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ABSTRACT 

Objective. To test the ability of machine learning (ML) approaches with clinical and 

genomic biomarkers to predict methotrexate treatment response in patients with early 

rheumatoid arthritis (RA). 

Methods. Demographic, clinical and genomic data from 643 patients of European 

ancestry with early RA (mean age 54 years; 70% female) subdivided into a training 

(n=336) and validation cohort (n=307) were used. The genomic data comprised 160 

single nucleotide polymorphisms (SNPs) previously associated with RA or methotrexate 

metabolism. Response to methotrexate monotherapy was defined as good or moderate 

by the European League Against Rheumatism (EULAR) response criteria at 3-month 

follow-up. Supervised ML methods were trained with 5-repeats and 10-fold cross-

validation using the training cohort. Prediction performance was validated in the 

independent validation cohort. 

Results. Supervised ML methods combining age, sex, smoking, rheumatoid factor, 

baseline Disease Activity Score with 28-joint count (DAS28) and 160 SNPs predicted 

EULAR response at 3 months with the area under the receiver operating curve of 0.84 

(p=0.05) in the training cohort and achieved a prediction accuracy of 76% (p=0.05) in the 

validation cohort (sensitivity 72%, specificity 77%). Intergenic SNPs rs12446816, 

rs13385025, rs113798271, and ATIC (rs2372536) had variable importance above 60.0 

and along with baseline DAS28 were among the top predictors of methotrexate response. 

Conclusion. Pharmacogenomic biomarkers combined with baseline DAS28 can be 

useful in predicting response to methotrexate in patients with early RA. Applying ML to 



 
 

 

predict treatment response holds promise for guiding effective RA treatment choices, 

including timely escalation of RA therapies.  

Significance and Innovations 

• Informative predictors of response to treatment with methotrexate in patients with 

early rheumatoid arthritis (RA) are lacking. 

• This study is one of the first to apply machine learning methods integrating 

clinical and genomic data for individualized prediction of response to 

methotrexate in patients with early RA. 

• Pharmacogenomics biomarkers combined with baseline DAS28 predicted 

response to methotrexate in patients with early RA more reliably than clinical 

data alone, with replication in the independent validation cohort. 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

A treat-to-target approach is a cornerstone of current American College of 

Rheumatology (ACR) and European League Against Rheumatism (EULAR) guidelines 

for rheumatoid arthritis (RA) treatment, aimed at achieving remission or low disease 

activity, in order to combat the adverse outcomes in RA (1, 2). Despite the growing 

armamentarium of RA therapeutics, methotrexate remains the preferred initial disease-

modifying antirheumatic drug (DMARD) for RA (1).  

While for many patients, methotrexate is the only drug needed to control RA 

disease activity, 30-40% of patients are non-responders to methotrexate and more than 

50% of patients discontinue methotrexate within 3-5 years due to non-response or side 

effects (3). Composite measures of RA disease activity, i.e. disease activity score with 28 

joint count (DAS28) and instruments incorporating change in DAS28 over time in addition 

to an absolute level of DAS28 (i.e. EULAR response criteria) have been validated for 

measuring treatment efficacy in RA and reflect a clinically meaningful target of reaching 

low disease activity or remission (4-6). A 3- to 6-month trial of methotrexate treatment is 

generally recommended before a decision is made regarding its effectiveness (1). 

Predicting response to methotrexate early (i.e., at 3-month follow-up) would inform timely 

escalation of treatment for improved control of RA disease activity, avoiding unnecessary 

risk of methotrexate-related side-effects in early RA. Clinically useful predictive 

algorithm(s) effectively identifying patients with early RA who are likely to respond to 

methotrexate are lacking.  

Baseline clinical predictors can reliably identify only a small proportion of patients 

with RA at high-risk of treatment failure which is insufficient to individualize treatment 

decisions early in the disease course(7). Importance of genetic factors in the 



 
 

 

predisposition to RA and their contribution to high inter-personal heterogeneity of clinical 

presentation and response to treatments, such as methotrexate, suggests that addition 

of genetic markers may aid in personalized prediction of methotrexate efficacy. While 

research in this area is scarce, small studies show that response to methotrexate can be 

predicted with clinical pharmacogenetic model, although these results have not been 

externally replicated (8, 9).  

We aimed to develop a predictive algorithm for a response to methotrexate based 

on sociodemographic, clinical, serological and genomic data of patients with early RA 

using machine learning (ML) methods. We hypothesized that clinical and 

sociodemographic factors augmented with genomic biomarkers can achieve cross-site 

replication in prediction of response to methotrexate therapy using the EULAR criteria.  

MATERIALS AND METHODS 

Patient population  

Data source. We leveraged data from our established collaboration between Mayo 

Clinic and the PhArmacogenetics of Methotrexate in Rheumatoid Arthritis (PAMERA) 

consortium (10). Data were available on patients with early RA who met 1987 

classification criteria for RA (11, 12) and had information on age, sex, race, ever smoking, 

positivity for rheumatoid factor (RF) and antibody to cyclic citrullinated peptide (anti-CCP), 

DAS28 with erythrocyte sedimentation rate (ESR) and/ or C-reactive protein (CRP) at 

baseline and 3 months of treatment, as well as genomic data.  

The genome-wide association study (GWAS) single nucleotide polomorphism 

(SNP) genotyping was performed at RIKEN, Japan, as previously described, using 

Illumina Human Omni Express + Exome (8). A total of 653711 SNPs passed the quality 



 
 

 

control (excluded chromosome Y, mitochondrial DNA, unplaced SNPs, failed SNPs and 

SNPs with minor allele frequency <0.01). The genomic data comprised numerical 

genotypes of the 160 SNPs associated with risk of RA and methotrexate metabolism 

identified during this GWAS with addition of SNPs that were found significant in studies 

by other groups (Supplemental Table 1). Of them, 35 SNPs were observed, i.e., directly 

genotyped in our genome-wide PAMERA study (8); 108 SNPs had an imputation quality 

R2 score of 0.7 or greater. Genotypes were imputed using EZimputer 

(http://bioinformaticstools.mayo.edu/research/ezimputer/) with the 1000 genomes phase 

1 cosmopolitan reference panel (EZimputer uses impute2). For SNPs that were not found 

in our database, we selected the SNPs that had the highest linkage disequilibrium (LD) 

and was within 200kb of the original SNP, using the following tool 

http://grch37.ensembl.org/Homo_sapiens/Tools/LD (Supplemental Table 2). LD R2 for 

those SNPs were between 0.53 and 1.0. Dprime was between 0.92 and 1.0. Data analysis 

was done using NCBI build 37. 

All patients were treatment-naïve, initiated on methotrexate monotherapy at 

baseline and completed a 3-month course of methotrexate (PO or SQ). Users of 

glucocorticoids with a prednisone equivalent dose ≥15 mg/day at 3 months were 

excluded. Out of the initial sample of 763 patients, patients who were lost to follow-up 

(n=71), did not have clinical data (n=16), and were not taking methotrexate at 3 months 

(n=33) were excluded, resulting in 643 patients who were included in the study.  

Clinical outcomes: definition of response. Responders to methotrexate 

monotherapy were defined as patients who were on methotrexate at 3-month follow-up 

and had good or moderate response by the EULAR response criteria at 3 months (5). 



 
 

 

The following cut-offs were used. Good response: DAS28 is <3.2 at 3 months, decrease 

by >1.2 from baseline; moderate response: DAS28 <3.2 and a decrease >0.6 and <1.2, 

or a DAS28 >3.2 but less than or equal to 5.1 plus a decrease >0.6, or a DAS28 >5.1 and 

a decrease >1.2. Non-responders were defined as patients who were treated with 

methotrexate for 3 months but no response by the EULAR response criteria at 3 months.  

To develop and validate the prediction models, all patients (n=643) were 

subdivided into a training cohort including patients from Yorkshire, the United Kingdom 

(n=336) as the largest single-site sample, and a validation cohort of patients recruited 

elsewhere across Europe (n=307), i.e. Sweden (n=267) and Netherlands (n=40).  

Statistical Methods  

Baseline RA activity data, sociodemographic, clinical, and genomic data were used 

to predict response to methotrexate treatment. Binary outcomes of response (i.e. good or 

moderate response by EULAR criteria) versus non-response at 3 months were used. 

Random forests (i.e., randomForest R library) were used because of their mathematical 

ability to handle discrete data (e.g., genotypes) and correlated predictor variables. 

Random forests also grow multiple decision trees, with the difference that they use 

samples of data and subsets of the covariates to avoid overfitting. These flexible 

approaches can capture latent traits and have demonstrated robust predictive capabilities 

in several clinical applications (13).  

The ML strategy is shown in Figure 1. To minimize the effects of overfitting, 

information leak, and to use all training data, nested cross-validation (nested-CV) with 5 

repeats was used to train the classifiers by tuning model hyperparameters, which 

maximizes the area under the receiver operating curve (AUC) (14).  A new random split 



 
 

 

of data was created in each repeat, and the nested-CV comprised an outer loop and an 

inner loop. The outer loop uses fivefold cross-validation to split the data into training data 

(80% of the data) and validation data (the remaining 20%). The inner loop uses the 

training data to train the classifier with 10-fold cross-validation, and the trained classifier 

is tested on the validation data. To minimize the effects of class imbalance (i.e., unequal 

numbers of responders (60%) and non-responders (40%)) in the training data and 

achieve balanced probabilities of classes for training prediction models, we used the 

synthetic minority over-sampling (SMOTE) algorithm, which simulates patient profiles of 

the under-sampled class and up-samples the under-sampled class to ensure that the two 

classes have equal sizes (15). Following the recommended practice of grid-search to find 

the optimal number of trees that maximize predictive performance during training only, 

the tuning parameter (i.e., mTry variable) was set as the square root of the total number 

of variables used in building the tree, and the number of trees selected was 500, 1000, 

1500, and 2000 (16).  

Random forests were trained on PAMERA’s UK patients’ (N = 336) baseline 

DAS28, RF-positivity, smoking, and sociodemographic factors (Model 1), as well as with 

the addition of the pharmacogenomics data (Model 2) to predict 3-month response to 

methotrexate (i.e. good or moderate response by EULAR criteria) versus non-response. 

We then externally validated the trained prediction model using the independent 

validation cohort of RA patients (N = 307)(17). Subgroup analyses using the same 

predictors and outcome were performed in a subset of patients who received at least 15 

mg/week of methotrexate at 3 months and in a subset of anti-CCP positive patients.  



 
 

 

Top predictors (using variable importance) and the highest-achieved AUC are 

reported for the training models. For the chosen prediction model we report the standard 

deviation (SD) of AUC derived during cross-validation. For external validation of the 

trained models, prediction performance is reported using positive predictive value (PPV), 

negative predictive value (NPV), sensitivity, specificity, and statistical significance. We 

also report the importance of predictor variables (using varImp function in R) wherein 

variables with higher importance scores signify that the mean decrease in prediction 

accuracy is higher if that particular variable is not used. If the variable importance is zero, 

it means that the variable is not strongly associated with any of the outcomes. Variable 

importance from the trained models is tabulated for the top 20 predictors. To study the 

classifier’s classification performance versus the observed event rates in the validation 

data, the statistical significance of the classifier’s accuracy was established using the null 

information rate (NIR, i.e., the class’s prevalence with the largest samples in validation 

data), which served as a proxy for chance. Calibration was assessed for the validation 

cohort using calibration plots and the Hosmer-Lemeshow test. Recalibration was 

performed by re-estimating the intercept and slope for the model prediction in the 

validation cohort (18). 

RESULTS 

Clinical characteristics of patients  

Characteristics of the 643 patients are shown in Table 1. Patients from the UK and 

other Europe were comparable in their age, sex, race and smoking habits. The majority 

of patients were positive for RF or anti-CCP antibody. EULAR response criteria for good 

or moderate response at 3 months were met in 55% patients from the UK and 72% of 



 
 

 

patients from other Europe. The majority of patients (84% overall) received methotrexate 

in the dose of 15 mg/week or higher at 3-month follow-up. 

Individualized prediction of response to methotrexate treatment: model performance  

Table 2 shows the models' prediction performance using sociodemographic, 

clinical and pharmacogenomics data. Age, sex, RF-positivity and baseline DAS28 

predicted EULAR response at 3 months with an AUC of 0.54 in the training cohort 

including all patients, with an accuracy of 55% (p=0.98) in the validation cohort. 

Supervised ML methods that combined demographics, RF status, baseline DAS28 and 

160 SNPs predicted EULAR response at 3 months with an AUC of 0.84 (p=0.05) in the 

training cohort and achieved prediction accuracies of 76% (p=0.05) in the validation 

cohort (sensitivity 72%, specificity 77%). The addition of genomic data improved the 

predictive accuracies of methotrexate response by 21%. However, calibration was poor 

in the validation set. Following recalibration, the calibration was good for those with low 

and high probability of response, but calibration was still poor in the mid-range (Figure 2). 

In a subset of patients using at least 15 mg/week of methotrexate at 3 months, the 

performance of the model combining clinical and genomic markers was similar to the 

original model, with AUC 0.83 and accuracy 74% in the validation cohort (Table 2). In a 

subset of anti-CCP positive patients, the model combining clinical and genomic markers 

showed very high sensitivity (98%) and NPV (99%), but overall prediction accuracy (68%) 

was not statistically significantly better than the NIR (p=0.94).   

Variable importance in clinical and pharmacogenomic models 

In Model 1 (clinical model including all patients), DAS28 and age were the two top 

predictor variables (importance 100.00 and 89.33, respectively), followed by smoking 



 
 

 

status (importance 0.82) and RF-positivity (importance 0.58). Sex was not a significant 

predictor (importance 0.00). 

In Model 2 (clinical and pharmacogenomic model in all patients), the intergenic 

SNPs rs12446816, rs13385025, rs113798271, and ATIC (rs2372536) had variable 

importance above 60.0 and were among the top predictors of methotrexate response. 

Baseline DAS28 was among the top 10 predictors while age was of lower importance 

(Table 3). Models including clinical and pharmacogenomic markers in subsets of patients 

receiving >15 mg/week of methotrexate at 3 months and in anti-CCP positive patients 

had overlap in genomic predictors between each other and with Model 2 (Table 3).   

DISCUSSION 

Despite the growing number of studies reporting promising clinical and genomic 

markers of response to methotrexate and other anti-rheumatic treatments in RA, the 

current trial-and-error approach to treatment remains unchallenged due to high clinical 

heterogeneity of patients caused by genetic polymorphism and uncontrolled variation of 

environmental risk factors for individuals. Clearly, there is a need to develop a precision 

medicine approach toward treatment to achieve better results in the populations that are 

most likely to respond to a given treatment (19). This study is one of the first to apply ML 

methods to the individualized prediction of response to methotrexate in patients with early 

RA using sociodemographic, clinical and genomic data, with validation in an independent 

cohort. Polymorphisms associated with RA susceptibility, disease expression and 

methotrexate metabolism were among the top-20 predictors of response to methotrexate 

at 3 months and improved performance of the pharmacogenomic model over the clinical 

model by 21% in the validation cohort. This supports the value of combining genomic and 



 
 

 

clinical data as a promising avenue for development of clinically useful individualized 

prediction of response to methotrexate therapy.  

The statistical significance for prediction performance was borderline. However, 

consistent with our study hypothesis, the discriminative ability (AUC = 0.84) of the model 

was better than chance, wherein the NIR was a proxy for chance. Additionally, the model 

achieved cross-site replication with balanced prediction accuracy of 76% in the validation 

cohort which reflects the ability to accurately predict both outcomes: response and non-

response. While calibration in the validation cohort was poor, it was good except in the 

middle of the range following recalibration to account for the higher response rate in the 

validation cohort. The uncertainty regarding model predictions in the middle of the range 

reflects the heterogeneity of the training and validation cohorts (e.g., higher proportion of 

patients using at least 15 mg/week of methotrexate in the validation cohort versus training 

cohort), and indicates partial utility when porting to other cohorts with room for further 

customization. Despite the improved prediction performance of our model over previous 

pharmacogenetic-based predictions (8, 9), the direct comparison between ours and this 

previous study is precluded by the use of different outcome definitions (EULAR response 

versus DAS44-based response), different timing of outcome assessment (3 versus 6 

months) and the use of 160 versus 17 SNPs (8).  

While prediction performance of our model in patients using at least 15 mg/week 

of methotrexate at 3 months was consistent with the model including all patients, the 

accuracy was lower in the subset of anti-CCP positive patients. This difference can be 

explained, in part, by specifics of their autoimmune phenotype (i.e. more aggressive 

disease) and underlying differences in genetic background of anti-CCP positive RA as a 



 
 

 

distinct subset of the disease (20, 21). Earlier studies showed that anti-CCP 

autoantibodies may inform RA treatment response in patients using biologics (e.g. 

abatacept and rituximab), and our results suggest that differential prediction by anti-CCP 

antibody status may be possible in methotrexate users, which requires further study (22, 

23).   

Genomic predictors 

Among polymorphisms associated with RA susceptibility and disease expression, 

SNP rs12446816 had the highest predictive importance in our model. This SNP has been 

significantly (p<1x10-5) associated with RA disease activity reflected in tender joint count 

using 28 joints (TJC28) in our earlier genome-wide association study of response to 

methotrexate, but was not one of the top SNPs associated with DAS28 response in that 

study (10). There are currently no known genes annotated for this SNP, but there are 

several link genes in this locus and the ERCC4 gene, responsible for DNA repair. The 

micro-RNA gene, MIR365A, is 300K bp from this SNP. The up-regulation of this gene in 

murine model of collagen induced arthritis was shown to enhance apoptosis and restrain 

proliferation of synoviocytes in RA (24). Regulatory function of the rs12446816 SNP in 

human disease remains to be established. A further three of the top significant SNPs have 

been previously associated with RA disease activity in the same GWAS: rs9910936 in 

EFTUD2; rs113798271, a non-coding SNP (upstream gene MIR5192 (-28159bp), 

downstream gene RN7SL51P (28686)), and rs77458347 in COL25A1 (10). Among RA 

polymorphisms associated with RA susceptibility, rs2234067 in ETV7 and rs11574914 in 

CCL21 emerged among top predictors in our study. Both of these genes have been 



 
 

 

previously implicated in pathogenetic pathways related to therapeutic targets and 

treatment response in RA (25-30).   

Similar to the study by Wessels et al. and other reports, polymorphisms implicated 

in adenosine metabolism encoded by ATIC were among the top predictors of response 

to methotrexate in our study. ATIC 347 GG (rs2372536, minor genotype) was previously 

associated with better response to methotrexate at 3 months compared with 347 GC and 

CC (31), which is concordant with our results. The minor allele of ATIC rs4673993, an 

intronic non-coding region, has been previously associated with low RA disease activity 

at 6 months of methotrexate monotherapy in a cross-sectional study (32). It was 

hypothesized that ATIC rs4673993 may play a role in the regulation of gene expression 

or can be in linkage disequilibrium with other SNPs (e.g. ATIC rs2372536) that may 

influence protein coding or gene expression. 

Clinical and sociodemographic predictors 

The strongest clinical predictor in this study was baseline DAS28. This finding is 

concordant with previous reports from observational studies and post-hoc analysis of 

randomized controlled trials (7, 8, 33). Associations of response to methotrexate in RA 

with age, smoking and RF-positivity in our clinical model are consistent with other reports 

(7, 9, 34).  

Previous studies in early RA from the BeSt (Behandelstrategieen voor Reumatoide 

Artritis [Treatment strategies for rheumatoid arthritis]) study subcohort and SWEdish 

PharmacOTherapy (SWEFOT) trial found that female sex was independently predictive 

of non-response to methotrexate (8, 34). Sex was not found to be an important predictor 

of response to methotrexate, similar to a study from Nijmegen RA cohort (9). 



 
 

 

Concordantly, recent data from well-defined prospective RA cohorts and clinical trials do 

not support systematic biologic differences between men and women with RA in clinical 

response, suggesting that definition of metrics of clinical response can bias the 

associations (35). Indeed, women are less likely than men to achieve remission defined 

by the DAS28-ESR, but have similar rates of remission or low disease activity defined by 

DAS28-CRP, CDAI and RAPID3 (35). Use of age- and sex-specific cut-offs for ESR or 

use of disease activity metrics not including ESR in future studies may help further refine 

our understanding of predictive value of sex in response to antirheumatic treatments.  

Relatively modest predictive importance of sociodemographic and clinical 

predictors in our study is in line with some earlier reports and reflects on clinical reality 

wherein clinicians are unable to individualize methotrexate therapy in current practice. 

For example, in a study from the UK baseline higher naïve T-cell frequency was found to 

be predictive of early RA remission at 6 months of first therapy with methotrexate, 

regardless of demographic, clinical or other immunologic parameters, and it was 

proposed that naïve CD4+ T-cells can be predictive of progression of inflammatory 

arthritis (36, 37). Taken together with our results, it suggests the role of assayble plasma 

biomarkers (e.g., genomics) relating to immune system that prove to be vital in 

individualizing methotrexate therapy in treating early RA.  

The results of this study should be considered in the context of the following 

limitations. While 160 SNPs were included in this study, it is possible that SNPs that were 

not included may also contribute to the prediction of response to methotrexate. GWAS 

screening for a larger number of SNPs predictive of methotrexate response will be 

needed to extend these data. Data on some risk factors that have been previously linked 



 
 

 

to lower likelihood of treatment response, including low socioeconomic status, obesity, 

mental and physical comorbidities would be expected to refine the prediction, but were 

not available for this study (7, 38, 39).  

All patients in this study reported using methotrexate at 3 months. Non-adherence 

at some point during the follow up in a minority of patients cannot be excluded as shown 

in previous studies (40). However, we believe it is unlikely to have a major impact on the 

results. Information on route of methotrexate administration (i.e. oral or subcutaneous), 

dose escalation, folic acid use, prednisone dosing between baseline and 3 months and 

creatinine levels was not available. Future studies should evaluate importance of these 

factors for individualized prediction of response to methotrexate.  

Data on anti-CCP antibody were missing for a proportion of subjects and were not 

included in the main model. However, we present the analysis for a subset of anti-CCP 

positive patients. This study was not a randomized trial and included patients who have 

completed 3-month treatment with methotrexate, not accounting for those who were 

excluded from the study. We had no data on outcomes at 6 months and later time points.  

This study included a homogenous population from a racial standpoint (about 98% 

patients were Caucasians in both cohorts), which is expected to reduce confounding by 

race but limits the generalizability of the study results to other races and ethnicities. 

With less than 20% DAS28-remission rates at 3 months, this study was not 

adequately powered to predict DAS28-remission. This shortcoming underscores the need 

for multicenter collaborative studies using larger datasets of patients with early RA on 

methotrexate monotherapy. Nevertheless, the EULAR response criteria is a validated 

measure for evaluation of treatment response in RA (4, 5), and good or moderate EULAR 



 
 

 

response has been associated with improved functional capacity and less progression in 

joint damage compared to EULAR non-response (4). EULAR criteria have been used 

successfully in other recent studies aimed at prediction of response to antirheumatic 

treatments at 3-month time-point when remission is infrequent (35, 41). Thus, using 

EULAR criteria at 3 months is well-justified and can be a valuable first step towards 

individualized prediction of response to methotrexate treatment.  

Strengths of the study stem from the high-quality of the uniformly collected data 

from the PAMERA consortium and advantages of international collaboration, including 

the unique availability of two geographically independent cohorts of previously treatment-

naïve patients with early RA who were treated with methotrexate monotherapy for 3 

months with a 3-month follow-up; uniform collection of clinical data at baseline and 3-

month follow-up, and availability of sociodemographic and genomic data. While we had 

no data on outcomes at 6 months, previous studies have shown that in over 75% of 

patients, the trajectory of response or non-response to methotrexate is consistent 

between 3 and 6 months (8). Thus, using a 3-month time-point strengthens the study as 

it may be beneficial for early optimization of treatment.  

Our model achieved cross-site (i.e. in the independent cohort) replication in 

prediction performance, which is an advantage over the previous studies lacking an 

external validation cohort (8). The model included easily available clinic measures and 

robust set of genomic markers which improved the performance of the model over the 

NIR by 4%. The study takes advantage of the ML approach combining sociodemographic, 

clinical and genomic data. Previous studies by our group have successfully applied a 

similar approach for prediction of drug response to antidepressants (42). Validation of the 



 
 

 

model in a larger sample of patients with early RA, developing individualized prediction 

of adverse effects with methotrexate treatment and evaluating clinical impact and cost-

effectiveness of our predictive model compared to other available models are the next 

steps in model development, as part of translation of clinical research to clinical practice, 

according to the Prognosis Research Strategy (PROGRESS) framework (43). 

In summary, in patients with early RA pharmacogenomic biomarkers combined 

with baseline DAS28 predicted response to methotrexate by the EULAR criteria at 3 

months more reliably than demographics and DAS28 alone, with replication in the 

independent validation cohort. These findings suggest that models combining clinical data 

and pharmacogenomic biomarkers for prediction of methotrexate response hold promise 

for guiding effective RA treatment choices and timely escalation of RA therapies. Further 

studies on personalized prediction of response to methotrexate and other anti-rheumatic 

treatments are warranted to optimize control of RA disease and improve outcomes for 

patients with RA. 
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Figure 1: Machine learning strategy 

Figure 2. Calibration plot for assessment of the machine learning model in the validation dataset (panel A) and 
following recalibration (panel B). 
 
  



 
 

 

 
Table 1. Patient characteristics 

Variable UK (n=336) Other Europe (n=307) Overall (n=643) 

Age, mean (SD) 58.6 (13.1) 53.4 (13.8) 56.1 (13.7) 

Sex, female, n (%) 239 (71.1%) 219 (71.3%) 458 (71.2%) 

Race, n (%) 
- Black 

 

4 (1.2%) 

 

4 (1.3%) 

 

8 (1.2%) 

- Caucasian 332 (98.8%) 299 (97.4%) 631 (98.1%) 

- Other 0 (0.0%) 4 (1.3%) 4 (0.6%) 

Time from baseline to follow-up, 
days, n (%) 

 

108.1 (30.3) 

 

113.2 (28.9) 

 

110.5 (29.7) 

Smoking, ever, n (%) 204 (60.7%) 181 (59.0%) 385 (59.9%) 

Rheumatoid factor positive, n 
(%) 
- Missing, n   

233 (71.9%) 

12 

198 (65.3%) 

4 

431 (68.7%) 

16 

Antibody to cyclic citrullinated 
peptide, n (%) 
- Missing, n   

 

150 (66.4%) 

110 

 

177 (58.6%) 

5 

 

327 (61.9%) 

115 

 Baseline characteristics 

DAS28, mean (SD) 5.6 (1.4) 5.7 (1.1) 5.6 (1.3) 

Methotrexate dose, mg/week; n 
(%) for each dose 

   

    Missing, n 0 2 2 

   <15 335 (99.7%) 294 (96.4%) 629 (98.1%) 

   >/= 15 1 (0.3%) 11 (3.6%) 12 (1.9%) 

 Characteristics at 3-month follow-up 

DAS28, mean (SD) 4.4 (1.6) 4.0 (1.4) 4.2 (1.5) 

Methotrexate dose, mg/week; n 
(%) for each dose 

   

<15 89 (26.4%) 15 (4.9%) 104 (16.1%) 



 
 

 

>/= 15 247 (73.6%) 292 (95.1%) 539 (83.9%) 

Prednisone use ever during the 

study, n (%) 

 

65 (19.3%) 

 

38 (12.4%) 

 

103 (16.0%) 

EULAR response, n (%) 185 (55.1%) 221 (72.0%) 406 (63.1%) 

Categories of the EULAR 
response, n (%) 

    good 

 

 

68 (20.2%) 

 

 

83 (27.0%) 

 

 

151 (23.5%) 

    moderate 117 (34.8%) 138 (45.0%) 255 (39.7%) 

    none 125 (37.2%) 85 (27.7%) 210 (32.7%) 

    worsening  26 (7.7%) 1 (0.3%) 27 (4.2%) 

ACR-EULAR Boolean 
remission*  

16 (5.0%) 27 (8.8%) 43 (6.9%) 

Remission defined as 
DAS28<2.6  

49 (14.6%) 61 (19.9%) 110 (17.1%) 

* Remission defined as TJC<=1, SJC<=1, CRP<=10 and PGA<=10  
  



 
 

 

Table 2. Prediction performance of the models using sociodemographic and clinical data alone, as well as 
combined with pharmacogenomics data: a) in all patients, b) in patients using at least 15 mg/week of 
methotrexate and c) in patients positive for antibody to cyclic citrullinated peptide 
 

a) All patients 

Predictors 

TRAINING 
DATA VALIDATION DATA 

 AUC  
(SD) 

Accuracy 
(%) 

p-
value 
(NIR) 

95% CI 
of 

accuracy 

Se 
(%) 

Sp 
(%) 

PPV 
(%) 

NPV 
(%) 

Baseline DAS28, rheumatoid 
factor, sociodemographics (age, 
sex, smoking) 

0.54  
(0.03) 

54.7 
0.98 

(0.72) 
49, 60.4 54 55 31 75 

Baseline DAS28, rheumatoid 
factor, sociodemographics (age, 
sex, smoking) and 
pharmacogenomics biomarkers 

0.84  
(0.02) 

76.2 
0.05 

(0.72) 
71.1,80.9 72 77 55 87 

b) Methotrexate Dose Subset 

Predictors 

TRAINING 
DATA VALIDATION DATA 

 AUC  
(SD) 

Accuracy 
(%) 

p-
value 
(NIR) 

95% CI 
of 

accuracy 

Se 
(%) 

Sp 
(%) 

PPV 
(%) 

NPV 
(%) 

Baseline DAS28, rheumatoid 
factor, sociodemographics (age, 
sex, smoking) 

0.55  
(0.03) 

52.4 
1 

(0.72) 
46.5, 
58.3 

56.7 50.7 31.3 74.5 

Baseline DAS28, rheumatoid 
factor, sociodemographics (age, 
sex, smoking) and 
pharmacogenomics biomarkers 

0.83  
(00.03) 

74 
0.06 

(0.72) 
68.5, 
78.9 

79.5 71.8 52.8 89.8 



 
 

 

c) Anti-CCP Subset 

Predictors 

TRAINING 
DATA VALIDATION DATA 

 AUC  
(SD) 

Accuracy 
(%) 

p-
value 
(NIR) 

95% CI 
of 

accuracy 

Se 
(%) 

Sp 
(%) 

PPV 
(%) 

NPV 
(%) 

Baseline DAS28, rheumatoid 
factor, sociodemographics (age, 
sex, smoking) 

0.56  
(0.05) 

50.85 
0.99 

(0.75) 
43.2, 
58.4 

51.2 50.8 25 76.4 

Baseline DAS28, rheumatoid 
factor, sociodemographics (age, 
sex, smoking) and 
pharmacogenomics biomarkers 

0.74  
(0.03) 

68.36 
0.94 

(0.75) 
61.0, 
75.1 

97.7 59 43 98.8 

 
Abbreviations: anti-CCP = antibody to cyclic citrullinated peptide; DAS28 = disease activity score with 28 joints; AUC = 
area under the receiving operation curve; NIR = null information rate; CI = confidence interval; Se = sensitivity; Sp = 
specificity; PPV = positive predictive value; NPV = negative predictive value; SD = standard deviation. 
 
 



 
 

 

Table 3. Variable importance for prediction of methotrexate response across 3 
models 

All patients 
Methotrexate Dose 

Subset Anti-CCP Subset 

Importance Variable Importance Variable Importance Variable 

100.00 rs12446816   100.00 rs2372536 100.00 rs1175813 

70.63 rs13385025 97.99 rs13385025 88.92 rs71508903 

66.43 rs113798271    90.35 rs113798271 88.02 rs112502846 

63.86 rs2372536       88.78 rs10790268 87.11 rs59716545 

57.78 rs112502846    80.71 rs11258264 77.06 rs11188513 

57.00 rs10790268     75.63 rs71508903 72.92 DAS28_base 

52.61 DAS28_base 75.13 rs12446816 72.58 rs9378815 

50.79 rs71508903      74.42 rs2639225 72.00 rs1964995 

50.48 rs2234067       74.37 rs9910936 68.79 rs7071836 

48.44 rs1964995       65.65 rs1964995 64.16 rs12517451 

48.40 rs59716545     64.32 rs7563206 62.22 rs10790268 

48.14 rs34695944     63.75 rs77458347 52.79 rs9603616 

47.76 rs4673993       63.21 rs9603616 48.10 rs10058818 

46.07 rs77458347      62.56 rs11889341 44.81 rs314637 

44.99 rs4272         61.98 rs11933540 44.20 rs10774624 

43.10 rs11574914   60.87 rs1950897 42.89 rs13385025 

42.47 rs9603616 59.96 rs3775194 42.36 rs5945173 

42.17 Age             59.13 rs112502846 42.28 rs1950897 

41.00 rs678347        58.71 rs59716545 42.23 rs73013527 

40.57 rs9910936       57.43 rs4673993 41.70 rs6903359 

      

   
Common between Anti-CCP and Methotrexate Dose 
Subsets 

   
Common between Methotrexate Dose Subsets and All 
Patients 

   Common across all 3 groups of patients  
Abbreviations: DAS28_base = disease activity score with 28 joints at baseline 
Anti-CCP = antibody to cyclic citrullinated peptide 
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