
ored clockwise starting at the top left vertex, with k colors c1, . . . , ck as follows:
c1, . . . , ck−1, ck, ck, ck−1, . . . , c2, c1, c1, c2, . . . , ck and so on. Note that the vertices
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a b c c b a a b c

a b c c b a a b c

a b c c b a a b c

a b c c b a a b c

a b c c b a a b c

a b c c b a a b c

a b c c b a a b c

a b c c b a a b c

a b c c b a a b c

a b c c b a a b c

a b c c b a a b c

a b c c b a a b c

Fig. 4 The generators of TL6,3(α, β, γ ) (m = 2, k = 3, and c1 = a, c2 = b, c3 = c). In the left column,

starting in the first row, are the elements u(1)
1 , u(2)

1 and u(3)
1 , in the right column the elements u(1)

2 , u(2)
2 and

u(3)
2 respectively

v1 and v2n are always colored with c1 and that the vertices vn and vn+1 have the same
color c1 or ck , depending on the parity of m. In the diagrams, only monochromatic
matchings, i.e. matchingswhere only vertices of the same color are linked, are allowed.
The identity is again given by straight lines. The generators consist of straight lines
and nested sets of arcs as follows: u(l)

i , 1 ≤ i ≤ m, 1 ≤ l ≤ k, consists of l nested arcs,
where the innermost arc connects vertices vki and vki+1 and has color c1 for i even
and ck for i odd, respectively, all other lines are straight. See Fig. 4 for an illustration
of some generators in the 3-colored case.

Similar to the uncolored case, loops of color ci correspond to multiplication by a
non-zero field element αi . For defining the relations, we follow [2]. Set βi (0) = 1 for
all 1 ≤ i ≤ m. Further, for 1 ≤ p ≤ k and 1 ≤ i ≤ m, set

βi (p) =
{

α1 · α2 · · · αp if i is even
αk · αk−1 · · · αk+1−p if i is odd.
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Then the k-colored Fuss–Catalan algebra TLmk,k(α1, . . . , αk) has as generators the
identity I and u(l)

i , 1 ≤ i ≤ m, 1 ≤ l ≤ k subject to the relations

u(p)
i u(q)

i = u(q)
i u(p)

i = βi (p)u
(q)
i if p ≤ q (5)

u(p)
i u(q)

j = u(q)
j u(p)

i if |i − j | > 1 or j = i ± 1 and p + q ≤ k (6)

u(p)
i u(q)

i±1 = βi (k − q)u(p)
i u(k−p)

i±1 for p + q > k. (7)

Note that u(0)
i = I for 1 ≤ i ≤ m in these relations whenever needed. All the

diagrams generated through this form a basis of TLmk,k(α1, . . . , αk). The number of
basis elements of TLmk,k(α1, . . . , αk) is f (k,m) := 1

m

(km+m
m−1

)
as shown in [1]. The

numbers f (k,m) are called Fuss–Catalan numbers, a generalization of the Catalan
numbers f (1,m). As mentioned above, we are interested in the diagrams and will
from now on assume that αi = 1 for 1 ≤ i ≤ k.

3 Matchings and Triangulations

In the following, we consider two classes of labeled plane geometric graphs on sets of
points in convex position. We will tacitly assume that the points are always in convex
position and that the graphs are plane. The first class are perfect matchings on 2n
points in convex position. We will draw these matchings with two parallel rows of
n vertices each, labeled v1 to vn and vn+1 to v2n in clockwise order, and with non-
straight edges; see Fig. 5(left). The second class are triangulations on n + 2 points in
convex position, labeled p1 to pn+2 in clockwise order; see Fig. 5(right). For the sake
of distinguishability, throughout this paper we will refer to p1, . . . , pn+2 as points and
to v1, . . . , v2n as vertices.

The above defined structures are undirected graphs. We next give an implicit direc-
tion to the edges of these graphs: an edge viv j (pi p j ) is directed from vi to v j (pi
to p j ) for i < j , that is, each edge is directed from the vertex / point with lower
index to the vertex / point with higher index. This also defines the outdegree of every
vertex / point, which we denote as bi for each vertex vi and as di for each point pi .
For technical reasons, we do not count the edges on the boundary of the convex hull
of a triangulation when computing the outdegree of a point pi , with the exception of
the edge p1 pn+2. We call the sequence (b1, . . . , b2n) of the outdegrees of a matching
(or the sequence (d1, . . . , dn) of the first n outdegrees of a triangulation) its outdegree
sequence; see again Fig. 5. We first show that for both structures, this sequence is
sufficient to encode the graph.

For matchings, the outdegree sequence is a 0/1-sequence with 2n digits, where
n digits are 1 and n digits are 0. Moreover, the directions of the edges imply that an
incoming edge at a vertex v j must be outgoing for a vertex vi with i < j . Thus, we have
the condition

∑�
i=1 bi ≥ l/2 for any 1 ≤ � ≤ 2n, that is, in any subsequence starting

at v1, we have at least as many 1s as 0s. Such sequences are called ballot sequences;
see [3, p.69]. Obviously, the outdegree sequence of a matching can be computed
from a given matching in O(n) time. But also the reverse is true: We consider the
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v1 v2 v3 v4 v5 v6

v7v8v9v10v11v12

p1

p2

p3

p4p5

p6

p7

p8

1,1,0,0,1,1,0,1,0,0,1,0
2,0,2,1,0,1

Fig. 5 A perfect matching (left) and the corresponding triangulation for n = 6 (right)

outdegrees from b1 to b2n . We use a stack (with the usual push and pop operations)
to store the indices of considered vertices that still need to be processed. Initially, the
stack is empty. If bi = 1, we push the index i on the stack. If bi = 0, we pop the
topmost index � from the stack and output the edge v�vi . In this way, always the last
vertex with ‘open’ outgoing edge is connected to the next vertex with incoming edge,
implying that the subgraph with vertices v� to vi is a valid plane perfect matching. A
simple induction argument shows that the whole resulting graph is plane and can be
reconstructed from the outdegree sequence in O(n) time.

For triangulations, first note that the outdegrees of pn+1 and pn+2 are 0. Thus we
do not lose information when restricting the outdegree sequence of a triangulation to
(d1, . . . , dn). As in the previous case, the directions of edges imply that for any valid
outdegree sequence, it holds that

∑�
i=1 dn+1−i ≤ ∑�

i=1 1 = � for any 1 ≤ � ≤ n. This
sum is precisely themaximumnumber of edgeswhich can be outgoing from the ‘last’ �
points pn+1−� to pn . Recall that we do not consider the edges of the convex hull, except
for p1 pn+2, and thus the number of edges which contribute to the outdegree sequence
is exactly n. As before, it is straightforward to compute the outdegree sequence from
a given triangulation in O(n) time. For the reverse process, we again use a stack to
store the indices of considered points that still need to be processed. We initialize the
stack with push(n+2) and push(n+1) and output all the (non-counted) edges pi pi+1
for 1 ≤ i ≤ n + 1. Then we consider the outdegrees in reversed order, that is, from
dn to d1. For each degree di we perform two steps. (1) di times, we pop the topmost
index from the stack. After each pop let � be the (new) topmost index on the stack
and output the edge pi p�. Note that this edge together with the vertex whose index
was just popped from the stack forms a triangle of the triangulation we construct. (2)
We push i on the stack. This process constructs the triangulation from back to front,
i.e., it inserts edges with higher start index first. When processing pi , all points in the
range pi+1 to pn+2 that are still ‘visible’ from pi (i.e., all points that could still have
an incoming edge from pi ) are in this order on the stack. Thus, drawing the edges in
the described way generates a planar triangulation. At the end of the process, the stack
contains exactly the two indices n + 2 and 1, which can be ignored because they are
the endpoints of the last generated edge.
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So far we have shown that there exists an explicit bijection between outdegree
sequences on the one side and matchings respectively triangulations on the other side.
We now present a bijective transformation between outdegree sequences of matchings
and those of triangulations.

For a given outdegree sequence B = (b1, . . . , b2n) of a perfect matching, we
compute the outdegree di for the point pi of the triangulation as the number of 1s
between the (i − 1)-st 0 and the i-th 0 in B for i > 1, and set d1 to the number of 1s
before the first 0 in B.

For the reverse transformation,we process the outdegree sequence of a triangulation
from d1 to dn and set the entries of B in order from b1 to bn in the following way:
For each entry di we first set the next di consecutive elements (possibly none) of B to
1; then we set the next element of B to 0. These 1 elements of B can be regarded as
corresponding to the outgoing edges incident with pi , and the 0 element regarded as
corresponding to the boundary edge adjacent to pi and going to pi+1.

By the constructions described in the previous two paragraphs it follows immedi-
ately that the two transformations are inverse to each other. Recall that the conditions
for valid outdegree sequences are

∑�
i=1 bi ≥ l/2 for any 1 ≤ � ≤ 2n for matchings,

and
∑�

i=1 dn+1−i ≤ � for any 1 ≤ � ≤ n for triangulations, respectively. Having this
in mind, it is not hard to see that the two transformations form a bijection between
valid outdegree sequences of triangulations and valid outdegree sequences of match-
ings. Moreover, each transformation can be performed in O(n) time. Fig. 6 shows all
corresponding perfect matchings, triangulations, and outdegree sequences for n = 3.

Theorem 1 There exists a bijection between geometric plane perfect matchings on
2n points in convex position and geometric triangulations on n + 2 points in convex

1,1,0,0,1,0 2,0,1

1,1,0,1,0,0 2,1,01,1,1,0,0,0 3,0,0

1,0,1,1,0,0 1,2,0

1,0,1,0,1,0 1,1,1

Fig. 6 All perfect matchings, triangulations, and outdegree sequences for n = 3
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position. Further, for an element of one structure, the corresponding element of the
other structure can be computed in linear time.

4 Matchings with k Colors

In this section we add colors to the vertices of the perfect matchings and require the
matching edges to be monochromatic. For k ≥ 2, let c1, . . . , ck be the k colors and
let n be a multiple of k. We color the vertices in a bitonic way, that is, in the order
c1, c2, . . . , ck−1, ck, ck, ck−1, . . . , c2, c1, c1, c2, . . . and so on. In a perfect k-colored
matching, all matching edges connect vertices of the same color, and hence n is a
multiple of k; see Fig. 7 for an example of a k-colored matching with k = 3 colors
and n = 9.

Clearly, the set of k-coloredmatching is a subset of the set of non coloredmatchings
considered in the last section, and thus all properties considered there still hold. But not
every matching obtained in the previous section is a k-colored matching and hence not
every outdegree sequence of a matching is an outdegree sequence of a valid k-colored
matching. Thus we now derive additional properties to determine which outdegree
sequences of matchings correspond to k-colored matchings.

We denote k consecutive vertices vi , . . . , vi+k−1 that are colored with either
c1, . . . , ck or ck, . . . , c1 as a block. In total we have 2n/k such blocks and they form a
partition of 2n vertices. Observe that within a block, there cannot be a vertex with an
incoming edge after a vertex with an outgoing edge, as this would cause a bichromatic
edge. Hence, in a k-colored matching, the outdegree sequence of any block has to
be of the form |0, . . . , 0, 1, . . . , 1| (where it can consist entirely of 0 or 1 entries).
For better readability, we sometimes mark block boundaries in an outdegree sequence
with vertical lines. We say that an outdegree sequence (and the matching) fulfilling
this property has a valid block structure.

Lemma 1 Let M be a perfectmatchingwith valid block structure that is not a k-colored
matching. Then there exists an edge vsve in M with the following properties:

(i) The vertices vs and ve lie in different blocks, say vs ∈ S and ve ∈ E.
(ii) The subsequence from vs+1 to ve−1 contains no bichromatic matching edge.

a b c c b a

abccba

a b c

cba

1, 1, 1|0, 1, 1|0, 0, 1|0, 0, 0|1, 1, 1|0, 0, 0
Fig. 7 Perfect k-colored matching for k = 3 colors and n = 9 and its outdegree sequence
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(iii) The number of blocks between S and E is odd.
(iv) Let vs be the i-th vertex in S. Then ve is the (i + 1)-st vertex in E.

Proof To prove the lemma we assume that vsve is a shortest (with respect to the
difference of the indices) edge which connects two vertices of different color and
show that any such edge has to fulfill the four properties.

(i) As the matching has a valid block structure, no bichromatic edge within a block
can exist.

(ii) If the subsequence from vs+1 to ve−1 contains a bichromatic matching edge,
then this edge is shorter, a contradiction.

(iii) Assume there is an even number of blocks between S and E . Then each color
shows up in these blocks an even number of times. Hence, by Property (ii), the set of
vertices in S after vs has the same set of colors as the set of vertices in E before ve.
As S and E are colored in reversed order, this implies that vs and ve have the same
color, a contradiction.

(iv) As there is an odd number of blocks between S and E , by Property (ii), the
union of the set of vertices in S after vs and the set of vertices in E before ve contains
exactly one vertex of each color. As further S and E are colored in the same order, we
conclude that the position of ve in E is ’right after’ the position of vs in S ��

The proof of Lemma 1 implies the following theorem.

Theorem 2 A matching is a k-colored matching if and only if it has a valid block
structure and does not contain an edge as described in Lemma 1.

Remark: For a given outdegree sequence we can check in linear time if it is an
outdegree sequence of a k-colored matching by using the reconstruction algorithm
described in Sect. 3.

5 Tilings with t-Gons

For any t ≥ 3, a t-gonal tiling or t-angulation T on n + 2 points in convex position,
labeled p1 to pn+2 in clockwise order, is a plane graph where every bounded face is
a t-gon and the vertices along the unbounded face are p1, p2, . . . , pn+2 in this order;
see Fig. 8 for an example. For the special case of t = 3, T is a triangulation. In the
next section, we will show that the k-colored matchings on 2n vertices of the previous
section correspond to (k + 2)-gonal tilings of n + 2 points in convex position, where
n = km for some integer m > 0. This is a generalization of the fact that matchings
(i.e., k = 1) correspond to triangulations. To this end we first derive several properties
of t-gonal tilings of convex sets.

The dual graph of a t-gonal tiling T has a vertex for each bounded face T and two
vertices are connected by an edge if the corresponding faces share a common edge in
T (every pair of bounded faces shares at most one edge). An ear of T is a t-gon which
shares all but one edge with the unbounded face and can thus be cut off of T (along this
edge) so that the remaining part is a valid t-gonal tiling of n+ 2− (t − 2) = n+ 4− t
points.
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p1p11

p10 p2

p3

p4

p5

p6
p7

p8

p9

3,2,0,1,0,0,3,0,0

Fig. 8 5-gonal tiling corresponding to the 3-colored matching of Fig. 7 and the outdegree sequence of its
k-color valid triangulation

As the dual graph of any t-gonal tiling T is a tree, as every tree with at least two
vertices has at least two leaves (where the minimal case is obtained by a path), and
as a leaf in the dual graph of T corresponds to an ear in T , we have the following
observation:

Observation 1 Every t-gonal tiling with at least 2t − 2 points has at least two ears.
At least one of these ears is not incident to the edge p1 pn+2.

Lemma 2 Any triangulation T on n + 2 points in convex position contains at most
one t-gonal tiling as a subgraph.

Proof We prove the lemma by induction on n. For n+2 = t the statement is obviously
true, so let n+2 ≥ 2t−2 and let T1 and T2 be two t-gonal tilings which are subgraphs
of T . By Observation 1 there exists an ear E in T1. Let pa pb, a < b, be the edge of
T such that E can be separated from the rest of T1 by this edge. Moreover let e be an
edge that is incident to E and to the unbounded face of T . Then the (unique) t-gon
in T2 that is incident to e must be E : Otherwise there is an edge connecting a point
px between pa and pb to a point py outside the sequence from pa to pb. Then pa pb,
which is part of T1, crosses px py , which is part of T2. This is a contradiction to the
planarity of T (recall that T1 and T2 are subgraphs of T ). Thus we can remove E from
both T1 and T2, and obtain two t-gonal tilings of a smaller set of points contained
in the restriction of T . By induction, these smaller t-gonal tilings are the same, and
hence T1 and T2 are the same as well. ��

Obviously, if a triangulation T on n + 2 points contains a t-gonal tiling T as a
subgraph, then n is a multiple of t − 2. Further, as T has at least two ears, T contains
at least two edges that cut off a triangulated t-gon from T . We call such a t-gon that
can be split off from a triangulation T a t-ear of T and refer to the edge along which
the t-ear can be split off as an ear-edge (of the t-ear). Note that for t > 3, not every
triangulation contains t-ears.
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Let T be a triangulation that contains a t-ear with ear-edge pr ps for some r ≥ 1
and s = r + t − 1 ≤ n + 2. Let B be the outdegree sequence of the corresponding
matching, obtained as described in Sect. 3. If s < n+2, then in B, the t-ear corresponds
to a subsequence W (obtained from pr , . . . , ps−1) of B of length 2t − 3 that starts
with a 1 (for pr ps), ends with two 0s (as the last point ps−1 of the ear cannot have
outgoing edges), and has t − 1 0s and t − 2 1s in total. If s = n + 2, then the point
ps−1 = pn+1 does not contribute to the outdegree sequence, cf. Sect. 3. Thus the
according subsequence W has length 2t − 4 and is W = (b2n−2t+5, . . . , b2n), which
must be a ballot sequence.

6 Relating k-ColoredMatchings and (k + 2)-Gonal Tilings

We say that a triangulation on n+2 points in convex position is k-color valid if by the
bijection defined in Sect. 3 it corresponds to a k-coloredmatching as defined in Sect. 4.
The outdegree sequence of such a triangulation is then also called k-color valid. A
(k + 2)-gonal tiling of n + 2 points is called k-color valid if it can be completed to
(i.e., is a subgraph of) a k-color valid triangulation. In the following, let t = k + 2.

Observation 2 Let T be a k-color valid triangulation that contains a t-ear with ear-
edge pr ps for some r ≥ 1 and s = r + t − 1 ≤ n + 2. Let the first entry of the
subsequence W of B that corresponds to this t-ear be the i-th entry within its block,
for 1 ≤ i ≤ k. If s = n + 2 then i = 1 and W = (|1, . . . , 1|0, . . . , 0|) = (|1k |0k |).
Otherwise, recall fromSect. 4 thatwithin a block no 1 can be placed before a 0, and thus
it holds that W = (1, . . . , 1|0, . . . , 0, 1, . . . , 1|0, . . . , 0) = (1k−i+1|0k−i+1, 1i−1|0i ).
In the former case, removing the t-ear is equivalent to removing W from B. In the
latter case, all but the last 0 of W is removed from B.

Observation 3 Using the same setting as in Observation 2 the converse also holds:
if B contains a subsequence W = (1k−i+1|0k−i+1, 1i−1|0i ) or the end of B is W =
(|1k |0k |) then T contains a t-ear.

The following three lemmas can be derived usingObservation 2. The proof of Lemma3
also shows that the extension is uniquely determined.

Lemma 3 Any k-color valid t-gonal tiling T on n + 2 points can be extended by an
ear at any edge e = pr pr+1, 1 ≤ r ≤ n + 1, so that the resulting t-gonal tiling on
n + k points is k-color valid.

Proof Let e = pr pr+1 be the edge where we add the ear, and let B be the outdegree
sequence of the k-colored matching corresponding to T . If r ≤ n, then in B, e corre-
sponds to the 0, denoted here by 0′, between the 1s that correspond to the outdegrees
dr and dr+1 of pr and pr+1, respectively, or the 0s of the preceding (subsequent)
boundary edge in case dr (dr+1) is zero. Suppose that 0′ is the i-th entry within its
block R, for some 1 ≤ i ≤ k. Then R = |0i−1, 0′,m|, wherem is an arbitrary but valid
subsequence. We extend 0′ to a t-ear (by inserting k 1s and k 0s before 0′ according
to Observation 2, by this extending R to |0i−1, 1k−i+1|0k−i+1, 1i−1|0i−1, 0′,m|. If
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r = n + 1, then e is not represented in B. In this case, we extend B by adding a block
of 1s followed by a block of 0s; see again Observation 2. In both cases, all k new edges
in the matching are local within the new blocks and monochromatic. Thus it follows
by Theorem 2 that the extended outdegree sequence is also color valid. Note that once
e is fixed, by Observation 2 the extension is uniquely determined. ��
Lemma 4 Let T be a k-color valid triangulation that contains a t-ear with ear-edge
pr ps for some r ≥ 1 and s = r + t −1 ≤ n+2. Then the triangulation T ′ that results
from removing the t-ear from T is again k-color valid.

Proof Let B be the outdegree sequence of the k-colored matching M corresponding to
T and let W be the subsequence of B corresponding to the t-ear. In B, the removal of
the ear is equivalent to removingW from B (except for the last 0 for s < n+2). LetW ′
be this sequence to be removed. To show that the resulting triangulation T ′ is again k-
color valid, we need to prove that the shortened outdegree sequence B ′ corresponds to a
k-coloredmatching. To this end, first note that inM , removingW ′ from B is equivalent
to removing 2k consecutive vertices of the point set. Hence the remaining vertices with
the original k-coloring are properly colored. Second, note that the number of 0s inW ′
is k and the number of 1s in W ′ is k, implying that B ′ corresponds to some matching
M ′. It remains to show that M ′ is k-colored, that is, that there is no bichromatic edge in
M ′. ByObservation 2, we haveW ′ = (1k−i+1|0k−i+1, 1i−1|0i−1) for some 1 ≤ i ≤ k.
In the matching M , this corresponds to k edges that form a matching of the vertices
to be removed. Hence all edges in M ′ also exist in M , implying that none of them is
bichromatic. ��
Lemma 5 Let T be a k-color valid triangulation. Then T contains a t-ear with ear-
edge pr ps for some r ≥ 1 and s = r + t − 1 ≤ n + 2.

Proof Let B be the outdegree sequence of the k-colored matching corresponding to
T . Further, let Wi be the subsequence of B that starts at bi and has length 2k + 1,
for 1 ≤ i ≤ 2n − 2k, and let wi = ∑i+2k

j=i b j be the weight of Wi . As T is k-color
valid, we have w1 > k (there have to be at least k + 1 outgoing edges for the first
2k+1 vertices) andw2n−2k ≤ k (there are at most k outgoing edges for the last 2k+1
vertices). Further, we also have wi+1 −wi ∈ {0,±1}. We will show that either at least
one of the Wi s or the last two blocks of B represent a k-ear of T . To this end, we
proceed through theWi s from i = 1 to 2n − 2k as long as wi ≥ k. Whenever wi > k,
we continue to the next subsequence (as a necessary condition for Wi to be a k-ear
is wi = k). For wi = k and wi−1 > k, Wi−1 starts with bi−1 = 1 and Wi ends with
bi+2k = 0. We distinguish the following cases:

Case 1 Wi starts with bi = 1. Let 1 ≤ a ≤ k be such that the block containing bi
ends right before bi+a . Then we have Wi = 1a |0a1k−a |0k−a+1, where the 1s in the
first block are forced by bi = 1, the 0s in the last block are forced by bi+2k = 0, and the
form of the middle block stems from wi = k. Hence, Wi is a k-ear by Observation 3.

Case 2 Wi starts with bi = 0. As Wi−1 starts with bi−1 = 1, there is a block
boundary directly before bi , and by wi = k we have Wi = |0a1k−a |0k−a1a |0 for
some 1 ≤ a ≤ k.Hence, Wj is no ear and w j ≥ k for i ≤ j ≤ min{i + a, 2n − 2k}.

Case 2.1 If i + a ≤ 2n − 2k and wi+a > k then i + a < 2n − 2k and we continue
the whole process by considering wi+a+1.
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Case 2.2 If i + a ≤ 2n − 2k and wi+a = k then all entries in Wi+a\Wi are 0s and
hence Wi+a = 1k−a |0k−a1a |0a+1 is a k-ear by Observation 3.

Case 2.3 If i + a > 2n − 2k, then all 1s in Wi must also be in W2n−2k . Thus
w2n−2k = k and due to the k-color validity we have W2n−2k = 0|1k |0k |. Hence the
last two blocks of B form a k-ear by Observation 3. ��

Combining Lemmas 2–5 and Observations 1–3, we obtain our main result.

Theorem 3 For integers k ≥ 2 and c ≥ 1 let n = ck and t = k + 2. There exists a
bijection between geometric plane perfect k-colored matchings on 2n points in convex
position and t-gonal tilings on n+2 points in convex position. Further, for an element
of one structure, the corresponding element of the other structure can be computed in
linear time.

Proof We first show (by induction on n) that every t-gonal tiling T can be completed
to at least one k-color valid triangulation. For n+2 = t the statement is trivially true as
we have only one inner face and can thus triangulate as required. So let n+2 ≥ 2t−2.
By Observation 1 there exists an ear E of T . If we cut this ear off, then by induction
there exists a completion to a k-color valid triangulation, which by Lemma 3 can be
extended to a k-color valid triangulation T of T .

Next, assume that there exists a t-gonal tiling which can be refined by at least two
different k-color valid triangulations. Let T be a minimal such t-gonal tiling and let T1
and T2 be two different k-color valid triangulations for T . By Lemma 5, T1 has a t-ear
with ear-edge e = pr ps for some r ≥ 1 and s = r + t − 1 ≤ n + 2. Thus, e must be
an edge of T , implying that T2 also has a t-ear at e. By Lemma 4, removing the t-ear
from T1 results in a k-color valid triangulation T ′. Further, as T is minimal, removing
the t-ear from T2 results in the same triangulation T ′. But by the proof of Lemma 3,
there is exactly one possibility of extending T ′ at ewith a t-ear, a contradiction. Hence
every t-gonal tiling T can be completed to exactly one k-color valid triangulation.

So far we have shown that a given t-gonal tiling can be completed to exactly one
k-color valid triangulation. For proving that there exists a bijection between k-colored
matchings and t-gonal tilings, it remains to show that any k-color valid triangulation
contains exactly one t-gonal tiling.

We show (by induction on n) that every k-color valid triangulation T contains at
least one t-gonal tiling. For n + 2 = t the statement is trivially true, so let n + 2 ≥
2t − 2. By Lemma 5, T has a t-ear with ear-edge e = pr ps for some r ≥ 1 and
s = r + t − 1 ≤ n + 2. Further, by Lemma 4, removing the t-ear from T results
in a triangulation T ′, which, by induction, contains at least one t-gonal tiling T ′. By
Lemma 3, we can extend T ′ with an ear at e, thus obtaining a t-gonal tiling for T .

As by Lemma 2, every k-color valid triangulation T contains at most one t-gonal
tiling T , this completes the proof of the existence of a bijection.

To show that the transformation from a k-colored matching to a t-gonal tiling and
vice versa can be done in linear time, it remains to show that the t-gonal tiling of a
k-color valid triangulation can be found in linear time and vice versa.

Consider first a k-color valid triangulation T , let B be the outdegree sequence of
the k-colored matching corresponding to T , and let B be stored in a linked list. Let T
be the t-gonal tiling for T that we want to construct. By the proof of Lemma 5, we
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find a t-ear of T whose subsequence W in B starts at b j and which is the first t-ear
of T in time O( j + 2k). We can remove the t-ear from T and W (except possibly
its last 0) from B in constant time, by this also obtaining one diagonal of T . Further,
the first ear in the shortened sequence can start at earliest at b j−2k , which implies that
we do not need to restart our scan at the beginning. Hence, we can iteratively find all
diagonals of T in O(n) time.

For the other direction, consider a t-gonal tiling. We recursively cut off all ears in
total linear time. Then, using Lemma 3, we re-add them in reverse order, together with
their triangulations that are uniquely defined by Observation 2. ��

7 FutureWork

It is natural to search for a characterization of the generators of Temperley–Lieb alge-
bras in terms of triangulations (and for the generators for the k-colored Fuss–Catalan
algebras in terms of (k+2)-gonal tilings).Weplan to use our explicit bijections to study
the effect of edge flips in triangulations (respectively in tilings) on the correspond-
ing matchings and to find out how the actions of generators of the Temperley–Lieb
algebra (the k-colored Fuss–Catalan algebra) can be interpreted in terms of flips in
triangulations respectively in tilings. Preliminary results have already been obtained.

Acknowledgements Open access fundingprovidedbyAustrianScienceFund (FWF).We thankPaulMartin
for bringing this problem to our attention. We also thank an anonymous referee for carefully reading the
manuscript and providing many helpful suggestions.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Bisch, D., Jones, V.: Algebras associated to intermediate subfactors. Invent. Math. 128(1), 89–157
(1997). https://doi.org/10.1007/s002220050137.

2. Di Francesco, P.: New integrable lattice models from Fuss–Catalan algebras. Nuclear Phys. B 532(3),
609–639 (1998)

3. Feller, W.: An Introduction to Probability Theory and its Applications, vol. I, 3rd edn. Wiley, New York
(1968)

4. Kauffman, L.H.: State models and the Jones polynomial. Topology 26(3), 395–407 (1987). https://doi.
org/10.1016/0040-9383(87)90009-7

5. Marsh, R.J., Martin, P.: Pascal Arrays: Counting Catalan Sets. ArXiv Mathematics e-prints (2006)
6. Przytycki, J.H., Sikora, A.S.: Polygon dissections and Euler, Fuss, Kirkman, and Cayley numbers. J.

Combin. Theory Ser. A 92(1), 68–76 (2000). https://doi.org/10.1006/jcta.1999.3042
7. Temperley, H., Lieb, E.: Relations between the percolation and coloring problems and other graph-

theoretical problems associated with regular planar lattices: some exact results for the percolation
problem. Proc. R. Soc. 322, 147–280 (1997). https://doi.org/10.1098/rspa.1971.0067

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s002220050137.
https://doi.org/10.1016/0040-9383(87)90009-7
https://doi.org/10.1016/0040-9383(87)90009-7
https://doi.org/10.1006/jcta.1999.3042
https://doi.org/10.1098/rspa.1971.0067

	Perfect k-Colored Matchings and (k+2)-Gonal Tilings
	Abstract
	1 Introduction
	2 Algebraic Background
	2.1 Temperley–Lieb Algebras
	2.2 Fuss–Catalan Algebras

	3 Matchings and Triangulations
	4 Matchings with k Colors
	5 Tilings with t-Gons
	6 Relating k-Colored Matchings and (k+2)-Gonal Tilings
	7 Future Work
	Acknowledgements
	References




