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Holonomic modules and 1-generation in the Jacobian

Conjecture

V. V. Bavula

Abstract

A polynomial endomorphism σ ∈ EndK(Pn) is called a Jacobian map if its Jacobian is
a nonzero scalar (the field has zero characteristic). Each Jacobian map σ is extended to an
endomorphism σ of the Weyl algebra An.

The Jacobian Conjecture (JC) says that every Jacobian map is an automorphism. Clearly,
the Jacobian Conjecture is true iff the twisted (by σ) Pn-module σ

Pn is 1-generated for all
Jacobian maps σ. It is shown that the An-module σ

Pn is 1-generated for all Jacobian maps σ.
Furthermore, the An-module σ

Pn is holonomic and as a result has finite length. An explicit
upper bound is found for the length of the An-module σ

Pn in terms of the degree deg(σ) of the
Jacobian map σ. Analogous results are given for the Conjecture of Dixmier and the Poisson
Conjecture. These results show that the Jacobian Conjecture, the Conjecture of Dixmier
and the Poisson Conjecture are questions about holonomic modules for the Weyl algebra An,
the images of the Jacobian maps, endomorphisms of the Weyl algebra An and the Poisson
endomorphisms are large in the sense that further strengthening of the results on largeness
would be either to prove the conjectures or produce counter examples.

A short direct algebraic (without reduction to prime characteristic) proof is given of equiv-
alence of the Jacobian and the Poisson Conjectures (this gives a new short proof of equivalence
of the Jacobian, Poisson and Dixmier Conjectures).

Key Words: The Jacobian Conjecture, the Conjecture of Dixmier, the Weyl algebra, the

holonomic module, the endomorphism algebra, the length, the multiplicity

Mathematics subject classification 2020: 14R15, 14R10, 13F20, 16S32, 14F10, 16D30,

16D60, 16P90.

In this paper, K is a field of characteristic zero and K× := K\{0}, Pn = K[x1, . . . , xn] is a
polynomial algebra in n the variables, DerK(Pn) is the set of all K-derivations of the polynomial
algebra Pn. For a K-algebra A, the set EndK(A) is the monoid of K-algebra endomorphisms of
A and AutK(A) is the automorphism group of A.

The Conjecture of Dixmier, holonomic An-modules and finite length. For an endo-
morphism σ ∈ EndK(A) and an A-module M we denote by σM the A-module M twisted by σ:
σM = M (as a vector space) and

a ·m := σ(a)m for all a ∈ A, m ∈ M.

The ring of differential operators An := D(Pn) on the polynomial algebra Pn is called the
Weyl algebra. The Weyl algebra An is generated by the elements x1, . . . , xn, ∂1, . . . , ∂n sub-
ject the defining relations: [xi, xj ] = 0, [∂i, ∂j ] = and [∂i, xj ] = δij for all i, j = 1, . . . , n where
∂i := ∂

∂xi
, [a, b] := ab − ba, and δij is the Kronecker delta. The Weyl algebra An is a simple

Noetherian domain of Gelfand-Kirillov dimension GK (An) = 2n.

• The Inequality of Bernstein: For all nonzero finitely generated An-modules M ,

GK (M) ≥ n.
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A finitely generated An-module M is called holonomic if GK (M) = n. Each holonomic
module has finite length and is a cyclic An-module, i.e. 1-generated. Each nonzero sub- or factor
module of a holonomic module is holonomic.

• The Conjecture of Dixmier, DCn, [9] (1968): EndK(An) = AutK(An).

The Weyl algebra An is isomorphic to its opposite algebra Aop
n via An → Aop

n , xi 7→ xi,
∂i 7→ ∂i for i = 1, . . . , n. So, the algebra An ⊗ Aop

n ≃ A2n is isomorphic to the Weyl algebra A2n.
In particular, every An-bimodule N is a left A2n-module (An

NAn
= An⊗A

op
n
N ≃ A2n

N). When we
say that an An-bimodule N is holonomic we mean that the corresponding left A2n-module N is
holonomic. The Weyl algebra An is a simple holonomic An-bimodule (since GK(An) = 2n and
GK (A2n) = 4n).

Theorem 1 [3, Theorem 1.3] If M is a holonomic An-module and σ ∈ EndK(An) then the An-
module σM is also a holonomic An-module (and as a result has finite length and is 1-generated
over An).

The Weyl algebra An is a simple algebra. So, for each σ ∈ EndK(An), the image σ(An) is
isomorphic to the Weyl algebra An.

• The Conjecture of Dixmier is true if for every endomorphism σ ∈ End(An), the σ(An)-
bimodule An is simple.

Corollary 2 [3, Corollary 3.4] For each algebra endomorphism σ : An → An, the Weyl algebra
An is a holonomic σ(An)-bimodule, hence, of finite length and 1-generated.

Each nonzero element a ∈ An is a unique sum a =
∑

α,β∈Nn λαβx
α∂β for some scalars λαβ ∈ K

where xα = xα1

1 · · ·xαn
n and ∂β = ∂β1

1 · · ·∂βn
n . The natural number

deg(a) := max{|α|+ |β| |λαβ 6= 0}

is called the degree of the element a. Then {An,i}i≥0 is a finite dimensional filtration of the
Weyl algebra An where An,i := {a ∈ An | deg(a) ≤ i} and deg(0) := −∞ (An =

⋃
i≥0 An,i and

An,iAn,j ⊆ An,i+j for all i, j ≥ 0).
Each endomorphism σ ∈ EndK(An) is uniquely determined by the elements

x′
1 := σ(x1), . . . , x

′
n := σ(xn), ∂

′
i := σ(∂1), . . . , ∂

′
n := σ(∂n).

The natural number deg(σ) := max{deg(x′
i), deg(∂

′
i) i = 1, . . . , n} is called the degree of σ.

Theorem 3 Let σ ∈ End(An) and d := deg(σ). Then Lσ(An)(An) ≤ d2n where Lσ(An)(M) is the
length of a σ(An)-bimodule M .

Proof. Since deg(x′
i) ≤ d and deg(∂′

i) ≤ d,

x′
iAn,ds ⊆ An,d(s+1), An,dsx

′
i ⊆ An,d(s+1), ∂

′
iAn,ds ⊆ An,d(s+1) and An,ds∂

′
i ⊆ An,d(s+1)

for all i = 1, . . . , n and s ≥ 0. Therefore, {An,ds}s≥0 is a finite dimensional filtration of the
σ(An)-bimodule An such that

dimK(An,ds) =

(
ds+ 2n

2n

)
=

1

(2n)!
(ds+ 2n)(ds+ 2n− 1) · · · (ds+ 1) =

d2n

(2n)!
s2n + · · ·

where three dots denote smaller terms. By [10, Lemma 8.5.9], Lσ(An)(An) ≤ d2n. �
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The Jacobian Conjecture, holonomic An-modules and 1-generation. Each endomor-
phism σ ∈ EndK(Pn) is uniquely determined by the polynomials

x′
1 := σ(x1), . . . , x

′
n := σ(xn).

The matrix of partial derivatives,

J (σ) :=
∂x′

∂x
:=

( ∂x′
i

∂xj

)
, where J (σ)ij :=

∂x′
i

∂xj

,

is called the Jacobian matrix of σ. An endomorphism σ ∈ End(Pn) with det(J (σ)) ∈ K× is
called a Jacobian map.

• The Jacobian Conjecture, JCn (1939): Every Jacobian map is an automorphism.

Theorem 4 [2, Theorem 2.1] A Jacobian map σ ∈ End(Pn) is an automorphism of Pn if the
Pn-module σPn is finitely generated.

• The Jacobian Conjecture is true iff the Pn-module σPn is 1-generated for all Jacobian maps σ.

Each Jacobian map σ is extended to a (necessarily) monomorphism of the Weyl algebra An:

σ : An → An, ∂i 7→ ∂′
i, i = 1, . . . , n, (1)

where ∂′
i is a K-derivation of the polynomial algebra Pn which is given by the rule:

∂′
i(p) :=

1

detJ (σ)
J (σ(x1), . . . , σ(xi−1), p, σ(xi+1), . . . , σ(xn)) for all p ∈ Pn. (2)

For an algebra A and its non-empty subset S, CA(S) := {a ∈ A | as = sa for all s ∈} is the

centralizer of S in A. Let P̂n := K[[x1, . . . , xn]] and Ân :=
⊕

α∈Nn P̂n∂
α. Proposition 5 is a

description of all extensions of a Jacobian map of Pn to an endomorphism of the Weyl algebra
An.

Proposition 5 Let σ be a Jacobian map of Pn, σ be its extension to an endomorphism of the
Weyl algebra An as in (1), x′

1 = σ(x1), . . . , x
′
n = σ(xn) and ∂′

1 = σ(∂1), . . . , ∂
′
n = σ(∂n), see (2).

1. If σ′ is another extension of the Jacobian map σ then σ′(∂i) = ∂′
i + ∂′

i(p), i = 1, . . . , n where
p ∈ Pn, and vice versa.

2. An extension of the Jacobian map σ of Pn is unique if the images of the elements ∂1, . . . , ∂n
are derivations of Pn. So, the extension σ in (2) is such a unique extension, and DerK(Pn) =⊕n

i=1 Pn∂
′
i.

3. CAn
(x′

1, . . . , x
′
n) = Pn.

4. Suppose that x′
i = xi + · · · for i = 1, . . . , n where the three dots denote higher terms. Then

σ ∈ AutK(P̂n) and every extension σ′ of the Jacobian map σ to an endomorphism of the
Weyl algebra An belongs to AutK(Ân).

Proof. 1–3. Up to an affine change of variables in the polynomial algebra Pn, we can assume
that σ(xi) = xi+ · · · for i = 1, . . . , n where the three dots denote higher terms. Since det(J (σ)) ∈

K×, we have that DerK(Pn) =
⊕n

i=1 Pn∂
′
i (as ∂i =

∑n

j=1

∂x′

j

∂xi
∂′
j for all i = 1, . . . , n), and so

P̂n = K[[x′
1, . . . , x

′
n]] and σ ∈ AutK(P̂n).

If the elements σ′(∂i) are derivations of the polynomial algebra Pn then

σ′(∂i)(x
′
j) = [σ′(∂i), x

′
j ] = [σ′(∂i), σ

′(xj)] = σ′([∂i, xj ]) = σ′(δij) = δij for i, j = 1, . . . , n.
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Hence, σ′(∂i) =
∂

∂x′

i

for i = 1, . . . , n, and so σ′(∂i) = ∂′
i, see (2).

In the general case,

[σ′(∂i)− ∂′
i, x

′
j ] = [σ′(∂i), σ

′(xj)]− [∂′
i, x

′
j ] = δij − δij = 0,

and so di := σ′(∂i)− ∂′
i ∈ CAn

(x′
1, . . . , x

′
n). Clearly,

Pn ⊆ CAn
(x′

1, . . . , x
′
n) ⊆ C

Ân
(x′

1, . . . , x
′
n) = Pn,

and so CAn
(x′

1, . . . , x
′
n) = Pn. Therefore, di ∈ Pn ⊆ P̂n = K[[x′

1, . . . , x
′
n]] for all i = 1, . . . , n. For

all i, j = 1, . . . , n,

0 = σ′([∂i, ∂j ]) = [σ′(∂i), σ
′(∂j)] = [∂′

i + di, ∂
′
j + dj ] = ∂′

i(dj)− ∂′
j(di).

Therefore, there is an element p ∈ K[[x′
1, . . . , x

′
n]] such that di = ∂′

i(p) for i = 1, . . . , n, by the
Poincaré Lemma. Since all dj ∈ Pn, we must have

∂i(p) =

n∑

j=1

∂x′
j

∂xi

∂′
j(p) =

n∑

j=1

∂x′
j

∂xi

dj ∈ Pn.

Hence, p ∈ Pn since K[[x′
1, . . . , x

′
n]] = P̂n.

4. Statement 4 follows from statement 1. �

Theorem 6 Let σ ∈ End(Pn) be Jacobian map and d := deg(σ). Then

1. The An-module σPn is holonomic, hence of finite length and 1-generated as an An-module.

2. lAn
(σPn) ≤ mn where m := max{d, (d − 1)n−1 − 1} where lAn

(M) is the length of an
An-module M .

Proof. 1. The An-module Pn is holonomic. By Theorem 1, the An-module σPn is holonomic,
hence of finite length and 1-generated as an An-module.

2. Since deg(x′
i) ≤ d,

∂′
i =

n∑

j=1

∂xj

∂x′
i

∂j =
n∑

j=1

(
J (σ)−1

)
ij
∂j , and deg

(
J (σ)−1

)
ij
≤ (d− 1)n−1,

we have that

x′
iPn,ms ⊆ Pn,m(s+1), and ∂′

iPn,ms ⊆ Pn,m(s+1) for all i = 1, . . . , n and s ≥ 0.

Therefore, {Pn,ms}s≥0 is a finite dimensional filtration of the An-module σPn such that

dimK(Pn,ms) =

(
ms+ n

n

)
=

1

n!
(ms+ n)(ms+ n− 1) · · · (ms+ 1) =

mn

n!
sn + · · ·

where three dots denote smaller terms. By [10, Lemma 8.5.9], lAn
(σPn) ≤ mn. �

The Dixmier Conjecture implies the Jacobian Conjecture, [2, page 297]), and the inverse im-
plication is also true, Tsuchimoto [11] and Belov-Kanel and Kontsevich [8] (a short proof is given
in [4]).

Equivalence of the Jacobian and the Poisson Conjectures. The Weyl algebra An =
D(Pn) =

⋃
i≥0 D(Pn)i is a ring of differential operators on Pn and hence admits the degree

filtration {D(Pn)i}i≥0 where D(Pn)i =
⊕

{α∈Nn | |α|≤i} Pn∂
α. The associated graded algebra

gr(An) :=
⊕

i≥0

gr(An)i,
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where gr(An)i := D(Pn)i/D(Pn)i−1 and D(Pn)−1 := 0, is a polynomial algebra P2n in 2n variables
x1, . . . , xn, xn+1, . . . , xn+n (where xn+i := ∂i + Pn) that admits the canonical Poisson structure
given by the rule:

{·, ·} : gr(An)i ⊗K gr(An)j → gr(An)i+j−1, (a, b) 7→ {a, b} := [a, b] +D(Pn)i+j−2 (3)

where a := a + D(Pn)i−1 and b := b + D(Pn)j−1 (since [D(Pn)i,D(Pn)j ] ⊆ D(Pn)i+j−1 for all
i, j ≥ 0). Equivalently,

{xi, xj} = 0, {xn+i, xn+j} = 0 and {xn+i, xj} = δij for all i, j = 1, . . . , n. (4)

• The Poisson Conjecture, PC2n: EndPois(P2n) = AutPois(P2n).

The Poisson Conjecture and the Conjecture of Dixmier are equivalent (Adjamagbo and van
den Essen, [1]).

Theorem 7 1. JC2n ⇒ PC2n.

2. DC2n ⇒ PC2n.

3. PC2n ⇒ JCn.

4. The Jacobian Conjecture and the Poisson Conjecture are equivalent.

5. The Jacobian Conjecture, the Conjecture of Dixmier and Poisson Conjecture are equivalent.

Proof. 1. Given σ ∈ EndPois(P2n). Then det(J (σ)) ∈ {±1} (see the proof of Step 6 of [4,
Theorem 3] of the fact that JC2n ⇒ DCn): Notice that det({xi, xj}) ∈ {±1} where 1 ≤ i, j ≤ 2n,
and so

{±1} ∋ det({xi, xj}) = σ(det({xi, xj})) = det(σ({xi, xj}))

= det({σ(xi), σ(xj)}) = det(J t(σ) ·
(
{xi, xj}

)
· J (σ))

= det(J (σ))2det({xi, xj}),

and so det(J (σ)) ∈ {±1}. By JC2n, σ ∈ AutK(P2n), and statement 1 follows.
2. Given σ ∈ EndPois(P2n). Then maps

σ : A2n → A2n, xi 7→ x′
i := σ(xi), ∂i 7→ ∂′

i(·) :=

{
{x′

n+i, ·} if i = 1, . . . , n,

{−x′
n−i, ·} if i = n+ 1, . . . , 2n,

(5)

is an algebra endomorphism of the Weyl algebra A2n where ∂′
i ∈ DerK(P2n). By DC2n, σ ∈

AutK(A2n), and so

A2n =
⊕

α,β∈N2n

Kx′α∂′β .

It follows that D(P2n)i =
⊕

{α,β∈N2n | |β|≤i}Kx′α∂′β (use the defining relations in the new variables

of A2n). By the very definition, the automorphism σ respects the degree filtration on A2n. In
particular, σ(P2n) = P2n since D(P2n)0 = P2n, i.e. σ ∈ AutPois(P2n).

3. Given a Jacobian map σ ∈ EndK(Pn). Let σ ∈ EndK(An) be its extension given by (1).
By (2),

σ(D(Pn)i) ⊆ D(Pn)i for all i ≥ 0,

i.e. the endomorphism σ of the Weyl algebraAn respects the degree filtration and so the associated
graded map

gr(σ) : gr(An) → gr(An), a+D(Pn)i−1 7→ σ(a) +D(Pn)i−1 (6)

5



respects the Poisson structure, i.e. gr(σ) ∈ EndPois(gr(An)). By PC2n, gr(σ) ∈ AutPois(gr(An)),
hence σ ∈ AutK(Pn) since the automorphism gr(σ) ∈ AutPois(gr(An)) is a graded automorphism
and D(Pn)0 = Pn.

4. Statement 4 follows from statements 1 and 3.
5. Statement 5 follows from statement 4 and the equivalence JC2n ⇔ DCn. �
By (5),

• PC2n is true iff the A2n-module σP2n is simple for all σ ∈ EndPois(P2n).

Theorem 8 Let σ ∈ EndPois(P2n) and d := deg(σ). Then

1. The A2n-module σP2n is holonomic, hence of finite length and 1-generated as an A2n-module.

2. lA2n
(σP2n) ≤ d2n.

Proof. 1. The A2n-module P2n is holonomic. By Theorem 1, the A2n-module σP2n is holo-
nomic, hence of finite length and 1-generated as an A2n-module.

2. Since deg(x′
i) ≤ d and deg(∂′

i) ≤ d (see (5)),

x′
iP2n,ds ⊆ P2n,d(s+1), and ∂′

iP2n,ds ⊆ P2n,d(s+1) for all i = 1, . . . , 2n and s ≥ 0.

Therefore, {P2n,ds}s≥0 is a finite dimensional filtration of the A2n-module σP2n such that

dimK(P2n,ds) =

(
ds+ 2n

2n

)
=

1

(2n)!
(ds+ 2n)(ds+ 2n− 1) · · · (ds+ 1) =

d2n

(2n)!
s2n + · · ·

where three dots denote smaller terms. By [10, Lemma 8.5.9], lA2n
(σP2n) ≤ d2n. �

An analogue of the Conjecture of Dixmier for the algebras In of integro-differential
operators. Let In := K〈x1, . . . , xn, ∂1, . . . , ∂n,

∫
1
, . . . ,

∫
n
〉 be the algebra of polynomial integro-

differential operators where
∫
i
: Pn → Pn, p 7→

∫
p dxi, i.e.

∫
i
xα = (αi + 1)−1xix

α for all α ∈ N
n,

[6].
• Conjecture, [7] (2012): EndK(In) = AutK(In).

Theorem 9 [7, Theorem 1.1] EndK(I1) = AutK(I1).

An analogue of the Jacobian Conjecture and the Conjecture of Dixmier for the al-
gebras An,m := An⊗Pm. The centre of the algebra An,m is Pm. Hence, for all σ ∈ AutK(An,m),
σ(Pm) = Pm.

• Conjecture, [5] (2007), JDn,m: Every endomorphism σ : An ⊗ Pm → An ⊗ Pm such that

σ(Pm) ⊆ Pm and det
(

∂σ(xi)
∂xj

)
∈ K∗ is an automorphism.

Theorem 10 [5, Theorem 5.8, Proposition 5.9] JDn,m ⇔ JCm +DCn.
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