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A B S T R A C T   

The COVID-19 pandemic has put unprecedented pressure on public health resources around the world. From 
adversity, opportunities have arisen to measure the state and dynamics of human disease at a scale not seen 
before. In the United Kingdom, the evidence that wastewater could be used to monitor the SARS-CoV-2 virus 
prompted the development of National wastewater surveillance programmes. The scale and pace of this work has 
proven to be unique in monitoring of virus dynamics at a national level, demonstrating the importance of 
wastewater-based epidemiology (WBE) for public health protection. Beyond COVID-19, it can provide additional 
value for monitoring and informing on a range of biological and chemical markers of human health. A discussion 
of measurement uncertainty associated with surveillance of wastewater, focusing on lessons-learned from the UK 
programmes monitoring COVID-19 is presented, showing that sources of uncertainty impacting measurement 
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quality and interpretation of data for public health decision-making, are varied and complex. While some factors 
remain poorly understood, we present approaches taken by the UK programmes to manage and mitigate the more 
tractable sources of uncertainty. This work provides a platform to integrate uncertainty management into WBE 
activities as part of global One Health initiatives beyond the pandemic.   

1. Introduction 

1.1. Environmental surveillance for public health 

The acquisition of data and extraction of information from envi-
ronmental samples to manage and improve public health has been a 
cornerstone of societal development for nearly 200 years (Choi, 2012). 
However, in comparison with medical and pharmaceutical innovation, 
much of the work in the field of environmental public health is largely 
unrecognised outside of the professional communities invested in its use. 
This is evident with wastewater, a conduit for an array of bio- and 
chemical markers that can be analysed to provide information on human 
activities, behaviours, and health status in populations (Castiglioni 
et al., 2013; Daughton, 2018; O’Brien, 2017; Subedi, 2019), but which 
has remained a relatively untapped resource given its known potential 
(González-Mariño et al., 2020; Kasprzyk-Hordern et al., 2021; Lorenzo 
and Picó, 2019; Pruden, 2014; Singer et al., 2013). However, the 
negative perception of wastewater as solely a polluting substance, to be 
removed (from the human and natural environments) and cleaned 
(often by energy intensive processes), has undergone re-evaluation in 
recent years. The focus on sewage as a resource rather than a waste 
product is driving innovation in the water industry. Accordingly, the 
diversity of biotic and abiotic features within the sewage matrix presents 
an opportunity to acquire actionable insights through routine moni-
toring and analysis of its components. An increasing technological and 
computational capacity for deriving knowledge from measurements and 
data has manifested in efforts to ‘smarten’ the water industry (Wade 
et al., 2020a), fusing data science with fundamental science and engi-
neering principles. This provides opportunities for greater utilisation of 
sewage for the common good, be it in the production of resources such as 
energy and high value chemicals (Kehrein et al., 2020), or as a proxy of 
human health and behaviours, which will have transformative impacts 
for society. 

1.2. Wastewater-based epidemiology in a time of crisis 

The nature and extent of the COVID-19 pandemic has driven an 
unprecedented response from a diverse array of stakeholders, interna-
tionally. The efforts to tackle both the spread of the disease and its 
impact on populations have highlighted the need for disparate com-
munities of scientists, government agencies, decision makers and the 
public to work together and collectively address the multiplicity of 
public health, economic and social challenges that have emerged over 
the course of the pandemic (Kinsella et al., 2020; Lundy et al., 2021). 
This is also the case with the development of wastewater-based epide-
miology (WBE) as an important tool to facilitate the detection and 
spatiotemporal monitoring of SARS-CoV-2 virus dynamics in the envi-
ronment being undertaken in many countries (Bivins et al., 2020a; 
Naughton et al., 2021; Wade et al., 2020b). 

Several studies have shown that the risk of infection by active SARS- 
CoV-2 virus in pre- or post-treated wastewater is low, particularly in 
modern sanitation systems (Giacobbo et al., 2021; Kumar et al., 2021; 
Saawarn and Hait, 2021; Tran et al., 2021). Nevertheless, inactive 
fragments of the virus RNA have been shown to persist longer in water 
than infectious virus (Bivins et al., 2020b) and are shed by an individual 
over the entire disease cycle (asymptomatic and symptomatic) (Vaselli 
et al., 2021; Zhang et al., 2021). Subsequently, most reports on 
SARS-CoV-2 detection and quantification in wastewater have focused on 
monitoring of the inactive virus, more specifically, the targeting of small 

regions of the virus genome using an array of analytical methods, such as 
reverse transcription-quantitative polymerase chain reaction (RT-qPCR) 
(Alygizakis et al., 2021), genomic sequencing (Brown et al., 2021; 
Crits-Christoph et al., 2021; Pérez-Cataluña et al., 2021), and, more 
recently, mass spectrometry (Lara-Jacobo et al., 2021), to detect and 
identify the emergence and spread of novel variants in the population. 

1.3. Beyond COVID-19 

Although the COVID-19 pandemic has highlighted the benefits of ex- 
situ monitoring human-associated disease in the environment, WBE has 
also been successfully applied in other public health contexts, such as 
tracking pharmaceuticals, such as self-prescribed drug usage in cities 
(Baz-Lomba et al., 2016; Zuccato et al., 2008), antimicrobial resistance 
(Hendriksen et al., 2019), and assessment of human exposure to envi-
ronmental pollution (Gracia-Lor et al., 2018; Kasprzyk-Hordern et al., 
2021; Singer et al., 2013). The severity of the current pandemic is a 
strong motivation for increased and integrated public health and envi-
ronmental surveillance at national and supra-national scales (Carroll 
et al., 2021; The European Commission, 2021). Whether it is 
future-proofing for potential new pandemics (Daszak et al., 2020) or 
water fingerprinting to determine factors impacting both physical and 
mental health in communities (Sims and Kasprzyk-Hordern, 2020), 
wastewater surveillance will become a vital tool at the disposal of 
governments and public health authorities at the nexus of public and 
environmental health beyond COVID-19. 

1.4. Wastewater and public health, an uncertain relationship 

The manuscript is focused on the understanding and management of 
uncertainty in WBE, framed by, but not limited to, lessons-learned from 
wastewater surveillance during the COVID-19 pandemic. For broader 
discussion of WBE and its implementation as a tool for informing 
decision-making and policy, there are a plethora of excellent review 
articles that may be referred to (Bivins et al., 2020a; Farkas et al., 2020; 
Polo et al., 2020). The data rich, technologically diverse and computa-
tionally powerful resources available for WBE present an opportunity to 
deliver next-generation public health solutions in combination with 
targeted or passive environmental monitoring (The Lancet Public 
Health, 2019). Deriving an understanding of sources of uncertainty and 
implementing methods to estimate and account for measurement error 
is therefore critical for the design and implementation of wastewater 
surveillance to support public health decision-making. We posit that the 
insights presented here have wider consequences for WBE efforts 
beyond the pandemic. 

Here insights are shared from the United Kingdom (UK) WBE sur-
veillance programmes (See Section A for details), and the collective 
knowledge that has helped support public health initiatives during the 
COVID-19 pandemic and beyond. The proceeding sections discuss un-
certainty and variability derived from source (population, shedding), in- 
network (i.e. the pipe network acting as a wastewater collection system) 
characteristics, and sampling and sample analysis. We conclude with 
four case-studies related to distinct aspects of applied WBE, providing 
examples of how uncertainty and measurement variability are addressed 
and managed. 

2. Uncertainty and its impact on wastewater surveillance 

The perceived benefits of using measurements from wastewater 
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samples for epidemiology include a response to the determinant of focus 
(e.g. disease) that captures close to all of the population contributing to 
the signal and the provision of near real-time insights obtained from 
changes in the magnitude or direction of this response (Mao et al., 
2020). With respect to COVID-19, clinical sampling of individuals in the 
community, via nasopharyngeal swabs, saliva or serological tests, is 
subject to biases associated with factors common to sub-sampling of 
heterogeneous populations (Hilborne et al., 2020), and mass-testing to 
obtain a representative sample size is costly. Wastewater, on the other 
hand, provides an aggregated picture of community disease state 
through the measurement of virus RNA excreted by, theoretically, all 
viable shedders with the disease in the sewer catchment (Hoffmann and 
Alsing, 2021), and can be implemented at a relatively low-cost in 
comparison with clinical sampling (Hart and Halden, 2020). In reality, 
however, the accuracy and representativeness of any measurement ac-
quired from wastewater is subject to a number of influencing factors, 
which can be classed as observable (e.g. sample dilution by exogenous 
hydrological flows), or partially observable (e.g. in-network analyte 
decay/degradation). Two recent reviews of wastewater-based SAR-
S-CoV-2 detection have focused on factors contributing to uncertainty in 
disease prevalence estimation (Li et al., 2021) and, more specifically, 
errors associated with laboratory quantification using RT-qPCR (Ahmed 
et al., 2021). 

It is well understood that environmental measurements are subject to 
extraneous factors that account for differing degrees of (measureable) 
variability and uncertainty (unexplained or unmeasureable variability) 
in the signal (see (Anon, 2009), for example), and surveillance for WBE 
is particularly impacted by the complexity of the media being sampled 
(Kantor et al., 2021a; Li et al., 2021; Sims and Kasprzyk-Hordern, 2020). 
Fig. 1 presents an overview of the known and potential sources of un-
certainty in WBE for COVID-19, grouped into spatiotemporal classes (i. 
e., where and when the uncertainty is likely to impact the measure-
ment). For COVID-19, variability manifests as a significant problem 
when different measured virus RNA concentrations are observed for, 
theoretically, the same proportion of infected individuals in the popu-
lation. More precisely, it is the uncertainty arising between the target 
analyte (RNA) and its representation of the measure of concern, e.g. 
disease prevalence (number of individuals with the disease at any given 
time) or incidence (number of newly identified individuals with the 
disease for a particular time period). Unwanted variability can occur 
over time at a given sample site due, for example, to rainfall or snow 
melt entering into a combined sewer network during or after wet 

weather events, and diluting the analyte concentrations relative to a dry 
weather baseline. With target analytes such as virus particles, which can 
attach to solids in the network, the impact of increased flow in the sewer 
is likely non-linear due to the effects of turbulence and scouring on 
settled solids resuspension. Although, to our knowledge, no evidence of 
this currently exists for SARS-CoV-2. 

Variation between sites is also a problem when using WBE mea-
surements for comparison across geographies, or when aggregating to 
provide supra-catchment perspectives of target analyte dynamics. For 
example, a large catchment having a long hydraulic residence time may 
systematically produce lower concentration measurements than a 
smaller site, even though the disease prevalence could be the same in 
both catchments. As shown in Fig. 1, factors causing uncertainty or 
unwanted variability can range from large-scale processes, such as 
highly transient populations, to those at a smaller scale including lab-
oratory specific methods (Ahmed et al., 2021). In each case, strategies 
are needed to account for the variability in a way that is appropriate for 
the intended use of the data. 

Uncertainty imposes a lower level of confidence on a measurement 
than accountable and manageable (signal) variation (Lehmann and 
Rillig, 2014). Evaluation of uncertainty is necessary for WBE as quan-
tifying the error bounds (and understanding the limits) of sample mea-
surements is critical for capturing the inherent risk associated with 
public health decision-making processes. These risks are similar for 
likely all applications of WBE, i.e. incorrect estimation of target analyte 
(s); inability to compare measurements from different environments or 
under different conditions; loss of confidence in ability to detect or 
quantify the target analyte(s). The risks associated with uncertainty to 
wastewater surveillance of COVID-19 are wide-ranging and depend on 
its use-case. For example, recent attention focused on how using mea-
surements from wastewater in epidemiological models (Fuschi et al., 
2021; McMahan et al., 2020) could increase parametric uncertainty and 
error bounds on model estimates (Edeling et al., 2021). This, in turn, will 
affect the suitability of the model for tracking and predicting the dy-
namics of the disease (Saththasivam et al., 2021). Using raw wastewater 
measurements without accounting for factors that can affect interpre-
tation, such as wastewater dilution or signal decay, may have a signif-
icant impact for decision-making when used to complement other 
sources of disease prevalence. 

Fig. 1. Summary of known and suspected sources of uncertainty for WBE; a perspective specific to UK wastewater surveillance of SARS-CoV-2.  
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3. Drivers of variability and sources of uncertainty 

3.1. Population factors 

Knowledge of the contributing population size upstream of the 
sampling location is important for calculation of per capita concentra-
tions and to facilitate comparison between sample sites. It is important 
to have an accurate estimate of population size, (a) to ensure that inter- 
site comparisons are made on an equivalent basis, and (b) to account for 
the effects of intra-site population change on the loads of measured 
target(s) in the wastewater. Population size is, however, uncertain and 
variable. The mean population size may be estimated based on census 
data and additional demographic statistics, but such estimates cannot be 
easily updated to account for changes resulting from births, deaths and 
migration, and can quickly become outdated (Daughton, 2012). Fluc-
tuations in population during the sampling period can contribute further 
uncertainty. These include, for example, weekly and seasonal variations 
due to the flux of commuters and tourism or student populations, 
respectively. Dynamic population estimates may be obtained using 
water quality parameters such as ammonia and orthophosphate; how-
ever, this is subject to bias due to the contribution of additional sources 
such as industrial discharges (Béen et al., 2014). The use of mobile de-
vice data (Thomas et al., 2017), chemical biomarkers present in urine (e. 
g. caffeine, pharmaceuticals) (Rico et al., 2017) or human-specific 
microbial/molecular markers (e.g. crAssphage, human adenovirus 
(HAdV), JC polyomavirus (JCPyV)) (Rusiñol et al., 2021; Sala-Comorera 
et al., 2021), are alternative metrics that have been shown to reduce 
measurement uncertainty when used to estimate population size for 
normalisation of target analyte concentrations. 

To illustrate the potential effects of population variability, Fig. 2 
shows the impact of reporting per capita SARS-CoV-2 loads instead of 
SARS-CoV-2 concentrations on trends identified at a STW site in En-
gland. In this case, a site-specific mean daily ammonia discharge per 
capita (〈x〉) is estimated using Eq. (1), where 〈 ⋅ 〉 indicates the expected 
value. The estimation is based on daily measured ammonia concentra-
tions (Xd) and wastewater flow rates (Qd) for the entire sampling period 
and the Office for National Statistics population estimate (P) for the 
catchment. SARS-CoV-2 gene copies per capita per day (Ld) are then 
calculated on a daily basis using Eq. (2), based on this value and the 
measured SARS-CoV-2 (Sd) and ammonia concentrations for the current 
day. Ammonia concentrations and per capita loads are selected as the 
basis for population normalisation as (i) flow-rate data is typically not 
available or at a lower cadence than our sampling frequency; and (ii) 
flow rate is not proportional to population due to variation in dilution. 

〈x〉 =
〈XdQd〉

P
(1)  

Ld =
Sd〈x〉

Xd

(2) 

Error bars are included in Fig. 2 to indicate standard deviation (σ) 
resulting from variability in the site-specific ammonia nitrogen 
discharge per capita (i.e. Sdσ(x)∕Xd, where σ(x) = σ(XdQd)∕P); these do 
not capture any other sources of uncertainty. 

An important and poorly understood source of uncertainty related to 
proportion of contributing population is the quantity and rate of analyte 
released into the network through faecal or urinary shedding. Faecal 
shedding of SARS-CoV-2 RNA varies both between individuals and over 
the infection course of any given individual (Hoffmann and Alsing, 
2021). Indeed, a recent study has indicated, from near-source data, that 
faecal shedding peaks on average 6 days post-infection (95% Uncer-
tainty Interval 4 – 8 days) (Cavany et al., 2021). The impact of shedding 
variability between individuals is attenuated for large catchments and 
during high prevalence periods because the sewerage system naturally 
averages the signal from many people (Jones et al., 2014). Due to the 
greater variability in the wastewater measurements compared with 
clinical data sources, the power of WBE surveillance, at least for 
COVID-19, is expected to be greatest when transmission (and preva-
lence) or clinical testing is low; i.e. capturing (re)emergence of disease in 
a community. However, quantitative estimates of the number of in-
dividuals infected are likely to remain elusive when infection prevalence 
is low or the sampled population is small, such as for near-source sam-
pling, where samples are taken upstream in the sewer network close to 
the discharge source (e.g. outside a building). In the latter case, proba-
bility of capturing a representative sample is low as contributing events 
(e.g. toilet flushes) are more discrete and non-aggregated, such that grab 
sampling risks missing the event, while composite samples may be 
heavily diluted by analyte absent wastewater. Temporal variability of 
viral RNA shedding over the infection course implies that the concen-
tration of SARS-CoV-2 gene copies in wastewater is a convolution of 
disease incidence with the shedding profile (Wu et al., 2020). Conse-
quently, techniques for relating epidemiological indicators to 
wastewater-based signals need to consider multiple time lags, for 
example by employing distributed lag models (Peccia et al., 2020). 
Studies to investigate viral shedding prior to symptom onset are urgently 
required because existing data have been collected from hospitalised 
patients (Jones et al., 2020; Kantor et al., 2021b; Miura et al., 2021). 
Similarly, the impact of vaccination on faecal shedding of viral RNA is 
unknown, although data from nasal swabs suggest that viral loads are 

Fig. 2. An example comparison of SARS-CoV-2 concentrations and SARS-CoV-2 loads per capita measured from wastewater sampled at an English sewage treatment 
works, showing (a) variation over time; and (b) correlation between the two metrics. 
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likely to be reduced (Thompson et al., 2021). Given this, quantifying 
virus at near-source with any precision remains elusive, and further 
work to understand faecal shedding distribution is critical for adoption 
of wastewater measurements in epidemiological models for estimating 
transmission rates (i.e. effective reproduction number, Reff) (Huisman 
et al., 2021). This information can be applied broadly to other analytes 
routinely shed in the urine and faeces that correlate to public health 
indicators, although shedding profiles could be markedly different from 
those for viruses. 

3.2. In-network characteristics 

Characteristics of the sewage network (proportion of gravity or 
pressurised pipes; size of the network; retention capacity; location and 
triggering of combined sewer overflows (CSOs), and use of sustainable 
urban drainage infrastructure to separate stormwater flow in the 
catchment) may impact both the quantity of analytes of interest within 
the water and their distribution within the sewage volumes. 

The daily flow patterns in most wastewater systems are oscillatory, 
driven by multiple factors such as sewer network design (e.g. combined 
or separate systems), industrial discharge events and prevailing weather 
conditions. However, the flow signal, under dry weather flow condi-
tions, is governed by household water usage, which often presents as 
morning and evening ’peak flow’ pulses, especially in small catchments. 
These daily oscillations are damped in catchments with a wide network 
or large storage capacity where peak flow can be retained and processed 
later, leading to a homogenisation of the signal (Ort et al., 2010). Pumps 
across the network or at the inlet of STWs can also homogenise analyte 
concentrations within the flow, with sumps or wet wells acting as small 
retention tanks. Ingress of non-human derived flow, e.g. from rainfall or 
snow melt, in combined sewers, or groundwater infiltration in all 
sewers, can bias measurements by signal dilution. 

Sewer network size, sewer gradient, pipe friction, and presence of 
retention tanks can impact the time-of-travel of wastewater ‘packets’ 

(typically < 1–24-h in the UK, dependent on catchment size), and may 
reduce target concentrations that are prone to degradation (Ahmed 

et al., 2020a) (i.e. those with a short T90, the time for one order of 
magnitude reduction in concentration). Moreover, the type of sewage 
system (gravity or pressurised pipes) can directly impact the decay rate 
of analytes of interest due to differences in biofilm composition within 
these two environments (Banks et al., 2018) (fully anaerobic for pres-
surised pipes and mixed anaerobic/aerobic in gravity sewers). Further, 
the shear stress created by cycling between pressurised and unpressur-
ised pipes might further hasten the decay of labile analytes. Finally, 
retention tanks may also increase the binding of hydrophobic targets, 
such as SARS-CoV-2 virions, with suspended solids to form complex 
matrices (Balboa et al., 2021), which may obfuscate their subsequent 
detection by laboratory analysis, or result in settling-resuspension phe-
nomena in the sewer pipes (Solvi, 2007), decoupling the temporal dy-
namics of the virus RNA from the discharge event. Significant sewer pipe 
leakages may also influence the fate of virus, and consequently its 
downstream detection and quantification, especially in older networks. 

Adjusting for the impact of network characteristics across a national 
programme is challenging due to the need for quantitative, comparable 
information for individual site networks. In England, this data is typi-
cally owned by private water utilities and, in many cases, the precise 
configuration of the network is not known, unless access is provided by 
the companies. However, the impact of some site characteristics can be 
mitigated by taking into account co-dependent, measurable parameters. 
For example, ammonia concentration (Béen et al., 2014), Pepper Mild 
Mottle Virus (PMMoV) (Wu et al., 2020), or crAssphage (Wilder et al., 
2021) can be used as a proxy for the dilution effects in combined sewers, 
and catchment area is a rough approximation for network size. While 
proxy variables are useful in the absence of true measurements, their use 
in management of target measurement uncertainty may be limited by 
how representative they are of the analyte of interest. The use of 
multi-biomarkers to better represent human wastewater contribution 
(See Section 5.3), or GIS-based modelling and public health information 
to better characterise catchment population are currently employed 
methods to mitigate this limitation. 

Fig. 3. Sample concentrations obtained from grab or time-, flow- and volume-proportional composite sampling from a simulated flow. Left: Simulated flow (black), 
load (red), and resulting concentration (thick red line). The flow is modelled by a sinusoidal function peaking at 10 a.m. with a 24-h periodicity, while the load is 
modelled by a Gaussian function peaking at 11 a.m. Middle: Simulation of the different composite sampling methods time-points and volume in red, with corre-
sponding flow in black. Time- and flow-proportional samples are taken every hour while volume-proportional sampling time-points occur after a fixed volume has 
passed. Right: Simulated sample concentrations obtained from the different sampling methods shown in the middle panel, with the dotted line representing the actual 
average analyte concentration. Flow-proportional and volume-proportional composite sampling lead to a sample concentration closest to the actual concentration, 
while grab sampling can lead to extensive over- (when sampling at a peak concentration) or under-estimation (when sampling outside the discharge window) of the 
actual concentration. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.). 
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3.3. Sampling strategy 

In the context of WBE and public health surveillance, acquiring a 
representative sample that captures the analyte of interest is funda-
mental to support actions that have the potential to impact the well- 
being of individuals and communities (Ort et al., 2010). The source of 
the analyte(s) targeted, through urine (e.g. metabolites of pharmaceu-
ticals) or faeces (e.g. viruses), can impose additional variability in 
measurements, and beyond the COVID-19 pandemic, wastewater sur-
veillance programmes will need to build in sampling flexibility and 
rigour to account for this uncertainty (Rose et al., 2015). 

Broadly, there are two ways to take a sample: (i) a ‘grab’ or ‘spot’ 
sample where a single sample of wastewater is taken using a small 
container, and (ii) a ‘composite’ sample where samples are taken regu-
larly throughout the day using an automated device (autosampler) and 
the samples mixed together in a single container. Several autosampling 
modes may be used to create a composite sample: time-proportional, 
where a constant sample volume is taken at regular time intervals; flow- 
proportional, where the time interval is kept constant but the sample 
volume is proportional to the instantaneous flow rate in the sewer; and 
volume-proportional sampling, where a constant volume sample is taken 
each time a fixed volume passes through the sewer (Ort et al., 2010). 
Measurement uncertainties are heavily impacted by the type, mode and 
timing of sampling depending on variability of flow and analyte con-
centration over time (Ort et al., 2010). The difference in the probability 
of detection between sampling methods becomes greater as prevalence 
(of the target analyte) decreases. Specifically, when concentration is 
low, detection likelihood via grab sampling would be much lower than 
with composites, while as concentration increases, the probability of 
detection using grabs becomes comparable. This would suggest that 
composite sampling is preferable during periods of low target analyte 
concentration. However, if the daily signal is concentrated in time, 
well-timed grab samples could capture higher concentrations than is 
possible with composite samples (as shown in Fig. 3). The nature of 
composite samples means that it dilutes a ’sharp’ signal, which can be a 
disadvantage at low prevalence times. Areas with a more temporally 
constant signal would be less sensitive to the choice of sampling method. 
This risk can be mitigated somewhat by the appropriate design and use 
of autosamplers. However, the autosampling method can also impact 
measurement confidence. Time-proportional sampling can lead to 
under- or over-weighting of sample during periods of high or low flow, 
respectively, resulting in loss of representativeness. A 
volume-proportional sampler extracts a fixed volume of sewage when a 
predetermined volume of flow has accumulated. The resulting daily 
sample will be weighted by flow and could be argued to be more 
representative of the conditions of that day, assuming that the substance 
of interest is distributed uniformly through the day. However, on low 
flow days the sample volume may be too low for effective analysis, while 
on wet days the full volume may have been taken long before the end of 
the sampling period. 

As samples are not always collected daily, sampling cadence must be 
considered when determining WBE sampling strategies. Aliasing effects 
may result in incorrect interpretation of signal dynamics, or produce 
artefacts in models used for back-calculation of target stressors (i.e. 
biological, chemical and physical agents used in environmental science 
and exposure-effect analyses as determinands impacting humans and 
ecosystems, such as SARS-CoV-2 in WBE), for example (Chappell et al., 
2017). A sampling frequency as close to the daily cadence will reduce 
uncertainty arising from temporal variability. This has been quantified 
through a data ablation experiment for 186 network sites monitoring 
SARS-CoV-2 in England, for which a number of samples were artificially 
removed to compute the relative bias introduced by reducing the sam-
pling cadence, as shown in Fig. B.4. The percent error in the mean 
concentrations are thus computed for each site and then averaged to 
compute the per-site mean percent bias shown. Consideration of sam-
pling frequency in relation to sample location in the network is 

necessary. In small catchments, or near-source applications (e.g. moni-
toring of critical infrastructure such as prisons, care homes and schools), 
high-rate composite sampling may not be enough when all discharge 
events should be captured. Technologies that can provide continuous 
active/powered sampling, which are pumped on a timed or triggered 
basis, or passive samplers, which collect water/solids without power 
and are typically lower cost, are more suitable in this context 
(Baz-Lomba et al., 2017; Coes et al., 2014). 

Variability due to differences within and between site sampling 
deployment have a potential to be a significant influence on the mea-
surement, particularly when establishing a national surveillance system 
with a large number of sites and different site personnel involved. 
Detailed and clear sampling protocols and ongoing training of staff are 
essential to minimise some of the sources of this variation. 

3.4. Sample analysis 

Wastewater is a highly complex and variable media, containing 
compounds that can decrease detection sensitivity, which results in 
false-negative results, whilst also compromising the ability to quantify 
the analyte of interest, such as genetic fragments, accurately. As sig-
nificant knowledge performing sample analysis has been gained while 
monitoring the COVID-19 pandemic, insights relating to the uncertainty 
arising from SARS-CoV-2 quantification have been addressed, leading to 
a consolidated application of wastewater lab-analysis for WBE. 

Due to the low concentrations of SARS-CoV-2 in wastewater, 
methods are required to pre-concentrate the virus prior to analysis. The 
most commonly used methods include precipitation with salt or poly-
ethene glycol (PEG (Farkas et al., 2021)), electrostatically charged 
membrane filtration (Ahmed et al., 2020b), ultrafiltration (Izquierdo--
Lara et al., 2021), or adsorption-precipitation with aluminium chloride 
or silica (Randazzo et al., 2020). Due to the expense, poor availability 
and potential for blockages with ultrafiltration devices, the English 
wastewater surveillance programme initially adopted the PEG precipi-
tation method. This was based on previous success at recovering viruses 
from wastewater (Farkas et al., 2018) and also that it does not require an 
extra step for pH measurement and correction. However, the overnight 
precipitation step in the method increased the time from sample 
collection to reporting. A decision was then made to switch from PEG to 
salt (ammonium sulphate, AS) precipitation as the latter only requires a 
1-h incubation step. Parallel studies with duplicate wastewater samples 
showed no significant differences in recovery between the two methods 
for SARS-CoV-2 RNA (data not shown). This AS workflow now allows 
viral RNA to be concentrated, extracted and quantified within a 24-h 
window. 

Another key step in SARS-CoV-2 determination from wastewater is to 
produce RNA extracts that ensure consistency in the quantity, quality, 
and purity of extracted nucleic acids for their applicability in down-
stream processes (e.g. detection, quantification, sequencing). SARS- 
CoV-2 determination is generally carried out with a nucleic acid-based 
PCR assay. However, given the wide-range of PCR inhibitors in waste-
water and the options available for handling them, no single method 
serves all applications; a multifaceted approach being the best solution 
to avoid amplification failure. Therefore, efficient extraction methods 
are required to purify inhibitor-free RNA, together with the use of 
inhibitor-tolerant quantitative reverse transcription PCR (RT-qPCR) 
mixes containing enhancers/additives to help reduce inhibition (e.g. 
gp32 and BSA). On the other hand, the low levels of SARS-CoV-2 in 
wastewater means that sample dilution to alleviate inhibition is not 
recommended or should be limited (Ahmed et al., 2021). Alternatively, 
the samples can be analysed by one-step digital-PCR (dPCR) rather than 
RT-qPCR. To estimate the efficiency of viral RNA recovery all samples in 
the English programme are spiked with phi6 phage as a process control, 
which is added to the samples at the beginning of the sample concen-
tration process or after the initial centrifugation step, aiming to elimi-
nate solid matter. The concentration step, in addition to RT-qPCR, have 
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been identified as subject to greatest variability through the analysis 
workflow (Ahmed et al., 2021) Typically, the recovery of phi6 ranges 
from 1% to 50%, indicating that the viral recovery methods still need to 
be optimised for some wastewater types. This is supported by studies 
from England where wastewater has been spiked with heat-treated 
SARS-CoV-2 and where recovery is often incomplete (ca. 30–50% re-
covery; Kevill et al., 2021, unpublished1). Alongside SARS-CoV-2, a 
range of other faecal-marker viruses (e.g. crAssphage, pepper mild 
mottle virus) have been measured in wastewater (Farkas et al., 2020). In 
the English programme, crAssphage was initially used to help normalise 
the SARS-CoV-2 results to account for dilution by industrial wastewater 
and rainfall, however, this created extra workload and delayed the 
workflow, and was subsequently dropped in favour of other indicators of 
faecal load (e.g. ammonia). Section 5.2 (Case Study 2) presents some 
specific results from the management of laboratory analysis uncertainty 
and variability across the UK wastewater surveillance programmes. 

4. Management of variability and mitigation of uncertainty 

With the likelihood that the use of WBE becomes a key tool for public 
health agencies, providing data on a range of human health indicators 
towards One Health initiatives and global health security (Sims and 
Kasprzyk-Hordern, 2020; Johnson, 2021), more generally, then the 
acuity and timeliness of the generated information becomes critical to its 
success. The integration of both chemical- and biological-based WBE 
will be necessary to ensure that its function is both versatile and resilient 
in the face of growing demand and extraneous factors such as climate 
change, population movement, and infrastructure ageing, which will 
result in temporal and spatial variation in analyte profiles (Sims and 
Kasprzyk-Hordern, 2020; Mills et al., 2020); not only on measured 
levels, but on the ability to detect and measure. 

4.1. Population normalisation and measurement correction 

Measurement correction is key to addressing variation resulting from 
sampling, sample transport and storage, as well as possible errors linked 
with sample processing (including sample preparation: biomarker 
extraction from wastewater, concentration, and analysis). Normal-
isation of data is important to reduce uncertainties related to changing 
wastewater flows (resulting from diurnal changes and seasonal vari-
ability in rainfall patterns), movement of population, biomarker sources 
(e.g. intake vs. environmental occurrence) as well as biomarker stability 
and its transformation (e.g. human metabolism or metabolic degrada-
tion of sewer microorganisms). WBE in chemical exposure studies (e.g. 
illicit drugs, pesticides, industrial chemicals, pharmaceuticals) has been 
subject to comprehensive evaluation of uncertainties due to its appli-
cation requiring a reliable quantitative measurement (e.g. per capita 
drug consumption). In chemistry-based WBE, 24-h composite sampling 
is strongly advised, as well as having labelled internal standards (ana-
logues of biomarkers that do not exist in nature, e.g. benzoylecgonine 
D8, which is used as an internal standard to benzoylecgonine) used to 
compensate for errors occurring throughout sample storage, processing 
and analysis. Flow measurements of wastewater are required, as well as 
an understanding of stability of biomarkers in wastewater and their 
extraction efficiency/matrix effects (e.g. interfering chemicals during 
analysis). However, with biology- or pathogen-based WBE, grab sam-
pling is still the norm in the UK, where there is an inherent lack of flow 
measurements in large national campaigns, as well as in near-source 
applications, which skew the results and make the studies more quali-
tative in nature. Biomarker selection in chemistry-based WBE requires 
pre-use validation, which includes the following requirements: (1) 
originating in human (with no other sources), (2) accounting for human 

metabolism, (3) stable in sewers, and (4) with excellent analytical per-
formance in biomarker quantification (the latter is usually followed by 
inter-lab studies, or ‘ring trials’). These factors are yet to be fully eval-
uated in biology-based WBE (and indeed in new chemistry WBE appli-
cations), where biomarkers are stressors themselves, and there is limited 
(albeit rapidly increasing) understanding of analytical method perfor-
mance and stability of biomarkers. Most importantly, it is currently 
impossible to differentiate between different sources of stressor release 
to the sewerage systems. 

Chemical analysis of certain biomarker groups, especially metabo-
lites of high-usage, prescription only pharmaceuticals (e.g. antidepres-
sants, antidiabetics, and antiepileptics) with well-defined consumption 
patterns, can provide important insights into diurnal changes in popu-
lation size contributing to wastewater. Antidepressants are shown in 
Fig. B.8 as an example. Measurements were undertaken over seven 
consecutive days in five English towns/cities as discussed in Section 5.3 
(Case Study 3). A significant positive relationship between the daily 
loads of antidepressants, their metabolites and the population size 
served by respective wastewater treatment plants was observed (Pear-
son coefficient, r ≥ 0.997, p < 0.0002). As expected, metabolites 
showed the lowest spatiotemporal variability in the studied intercity 
catchment (< 16% for desmethylvenlafaxine and < 12% for desme-
thylcitalopram), when compared to their respective parent antidepres-
sants (venlafaxine and citalopram), which can be directly disposed-off 
into the drain. This indicates their suitability as population markers. 
Fig. B.8 also indicates the benefit of normalisation in trying to under-
stand consumption patterns. In the figure, double normalisation was 
applied to account for variable flows and population. As a result, per 
capita change in consumption patterns can be observed and conclusions 
drawn regarding the variable consumption patterns in cities with 
different socioeconomic status. Further discussion on how certain vari-
ables affect back-calculations of chemical intake can be found in Case 
Study 3. 

4.2. Design and implementation of sampling 

The sampling strategies employed for SARS-CoV-2 surveillance 
across the UK have aimed primarily to address two key factors: per-
centage of the population covered and geographic representation, which 
includes both urban and rural area coverage. In addition, the sampling 
strategies have needed to allow for an agile sampling response to assist 
with surveillance of COVID-19 incidence clusters, as highlighted by 
governmental public health testing strategies. For sampling at STWs, 
these factors need to be facilitated by the regionally diverse privately 
and publicly owned sewage networks. Uncertainties arise in the actual 
population represented by the sampling strategies due to a mismatch 
between census administration geographies and population equivalents 
calculated for STWs. These may include estimates of the number of 
actual residents within a STW catchment, transient populations (i.e. 
those at workplaces, educational facilities, or communal gatherings such 
as sports or entertainment events), and the load placed upon each STW 
by industrial activity. Spatial data analysis approaches can be used to 
characterise the contribution of STW catchments to administrative ge-
ographies, which enable greater integration with public health case data 
(McKinley et al., 2021). 

For sampling at STWs, the use of composite samples can help miti-
gate uncertainty associated with diurnal flow variations (see Fig. 3) but 
such samples may underestimate the magnitude of the peak concen-
tration and, therefore, are more suited to understanding the average 
daily load within the sewer network catchment. Consideration of the 
ideal sampling site at each STW needs to account for the specific 
configuration of the inlet channels, equalisation storage, and mixing 
characteristics. In many cases, it is not possible to get a well-mixed 
sample with equal representation of all parts of the sewer catchment 
because of the design of the STW inlet piping. Several studies have 
sampled primary sewage sludge for SARS-CoV-2, with generally higher 

1 For further information, please contact Prof. Davey Jones (Bangor Univer-
sity): d.jones@bangor.ac.uk. 
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detection than from liquid influent samples (D’Aoust et al., 2021; Gra-
ham et al., 2021), although data on STW flows and process operation 
dynamics is required to fully characterise the period of time that each 
sample would represent. Sampling of solids has not been extensively 
performed in the UK. Mixed or combined sewerage systems (e.g. those 
receiving stormwater or industrial effluent) can also have a significant 
impact on sampling performance as dilution from additional flow and a 
more complex, or inhibitory, mix of wastewater constituents may 
obfuscate the ability to detect the signal (See Section 5.1 (Case Study 1) 
and Fig. B.5). 

For in-network and near-source sampling, the large size and spatio-
temporal complexity of urban water networks means that it is not 
economically or logistically feasible to collect a sufficient number of 
samples to ensure statistical significance of sampling results for esti-
mating system wide average concentrations (Speight et al., 2004). 
Consideration of the diurnal variation of flows from both domestic and 
industrial sources and impact of rainfall can help to select sampling 
locations that are less vulnerable to influence by these factors. 
Well-calibrated hydraulic models of the sewer networks can be a useful 
tool to understand dry weather and wet weather dynamics. For example, 

Fig. B.6 illustrates the modelled dry weather contribution to wastewater 
flow for one of the core cities sampled by the surveillance programme in 
England, showing that some locations are dominated by infiltration 
flows with less than 40% of total daily flow derived from domestic 
wastewater. Many of the network sites initially sampled in the UK 
consistently showed non-detectable levels of SARS-CoV-2 and ammonia, 
consistent with the model results, and these locations were subsequently 
removed from the sampling programme. 

Grab samples in sewer networks require precise timing to capture 
flows because many manholes are dry for large portions of the day, 
including near-source locations and upstream ends of the network. 
Many individual grab samples from network locations had non- 
detectable levels of SARS-CoV-2 in the core cities (see Fig. B.7). Sam-
pling these locations daily, ideally with a slight variation in the time of 
sample collection, does not mitigate the underlying uncertainty associ-
ated with grab sampling but can assist with visualisation of trends and 
patterns despite the variability in individual sample results. 

Fig. 4. SARS-CoV-2 concentration (gene copy (gc)/l) over time with flow variability correction: example with Bolton sewage treatment works. Blue points represent 
the original uncorrected SARS-CoV-2 concentrations and red points and associated 95% confidence intervals are the estimates after accounting for flow variability. 
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.). 

Fig. 5. Comparison of carbamazepine daily loads, intake (calculated using both carbamazepine and carbamazepine-10,11-epoxide) and prescribed carbamazepine in 
five cities over a 7-day sampling week. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.). 
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5. Case studies from the UK wastewater surveillance 
programmes 

5.1. Case study 1: flow normalisation 

Several approaches have been developed within the UK wastewater 
surveillance programmes to account for rainfall dilution of SARS-CoV-2 
RNA measurements in wastewater. Given that flow data is only partially 
available across all the monitored sites, indirect normalisation tech-
niques using other biochemical markers as a proxy for the real flow can 
be used, with an assumption that the majority of markers originated 
from a source with a constant load. Note that these corrections account 
for the temporal variability, but are not sufficient to estimate the 
average flow level, which can vary significantly between sites (as shown 
in the population normalisation section). Different techniques, based on 
a similar premise, are presented below for flow variability correction in 
(a) Scotland and (b) England. Dilution effects appear to only have a 
minor impact on SARS-CoV-2 concentrations in wastewater, with sig-
nificant changes occurring only during heavy rainfall events or dis-
charges from other sources. That is, variation due to dilution effects with 
sample-by-sample variability from other sources of noise (e.g. faecal 
shedding), appears to be minimal. However, from an epidemiological 
perspective, highly diluted measurements caused by storm events, for 
example, may result in the need to correct values by factors as much as 
0.6 (results not shown), which would significantly skew interpretation 
of disease prevalence if ignored when interpreting the data. A separate 
discussion on detection and management of measurement outliers and 
data anomalies is provided in Section B.5 of the Appendix. 

5.1.1. Flow normalisation, as applied by the Scottish COVID-19 
surveillance programme 

In Scotland, in addition to detecting and quantifying SARS-CoV-2, 
chemical analytes, in particular ammonia, have been collected and 
processed from the wastewater. These are available up to 2 weeks prior 
to flow measurements - with flow, at some sites, not measured at all. As a 
result, a cross-site model is used to relate ammonia concentrations with 
flow measurements, taking into account population size as a proxy for 
faecal shedding in the catchments. 

A linear mixed model (LMM), with flow related to ammonia and 

population (on log10 scales), was developed and random intercepts and 
slopes were included for each site. This model was shown to fit the 
Scottish data better than a simpler linear regression model with the 
slopes for log10(ammonia concentration) and for log10(population) 
fixed at − 1 and + 1, respectively. Model performances were compared 
using Akaike Information Criterion (AIC) and a Kenward-Roger 
approximation of the Wald test for LMMs. A review of the Scottish 
data at each site, using a generalised additive model (GAM) with the 
Tweedie distribution, showed that unnormalised data was equally or 
more noisy than normalised (but scaled) data once trends were taken 
into account. A graph of example sites with fitted ammonia/flow curves 
is shown in Fig. B.11. 

Current practice in Scotland is to normalise by flow rate if available, 
then ammonia concentration. If neither are available, then an estimate 
of flow based on a spline function using recent ammonia trends is used 
(fitted on overall national trends over time plus site specific effects). If 
‘capping’ is an issue, where CSOs prevent sewer overloading by dis-
charging to natural water bodies, then normalising against ammonia 
would be preferential as a more representative measure of true flow. 
Anecdotally, it is not thought that capping is a major issue in Scottish 
wastewater networks, based on communication with water sector 
professionals. 

5.1.2. Flow normalisation, as applied by the English COVID-19 surveillance 
programme 

The approach assumes that the flow Ft at time t is not directly 
observable. Therefore, information about the flow can be obtained by 
observing the correlation of concentrations ρti of different markers i and 
that a dilution estimate based on a single marker is not robust enough as 
it is not possible to distinguish between a decrease in flow and an in-
crease in marker load, e.g. due to a one-off industrial or agricultural 
discharge. The model assumes. 
logFt ∼ Normal

(

0, λ2
)

logxti ∼ Normal
(

μi, σ2
i

)

∴logρti = logxti − logFt,

where λ2 is the flow variance, μi and σ2
i are the mean and variance of 

the load of marker i (all in log space). 〈logFt〉 is fixed at 0 to identify the 
model. 

Fig. B. 1. A view of all wastewater sampling sites in England as of July 2021, indicating relative number of grab versus composite samples across the three site 
location types (near-source, in-network, and STW). 
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Accounting for variable dilution using multiple markers relies on the 
same basic premise as the approach presented for Scotland’s case study, 
although with three key differences: first, using multiple markers (such 
as ammonia nitrogen and orthophosphate) jointly to estimate flow 
variability improves the accuracy of estimates. It also allows us to 
identify outliers (such as one-off discharges), and estimate flow vari-
ability as long as at least one marker is quantified (although with larger 
error bars). If no marker is quantified, the model predicts average flows 
with substantial error bars. Secondly, rather than assuming total marker 
loads are constant, they are assumed to be constant in expectation. In 
other words, natural variability of biomarker loads is accounted for. This 
allows to assign variable importance to different markers in a data- 
driven fashion. For example, crAssphage gene copy concentrations 
exhibit more natural variability than ammonia-nitrogen concentrations, 
and more importance should be assigned to the latter – although both 
can inform our dilution estimates. Finally, a generative modelling 
approach is used to test hypotheses in silico, and any inferences in the 
form of posterior distributions over parameter values include principled 
estimates of uncertainty. The model also handles missing data gracefully 
and can incorporate limits of detection where appropriate (not further 

considered here). Unfortunately, the model needs to be fit whenever 
new data become available, and it is more computationally expensive 
than other methods. Any combination of two or more markers can be 
used to estimate flows using the multi-marker method provided that 
their total loads are constant in expectation. An example of the correc-
tion for an English STW is presented in Fig. 4. 

5.2. Case study 2: uncertainty arising from laboratory analysis of SARS- 
CoV-2, and its mitigation within the UK wastewater surveillance 
programme 

The analytical variability, in terms of both replicability and repro-
ducibility, for the estimation of SARS-CoV-2 in wastewater has been a 
major focus of the UK wastewater surveillance programmes. In England, 
the use of two main laboratories (required due to the need for high 
throughput analysis capacity) provided significant challenges, but also 
opportunities to assess the reproducibility of sample analysis. Both 
laboratories employed the AS precipitation and, despite some differ-
ences in the use of RT-qPCR reagents and quantification standards, 
duplicate samples were analysed and found to be comparable (data 

Fig. B.2. Maps of the four regions of the United Kingdom 
showing the wastewater sampling locations for the 
respective national COVID-19 surveillance programmes (as 
of July 2021). Markers represent centroids of the catch-
ments serving the sample point and shading is the 7-day 
average SARS-CoV-2 RNA concentration (gene copy per 
litre) measurements at each site over the last week of June 
2021. This is only an example of the spatial distribution of 
sampling in the UK and comparisons of concentrations 
between sites should not be made from these figures due to 
differences in sampling frequency and network character-
istics across locations.   
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unpublished). In addition, an inter-laboratory ring trial was carried out 
involving five laboratories across the four nations, three using AS pre-
cipitation and two using filtration (Walker et al., 2021, unpublished2). 
Significant differences were found in the absolute SARS-CoV-2 concen-
trations measured by all laboratories. However, these differences (less 
than one log between labs) were much lower than reported in other ring 
trials (Pecson et al., 2021). Further, the variability between the labo-
ratories was similar to previous inter-laboratory trials for quantifying 
viruses (e.g. Norovirus, Hepatitis A) in shellfish (Lowther et al., 2019). 

The differences in the SARS-CoV-2 recovery between laboratories is 
likely due in part to the differences in the initial virus concentration 
method (e.g. ultrafiltration versus AS precipitation) and the use of 
different RT-qPCR standards. The UK is now contributing to discussions 
on the development of an ISO standard for quantifying SARS-CoV-2 in 
wastewater. The development of an ISO standard will enable a greater 
degree of international collaboration and provide the basis for external 
proficiency testing schemes. The latter will give laboratories and 
accreditation services a means to assess laboratory performance and flag 
potential quality issues that require investigation. 

The efficiency of downstream applications depends strongly on the 
purity of the RNA sample used. In this regard, the Minimum Information 
for Publication of Quantitative Real-Time PCR Experiments (MIQE) 
guidelines stipulate that a measurement of a nucleic acid quantity is 
essential, while an assessment of purity is desirable (Bustin et al., 2009). 
This is particularly important to avoid false negatives when SARS-CoV-2 
concentrations are too low to be quantified after dilution, requiring the 
use of internal or external controls, such as RNA/DNA spikes, to detect 
inhibitors and verify several other parameters of the workflow (See 
Fig. B.14). Furthermore, the effect of wastewater properties has been 
assessed in a range of mesocosm-based wastewater studies (Kevill et al., 
2021, unpublished). These found that the presence of suspended solids 
(turbidity range 10–400 NTU) or surfactants (0–100 mg/l) had minimal 
impact on RNA recovery using PEG or AS precipitation methods unless 
present at very high concentrations atypical of UK wastewater. 

RT-qPCR can introduce additional variability at different steps dur-

ing the quantification of SARS-CoV-2. Firstly, the reverse transcription 
can vary with the same samples by two to threefold depending on the 
amount and quality of RNA (Bustin et al., 2015). On the other hand, 
sample variability increases when the target complementary DNA 
(cDNA) is diluted, mainly when the quantification cycle (Cq) values are 
greater than 30. This is due to stochastic amplification, measurement 
uncertainty, and subsampling error (Taylor et al., 2019). The RT-qPCR 
variability can easily range between 10% and 200% of the coefficient 
of variation (CV) and can only be minimised by interrogating a larger 
proportion of the sample using more technical replicates and applying 
the average Cq (Taylor et al., 2019). Fig. B.15 shows the variability of 
SARS-CoV 2 measurements in wastewater at different Cq values from an 
England pilot study. 

Fig. B.3. A visual representation of wastewater concentration variability be-
tween sampling methods (spot = grab, comp = composite) at a STW site in 
England. The samples were collected at the same time (09:00 h) on consecutive 
days for laboratory analysis at Bangor University. The darker the sample, the 
higher the likelihood of capturing a representative sample, while lighter sam-
ples suggest greater flow dilution, or that the sample has missed the peak 
discharge window. 

Fig. B.4. Per-site mean absolute percentage difference, compared to the 7-day baseline, in SARS-CoV-2 and other marker measurements when reducing the sampling 
frequency artificially for 186 network sites across England. Whilst the difference for ammonia, orthophosphate and pH is limited to ~ 10%, a difference of up to ~ 
55% can be introduced in the mean estimate of SARS-CoV-2 when decreasing the cadence frequency. 

2 For further information, please contact David Walker (Cefas): david.walke 
r@cefas.co.uk 

M.J. Wade et al.                                                                                                                                                                                                                                

http://david.walker@cefas.co.uk
http://david.walker@cefas.co.uk


Journal of Hazardous Materials 424 (2022) 127456

12

5.3. Case study 3: population normalisation and measurement correction: 
lessons learned from WBE application in exposure studies beyond COVID 

A study of multi-group chemical profiling in five contrasting urban 
populations, each served by a major STW contributing to one river 
catchment in South-West England and covering an area of approxi-
mately 2000 km2 and a population of approximately 1.5 million (this 
constitutes > 75% of the overall population in the catchment) was 
undertaken to understand measurement variability at an inter-city 
granularity (See Fig. B.9 for a map of the five study locations, and 
Table B.1 for data on their network characteristics). A detailed discus-
sion of multi-chemical fluxes in urban catchments has been provided by 
Proctor et al. (Proctor et al., 2021) and the methodology used to measure 
chemicals and back-calculate mass loads and intake are found in recent 
literature (Kasprzyk-Hordern et al., 2021; Proctor et al., 2019). Key 
contributing factors to WBE uncertainties are carefully considered and 
included in the study to enable a fully quantitative measurement of 
city-wide intake for selected chemicals: 

• Robust sampling and sample collection involving 24-h flow propor-
tional sampling in ice packed or refrigerated autosamplers main-
taining biomarker stability;  

• 7-day consecutive sampling to allow for temporal (weekday versus 
weekend) changes in biomarkers to be observed;  

• Robust wastewater flow measurement and population size estimates;  
• Fully validated analytical methods and the highest level of quality 

assurance (e.g. limits of detection and quantification, intra- and 
inter-day accuracy and precision, recovery from matrix);  

• Characteristic biomarker selection for back-calculation of chemical 
exposure (e.g. metabolite versus parent compound to account for 
direct disposal of unused chemicals);  

• Full biomarker mass balance in wastewater that accounts for 
biomarker presence in both solid and liquid phases with a full un-
derstanding of percentage biomarker recovered from the matrix. 

The aim of the study is to understand and characterise key un-
certainties to enable accurate back-calculation of city-wide exposure to 
chemicals. To validate the developed back-calculation protocol, high- 
resolution spatiotemporal National Health Service (NHS) pharmaceu-
tical prescription databases are used for system calibration, in terms of 
biomarker selection and its correction factor, as well as for overall 
spatiotemporal system performance evaluation. A detailed discussion on 
multi-chemical exposure can be found in Kasprzyk-Hordern et al. 
(2021). Here, focus is only given to carbamazepine and citalopram, two 
model chemicals, and two key variabilities for back-calculation of their 
usage at an inter-city level (that are not currently considered for UK 
SARS-CoV-2 monitoring): characteristic endogenous biomarker selec-
tion and establishment of correction factors accounting for human 
metabolism. 

Carbamazepine intake (Fig. 5: red line) is back-calculated using both 
parent compound (source carbamazepine) and its metabolite (carba-
mazepine-10,11-epoxide, CBZ10-11). While both biomarkers correlate 
well with NHS prescription data (Fig. 5: blue line), using carbamazepine 
as a biomarker might lead to an overestimation of intake if direct 
disposal of unused carbamazepine takes place (see city A, Sunday, 
Fig. 5). Interestingly, this is not the case if CBZ10-11 is used (no spike in 
city A during Sunday), which indicates its superiority over carbamaze-
pine itself. 

An understanding of the extent of metabolism of biomarkers or 
metabolic formation of biomarkers is key in quantitative back- 
calculation of chemical intake. Fig. B.10 shows an example of a signif-
icant overestimation of citalopram intake observed when using 
commonly applied weighted average correction factors based on the 
existing literature. This often include only phase I metabolism of 
chemical excreted in urine (desmethylcitalopram in this case), as 
opposed to the focused approach, where metabolism correction factors 
(mCFs) are calculated using only comprehensive datasets from studies 
combining phase I and II metabolites (glucuronides) excreted in both 
urine and faeces. Understanding biomarker excretion in faeces is of 
critical importance for compounds with a more hydrophobic nature, 
such as citalopram as it is, to a large extent, excreted in faeces. Addi-
tionally, citalopram and its metabolites undergo extensive glucuronide 
conjugation. Overlooking excretion in faeces and phase II metabolism 
will lead to incorrect CFs as seen in Fig. B.10. Having prescription data 
per 10–100 households/postcodes allows for the validation of the 
correction factors used. Prescription databases (if associated with well- 
defined regional units such as streets) can therefore serve as internal 
calibration systems. 

This case study shows the importance of careful biomarker selection 
to enable highly accurate ’quantitative’ calculation of per capita stressor 
intake. This is not currently performed with SARS-CoV-2 surveillance, 
where the stressor itself is used as a biomarker. As a result, various 
sources of the genetic material present in the wastewater sample can be 
captured and, hence, calculation of the per capita intake (or viral load) 
may be difficult. Further work is required to establish a suite of 

Fig. B.5. Comparison of grab and composite samples taken from two sites as 
part of the English wastewater surveillance programme: Site 1 - Domestic 
source; Site 2 - Domestic + Industrial sources. The boxplots suggest a greater 
degree of within sample and between-method variability for Site 2 than Site 1, 
suggesting that combined sewerage systems (i.e. those receiving stormwater or 
industrial inflow in addition to domestic flow) may impart greater signal 
variability. Additionally, the lower SARS-CoV-2 measurements for grabs at Site 
2, implies that autosampling is more likely to capture the target analyte signal 
in complex or dilute media. 
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biomarkers and new analytical approaches to enable quantitative mea-
surement of community infection and public health indicators of 
concern. In the interim, it is likely that WBE can only be used as an early 
warning system for public health monitoring and verification of disease 
prevalence trends at the community level, and not as a quantitative 
measure of community infection rates. 

6. Conclusions 

The scale of the COVID-19 pandemic has resulted in an unparalleled 
response from a diverse community of stakeholders, working collabo-
ratively to control and reduce the transmission and impact of the dis-
ease. The early demonstration that wastewater was a viable medium for 

Fig. B.6. Contribution to wastewater flow by volume over a 24-h dry weather day for sampling locations across one of the core cities, derived from the hydraulic 
model of the sewer network. 

Fig. B.7. An anonymised heatmap view of ’core city’ SARS-CoV-2 RNA concentrations measured in wastewater over a 1 month period from June - July 2021. Each 
row is an in-network sample location in the city and each column represents a sample day. Missing values represent a missing sample or no sample taken. Values are 
the log10 virus RNA concentrations (gene copies per litre). Cells with blue borders are flagged as likely being influenced by high dilution events, and < LOD are 
measurements below the laboratory limit of detection. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.). 
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tracking the virus, led to academic and government initiatives to oper-
ationalise wastewater-based epidemiology for monitoring its dynamics 
at local, regional, and national scales. In the UK, COVID-19 surveillance 
programmes across the four nations (England, Wales, Scotland, and 
Northern Ireland), have demonstrated, perhaps uniquely, the opportu-
nity for WBE to be used routinely and at unprecedented scale to combat 
a public health emergency. From their inception, the national waste-
water surveillance programmes have delivered insights to support 

Fig. B.8. Population normalised daily loads (PNDL) of antidepressants (mg/day/1000 inhabitants) and their metabolites.  

Fig. B.9. Site locations of studied STWs and corresponding cities and towns.  

Table B.1 
Network characteristics for the studied sites. Residence times are given for 
typical summer dry-weather flows. P.E. = Population Equivalent.  

Site Sewer residence Popn. served Ind. contrib. Mean flow  
Time (h) (P.E.) to P.E. rate (m3 d−1) 

A x < 0.5–4 37,714 0.4%  8242 ± 3085 
B x < 0.5–4 68.453 30.0%  11,202 ± 3202 
C x < 0.5–9 109,543 1.2%  24,875 ± 2167 
D x < 0.5–2 18,274 0.1%  2924 ± 199 
E x < 1–24 867,244 23.9%  153,061 ± 12,245  

Fig. B.10. Citalopram intake calculated using citalopram and desmethyl- 
citalopram, with and without inclusion of phase II metabolites (Note: (*) in-
dicates no inclusion of phase II metabolism, which leads to overestimation 
of intake). 
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public health decision-making and to guide Government and key 
stakeholders in interpreting the measurements of SARS-CoV-2 in 
wastewater to provide a broader understanding of the disease in the 
populations. 

This work has allowed for a broader appreciation of WBE as a tool for 
monitoring public health in populations at scale, with initiatives likely 
to focus on a ‘beyond COVID’ uplift of WBE as part of establishing One 
Health programmes across the world. However, their effectiveness re-
quires that the data generated to support the function of WBE is 
meaningful and representative of the target(s) being monitored. 
Wastewater is a more complex environment than typical media used for 
monitoring of human health, with multiple factors potentially ac-
counting for greater uncertainty or variability in the measured signal 
that in, for example, a clinical setting. Managing this uncertainty is one 
of the key challenges to ensure successful employment of WBE for public 
health protection. 

Here perspectives are provided on the confidence in wastewater- 

derived measurements by those working across the national pro-
grammes, given work performed to understand, quantify and manage 
measurement uncertainty and variability. The work emphasises that 
while some sources of uncertainty may not be impactful, or can be 
adequately accounted for (e.g. extraneous flow dilution, sampling 
method), other sources are inconsistent or difficult to quantify directly 
(e.g. shedding distributions, in-network behaviour). While these 
intractable factors will, with consolidated research efforts, become less 
opaque, there is unlikely to be a general approach to manage mea-
surement uncertainty for all applications of WBE beyond COVID. Mak-
ing use of the greatly increased capacity for WBE in the UK, and more 
widely, will require new methods for extracting actionable information 
from wastewater data, but also methods for determining the limits of its 
application. 

Fig. B.11. Relationship between flow rate and 1/ammonia concentration at Scottish wastewater sites with more than 40 coupled observations (up to 25 Mao 2021). 
The lines show the fitted regression estimates: blue is for the full random coefficient model and red is for the model with the slope for log ammonia fixed at − 1. The 
strength of the relationship varies between sites, as shown by the correlations given. At some sites (e.g. Lockerbie), the fitted lines are quite close, and in other cases 
(e.g. Shieldhall), the difference is more marked. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.). 
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Funding 

The United Kingdom Government (Department of Health and Social 
Care) fund the sampling, testing, and data analysis of wastewater in 
England. The Scottish Government (Rural & Environmental Science and 
Analytical Services division, Covid Testing in the Health and Social Care 
division) funds the sampling, testing, and data analysis of wastewater in 
Scotland. The Welsh Government (Technical Advisory Cell) funds the 
sampling, testing, and data analysis of Wastewater in Wales. The initial 

phase of the “SARS-CoV-2 wastewater surveillance and reporting SARS- 
CoV-2 in Northern Ireland project” was funded under the joint Science 
Foundation Ireland – Department of Agriculture, Environment and Rural 
Affairs (DAERA) COVID-19 Rapid Response Funding Call (20/COV/ 
8460-1). The second stage of the project is funded by DAERA in 
collaboration with the Public Health Agency NI (PHA-NI). The project 
partners include DAERA, PHA-NI, the NI Environment Agency, 
Department of Health, Department for Infrastructure, Belfast City 
Council and NI Water Ltd. We would also like to acknowledge NI Water 

Fig. B.12. Frequency of anomalous SARS-CoV-2 RNA concentrations, identified using a gradient boosted regression and binned by the associated ammonia con-
centration. The data suggests that lower ammonia concentration and, by proxy, higher dilution, results in lower confidence in detection of viral RNA. 

Fig. B.13. An example output from a tool developed by the Environment Agency to visualise outliers in SARS-CoV-2 time-series measurements collected as part of 
the wastewater surveillance programme in England. Inset: Outlier detection using an 80% confidence interval around the linear regression; four weekly samples 
(black points) are used to generate a linear model and parametric confidence interval, a new sample (red point) is assessed against the confidence band and flagged as 
an outlier if it falls outside the band. This map was created using ArcGIS® software by Esri. ArcGIS® and ArcMap™ are the intellectual property of Esri and are used 
herein under license. Copyright © Esri and its licensors. All rights reserved. ©Environment Agency. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.). 

M.J. Wade et al.                                                                                                                                                                                                                                



Journal of Hazardous Materials 424 (2022) 127456

17

for providing access to use spatial data for the NI Water’s Wastewater 
Network. The following funding sources are acknowledged by the 
contributing authors: “National COVID-19 Wastewater Epidemiology 
Surveillance programme (NE/V010441/1) UKRI-NERC COVID 
Response [DG, DJ, AS, VS, BK-H]; “Building an Early Warning System 
for community-wide infectious disease spread: SARS-CoV-2 tracking in 
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Fig. B.14. Inhibition level of clean samples spiked with synthetic single-stranded RNA (ssRNA). The inhibition level was calculated by spiking ssRNA into waste-
water extracts and comparing the measured Cq to RNA spiked into molecular negatives (no template controls). The modified PEG method keep the inhibition level 
below 1.0 Cq and the RNA quality between 2.0 and 2.2. 

Fig. B.15. SARS-CoV-2 N1 gene variability between biological duplicates. The Cq variability increased with lower target concentrations (higher Cq). The CV was 
1.0 ± 0.9 and 2.6 ± 2.3 for samples with Cq values below and above the LOQ, respectively. 
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Appendix A. COVID-19 wastewater surveillance in the United 
Kingdom 

Wastewater monitoring of COVID-19 across the four nations of the 
United Kingdom is the most striking example of an application of WBE 
for public health surveillance to date, given the scale and extent of the 
sampling programmes, and end-to-end transformation of measurements 
to actionable insights. Here, a description of each national programme is 
provided to provide context for understanding the challenges around 
measurement uncertainty and variability. 

Appendix A.1. England 

Sampling of wastewater in England is being carried out by the 
Environment Agency, UK water utilities, and the Environmental Moni-
toring for Health Protection team, part of the Joint Biosecurity Centre 
(UK Health Security Agency, as of October 2021) created to support 
government response to the COVID-19 pandemic. Sample collection 
started in June 2020 at the inlets to 44 sewage treatment works (STWs). 
The sites were selected to provide good population coverage and 
geographical representation across the country. In total, the original 
sites covered 17.7 million people (over 31% of the population of En-
gland). The sampling capacity was increased considerably at the start of 
2021 and, as of July 2021, comprised 556 sites, including 263 STWs, 238 
network sites (manholes or pumping stations in the sewer catchment), 
and 55 near-source sites (single or groups of buildings). The sites are 
distributed across the networks of the nine water utilities in England. By 
July 2021, wastewater sampling covered 39.4 million people (70% of 
the population of England). Recent sites were selected according to 
multiple criteria including demographic disease risk, population 
coverage and, for in-network sites, access points (e.g. manholes, 
pumping stations) that ensure safe access and well-mixed samples. STWs 
are sampled four times per week, using either autosamplers (composite) 
or by grab, or spot, sampling, post influent screening. The method of 
sampling is typically dependent on infrastructure at the STWs. An 
example of the potential for large variability in wastewater concentra-
tion between samples taken, either as grab or composite, is shown in 
Fig. B.3. In-network samples, collected upstream of the STWs, are used 
to constrain areas of concern in nine ‘core’ cities representing the largest 
conurbations in England, and three smaller strategic cities (based on 
historical COVID-19 trends). Samples from network sites are collected 
daily, mostly as grab samples, while near-source samples are largely 
taken using autosamplers at a fixed sub-sampling frequency (See Fig. B.1 
for an overview, as of July 2021). 

Appendix A.2. Scotland 

Sampling and testing of wastewater across Scotland has been per-
formed by Scottish Water and the Scottish Environmental Protection 
Agency (SEPA). In total there are over 1800 STWs in the Scottish 
Network, serving from fewer than 100 people to populations over 
600,000. Initial testing of the premise that SARS-CoV-2 virus fragments 
were detectable in wastewater began in April 2020 with the develop-
ment of a national monitoring programme operationalised by late May 
2020. A network of 28 sites were initially prioritised, designed to 
maximise the coverage of population across Scotland’s 14 National 
Health Service Health Regions, while also ensuring that laboratory ca-
pacity was available at that time. The 28 sites covered a total of 2.6 
million people (just over half of the five million sewered population in 
Scotland), with the goal of achieving a coverage of 40% in each of the 14 
regions. As the need for wastewater monitoring has increased, so too has 
the monitoring network, which has expanded to 108 sites covering 4.2 
million people. Autosamplers are used to obtain composite samples from 
the influent at each sewage works over a 24-h period, which are then 
sent to SEPA for analysis. Results are then published via data visual-
isation dashboards. One dashboard, designed for the general public, 
holds the raw virus concentrations for each site (https://informatics. 
sepa.org.uk/RNAmonitoring), while a second dashboard, designed for 
public health officials, has additional metrics and comparisons to re-
ported case numbers. 

Additionally, Scottish Water, SEPA and a variety of NHS and Public 
Health professionals from across Scotland have been working together 
to collect and analyse samples from within the sewer network itself (via 
manholes). These were sited at the request of health professionals in 
order to better understand the virus prevalence in areas of concern 
within larger sewer networks. These samples are taken by means of a 
grab sample. In total, 28 such sites have been monitored at one time with 
14 still being active as of July 2021. 

In total, over 5000 samples have been tested and recorded as of July 
2021. The sampling frequency varies between sites depending on several 
factors and has changed at different times as the needs of stakeholders 
has changed over time. Sampling at treatment work inlets has been 
variable, with the majority sampled at a frequency of once or twice a 
week, but some as much as four times per week, a trade-off between lab 
capacity and data density. All in-network samples are monitored five 
times per week in their initial week to establish a baseline before being 
sampled twice a week thereafter. 

Appendix A.3. Wales 

The Wales wastewater monitoring programme started as a pilot in 
March 2020 as the first wave of COVID-19 spread across the UK (Hillary 
et al., 2020). This early work highlighted the potential for tracking 
SARS-CoV-2 and also led to the development of robust methodologies 
for extracting and quantifying the virus in wastewater (Farkas et al., 
2021). This pilot phase was then expanded in September 2020–20 sites 
across the country. These sites were initially sampled three times per 
week, increasing to five weekdays by June 2021, to try and reduce the 
variability in the wastewater SARS-CoV-2 RNA signal and, thus, improve 
its usability. One of the major challenges in Wales has been the lack of 
on-site infrastructure needed to take composite wastewater samples. 
Therefore, all samples are currently taken as grab samples, targeted at 
the early morning wastewater peak (between 08:00 and 11:00 h). 
However, it is now known from deploying the enveloped Pseudomonas 
virus, phi6, into the sewer network that this approach may miss the 
effluent peak, leading to an underestimation of viral abundance. 
Another challenge has been the poor geographical coverage in Wales. 
The country has two urban corridors centred around the northern and 
southern coasts in which 80% of the population resides. Consequently, 
wastewater surveillance has focused in these areas, leaving ca. 20% of 
the country, mainly in central and western Wales unmonitored, resulting 
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in uncaptured localised outbreaks in small urban centres. Another major 
issue is that the capital city, Cardiff, is served by a very large centralised 
STW (930,000 people). Although this captures 30% of the Welsh pop-
ulation in one sample, the lack of granularity prevents the potential for 
using wastewater surveillance to target regions of the city to control 
localised COVID-19 outbreaks (e.g. implementation of surge testing and 
walk-in vaccination centres). The lack of sampling on weekends also 
prevents capturing of the large migration of tourists from North West 
England into North Wales. The wastewater samples taken in Wales were 
also used to pilot their potential to track other viruses of public health 
interest (e.g. influenza A and B, norovirus, respiratory syncytial virus, 
enterovirus D68). Analysis showed that wastewater contained all these 
viruses with the exception of Enterovirus D68. Looking forward, the 
Wales wastewater surveillance programme is now being expanded to 
many more sites with the aim to capture 90% of the population con-
nected to sewers, with analysis of a greater number of public health 
indicators. 

Appendix A.4. Northern Ireland 

Wastewater surveillance in Northern Ireland (NI) has several unique 
challenges compared to other parts of the UK, which are related to the 
urban and rural distribution of population. NI has an extensive waste-
water treatment network operated by Northern Ireland Water (NI 
Water). In total, there are 1114 STWs in the NI Water network, serving 
just under 80% of the NI population. Each STW serves a wastewater 
drainage catchment area of variable sizes. Up to 68% of the NI Popu-
lation is served by the 40 largest STWs. However, these larger STWs 
serve predominantly urban, as opposed to rural communities, and tend 
to be disproportionately located in eastern parts of NI. The integrated 
wastewater testing and geographic surveillance programme for SARS- 
CoV-2 in NI is led by Queen’s University Belfast, funded by the 
Department of Agriculture, Environment and Rural Affairs (DAERA) in 
collaboration with the Public Health Agency NI (PHA-NI). 

Currently there are SARS-CoV-2 wastewater samples being taken at 
14 sampling sites at STWs covering 35.3% of the NI population. The 
current sampling strategy was based on several key factors, including 
population coverage, geographic distribution of wastewater surveillance 
and a close alignment and agile response to PHA-NI test and trace re-
sults. Consideration is being given to significantly expanding the sam-
pling sites, allowing for the wastewater surveillance of a significant 
portion of the NI population. 

An important aspect of the approach in NI has been the use of 
Geographical Information Systems (GIS) to develop spatial GIS-based 
wastewater monitoring and reporting system integrating public health 
data to model population geographies and align with wastewater 
drainage catchment areas. Modelling population across NI using GIS 
provides an approach to estimate populations covered by the waste-
water network, the population within individual wastewater drainage 
catchment areas, and an estimate of how to balance capturing the 
maximum percentage of the population from a relatively limited number 
of sample sites, while ensuring an adequate geographic spread across NI. 
This has been achieved through the development of an interactive 
wastewater SARS-CoV-2 Surveillance Dashboard. The Dashboard pro-
vides a display of the analysis results of sampling at various locations in 
NI and enables users to see and understand population distribution 
modelling across NI wastewater network. This offers the most efficient 
and informative sampling strategy for the programme, and an approach 
to contextualise wastewater test results in terms of socio-economic 
deprivation. 

An indication of the extent of wastewater surveillance across all four 
regions, indicating the geospatial locations of sampling sites (as of July 
2021), is shown in Fig. B.2. 

Appendix B. Supporting figures 

Appendix B.1. Views from the UK wastewater surveillance programmes 

Fig. B.2. 

Appendix B.2. Sampling variation 

Fig. B.3. 
Fig. B.4. 
Fig. B.5. 
Fig. B.6. 
Fig. B.7. 

Appendix B.3. Population estimation and normalisation 

Fig. B.8. 
Fig. B.9. 
Table B.1. 
Fig. B.10. 

Appendix B.4. Flow estimation 

Fig. B.11. 

Appendix B.5. Outlier detection, data anomalies and visualisation 

Appendix B.5.1. Identifying and reconciling anomalously low 
measurements in England 

As discussed, the devolved administration programmes for COVID- 
19 wastewater surveillance have generated a large number of SARS- 
CoV-2 virus RNA measurements. As with all environmental measure-
ments, the signal recovered will be subject to anomalies, or outliers, that 
diverge from the expected data trends, with some defined statistical 
significance. Measurements can vary by several orders of magnitude, 
with extrema possibly representing unaccountable occurrences such as ’ 
‘super-spreader’ events, single release of highly concentrated sewage (e. 
g. transported from non-networked sites, in-network holding tanks or 
wet wells), or due to sample capture of a highly aggregated, unmixed 
load. Alternatively, anomalies may represent measurement error or 
uncertainty due, for example, to inappropriate sampling frequency, 
miscalculation or unknown peak flow (for grab samples), or sample/ 
laboratory contamination. Such data anomalies can cause many prob-
lems for further analysis or visualisation, and depending on context, 
different interventions are typically needed when they are detected. 

In the English programme, post-laboratory analyses were conducted 
to attempt to identify measurements that may be anomalously low, by 
defining the likelihood that a measurement falls within some expecta-
tion criteria. In particular, a machine learning approach, using a 
Gradient Boosting for regression model, was trained with a quantile loss 
function to predict 90% SARS-CoV-2 concentration intervals at the 
sampled sites. These predictions were used to explore unexpectedly low 
data points (below the 5th percentile prediction interval) where similar 
sites in terms of geography and collection method exhibited relatively 
high measurements. 

The analysis identified 762 samples as anomalous out of 25,957 that 
did not report a quantified value. In particular, the model highlighted 
low measurements during January and February 2021 despite infection 
rates across the country were high. The analysis could be extended to 
explore any recorded values that do not fall within the predicted range, 
whether low or high. Fig. B.12 illustrates the frequency of anomalous 
data points when compared to ammonia concentrations, suggesting that 
lower concentrations of ammonia are associated with a higher propor-
tion of unquantifiable samples. This suggests that flow dilution has the 
impact of reducing SARS-CoV-2 concentrations below the 5th percentile 
prediction interval. 
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Appendix B.5.2. Tracking measurement outliers in England 
On a weekly basis, sites with rapid and sudden increase of SARS-CoV- 

2 are identified using parametric confidence bands around a linear 
regression model fit to the data. The model is used to predict the SARS- 
CoV-2 concentrations 7-days in advance and a 80% confidence band is 
calculated for this extended linear regression. This accounts for the 
uncertainty of the mean virus RNA concentrations over time. As new 
data is acquired, if the latest measurement falls outside the upper limit it 
indicates that the sample has exceeded the predicted concentration and 
needs further investigation. Outliers identified with this method are 
visualised on a map of England and assessed alongside appropriate 
meta-data, such as the inorganics (e.g., ammonia, orthophosphate), see 
Fig. B.13. Weekly maximums that lie above pre-defined threshold values 
are also flagged as outliers. After following this process, sites of concern 
are reported to the National Laboratory Service (NLS) who conducts 
further quality assurance. 

Appendix B.5.3. Identifying and reconciling anomalously high 
measurements in Scotland 

Under the Scottish programme, Biomathematics and Statistics Scot-
land (BioSS) conducted a similar procedure, though instead the focus 
was on anomalously high values (e.g. spikes), with the aim of flagging 
and potentially removing anomalies as soon as they are recorded. A 
Generalised Additive Model (GAM) was used to identify when high 
amounts of wastewater COVID-19 (relative to case rates, or relative to 
the previous variability of the site) is indicative of the wastewater 
measure not corresponding to future cases. With a suitable threshold, 
this was used to remove these measurements from aggregates, and/or 
trigger further investigation (Fang, 2021). 

Appendix B.6. Quantification and quality from laboratory analysis 

Fig. B.14. 
Fig. B.15. 

Appendix A. Supporting information 

Supplementary data associated with this article can be found in the 
online version at doi:10.1016/j.jhazmat.2021.127456. 
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