
This is a repository copy of Looking through the FOG: microbiome characterization and 
lipolytic bacteria isolation from a fatberg site.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/181598/

Version: Published Version

Article:

Court, E.K., Chaudhuri, R.R. orcid.org/0000-0001-5037-2695, Kapoore, R.V. et al. (4 more 
authors) (2021) Looking through the FOG: microbiome characterization and lipolytic 
bacteria isolation from a fatberg site. Microbiology, 167 (12). 001117. ISSN 1350-0872 

https://doi.org/10.1099/mic.0.001117

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



1

Looking through the FOG: microbiome characterization and 
lipolytic bacteria isolation from a fatberg site

Elizabeth K. Court1,2,*, Roy R. Chaudhuri3, Rahul V. Kapoore4,5, Raffaella X. Villa6, Jagroop Pandhal4, Catherine A. Biggs7 

and Graham P. Stafford1,2,*

RESEARCH ARTICLE

Court et al., Microbiology 2021;167:001117

DOI 10.1099/mic.0.001117

Received 18 February 2021; Accepted 20 October 2021; Published 06 December 2021
Author affiliations: 1Integrated BioScience Group, School of Clinical Dentistry, University of Sheffield, Sheffield, UK; 2Department of Civil and Structural 
Engineering, University of Sheffield, Sheffield, UK; 3Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK; 
4Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, UK; 5Department of Biosciences, College of Science, Swansea 
University, Swansea, UK; 6Department of Engineering and Sustainable Development, De Montfort University, Leicester, UK; 7Environmental Engineering 
Group, School of Engineering, Newcastle University, Newcastle, UK.
*Correspondence: Elizabeth K. Court,  elizabeth. court@ sheffield. ac. uk; Graham P. Stafford,  g. stafford@ sheffield. ac. uk
Keywords: wastewater; fatberg; FOG; fat oil and grease; microbial communities.
Abbreviations: FFA, free fatty acids; FOG, fats, oils and grease; SWWa, synthetic wastewater.
Three supplementary figures and three supplementary tables are available with the online version of this article.
001117 © 2021 The Authors

This is an open- access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between 
the Microbiology Society and the corresponding author’s institution.

Abstract

Sewer systems are complex physical, chemical and microbial ecosystems where fats, oils and grease (FOG) present a major 

problem for sewer management. Their accumulation can lead to blockages (‘Fatbergs’), sewer overflows and disruption of 

downstream wastewater treatment. Further advancements of biological FOG treatments need to be tailored to degrade the 

FOG, and operate successfully within the sewer environment. In this study we developed a pipeline for isolation of lipolytic 

strains directly from two FOG blockage sites in the UK, and isolated a range of highly lipolytic bacteria. We selected the five most 

lipolytic strains using Rhodamine B agar plates and pNP- Fatty acid substrates, with two Serratia spp., two Klebsiella spp. and an 

environmental Acinetobacter strain that all have the capacity to grow on FOG- based carbon sources. Their genome sequences 

identified the genetic capacity for fatty acid harvesting (lipases), catabolism and utilization (Fad genes). Furthermore, we per-

formed a preliminary molecular characterization of the microbial community at these sites, showing a diverse community of 

environmental bacteria at each site, but which did include evidence of sequences related to our isolates. This study provides 

proof of concept to isolation strategies targeting Fatberg sites to yield candidate strains with bioremediation potential for FOG 

in the wastewater network. Our work sets the foundation for development of novel bioadditions tailored to the environment with 

non- pathogenic Acinetobacter identified as a candidate for this purpose.

INTRODUCTION

Sewer systems are an essential component of society, conveying 
large amounts of domestic and industrial wastes to treatment 
facilities for safe disposal in dry weather, and additionally safe 
and effective management of large volumes of rainwater in wet 
weather. They are complex physical, chemical and microbio-
logical ecosystems. In this context, the entry of fat, oils and 
grease (FOG) into the wastewater system from both domestic 
and food service establishment (FSE) sources has become a 
major problem for the management of wastewater. Indeed, 
the UK has seen several high- profile blockages caused by FOG 
deposits in sewers in recent years, phenomena that have now 
been termed ‘fatbergs’ [1–4]. Such is the public prominence 
of these entities, the term fatberg has now entered the English 
lexicon with inclusion in the Oxford Dictionary in 2015 [5].

The formation of fatbergs is caused by several factors. 
Firstly, FOGs enter the wastewater system in the form of 
animal or vegetable fat residues (as triglycerides and free 
fatty acids), from both domestic, industrial and FSE sources 
[6–8]. Secondly, these FOGs combine with other material in 
wastewater systems, such as disposable wipes, to agglomerate 
forming blockages. In severe cases, the fatbergs can form 
blockages that are hundreds of metres in length, weigh several 
metric tonnes and require removal by laborious, dangerous 
and expensive manual means [9–12]. If left either undetected 
or untreated, the blockages in sewer networks can lead to 
sewer overflows, adverse impacts on the environment, for 
example, through depletion of oxygen in streams, as well as 
urban flooding [13]. Recent evidence also suggests that this 
is an increasing problem worldwide – potentially due to rapid 
population growth and changes in behaviour [12, 14].
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While the exact mechanism by which these deposits form is 
not fully known, a number of factors are thought to contribute. 
It has been hypothesized that during saponification, free fatty 
acids (FFAs) combine with calcium and sodium salts in the 
wastewater to form a nucleation point, leading to solid FOG- 
soap deposits [8]. It is currently thought that saponification 
of FFAs, as well as solidification of FOGs in the sewer system, 
contributes to blockage formation [1, 10, 15]. There is also 
debate regarding the role of microbes in both the initia-
tion and perpetuation of fatbergs: for example, it has been 
proposed that bacteria may facilitate the release of calcium 
salts into the environment – contributing to saponification 
of FFAs or that, those that release FFA but do not utilize it, 
can release FFA that causes problems downstream [1, 8, 16]. 
Another factor is the increased introduction of used cooking 
oil into wastewater systems, which has a larger amount of 
FFAs compared to unheated oil and has been shown to be 
a major cause of the initial nucleation of the FOG [17]. 
The above factors sit alongside well established culprits of 
sewer blockages, such as non- flushables like food packaging, 
condoms and ‘flushable’ wet wipes [12].

One long proposed potential mitigation approach to FOG 
accumulation is the use of products composed of spore- 
producing single species or off- the- shelf bacterial consortia 
that are not adapted to the wide environment. These are 
deployed in the sewer system to speed up the degradation 
of blockages. If successful, these products have the poten-
tial to save time and money for water companies in terms 
of money spent clearing fatbergs, which has been estimated 
at £100 million per year in the UK [18]. However, whilst 
attractive, the use of lipolytic bacteria that do not utilize 
FOG, to break down FOGs can lead to the release of FFAs, 
rather than their consumption or an overall reduction in the 
sewers. Rather, these FFAs can move downstream from sites 
of accumulation where they can be subject to saponification 
and deposit elsewhere [12]. An alternative is the use of more 
specific fat degrading and consuming bacteria or combina-
tions thereof as part of active FOG degrading microbial 
consortia that have been considered for Grease Interceptors 
[19]. Ideally, such a consortium would biodegrade FOG using 
secreted enzymes, such as lipases, cleaving the ester bond 
linking FFA with their glycerol backbone breaking down 
lipids into FFAs, which will then be transported inside the 
bacterial cells and used as growth substrates. However, the 
wastewater system is made up of a range of environments, 
including FSE effluents, sewers, pumping stations and treat-
ment works; all of which have different environmental param-
eters of temperature, pH, salinity, flow rate, etc. To enable 
efficient degradation and metabolism of FOG, a consortia 
with a range of lipases, which target different fatty acids 
present in FOG, in addition to different rates and abilities to 
metabolize or assimilate this FOG and that, importantly, are 
adapted to these different environments would be beneficial.

In the last 20 years, many FOG- degrading products have been 
tested by water companies in the field and in the laboratory 
with mixed success, mainly due to a lack of reliability and 
predictability of the activity of these products in different 

environments within the wastewater system [1, 19]. This is 
at least in part due to their inability to thrive or survive in 
different parts of the system. One reason may be that in many 
cases these products are single species or microbial consortia 
isolated from non- sewer environments, i.e. these are largely 
lab- adapted lipolytic organisms with long shelf lives. In addi-
tion, bioadditions have to work in a different way if targeting 
the deposits. The fatberg and lipid- rich wastewater are two 
very different substrates and different products need to be 
created to treat them.

Our aim in this paper was the isolation and screening of 
bacteria for lipase activity from real fatberg sites, followed by 
preliminary characterization of their ability to grow in media 
mimicking wastewater with a FOG- related carbon source. We 
also characterized, for the first time, the composition of two 
exemplar fatberg microbial communities, revealing a broad 
diversity of organisms. We present our data on a selection of 
lipolytic isolates and propose that this approach will allow 
development of FOG- degrading consortia tailored to waste-
water environments.

EXPERIMENTAL PROCEDURES

Sampling, bacterial growth and Isolation

Samples were taken from two fatberg sites (site 1 and site 2) in 
the sewer network in collaboration with a UK water company 
and contracted personnel. Enrichments were performed 
using rich growth media (Tryptic Soy Broth) and synthetic 
wastewater (SWWa). The carbon:nitrogen:phosphorus ratio 
in the SWWa is 100 : 5 : 1, which translates to a weight ratio 
of 800 mg l−1 COD: 40 mg l−1 ammonia- N: 8 mg l−1 inorganic 
phosphorus. This consists of the following per litre: dH

2
O 

(pH 7): 0.0245 g K
2
HPO

4
; 0.014 g KH

2
PO

4
; 0.16 g NH

4
Cl; 0.6 g 

MgSO
4
.7H

2
O; 0.07 g CaCl

2
.2H

2
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mineral. Trace mineral amounts per litre: 1.5 g FeCl
3
.6H

2
O; 

0.15 g H
3
BO

3
; 0.03 g CuSO

4
.5H

2
O; 0.03 g KI; 0.12 g 

MnCL
2
.4H

2
O; 0.06 Na

2
MoI

4
.2H

2
O; 0.12 ZnSO

4
.7H

2
O; 0.15 g 

CoCl
2
.6H

2
O (Karunakaran E., personal correspondence).

The media contained acetic acid (14 mM) as carbon source 
with the addition of either olive oil (1 % v/v) or solid fatberg 
FOG material (1 % w/v), and was incubated with agitation 
for 3 days at 15–20 °C before being transferred to new flasks 
of either TSB or SWWa and enriched for up to 5 days at 
15–20 °C [20]. These enrichments were then spread onto both 
TSB or SWWa agar plates that also contained Rhodamine 
B (0.0001 %) and olive oil (1 %) and screened for lipolytic 
activity using lipase assays (see below) and taken forward for 
analysis [21]. Stocks of isolates from this study were stored 
in glycerol at −80 °C.

Growth studies of strains were carried out in synthetic waste-
water with either addition of FOG (1 % olive oil) or FOG 
plus acetate (14 mM, 0.81 mg ml−1). The strains were grown 
at 25C in a Tecan Sunrise in 96- well plates with horizontal 
shaking, OD

600
 measurements taken at 30 intervals, and all 

wells having respective control triplicates containing media, 
media plus oil/ acetate or oil +acetate, which were subtracted 
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from the culture positive wells to rule out any emulsification 
or precipitation effects. Growth studies were carried out in at 
least triplicate with technical triplicates in each run.

Fatty acid methyl ester profiling

All chemicals and analytical reagents were of high- 
performance liquid chromatography grade (Sigma- Aldrich, 
Dorset, UK) unless stated otherwise. Fatberg samples (~5 to 
7 mg) were weighed followed by direct transesterification as 
described elsewhere [22–24]. Briefly, 300 µl of toluene and 
300 µl of 0.5M sodium methoxide were added to the weighed 
fatberg samples, followed by incubation at 80 °C for 20 min. 
After cooling to room temperature, 300 µl of 10 % boron tri- 
fluoride in methanol was added and the mixture incubated 
at 80 °C for 20 min. After cooling to room temperature, 
300 µl water and 600 µl of hexane were added. The mixture 
was vortexed for 1 min and centrifuged at 18 000 g at 4 °C 
for 10 min. The organic phase was recovered, measured 
and evaporated to dryness under inert nitrogen gas. The 
dried fatty acid methyl esters (FAMEs) were reconstituted 
in 80 µl hexane prior to identification and quantification as 
described elsewhere [24]. In total, five technical replicates 
were run, among which only the FAMEs identified in three 
or more replicates were considered true hits. The data was 
later normalized to dry weight of the samples and FAME’s 
were reported on a percentage basis.

DNA isolation, 16S rRNA sequencing and 
bioinformatics

Total DNA extractions from swabs of the sewer wall at the 
air:liquid interface were resuspended in TE buffer were 
carried out using DNeasy PowerSoil kit following manu-
facturer’s instructions (Qiagen). DNA quality was assessed 
using a nanodrop spectrophotometer before being sent to 
MR DNA (MR DNA, Shallowater, TX, USA) where 16S 
rRNA V3/V4 variable regions were amplified using primers 
(341F: CCTACGGGNGGCWGCAG; 806R:  GGACTACH-
VGGGTWTCTAAT; [25]) with barcodes on the forward 
primer and MiSeq adapters following manufacturer guide-
lines. Sequencing data were processed using the MR DNA 
analysis pipeline where the final OTUs were taxonomically 
classified using blastn against a curated database derived 
from RDPII [26] and NCBI [27]. Heatmaps were generated 
using Morpheus [28] and PCA analysis performed using 
METAGENassist [29] PERMANOVA and ANOVA statistical 
analysis were performed with phyloseq., as implemented in 
the tool MicrobiomeAnalyst [30, 31]. These sequence data 
have been submitted to the DDBJ/EMBL/GenBank databases 
under accession number (ERS4556234), while OTU level data 
and frequencies are present in the Supplementary Material 
files (available in the online version of this article).

Genome sequencing

Genomic DNA from isolated lipase producers were carried 
out using Wizard Genomic DNA Purification Kit (Promega) 
before sequencing at MicrobesNG, Birmingham. Genomic 
DNA libraries were prepared using Nextera XT Library Prep 

Kit (Illumina, San Diego, USA) using Hamilton Microlab 
STAR automated handling system, following the manufac-
turer’s protocol with the following modifications: 2 ng DNA 
was used as input and PCR elongation for 1 min. Pooled 
libraries were quantified using Kapa Biosystems Library 
Quantification Kit for Illumina on a Roche light cycler 96 
qPCR machine. Libraries were sequenced on the Illumina 
HiSeq using a 250 bp paired end protocol. Reads were adapter 
trimmed using Trimmomatic version 0.30 with a sliding 
window quality cut off of Q15 [32]. De novo assembly was 
performed on samples using SPAdes version 3.7 [33] and 
contigs were annotated using Prokka [34]. Table 1 indicates 
accession numbers at the EMBL database.

For 16S- based phylogeny, all available complete genomes of 
Serratia, Klebsiella and Acinetobacter were downloaded, and 
the longest 16S rRNA gene from each was identified using 
Barrnap [35]. Following initial phylogenetic analysis, the 
strains most closely related to the five SFB genomes were iden-
tified. The 16S rRNA sequences were aligned using muscle 
[36], and redundant sequences and sequences shorter than 
90 % of the length of the longest sequence were purged from 
the alignment. Maximum- likelihood phylogenies of each 
alignment were constructed with RAxML [37], using the 
general time reversible (GTR) model of nucleotide substitu-
tion with a Gamma model of rate heterogeneity. Then, 100 
bootstrap replicates were performed using the RAxML rapid 
bootstrapping algorithm [38]. The default values were used 
for all other options. The values of the Gamma distribution 
shape parameter alpha and the GTR nucleotide substitu-
tion rates were estimated from the data. Phylogenies were 
displayed using UGENE version 40.0, as phylograms with 
Bootstrap and distances displayed [39]. The closest available 
reference genome for each sequenced strain was identified 
using the 16S rRNA phylogeny and whole- genome compari-
sons were performed using NUCmer, part of the MUMmer 
package, using PATRIC version 3.6.11 (MinHash) [40]; 
and through MicrobesNG identifying the closest reference 
genome using Kraken [41, 42]. Genomic DNA analysis and 
sequence searching was performed using PATRIC and NCBI, 
while SignalP version 5.0 and SecretomeP version 2.0 were 
used to screen sequences for signal peptide presence [43–46].

Lipase assays

Rhodamine B agar plates were used to indicate lipolytic 
bacterial colonies by the presence of lipid enzymes (lipase/
esterase; [21]. To 1 l of autoclaved media agar (NB or SWWa) 
add 1 % (w/v) olive oil and 0.1 mg ml−1 Rhodamine B solu-
tion with vigorous shaking and the media poured into agar 
plates. Bacteria were streaked or spread onto these plates and 
lipolytic colonies were identified using a UV transilluminator 
and fluorescent colonies taken forward for further processing.

Lipase activity was also investigated semi- quantitatively using 
p- nitrophenol release from p- nitrophenol ester at 410 nm in a 
TECAN plate reader (INFINITE 2000). The reaction mixture 
contained 50 mM Tris- HCl pH 7.5, 1 mM CaCl

2
, 0.3 % (v/v) 

Triton X- 100, 1 mM p- NPP, made fresh in every case, to 180 ul 
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of this, 20 ul of bacterial supernatant was added. This was 
incubated at room temperature for 30 min and measuring 
at 410 nm. In our calculations we used the molar extinction 
coefficient reported for this substrate previously (17 300 M−1 
cm−1 [47]; and report activity as nmoles pNP released per 
minute.

Data availability

Sequence data generated in this study have been deposited 
to the European Nucleotide Archive (https://www. ebi. ac. uk/ 
ena) with accession numbers as follows: Serratia marcescens 
SFB6, ERS4270774; Klebsiella oxytoca SFB9, ERS4270775; 
Serratia liquefaciens SFB10, ERS4270776; Acinetobacter 
bouvetii SFB21, ERS4270777; Klebsiella pneumoniae SFB23, 
ERS4270778; 16S sequencing data, ERS4556234. Raw data for 
FAME work is in Fig. A.1 and microbiome work is in Fig. A.3.

RESULTS

Fatty acid profiling of fatberg samples

In this paper, we began with one aim being to isolate a range 
of FOG degrading lipolytic strains from fatbergs within the 
wastewater environment using lipase activity as a screen. 
As a first step to ensure that our lipase screening methods 
would target the correct lipolytic profile in comparison to 
fatberg environments, we determined the lipid profile of 
solid fatberg samples taken from two separate exemplar 
Fatberg sites (site 1 and site 2) in London, UK, using gas 
chromatography- flame ionization detector (GC- FID) by 
comparison with known fatty acid methyl ester (FAME) 
standards on five samples from each fatberg. The data reveal 

that the fatbergs have different overall FOG content at 455.8 
μg mg−1 and 331.9 μg mg−1 (Fig. 1, Table S1). However, in 
both cases the overall profiles (Fig. S1) were similar (not 
statistically different) with the most abundant fatty acid (FA) 
being C16 Palmitic acid (average 77 % of FAME present), 
followed by Myristic (C14, 5 %), stearic (C18, 8 %) and 
linoleic acids (C18 : 2 cis, 3.8 %). However, analysis of the 
minor constituent FAs revealed statistically significant differ-
ences in the amounts of cis-5,8,11,14,17- Eicosapentaenoic 
acid (C20 : 5; 0.776 % : 0.404 % P=0.0243), Behenic acid 
(C22; 0.478 %->0.282 % P=0.000752), (C24; 0.161 : 0.112 % 
P=0.00050.7) and Nervonic acid (C24 : 1; 0.200 % : 0.103 % 
P=8.61×10- 5), however, given their low levels in the samples 
the importance of this is unclear. As part of our studies, we 
also sterilized a small portion of solid FOG sample from site 
1 (in technical triplicate) via a dry- heat method (160 °C, 2 h); 
the aim here was to assay any changes in the FAMEs profile 
and establish if the use of these samples in our enrichment 
and isolation experiments was possible. The heating process 
caused no significant overall change (P=0.364; paired t- test) 
when heat sterilized, however, a significant (P<0.05) increase 
in oleic acid (C18 : 1 cis; 0.2->8 % P=6.4×10−5) and also in 
amounts of Arachidonic acid (C20 : 4n6; 0.006 %->0.058 % 
P=0.0182) and cis-4,7,10,13,16,19- Docosahexaenoic acid 
(C22 : 6n3; 0.008 %->0.079 % P=0.031). At the same time, 
the amount of palmitate, the most abundant FA, reduced 
by 9.16 % but was not statistically significant (P=0.987).

Isolation of lipase-producing bacteria from fatberg 
samples

To isolate potential FOG degraders from the blockage sites, 
wastewater, fatberg and sewer- wall swab samples were first 
pre- enriched in both a rich broth (Tryptic Soy Broth; TSB) 
and synthetic wastewater (SWWa) minimal media that 
contains a range of mineral salts, including acetate (14 mM, 
0.81 mg l−1), a common wastewater carbon source [48, 49], 
with the addition of either olive oil (1 % v/v) or solid FOG 
sample (1 % w/v) and incubated for 3 days before being trans-
ferred to a new flask of either TSB or SWWa and enriched for 
5 days at 15–20 °C [20]. Importantly this media has a C:N:P 
ratio of 100 : 5 : 1; which has been shown to be effective in envi-
ronmental and lab studies to aid FOG degradation [50]. These 
enrichments were then spread onto both TSB and SWWa agar 
plates that also contained Rhodamine B (0.0001 %) and olive 
oil (1 %). Olive oil was chosen both for consistency but also 
due to its composition of oleic acid and linoleic (C18) and 
palmitic (C16) acid, long chain fatty acids all present in our 
fatberg (and heated) samples (Fig. 1) [21, 51].

In this method, lipolytic organisms cleave the FOG substrate, 
releasing FFA that then reacts with Rhodamine B, resulting 
in fluorescence that can be observed via ultraviolet illumina-
tion of the agar plates, with lipolysis appearing as orange 
fluorescent colonies (Fig. S2) [21, 51]. Using this method, 
colonies were identified with potential high lipolytic activity 
observed via the production of an orange halo on UV illu-
mination and passaged on SWWa FOG and TSB plates. All 
five selected strains produced strong haloes on RhB agar 

Fig. 1. Bar charts showing the six most abundant fatty acids in two 

fatberg samples isolated from London sewers (‘sample 1’ and ‘sample 

2’) and sterilized FOG sample isolated from sample 1 (‘sterilized sample 

1’) as μg mg−1 Fatberg sample. Error bars show standard deviation.
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(Fig. S2). In order to assess whether these strains contained 
secreted lipase activity they were grown in nutrient broth 
with 1 % olive oil, and culture supernatants (normalized to 
cell density) screened for activity against substrates repre-
senting the major lipid constituents in the FAME analysis, 
namely p- nitrophenyl- palmitate (pNP- P), pNP- myristate 
(pNP- M) and pNP- stearate (pNP- S). Using a combination of 
the RhB plates and pNP assays, we screened several hundred 
isolates and selected five with high lipase activity first by 
picking all colonies with Rh- haloes and then screening using 
the pNPP assay. These five isolates had lipase activity in the 
range up to 36.6 pmoles pNP released min−1, with activity 
against not only Palmitate but also Stearate and myristate 
(Fig. 2), validating our strategy of prescreening on RhB- oil 
plates. Of these, three were isolated with pre- enrichment in 
synthetic wastewater plus oil followed by TSB plus oil (21, 
23), whilst two were pre- enriched in TSB plus oil followed 
by SWWa plus oil enrichment (6,9,10).

All five selected strains, from now on called SFB6, 9, 10, 21 
and 23 (SFB: SheffieldFatBerg) displayed activity against 
pNP substrates. The results, reported in Fig. 2, showed that 
SFB6 and SFB10 had the highest activity against all substrates 
(25.8, 51.1 pmoles min−1 released) while SFB21 also had broad 
activity of 8.56–14.57 pmoles min−1 released for all substrates. 
Although SFB9 and 23 had clear haloes on RhB plates they 
exhibited significantly lower lipase activity under the condi-
tions tested. None of the strains displayed a particular prefer-
ence for any of the substrates over another, with the exception 

of SFB23, which seemed to prefer Stearate and Myristate over 
Palmitate.

Genome analysis of isolates

Using a combination of 16S rDNA and whole- genome 
sequence phylogeny [MicrobesNG (Kraken) and PATRIC 
(MinHash)], the isolated SFB strains were identified as 
potential new strains of Serratia marcescens (SFB6), Kleb-
siella oxytoca (SFB9), S. liquefaciens (SFB10), Acinetobacter 
bouvetii (SFB21) and K. pneumoniae (SFB23) (Table S3, Fig. 
S3). Notably, these bacterial isolates are all common environ-
mental organisms that have been reportedly found in soil, 
water sources and treatment plants. In order to characterize 
these organisms further, we examined their genome sequences 
for the presence of potential lipase enzyme encoding and 
lipid transport and metabolism genes. Using Illumina- based 
sequencing each genome dataset was assembled into contigs 
and submitted to the European Nucleotide Archive (ENA; see 
Table 1 for accession numbers).

All of the five bacterial isolates contain at least one puta-
tive lipase encoding gene sequence, (Fig. 3b). Despite the 
lipolytic activity, SFB23 (K. pneumoniae) does not appear 
to contain a putative secreted lipase sequence in its genome 
sequence, implying that it is not exported via a standard 
secretion signal or that other unknown exported lipases exist 
in this strain. Of the strains isolated Acinetobacter SFB21 
has the highest number of putative lipase sequences, with 
seven putative lipase genes of which five are predicted to 
be secreted enzymes (PSORT), with all lipases containing 
predicted active sites matching those of the GXXX family 
[52].

The fatty acid degradation pathways and the main proteins 
involved in the lipid metabolism have been highlighted in 
Fig. 3a), i.e. to establish the likelihood these organisms 
can utilize as well as produce FFAs. All isolates contain 
full putative fatty acid degradation pathways (Fig. 3b) and 
the predicted genes encoding fatty acid transport (fadL 
and fadD), the β-oxidation pathway for fatty acid metabo-
lism (fadA, fadB and fadE) alongside the transcriptional 
repressor (fadR, whose repression is relieved by fatty acid 
binding to the protein). All five isolates contained at least 
one copy of each of the genes apart from A. bouvetii SFB21, 
which did not contain a recognisable fadR gene – indi-
cating that canonical fatty acid regulated control of gene 

Fig. 2. Bar chart to show the rate of activity in the presence of pNPP- 

Palmitate, -Myristate and -Stearate. Average of three cultures with sem 

shown.

Table 1. Summary genome information including accession (Ac) number

Isolate Homology #Contigs No. of Bases Size (Mb) G+C content (%) Ac no.

SFB6 Serratial marcescens 77 332.8 5.339 59.18 ERS4270774

SFB9 Klebsiella oxytoca 155 665.6 6.38 55.31 ERS4270775

SFB10 Serratia liquefaciens 29 290 5.2 55.36 ERS4270776

SFB21 Acinetobacter bouvetti 69 253.8 3.46 51.24 ERS4270777

SFB23 Klebsiella pneumoniae 47 156.4 5.42 57.22 ERS4270778
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expression of the β-oxidation genes is absent – i.e. it might 

be potentially constitutively expressed. On the other hand, 

SFB21 also contained multiple copies of FadE, which may 

indicate the ability to process FAs of a broad range. Both 

of the Serratia species contained multiple fadD genes – 

encoding the Acyl- CoA synthetase (FadD), which activates 

the fatty acid for entrance into the β-oxidation cycle, but 

which most likely encode enzymes with specificities for 

small, medium or long- chain fatty acids, which may enable 

more efficient transport of a range of fatty acids into the 

cell.

Growth of SFB isolates on FOGs

The five strains were then tested for their ability to grow in 
synthetic wastewater with either addition of FOG (1 % olive 
oil) or FOG plus acetate (14 mM, 0.81 mg ml−1). The strains 
were grown at 25C in a Tecan Sunrise with horizontal shaking 
with OD

600
 measurements taken at 30 min intervals, and all 

wells having respective control wells containing appropriate 
media blanks for each condition, which were subtracted from 
the culture positive wells to rule out any emulsification or 
precipitation effects. As shown in Fig. 4 we incubated the 
cultures for 72 h with all strains displaying multiphasic growth 

Fig. 3. (a) Illustration to show the bacterial FOG catabolism pathway (adapted from [92]). FadL, long- chain fatty acid transport protein; 

FadD, fatty acid CoA ligase; FadE, acyl- CoA dehydrogenase; FadA, 2- ketoacyl- CoA thiolase; FadB, enoyl- coA hydratase; LCFA, long- chain 

fatty acid. (b) Summary of homologous genes to bacterial lipid catabolism genes and lipases in SFB isolate strains. Dots correspond 

to homologous genes in sequence, green represents presence of transport sequence detected. Genomic DNA analysis and sequence 

searching was performed using PATRIC and NCBI, predicted secreted genes generated using SignalP and SecretomeP (see Methods).
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Fig. 4. Growth curves of the five isolates in SWWa with olive oil (SWWa +oil, black), acetic acid (SWWa A, magenta) or both olive oil 

and acetic acid (SWWa A+oil, teal). Vertical lines in the relevant colours and accompanied by GP1/2/3 depict putative alternate growth 

phases. The inset depicts the growth curve in the first 15 h in more detail. These are representative graphs of three technical replicates 

that were repeated three times. The OD
600

 is plotted with error bars showing standard error of the mean.
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patterns. In general, all isolates grew in the presence of acetate 
plus olive oil (Fig. 4, green) with varying peak OD

600
 (0.24 

to 1.4).

Isolates SFB 9, and 21 show growth in the presence of acetic 
acid only (magenta) with increased growth or altered growth 
rate in the presence of olive oil and acetic acid (teal, SFB9 : 0.24 
vs 0.15; SFB21 : 0.48 vs 0.31), whereas no growth on acetate 
alone was observed for isolates SFB 6, 10 and 23 (Fig. 4). 
Growth on olive oil only was generally low for all isolates 
compared to olive oil plus acetate but some growth was 
observed.

To illustrate this, we highlight the first 15 h in an inset in Fig. 4, 
revealing that for SFB 9, 10, 21 and 23 growth characteristics 
are different in the first 8 h as compared to extended 72 h 
incubation (Fig. 4 insets). For example, analysing growth on 
oil, cultures displayed a short rapid period of growth within 
the first 5 h with OD

600
 reaching around 0.06–0.18 for SFB 

9, 10, 21 and 23 (Fig. 4, insets GP1, black), which tails off, 
except for SFB9, which maintains slow growth on oil for 50 h 
(GP2, black) . In the case of the acetate +oil cultures, all strains 
display a bi- or even tri- phasic growth pattern, where initial 
and subsequent growth periods are followed by periods of 
potential quiescence or adaptation before OD

600
 rises again, 

illustrated in Fig. 4 (GP2/3, teal), with isolate SFB21 a prime 
example. These data indicate a potential switch in growth 
modes/substrate or accumulation of toxic compounds in the 
cultures or possibly indicating alternating carbon sources that 
might arise from sequential FOG degradation – though this 
would need further investigation.

Taken together these data indicate the ability of these strains 
to grow in synthetic wastewater both in the presence of the 
FOG substrate olive oil but that they require acetate to boost 
growth to higher levels.

16S rDNA microbiome analysis of Fatberg site

In order to characterize the microbial community present 
and ascertain if representatives of our isolates were present 
at the FOG blockage sites or might even be dominant, 16S 
rDNA sequencing was carried out to determine the resident 
environmental bacterial microflora. In total, three swabs were 
taken from FOG deposits at site 1 and site 2 and the DNA 
extracted from the swabs using DNeasy PowerSoil kit and 
the V3/V4 variable regions were sequenced [commercially 
at MrDNA using primer set 341 F/ 806R [25]; on an Illumina 
MiSeq (MR DNA, Shallowater, TX, USA]. In these samples 
an average of 285 OTUs (+/-67 sd) were detected (Table S3).

The genus level data representing genera present at 0.5 % of 
total reads or above for each sample are shown in Fig. 5a, 
and the top 75 most frequent genera detected of the total 
genus reads displayed by heatmap (Fig. 5b). Alpha diversity 
analysis of the samples (Simpson’s index) is shown in Fig. 5c 
and varies between the sample groups, but the significance 
of the analysis is limited by the small sample size. A principal 
coordinates' analysis (Jansen–Shannon PCoA; Fig. 5d) does 
not show significant clustering of samples between sites 1 

and 2, but does highlight that sample site 1 samples cluster 
together closely, however, sample site 2 has a larger diversity 
between its samples, with sample 2.2 clearly being more of 
an outlier in this analysis – again we add the caveat of small 
sample sizes here.

Our data reveal that these fatberg microbiota are composed 
of a diverse range of aerobic and anaerobic bacteria, with 
many of these genera containing species that are known 
to degrade lipids and commonly found in wastewater 
systems, e.g. Xanthomonas and Rhodobacter [53–55]. At site 
1, Xanthomonas is at the highest levels in all three samples 
(12–20 %) with the anaerobe Phascolarcobacterium (6–16 %) 
the next most abundant. Notably several other anaerobes 
are present, such as Bacteroides (2.9–5 %), Clostridium 
(2.2–3.4 %), Cloacibacterium (2.25–3.6 %) as well as Seleno-
monas, Prevotella, Parabacteriodes and Tannerella, which are 
all part of the anaerobic gut flora, but more broadly indicate 
the presence of anaerobic micro- environments in these FOG 
deposits. Notably the facultative genus Klebsiella (2.4–3.6 %) 
were also present at significant levels. Sample 2 is much 
more variable with Cloacibacterium at a very high level in 
sample 2.2 (16.6 %) but below 0.2 % in sample 2.1 and 2.3. 
The sequence with highest median value across the sample 2 
datasets here is Acinetobacter (1.7–4.2 %), of note given our 
isolation data; and followed by the common environmental 
organism Hyphomicrobium (0.03–3.6 %). However, sample 2 
has no dominant organism and a large quantity of sp. at low 
levels, indicating high diversity. Most of the genera mentioned 
above are common across both locations, with it notable 
that Acinetobacter, Klebsiella and Serratia as well as several 
environmental (Rhizobium), gut (Prevotella, Tannerella, Citro-
bacter and Bacteroides) were among these.

DISCUSSION

In this study, we set out to establish a pipeline for the isola-
tion of potential fatberg- specific biodegraders and better 
understand the microbial environment of fatbergs to pave 
the way towards more target environment tailored products 
in the future.

As the first part of the study, we observed that the dominant 
fatty acid found in two separate fatberg deposits was palmitic 
acid (75 % of the whole sample) – a finding that complements 
findings of other researchers in the USA and UK [4, 8, 56].

We then developed a strategy that utilized high- throughput 
screening on Rhodamine agar plates, before secondary 
screening using a palmitate based colorimetric substrate (the 
major fatty acid in our samples) in a microplate format. In 
our growth experiments, isolates SFB9, 10 and 21 were able 
to grow on acetate only with isolates SFB6 and 23 showing 
no observable growth. All of the isolate growth seemed to be 
boosted by FOG (olive oil) inclusion in the media but only 
when acetate was present, with lower growth observable with 
olive oil as the only carbon source, thus highlighting their 
ability to potentially degrade and utilize FOG as a substrate 
for growth. This is reminiscent of diauxic growth that is 
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displayed by a range of organisms when switching carbon 
sources [57]. While other organisms often grow on multiple 
substrates, as was shown with Pseudomonas aeruginosa in 
the context of growth in tap water [58]. Finally, starvation in 
cultures can often influence metabolic capacity with glucose 

starved lipolytic B. licheniformis showing upregulation of lipid 
degrading pathways [59]. Considering our enrichment media 
contained acetate as well as FOG, a potential diauxie (e.g. 
SFB21) is perhaps not unexpected and our future studies will 
examine how varying acetate levels affects FOG- dependent 

Fig. 5. (a) Bar charts showing the genus representing >/=0.5 % found by 16S NGS sequencing from two FOG blockage sites in London 

sewers. (b) Heatmap displaying the top 75 most frequent genera based on the number of reads per sample (generated using Morpheus). 

(c) Simpson’s index alpha diversity analysis of the sequencing data showing P- value: 0.66099; [T- test] statistic: −0.50313. (d) Principal 

coordinate analysis (PCoA) based on Jensen–Shannon divergence distance showing similarities of samples from two fatberg sampling 

sites. PERMANOVA [f- value: 5.2369; R- squared: 0.56695; P- value<0.1].
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growth and lipase production of isolates and indeed FOG levels 
in the media – assayed using Gravimetric methods. Notably, 
in preliminary studies (unpublished data), we observed a 
reduction in FOG levels in spent media when all five bacteria 
were grown in a consortium for 48 h with most degradation 
occurring later in the incubation cycle. One other aspect for 
development would be the enrichment strategy itself, with a 
reduction in acetate levels potentially allowing selection of 
organisms more dependent on FOG and allow assessment 
of the impact of alternative carbon sources in media on FOG 
metabolism or taking a limiting dilution approach as has been 
used in other environments to potentially improve recovery 
of organisms [60]. For example, there is evidence that some 
organisms upregulate lipase production in response to other 
carbon sources, with Acinetobacter iwoffii, which is related to 
SFB21, increasing lipase production in the presence of other 
hydrocarbons [61].

After genome sequencing, it was evident that our isolated 
strains contained a complement of predicted fatty acid 
degradation (fad) genes, containing uptake and catabolism 
capability as well as a complement of lipases (Fig. 3b). These 
include lipase enzymes that are putatively secreted from the 
cell to hydrolyse TAGs (Triacylglycerols) into long- chain fatty 
acids (LCFAs) and a glycerol backbone. The LCFAs are trans-
ported into the cell using FadL transporter [62] and converted 
into coenzyme A (CoA) thioesters by the inner- membrane 
associated FadD, activating them [63]. This then enters the 
β-oxidation cycle where FadE converts acyl- CoA to enoyl-
 CoA and then FadBA tetramer catalyses the hydration, oxida-
tion generating NADH and FADH2 and finally shortening of 
the acyl- CoA to give acetyl- CoA, which is processed by the 
TCA cycle [64]. The genomics of our strains identified two 
Serratia, two Klebsiella and a non- pathogenic Acinetobacter 
strain.

Of these strains, there have been several reports of stable lipase 
enzymes, with those from the Serratia strains the most well 
characterized, e.g. LipA from S. marcesens and SlLipA form S. 
liquefaciens [65, 66]. Similarly, interest in lipase from Klebsiella 
pneumoniae and oxytoca strains in relation to biodiesel produc-
tion has also been reported with strains that were isolated from 
restaurant wastewater identified as degrading FOG [65–69]. 
In the case of Acinetobacter SFB21, this is part of a genus in 
which there is biotechnological interest with several novel 
lipases now discovered [70]. Notably SFB21 is most closely 
related to non- pathogenic Acinetobacter spp. that includes A. 
schindleri, bouvetii, Iwoffi and johnsonii and thus may have 
the potential for use in scale- up for deployment [71–73] – 
N.B. a future focus of our work to determine whether SFB21 
is a novel Acinetobacter spp. In fact, Acinetobacter strains, 
including SFB21 contain multiple copies of the fadE gene in 
their genomes, indicating a broad lipid catabolic capability 
[74], while Acinetobacter strains are known to grow well on 
acetate and palmitate [75–78], and to produce internal lipid- 
bodies for energy storage [79, 80]. One future focus however 
will be to understand under what conditions the Fad genes 
are expressed, i.e. in the design of environmental deployment 
strategies within products- such as feedstocks.

Finally, Acinetobacter strains have been considered for 
biotechnological applications (including biofuel, phar-
maceuticals and cosmetics) for the conversion of carbon 
substrates into useful oils such Triacylglycerols or in the form 
of Polyhydroxy Alkanoate polymers [81, 82]. This indicates 
the potential ability to use Acinetobacter strains (including 
SFB21) to remove FOG from a system, a capability that would 
be useful in FOG remediation applications and may suggest 
that future isolation strategies may consider targeting Acine-
tobacter strains more specifically using specialised media [83].

While the isolated strains have potential for remediation, 
one clear concern is potential pathogenic capability. This 
is a difficult conundrum since unsurprisingly these patho-
genic faecal organisms are present in wastewater, however, 
it is in manufacturing processes and facilities that a poten-
tial problem arises with the manufacturing of potentially 
pathogenic Klebsiella and Serratia strains at scale. Therefore, 
given the non- pathogenic nature of Acinetobacter schindleri 
and bouvetii strains [77], like SFB21 here, it may be that 
future strategies should concentrate on the isolation of FOG 
degrading Acinetobacter strains for use in microbial consortia 
for FOG degradation as an alternative to Bacillus and Pseu-
domonas strains, although we acknowledge much of this work 
focuses on grease traps [84].

Finally, fatberg deposits are not composed solely of FOG, 
but are also made up of proteinaceous and carbohydrate 
substances [85]. Hence it is likely that any useful bioaddition 
strains or consortia should also have the ability to degrade a 
range of substrates. It is thus notable that the isolates in our 
study are also known for their ability to grow on a range of 
substrates and produce extracellular proteases, as seen in our 
genome sequences (not shown) but also in the literature [86].

As with any culture- based enrichment or selection strategy, the 
snapshot of organisms present is biassed by that enrichment 
media. Therefore, we also conducted 16S rDNA metagen-
omics of our two fatberg samples using Illumina- based 
sequencing. Firstly, the genus Acinetobacter and Klebsiella 
were found across all samples in the 16S rDNA sequencing 
study performed (ranging from 0.36–4.2% and 0.04–3.6%, 
respectively). In contrast, Serratia was only detected as a 
minor component of the fatberg microbiome (<0.01 %). Of 
note, the genera commonly used in FOG biological treat-
ment products are reported to be Pseudomonas and Bacillus 
species [84, 87], but these contributed to less than 1 % of 
the genera in our NGS screens. These data also revealed a 
diverse microbial community in these samples, on average 
around 300 potential species, many of which are commonly 
seen in wastewater samples (e.g. Xanthomonas, Fong and Tan 
[88]; Sphingomonas, Yoon et al. [89]; Rhodoacter, Hiraishi 
et al. [90]). In one of the sample site datasets (sample 1); 
there was dominance by the genus Xanthomonas (17.5 % of 
reads), an organism well known for its lipolytic properties 
in the context of plant pathogenesis [91]. In contrast, data 
from sample 2 were more variable, containing many spp. at 
much lower levels. Perhaps surprisingly both contained a 
significant number of obligate anaerobes, many members of 
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the gut microflora (e.g. Bacteroides, Cloacibacterium, Prevo-
tella) – however, our enrichment process would of course 
select against these and again may suggest future work should 
possibly take this into account. Future studies incorporating 
anaerobic selection conditions, alternative carbon sources 
(e.g. other carbohydrates, e.g. starch [85]) or limiting dilution 
approaches may improve recovery of species [60].

As outlined we chose five highly active strains for further 
characterization by genome sequencing and in growth 
experiments. Notably, all of our strains showed growth in 
the presence of olive oil as a FOG substrate in a synthetic 
wastewater medium (Fig. 4), which was boosted by inclusion 
of acetate indicating the potential to both degrade and utilize 
FOGs in the environment. While we have successfully isolated 
a range of FOG utilizing lipolytic strains, we are aware that 
none of our strains are well- adapted to growth solely on FOG, 
indicating that any potential application will need to ensure 
the presence of acetate. Alternatively, future enrichment 
strategies should attempt to isolate strains without acetate or 
attempt to adapt or evolve strains to improve FOG- dependent 
growth/degradation. Favourably, acetate levels are known 
to be significant in wastewater [48], suggesting that these 
organisms should survive in situ and that co- inoculation with 
acetate- based media may boost lipolysis. Carbon and nitrogen 
ratios have been identified as important for lipid degradation 
and so further investigation to determine performance and 
application of FOG degrading consortia would be important 
for future development [85].

Conclusion

In this study, we have increased understanding of the environ-
ment at FOG blockages and improved our understanding of 
microbial communities (microbiome) at fatberg sites, identi-
fying for the first time the diverse range of organisms present.

Additionally, our isolation of a selection of lipolytic strains 
able to utilize FOGs as growth substrates highlights the 
potential of this approach of going to the environment for 
natural tailored solutions to solid FOG blockages, especially 
since they differ from current bioaddition strains in use (e.g. 
Bacillus strains). We consider these organisms, and especially 
Acinetobacter strain SFB 21 as having potential as part of a 
FOG degrading consortia, and preliminary unpublished work 
indicates that they are capable of reducing FOG content in 
domestic wastewater under laboratory conditions, and will 
be a focus of future work. We, therefore, have devised a 
strategy that could be applied to other wastewater situations 
to isolate potential FOG- treatment strains that are currently 
being taken forward and pave the way for the production of 
FOG- blockage tailored microbial consortia targeting solid 
deposits that may outperform current solutions.
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