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a b s t r a c t 

Microsatellite instability (MSI) or deficient mismatch repair (dMMR) is a clinically important genetic feature affecting 10–15% of colorectal cancer (CRC) patients. 

Patients with metastatic MSI/dMMR CRC are eligible for therapy with immune checkpoint inhibitors, making MSI/dMMR the most important immuno-oncological 

biomarker in CRC. Gold standard tests for detection of MSI/dMMR in CRC are based on wet laboratory tests such as immunohistochemistry (IHC) or DNA extraction 

with subsequent polymerase chain reaction (PCR). However, since 2019, advances in Deep Learning (DL), an Artificial Intelligence (AI) technology, have enabled the 

prediction of MSI/dMMR directly from digitized routine haematoxylin and eosin (H&E) histopathology slides with high accuracy. In addition to the initial proof-of- 

concept publication in 2019, twelve subsequent studies have refined, improved, and further validated this approach. At this moment, MSI/dMMR prediction using 

Deep Learning has become a widely used benchmark task for academic studies in the field of computational pathology. Beyond academic use, this assay has attracted 

commercial interest from companies with the possibility of approval as a diagnostic device in the near future. In this review, we summarize and quantitatively 

compare the existing evidence on Deep-Learning-based detection of MSI/dMMR in CRC and discuss the need for further improvement and potential for integration 

into routine pathological workflows. Ultimately, this DL-based method could facilitate the identification of patients eligible for treatment with immune checkpoint 

inhibitors by pre-screening or replacement of current methods. 
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The application of AI technology in the field of histopathology has
eveloped rapidly over the last three years. Supervised analysis of
istopathological images by Deep Learning methods moved from stud-
es reporting technical advances to real-world applications with a clini-
al focus [ 1 , 2 ]. Important factors contributing to this development are
1) the increasing use of whole slide scanners in pathology departments
enerating an enormous number of histopathological images and (2)
he evolving quality and availability of algorithms, computing power,
nd storage media [3] . In addition, advances in new technologies are
ften driven by the availability of specific benchmark tasks. A bench-
ark task is a clearly defined problem on which new algorithms can

e tested and results can be compared to previous approaches. In the
ontext of computational pathology, prediction of microsatellite insta-
ility (MSI) or mismatch repair deficiency (dMMR) from hematoxylin
nd eosin (H&E) stained histology slides of colorectal cancer (CRC) has
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ecome such a benchmark task and multiple studies have specifically ad-
ressed this question, suggesting new algorithms and comparing perfor-
ance to the initial studies [4–17] . In this systematic literature review,
e aimed to provide a critical review of studies performing MSI/dMMR
rediction on H&E-stained CRC tissue sections with a brief comparison
o DL based MSI/dMMR prediction in other cancer types. Differences in
ethodology and results as well as limitations and possible future work

re discussed. 

ackground: microsatellite instability as a key biomarker to select patients 

or immunotherapy 

Microsatellites are short tandem repeat non-coding DNA sequences
hat are widely distributed throughout the human genome [18] . These
equences are vulnerable to spontaneous replication errors. In healthy
ells, replication errors are constantly corrected by the so-called Mis-
atch Repair (MMR) system which consists of two major protein com-
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Fig. 1. Example histology slides for MSI/dMMR and MSS/pMMR colorectal tu- 

mors. (a) MSI/dMMR tumors display some typical morphological patterns such 

as a high number of tumor infiltrating lymphocytes, poor differentiation or the 

presence of mucin, which are known indicators of MSI/dMMR [34] . However, 

quantification of these features by human experts is not sufficiently accurate for 

a definitive diagnosis of MSI/dMMR in clinical routine. (b) MSS/pMMR tumors. 

This collection of histological images also highlights the variability in terms of 

color, size and presence of different non-tumor tissue types on histopathology 

slides. 
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lexes. During CRC carcinogenesis, the MMR system can be compro-
ised (become ‘deficient’) due to the loss of expression of its proteins

19] . Tumor cells with a deficient MMR system are unable to correct
eplication errors which consequently leads to many mutations in cod-
ng DNA sequences. One of the reasons why Microsatellite instability
MSI) or deficient mismatch repair (dMMR) detection are widely stud-
ed is its immediate clinical relevance. Approximately 10–15% of col-
rectal cancer (CRC) display dMMR at protein level [20] , and presence
f dMMR is almost completely overlapping with presence of MSI at DNA
evel [21] . Medical guidelines recommend that all CRC patients should
ndergo screening for dMMR/MSI for a number of reasons [ 21 , 22 ].
irst, dMMR/MSI in combination with other molecular alterations can
e an indicator for the presence of Lynch syndrome, the most com-
on cause of hereditary CRC [21] . Second, dMMR/MSI in intermedi-

te stage CRC (pT3–4, N0–2) has been associated with a reduced re-
ponse to Fluorouracil-based chemotherapy as well as lower incidence
f locoregional metastases [23] . Finally, the presence of dMMR/MSI is
uggestive of potential efficacy of cancer immunotherapy with immune
heckpoint inhibitors [ 24 , 25 ] as most dMMR/MSI tumors are highly
mmunogenic [26] . In metastatic CRC, dMMR/MSI is currently the only
iomarker which renders patients eligible for treatment with immune
heckpoint inhibitors, as approved by the US Food and Drug Admin-
stration (FDA) and the European Medicines Agency (EMA). The EMA
pproval of immune checkpoint inhibitors in dMMR/MSI CRC includes
he anti-PD1 antibody Pembrolizumab in first-line palliative therapy
27] and the combination of anti-CTLA4 antibody Ipilimumab with the
nti-PD1 antibody Nivolumab in second-line palliative therapy [28] . Ac-
ording to the FDA approval for anti-PD1 antibodies, dMMR/MSI is not
nly a biomarker for first-line immunotherapy in metastatic or locally
dvanced unresectable CRC but also for any unresectable or metastatic
olid tumor that has progressed following initial treatment [25,29] . The
DA approval of immune checkpoint inhibitors in dMMR/MSI patients
urrently allows the use of two diagnostic methods to detect this ge-
etic alteration: (1) detection of loss of expression of one of the MMR
roteins by immunohistochemistry (IHC) and/or (2) detection of the
resence of MSI using extracted tumor DNA and a polymerase chain re-
ction (PCR) panel or next-generation sequencing (NGS) [ 30 , 31 ]. Re-
ently, a proof-of-concept study suggested that dMMR/MSI can also
e detected directly from routine pathology slides by using a Deep
earning-based diagnostic method [4] . It is currently envisaged that the
L-based assay could be used as a pre-screening tool reducing the num-
er (and costs) of wet laboratory tests or as definitive diagnostic test
4,32] . 

istopathological features as predictors of MSI status on H&E slides 

The rationale why Deep Learning could detect dMMR/MSI from rou-
ine histology slides is that there are known morphological patterns of
MMR/MSI CRC. In other words, humans can see patterns which are
ssociated with dMMR/MSI and so Deep Learning can also detect such
atterns ( Fig. 1 ). As early as the 1990s, a relationship between MSI geno-
ype and morphological tumor phenotype was demonstrated by several
tudies. [ 31 , 33-36 ] Lists of clinico-pathological features enriched in pa-
ients with Lynch syndrome, so-called Amsterdam and Bethesda criteria,
ere formally published in 1991 and 1996 respectively. [ 31 , 36 ] The aim
f these criteria was the identification of patients with high likelihood
f hereditary CRC, provide genetic counseling to the index patient and
elatives and include patients and relatives in appropriate surveillance
rograms. 

In 2003, Greenson et al. were the first to investigate morphological
henotypic markers of MSI in CRC in a population-based study. By an-
lyzing 528 CRCs they identified tumor infiltrating lymphocytes, poor
ifferentiation, right-sided location, mucinous differentiation, Crohn’s
ike inflammatory reaction in the periphery of the tumor and a lack of
o-called dirty necrosis as independent predictors of microsatellite insta-
ility. [35] Example histology images of MSI/dMMR and MSS/pMMR
2 
umors are shown in Fig. 1 . Six years later, Greenson et al. expanded their
nalysis by increasing the sample size and confirming tumor-infiltrating
ymphocytes, Crohn’s-like inflammatory reaction, lack of dirty necrosis
ithin the tumor lumen, and mucinous differentiation as independent
istological predictors of MSI presence together with the clinical char-
cteristics of age < 50 years and a right-sided location of the CRC. When
ombining all these features within a MSI scoring system, a pathologist
ooking at the histological slide was able to predict MSI status in 1649
RC with an area under the receiver operating characteristic curve (AU-
OC) of 0.85 [34] . 

In 2007, Jenkins et al. systematically quantified the association be-
ween CRC histological features in H&E slides, clinical parameters, and
resence of MSI in a large population-based study of CRC patients. Their
tudy confirmed clinical and pathological features such as age at diag-
osis younger than 50 years, right-sided tumor location, presence of
umor-infiltrating lymphocytes, mucinous, (focal) signet ring cell differ-
ntiation, or undifferentiated histology and a Crohn’s-like inflammatory
eaction as predictors for the presence of MSI [33] . This approach was
alidated in an independent patient cohort and obtained an AUROC of
.89 [33] . 

In a more recent study in 2021, a much lower performance for
athologist-based MSI/dMMR detection was reported: Yamashita et al.
valuated the unassisted prediction of pathologists which reached an
verage AUROC of 0.605 with a low inter-rater agreement for the unas-
isted prediction of MSI from whole slide images (WSI) [10] . How-
ver, in contrast to the two above mentioned pathologist-based studies,
athologists in this study were blinded to clinical information such as
atient age or tumor location. 

These H&E based study results from human observers suggest
hat modern Deep Learning based methods should be able to predict
SI/dMMR status from analyzing H&E tissue sections. 

ethods 

To identify studies using Deep Learning-based methodology for the
rediction of MSI or dMMR status in CRC histology images, we searched
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he Medline database using different queries including studies published
etween January 2017 to August 2021. This literature research was per-
ormed by AE and JNK independently. 

To be eligible for inclusion in the current review, studies had to be
riginal research papers that used Machine Learning methods to inves-
igate the detection of MSI/dMMR on CRC histology images and had
o be published in English. We did not include studies that used other
maging modalities than digitized histopathological images like Mag-
etic Resonance Imaging (MRI) or Computed Tomography (CT) scans.
he initial search terms were “(deep learning) AND (microsatellite in-
tability) ”, which resulted in 18 studies including 6 reporting original
ethods for MSI prediction in CRC (based on review of title and ab-

tract). Next, we used the terms “(machine learning) AND (microsatel-
ite instability) ” resulting in 35 studies, “(artificial intelligence) AND
microsatellite instability) ” resulting in 26 studies and last “(convolu-
ional neural networks) AND (microsatellite instability) ” which led to
ne result. However, none of search terms listed in the previous sen-
ence resulted in additional studies of original methods for dMMR/MSI
etection in CRC being found. Most search results were either review
rticles or studies investigating images from other sources than histol-
gy such as from MRI or CT scans, other tumor types, other prediction
argets or did not cover image related research but the analysis of RNA
equencing data. To include preprints or publications which are not yet
isted in the Medline database, we queried the Google Scholar Database
ith the terms “deep learning ” and “microsatellite instability ” and “col-
rectal cancer ”, which yielded 577 results. After manual review of titles,
rticle previews and abstracts, we identified 7 additional studies report-
ng original methods. 

Thus, in total, we identified 13 studies published between July 2019
o April 2021, listed in Table 1 . To compare the performance of study
esults, we used the AUROC values as this was the most commonly re-
orted endpoint. As one of the studies did not report AUROC values, we
eport the F-score, a statistical measure of a test’s accuracy for a binary
lassifier. 

eep learning for MSI/DMMR detection in colorectal cancer 

ommon methods 

The very first step in all Deep Learning (DL) studies is the collec-
ion of scanned whole slide images from H&E-stained tumor tissue sec-
ions and corresponding clinical information such as MSI/dMMR status
s determined by a gold standard method. One important and widely
sed data source is the publicly available Cancer Genome Atlas (TCGA),
rom which almost all recent histopathological Deep Learning studies
btained data [37] . 

Before a histopathological image can be used to train a DL network,
everal preparatory steps are necessary. The H&E-stained tissue section
eeds to be digitized using a whole slide scanner, a process which may
iffer between institutions with respect to scanner model, scanning qual-
ty or magnification factor. As soon as images are digitally available for
omputational analysis, they need to undergo preprocessing steps that
ay vary slightly between different studies [38] . First, a decision needs

o be made whether all available slides from one patient will be used for
he DL-based study or whether a particular slide will be selected based
n predefined criteria. Second, a decision needs to be made whether
he whole tissue on a given slide or only tumor tissue will be used for
raining purposes. If aiming for the latter, manual or automated tumor
nnotations will be necessary. Due to the potential large data size of a
ingle scanned WSI and currently still technically limited input size for
raining neural networks, smaller image patches (tiles) need to be cre-
ted. After creating image tiles of the whole tissue or from annotated
egions of interest, image tiles can be color-normalized to account for
ariability of staining hue and intensity. Preprocessing methods between
tudies are summarized in Table 1 . 
3 
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Fig. 2. Overview of Deep Learning studies for MSI/dMMR detection in colorectal cancer histology. Comparison of performances of Deep Learning studies that 

performed an external validation or only internal testing and studies using an MSI/dMMR scoring system. AUROC, area under the receiver-operator curve. 
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he first studies using deep learning for MSI/DMMR prediction (2019 and 

020) 

The first fully automated, end-to-end Deep-Learning-based detection
f MSI/dMMR status in CRC was published in July 2019 [4] . Kather et al.
resented a supervised transfer learning approach in which a classifier
ased on a pretrained resnet18 network was trained on CRC H&E images
rom TCGA and evaluated on a second independent subset of CRCs from
he DACHS trial, a large-scale multi-institutional cohort from southwest
ermany. [ 39 , 40 ] This led to a reasonable performance with an AUROC
f 0.84 within the TCGA cohort as well as in the DACHS cohort [4] .
uilding on these initial results, a slightly different technical pipeline
sing ShuffleNet, e.g. as a different neural network model, together with
anually annotated tumor regions yielded a higher external prediction
erformance of MSI/dMMR status in DACHS with an AUROC of 0.89
5] . 

alidation by multiple research groups (2020) 

After these two initial studies, six subsequent studies published in
020 confirmed the ability of DL to predict MSI/dMMR status in CRC
&E-stained digitized tissue sections ( Fig. 2 ) by further improving the
xisting methods as well as by developing new technical approaches: 

In August 2020, Schmauch et al. presented a method to infer gene
xpression profiles from CRC H&E images of the TCGA database us-
ng DL [12] . Compared to previous studies they investigated a new ap-
roach by first using a subset of patients to train a model to predict
NA-sequencing data and second applying transfer learning to this pre-

rained model to train the MSI/dMMR status classifier. This method of
L-based MSI/dMMR status prediction resulted in an AUROC of 0.81
hich was higher than the reported AUROC of 0.71 for prediction of
SI/dMMR status in the same subset of the TCGA data without using

he pre-trained gene expression model. These results suggest that pre-
raining a model on transcriptomic representation might help the model
o detect biologically relevant patterns and could therefore be useful to
mprove prediction performances of DL models. Furthermore, in an ad-
itional experiment, they performed a direct prediction of MSI/dMMR
tatus from WSI without using a pre-trained gene expression model in
he full TCGA CRC dataset and reported an AUROC of 0.82 [12] . This
tudy was primarily driven by a commercial entity (Owkin, Inc.; 12 Rue
4 
artel, 75,010 Paris, France) demonstrating the commercial interest in
sing DL to predict the presence of MSI/dMMR. Notably, another com-
ercial entity (Tempus, Inc., 600 W Chicago Ave. Ste 510, Chicago, IL
0,654, USA), has filed a US Patent application #20,190,347,557 (re-
rieved from Google Patents on 1st April 2021) for a DL based system to
redict MSI/dMMR status from histopathology images. These two pub-
icly available pieces of information demonstrate the early commercial
nterest in the use of this technology. 

Also in 2020, Cao et al . developed an MSI/DMMR status using the
CGA CRC image dataset in a similar way as previously described by
ather et al. (based on a pretrained resnet18 network). This approach
esulted in a comparable AUROC of 0.885 in the TCGA dataset, but per-
ormance dropped to an AUROC of 0.649 in an external validation set.
y using 10% of cases from the external validation cohort for fine-tuning
he model, prediction performance increased to an AUROC of 0.85 for
he external validation set [6] . This study demonstrated the challenges
nd difficulties of training a DL-based MSI/dMMR status classifier that is
obust and shows a similar performance in unseen data of external val-
dation cohorts. In addition, Cao et al. compared methods to generate
he needed prediction on WSI level from the predictions of single tiles
esulting in a new model for this task that combines different methods
f Multiple Instance Learning [6] . 

Zhu et al . repeated MSI/dMMR status prediction in the CRC TCGA
ataset using the already preprocessed images provided by Kather et al .
41] achieving the same AUROC of 0.84. In addition, they performed
 feature-level analysis and identified texture characteristics and color
eatures of H&E images as important for the prediction of MSI/dMMR
tatus as they contributed the most to the MSI/dMMR predictions [13] .

The strategies provide interpretability in two aspects. On the one
and, the image-level interpretability is achieved by generating localiza-
ion heat maps of important regions based on the deep learning network;
n the other hand, the feature-level interpretability is attained through
eature importance and pathological feature interaction analysis. More
nterestingly, both from the image-level and feature-level interpretabil-
ty, color features and texture characteristics are shown to contribute
he most to the MSI predictions [13] . 

In October 2020, results from a study with the largest and most
eterogeneous CRC patient cohort so far was published by Echle et al .
7] . Images from more than 8500 CRC patients collected within the
cademic MSIDETECT consortium ( www.msidetect.eu ) from different

http://www.msidetect.eu
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ountries and institutions were used for the development of a DL based
SI/dMMR status classifier. This classifier obtained an AUROC of 0.96

n an additional external validation cohort [7] , which was the best per-
orming DL classifier for MSI/dMMR status prediction from H&E images
t that point. The sensitivity of this classifier is similar to that of the gold
tandard immunohistochemical and PCR based tests [30] . The most rel-
vant difference in this approach compared to the previous ones was the
umber of histopathological images available for the DL study, which
ppears to be the main reason for the good performance as this study
emonstrated an increasing MSI/dMMR status prediction performance
ith increasing number of patients [7] . 

At the end of 2020, results from two smaller studies using only one
atient cohort were published. One of them by Ke et al. yielded an AU-
OC of 0.802 using the CRC TCGA data[14]. Their study focused on the
otential problem of mislabeling image tiles in the data. Mislabeling, or
oisy labels, possibly occurs when all image tiles inherit the label of the
SI, which is the method used in all previous studies. Their aim was

o develop a robust and mislabel-aware classifier by cleaning the data
efore training the DL network. Therefore, the authors built a model
o mark image tiles as high or low fidelity and pathologists tagged the
ost representative samples for noise-robust training [14] . However,

his approach seems to rely primarily on human performance and with
n AUROC of 0.802 did not improve MSI prediction performance in the
CGA CRC dataset when compared to previous studies. 

Lee et al . used a dataset of just 45 patients from the “Pathology Artifi-
ial Intelligence Platform (PAIP) - Challenge ” [42] . This study proposed
 two-stage classification method. First, the regions with tumor tissue
re detected and second, the MSI/dMMR status DL model trains on the
etected tumor tissue, a method that was also used by Kather et al. in
019 . The authors reported a good performance by this two-stage clas-
ification model but did not report the AUROC, limiting the quantitative
omparison to other studies. The F-score was 0.83 in this case [15] . 

ecent advances resulting in further performance boost (2021) 

Contributions to the field continued at the beginning of 2021 with a
ublication by Yamashita et al. using a proprietary cohort from Stan-
ord University for training, reaching a high intra-cohort AUROC of
.93. However, performance of the MSI/dMMR status prediction mod-
ls dropped to an AUROC of 0.78 for external validation in the TCGA
RC dataset. This study thus confirmed the challenges of training an
SI/dMMR status classifier which maintains its good performance in

nseen data of external validation cohorts. Whilst MSI/dMMR status
rediction in CRC histology images was similar to previous studies, a
ew two-step method was introduced: first a tissue-type classifier was
sed to select tumor-epithelial and mucin containing tiles which were
hen used for training of the MS/dMMR status DL classifier in a sec-
nd step [10] . This more complex methodical pipeline is an exam-
le for ever-growing complexity of DL workflows on the MSI/dMMR
tatus benchmark task. While hand-crafting complex image processing
ipelines can improve performance, such an approach might also have
eaknesses when compared to simple, off-the-shelf approaches: the
ore processing steps any pipeline has, the more potential breakpoints

re present - if there are more steps in an image processing pipeline this
ould make the analysis more error-prone and more difficult to repro-
uce. 

Also, in 2021, Bilal et al . presented the highest classification perfor-
ance for MSI/dMMR status prediction in CRC so far. They used CRC
CGA data to train a DL system which led to an intra-cohort AUROC of
.86. When applying the MSI/dMMR status classifier to the small PAIP
hallenge dataset of 47 patients as external validation cohort, the DL
lassifier yielded an AUROC of 0.98 [8] . Their DL framework involved
hree models, first a tumor detection model, second the MSI/dMMR
rediction model and third a segmentation model to analyze cellular
omposition of image parts ranked highly predictive of MSI/dMMR sta-
us by the DL classifier. Furthermore, they used DL for the detection
5 
f other molecular alterations such as CpG island methylator phenotype
nd chromosomal instability as well as for BRAF and TP53 mutation pre-
iction [8] . Certainly, such high performance for MSI/dMMR status pre-
iction in CRC histopathological images is very encouraging but needs
o be interpreted with caution as the validation cohort comprises only 47
mages which were manually chosen by the PAIP challenge committee.
herefore, the validation cohort might potentially not be representative
f real-world CRC patient cohorts. 

In a study from February 2021, Yamashita et al. used the same Stan-
ord and TCGA dataset as in their above-mentioned study to investigate
he improvement of a DL classifier when trained on H&E images that
nderwent medically-irrelevant style augmentation, a method that was
ot investigated in any of the previous studies. This means that the style
f a random artistic painting replaces the style of the histopathology im-
ge (including texture, color, and contrast) with an uninformative style
hile preserving global object shapes [9] . This led to an AUROC of 0.876

n the TCGA cohort used as an external validation set showing a pro-
ounced improvement to their findings as well as those of other groups
n the TCGA CRC dataset and also outperforming other normalization
nd augmentation methods in a systematic comparison [9] . 

In April 2021, Lee et al. developed a DL based image analysis pipeline
hat first uses a classifier to exclude artifacts, second a tumor detection
etwork and in the last step a MSI/dMMR status prediction network.
hey used the TCGA CRC dataset for training and validated their classi-
er in a cohort from Seoul reaching an AUROC of 0.78. Compared to the
revious study, a new aspect investigated in this work is the prediction
f MSI on distant metastasis of CRC. Applying the TCGA based primary
RC classifier to metastatic CRC in the liver or lung led to an initial
UROC of only 0.484. However, retraining and testing a DL network
ithin the metastasized tumors only yielded much better results with
n AUROC of 0.801 [16] . 

In the most recent study from July 2021, Schirris et al. used the
CGA-based dataset provided by Kather et al. [ 41 ] to use a two-step
pproach for MSI/dMMR detection. First, a simple framework for con-
rastive learning of visual representations (SimCLR, [43] ) was used to
re-train a feature extractor. Second, a Multiple Instance Learning (MIL)
pproach was extended by a feature variability module to generate the
SI/dMMR prediction. By that combination of methods, the authors

chieved an AUC of 0.903 within the TCGA dataset and outperformed
revious approaches for that dataset [17] . 

All methodological approaches and detailed results of all mentioned
tudies are summarized in Table 1 and Fig. 2 . While the study inclusion
or this article ended in April 2021, it can be assumed that further studies
ill increase the performance even more: in non-medical domains, im-
ge classification accuracy on complex tasks has continuously increased
rom 2012 to 2021 [44] . By applying these improved non-medical DL
odels to medical tasks, the performance on medical benchmark tasks,

uch as MSI/dMMR status prediction in CRC, will conceivably increase
n the future. In the next section, we will point out limitations and po-
ential routes for further development. 

isualization methods and limitations 

eep learning detects histological patterns with known link to MSI/DMMR 

tatus 

More than a decade ago, Greenson et al. presented and validated vi-
ual features in H&E-stained tissue sections from CRC which were cor-
elated with MSI/dMMR status [34] . An important plausibility check
f studies using Deep Learning to predict MSI/dMMR status is whether
he automatic approach learns these known visual features or whether
he unbiased nature of training Deep Learning networks on image data
llows the networks to identify additional, previously unknown visual
eatures. Various methods have been proposed to provide explainabil-
ty and visualization of such classifiers [45–47] . Applying visualization
ethods also raises the awareness towards potential biases such as batch
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Fig. 3. Visualization approaches for feature detection in 

histopathology. (a-b) The ten image tiles (columns) with the 

highest prediction score (as predicted by a DL model) in the 

ten highest-scoring patients (rows) for microsatellite instable 

/ deficient mismatch repair (MSI/dMMR) and microsatellite 

stable / proficient mismatch repair (MSS/pMMR). These tiles 

are based on predictions from a Deep Learning model of a pre- 

viously published work [7] . (c) An original whole slide image 

of CRC from a patient with deficient MMR, (d) Corresponding 

visualization heatmap of tile-level scores of MSI/dMMR status. 
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ffects due to different staining or scanning techniques which can arise
hen samples are derived from different institutions [48] . One widely-
sed method is to visualize and analyze image parts which are classified
s highly predictive by the Deep Learning network ( Fig. 3 a-b). In this
isualization of “highly predictive image tiles’’, known histopathologi-
al predictors of MSI/dMMR status such as lymphocytic infiltration and
oor tumor differentiation have been shown to be present in MSI/dMMR
iles[7,8] as for example shown in Fig. 3 a. Although these image tiles
re only a few out of several million tiles processed by such models, and
he size of these tiles is much smaller than tissue regions which are usu-
lly assessed by pathologists, the ability of deep learning models to rank
iles and let the user interactively explore the content of these tiles pro-
ides a potentially useful tool for pathology research in the context of
SI/dMMR and beyond. Related to such a collection of highly scoring

mage tiles, tile-level predictions have been visualized as heat maps by
ultiple studies [ 4 , 5 , 12 , 47 ]. These landscapes can illustrate the spatial

ontext of highly scoring tiles, potentially providing additional possibil-
ties to discover visual features ( Fig. 3 d). 

he importance of common standards for deep learning classifiers 

Because of the known presence of histopathological features and
he rapidly evolving DL techniques as well as the growing interest in
heir possible clinical utility, it is not surprising that more and more
esearch groups started working on MSI/dMMR status prediction from
canned histopathological slides since 2019. However, studies so far
ary markedly regarding the number of patients and cohorts. Moreover,
ot all classifiers were evaluated in external cohorts, which is consid-
red helpful to prove generalizability to unseen data as needed in a pos-
ible diagnostic setting. In particular, all studies listed in Table 1 used
lightly different methods pipelines. Therefore, no conclusion can be
6 
ade from existing studies which DL model or preprocessing pipeline is
niversally optimal. Recently Kleppe et al. posited that predefined anal-
sis protocols for Deep Learning studies are needed to prevent selection
iases [49] . Generally, consented quality attributes will be crucial for
he further development of this research field and should be taken into
ccount by every person contributing to the evolution. Minimal criteria
or artificial-intelligence-based diagnostic accuracy studies are currently
eing developed by the STARD diagnostic guidelines group [50] . Fur-
hermore, MI-CLAIM checklist may serve as a potential documentation
tandard [51] . However, these checklists are not yet widely adopted in
he field and none of the above-mentioned studies explicitly declared
dherence to all relevant guidelines. As suggested by those guidelines
ost of the authors give public access to their trained models at the time

f publication, which is a very positive trend allowing other research
roups to reproduce experiment results and directly compare their own
ork. For example, the publicly available image data and programming

odes from the first DL model for MSI prediction by Kather et al. from
019[4] were re-used by three of the studies presented in this review.
 6 , 9 , 13 ] 

uture directions - how will the field evolve? 

echnological improvements 

Over time, due to the increased computational power of computers,
t became possible to train deep learning models with a larger amount
f available open-source datasets [52–54] and use transfer learning and
chieve relatively high performance even in smaller patient cohorts with
ess than 300 patients. Based on the focus of non-medical fields on de-
eloping new deep learning models, development of newer model archi-
ectures and more efficient classifiers are expected to continue. As an ex-
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mple of recently developed models, multi-instance learning, a weakly
upervised approach, and completely new artificial intelligence mod-
ls such as vision transformers [55] were proposed, but have not been
pplied to the problem of MSI/dMMR status prediction yet. In other
enchmark tasks, these models can result in better performances and
igher explainability of the trained models [ 56 , 57 ]. Therefore, appli-
ation of these new approaches to the task of MSI/dMMR status pre-
iction in large cohorts is still awaited. The increasing accessibility of
eep Learning technologies - for example, through initiatives like Fas-

AI ( www.fast.ai ) decreases the obstacles for biological and medical re-
earchers to enter the field of computational pathology. This increas-
ng accessibility of such easily usable programming libraries could con-
eivably further boost innovation and thus improve the performance
f MSI/dMMR status classifiers. Ultimately, but on a longer time scale,
urther improvements in computer hardware - in particular, graphics
rocessing units with larger memory - will conceivably enable larger
odels to be trained on histopathological gigapixel images, thereby fa-

ilitating approaches that work directly on whole slide images without
xtensive image preprocessing. 

ther biomarkers, tumor types other than CRC, additional imaging 

odalities 

Beyond the detection of MSI/dMMR status in CRC, an increasing
umber of studies used similar methods for other molecular markers, in
ifferent tumor types and with additional imaging modalities. A detailed
eview of such approaches can be found elsewhere [38] . However, it is
f relevance to note that MSI/dMMR status prediction has also been ap-
lied to gastric and endometrial cancer, in which the clinical utility of
SI/dMMR status prediction is comparable to CRC. [ 58 , 59 ]. However,

or those tumor types the performance for detection of MSI/dMMR is
ot as high as in CRC [60] . A study from April 2020 presented a de-
ent performance with an AUROC of 0.73 in the TCGA cohort of en-
ometrial carcinoma [61] . In gastric cancer, the number of DL studies
or MSI/dMMR status prediction is higher than for endometrial cancer,
hich might be due to the larger patient numbers and therefore more
asily accessible patient cohorts. DL used for MSI/dMMR status predic-
ion in gastric cancer yielded AUROCs between 0.66 and 0.879[4,12–
4] which is lower than the performance of DL classifiers in CRC. Besides
SI/dMMR status, other molecular alterations are relevant for diagno-

is, classification, or treatment of CRC such as mutations in BRAF, KRAS,

RAS or TP53 . Several studies have shown that these genetic alterations
re also to a certain degree detectable by DL from routine H&E histology
mages [ 5 , 8 , 62 ]. Additionally, Wang et al. showed that DL can predict
umor mutational burden as a quantitative biomarker from histology
lides [11] . High tumor mutational burden (TMB) has been correlated
ith MSI/dMMR status in CRC[23], but future studies need to identify
hich visual features are specific to high TMB and which are specific

o MSI/dMMR status. Similar to histopathology, other imaging modal-
ties have been used to infer genetic information in CRC. It is remark-
ble that the prediction of MSI/dMMR status in colorectal cancer by DL
s not limited to histological information but works also directly from
agnetic Resonance Imaging and computed tomography scans with AU-
OCs up to 0.811 as shown by two small-scale studies [ 63 , 64 ] However

arge-scale validation in radiological imaging modalities is currently not
vailable. 

ollecting large and diverse training cohort in computational pathology 

It is known that, up to some point, a DL network performs bet-
er the more training data is available and this aspect also applies to
SI/dMMR status prediction in CRC [7] . As computational pathology

pproaches rely on sensitive medical patient data, a sufficient number of
raining images is not always easy to collect. Until now, different strate-
ies have evolved to address this challenge. Collaboration between dif-
erent institutions, countries and disciplines is essential in the field of
7 
L in medicine. The establishment of academic consortia across coun-
ries [65] can enable the collection of large and heterogeneous patient
ohorts as well as their interdisciplinary exchange. Yet, transferring im-
ges and patient data from involved sites to the institution performing
he DL study comes with different challenges regarding infrastructure,
ata protection, and ethical regulations, possibly slowing down the re-
earch progress. Therefore, another strategy to collaborate on DL stud-
es with increasing patient numbers is the so-called federated learning
pproach, which relies on decentralized training of multiple small mod-
ls which are subsequently merged. This federated learning approach is
ainly promoted by Owkin, Inc [66] . while other commercial entities

uch as Paige (11 Times Square, Fl 37 New York, NY, 10,036, USA) have
cquired commercial usage rights for a large number of archived patient
amples [2] . Based on public information, other companies including
empus Inc. (600 W Chicago Ave. Ste 510, Chicago, IL 60,654, USA) and
athAI Inc. (120 Brookline Ave. Boston, Massachusetts 02,215, USA) are
ctive in this field of research, but have not launched any clinically ap-
roved products yet. The newest strategy to collect a sufficient amount
f data is the use of generative adversarial networks that can be trained
o create synthetic histological images based on real image data [67] .
ecently it was shown that these synthetic images even contained suf-
cient information about MSI/dMMR status to enable the development
f a Deep Learning classifier purely on synthetic images [68] . Thus, this
echnique holds the potential to create patient cohorts that do not face
thical regulations or privacy issues as the images do not belong to an
ctual patient. Together, it can be expected from these approaches that
hey will enable researchers to access larger amounts of data in the fu-
ure, potentially giving rise to computational models with higher per-
ormance 

daption and advancement towards MSI/DMMR status prediction on 

iagnostic biopsy samples 

All presented DL studies focused on the prediction of MSI/dMMR
tatus from histology slides from tissue obtained by surgery. However,
efore patients undergo surgery, all patients usually have a diagnos-
ic endoscopic biopsy [69] . Consequently, the biopsy tissue is available
t an earlier point in the patient pathway and can be the only avail-
ble tumor tissue sample in patients having a complete pathological
esponse after neoadjuvant treatment [70] . Therefore it is of particu-
ar importance that DL based MSI/dMMR status prediction systems are
lso applicable to digitized endoscopic biopsy samples of CRC. This task
aises additional challenges as biopsy samples are much smaller, can
ontain technical artifacts and are usually fragmented. Furthermore, the
iopsy-derived tissue represents the luminal portions of the tumor only.
chle et al. reported that a DL system trained on images from tumor
esection specimens performs considerably worse when used to predict
SI/dMMR status from endoscopic biopsy tissue [7] . However, training

nd testing a DL system within biopsy samples improved performance
arkedly leading to the hypothesis that DL based MSI/dMMR status pre-
iction on biopsy samples most likely needs a DL classifier trained on the
ame sample type. For future research in this area, key challenges will
e to collect a sufficient number of biopsy data to investigate whether
 robust, well-performing MSI/dMMR status DL-based detection system
an be developed. This raises the additional question whether a mini-
um amount/region with cancer and a larger patient sample might be

equired for such a DL system to work well. 

mplementation in routine workflows - how can this be achieved? 

Today, routine pathology workflows across the world are still pre-
ominantly based on examining physical glass slides under a micro-
cope. However, it is expected that routine workflows will be ultimately
igital, relying on digitized whole slide images evaluated by human ob-
ervers with or without the aid of computer-based algorithms [71] . Cur-
ently, workflows in radiology departments are almost ubiquitously digi-

http://www.fast.ai
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al, with images being stored in a picture archiving and communication
ystem (PACS) and expert observers interactively working with these
mages on computer workstations. Once the glass-slide based workflow
n pathology departments has shifted to a similar, PACS-based approach
3] , automatic computer-based image analysis methods could be more
asily embedded in routine workflows. A pathology PACS could conceiv-
bly automatically trigger deep-learning-based testing of whole slide
mages in the background, potentially improving patient selection for
olecular tests or directly providing definitive subtyping [72] . One im-
ortant challenge that needs to be tackled before computer-based algo-
ithms can be integrated in clinical workflows is the prospective vali-
ation of those methods in randomized patient trials to prove robust-
ess and generate further evidence in real-world clinical settings which
s also an important step towards regulatory approval. In addition to
rospective validation, complex diagnostic procedures or devices need
o be fine-tuned to local data and infrastructure. This is the case for di-
erse devices and methods such as computer tomographs, linear acceler-
tors for radiation therapy and immunohistochemistry assays in pathol-
gy. In principle, such computer-based tests could be implemented in
linical routine by using commercially developed diagnostic algorithms
r in-house in-vitro diagnostic test approaches. In this light, the de-
elopments around MSI/dMMR status prediction directly from routine
istopathology images could serve as a blueprint for other biomarkers
nd provide a clear incentive for further digitization efforts of routine
orkflows in pathology. 

onclusions 

Microsatellite instability (MSI))/deficient mismatch repair (dMMR)
s a clinically important genetic trait that affects a substantial portion
f colorectal cancer (CRC) patients. It is currently the only clinically ap-
roved biomarker that allows CRC patients to be treated with immune
heckpoint inhibitors in the USA and Europe. Since 2019, advances
n Deep Learning (DL) have made it possible to predict MSI/dMMR
tatus directly from digitized routine hematoxylin and eosin (H&E)
istopathology slides with high accuracy, as shown by 13 published
tudies to date. This is clinically relevant because DL could facilitate
creening of CRC patients for dMMR/MSI. In the context of computa-
ional pathology, prediction of MSI/dMMR status with DL is currently
ne of the most widely studied problems. It has become a de-facto bench-
arking task on which new DL algorithms are routinely tested. The

road interest of academia and industry suggests that DL-based assays
or MSI detection could come onto the market in the next few years,
otentially making MSI/dMMR status prediction in CRC one of the
rst clinically implemented DL algorithms for molecular subtyping of
ancer. 
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