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Abstract 

Computational models are widely used to describe engineering systems and to predict their 

behaviour. However, in many applications, these computational models do not capture the 

complete physics of the real system, leading to model discrepancy. Model discrepancy causes 

bias in the inferred model parameters when it is not properly accounted for. This paper proposes 

a novel approach that seeks to capture the functional form of the model discrepancy and reduce 

bias in the estimated model parameters through and equation discovery procedure. A sparse 

Bayesian model is proposed, where sparsity is introduced through a hierarchical prior structure, 

providing a mechanism for removing erroneous candidate model terms from a series of 

potential equations as a part of an equation discovery procedure. At the same time, a Gaussian 

process model is used to account for model discrepancy. These two modelling assumptions are 

combined in a Bayesian formulation, allowing the system parameters and model discrepancy 

to be inferred in a probabilistic manner with associated uncertainties quantified based on their 

posterior distributions. The resulting method is capable of simultaneously providing physical 

insights into the system behaviour, by selecting the appropriate candidate model components 

and their respective system parameters, whilst compensating for model discrepancy that may 

occur due to an incomplete set of candidate terms. In order to efficiently solve the statistical 

model, an expectation maximisation algorithm is proposed for performing inference, and 

illustrative examples are presented to validate the proposed method. It is shown that compared 

to using a conventional sparse Bayesian approach for performing equation discovery, such as 

the Relevance Vector Machine, the proposed method provides better equation selection and 

parameter estimation, with less bias in the parameter estimates. 
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1. Introduction 

Physics-based computer models are widely used to describe engineering systems and make 

predictions of their responses. System identification[1] is concerned with identifying the model 

forms and extracting associated model parameters based on the measured system response, 

which can then be used for further prediction and control of the system behaviour. System 

identification can normally be divided into two parts, model selection [2,3] and model updating 

[4,5]. The first part focuses on determining the functional forms or structures of the model 

while the second part focuses on estimating the parameters associated with the model. Equation 

discovery has been proposed as a method for recovering system forms and associated system 

parameters from observed system data [6,7]. Equation discovery as a concept is seen as distinct 

from parameter estimation or model selection, even though there are some similarities. For 

example, model selection typically focuses on selecting one model from a set of candidate 

models (usually probabilistically) that best predicts the observed response data, whilst equation 

discovery seeks to select model components to construct the overall model from a design 

matrix (which is a set of candidate model components), that together best predicts the observed 

system response. In addition, whilst selecting the most appropriate candidate model 

components, equation discovery approaches also estimate their corresponding system 

parameter values. This is different from model updating which mainly focuses on estimation 

of system parameters with a fixed model form.  

However, as stated by Box [8], ‘all models are wrong, but some are useful’, with models being 

imperfect reflections of reality due to modelling simplifications, missing physics, numerical 

approximations etc. Formally, the mismatch between the output of a computer model (when 

the true model parameters are known) and the observed system response is known as model 

discrepancy, and exits in all computer models to varying degrees [9]. Model calibration based 

on measured system response data is often required in order to ensure that the model is an 

accurate representation of the real system [10,11]. Without a mechanism for properly 

accounting for model discrepancy during calibration, the inferred parameter estimates will be 

biased, as first considered by Kennedy and O’Hagan [9].  
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State-of-the-art equation discovery methods [6,7] assume that the ‘true’ set of model 

components are included in the design matrix (which is an over-defined set), such that their 

corresponding ‘true’ parameter values can be obtained. However, in practice the set of 

candidate model components is likely to be incomplete, as it is difficult to predict and include 

all possible physics in the design matrix. The effect of missing some ‘true’ model components 

from the design matrix leads to model discrepancy in a similar manner to model calibration 

methods (as stated previously). When the design matrix does not include all the necessary 

correct model components that would be found in the real-world system, this model 

discrepancy leads the equation discovery procedure to select erroneous ones, as well as 

inferring biased parameter estimates as the method is compensating for the missing physics. 

This paper focuses on the problem of performing equation discovery in the presence of model 

discrepancy, overcoming issues faced in equation discovery when a design matrix does not 

contain all the correct physics.  

The problem of model discrepancy within the calibration process has also been considered in 

the literature [9,12–15]. The idea of modelling discrepancy via a non-parametric regressor was 

first introduced by Kennedy and O’Hagan [9]. Several other studies have followed this 

approach [12–15] using Gaussian Process (GP) regression. However, this approach to 

accounting for model discrepancy, where the system parameters are inferred jointly with a GP 

model that captures the model discrepancy, has a fundamental problem [16] where the 

flexibility of the GP model can lead to identifiability issues [17]. Two solutions of this problem 

has been proposed: using more informative prior distributions for the system parameters and 

the GP model, or using physical constraints on the GP model [16,18,19]. Alternative 

approaches to the joint inference procedure have also been proposed, such as Bayesian history 

matching [20], which seek to overcome the non-identifiability problem by decoupling the 

parameter and model discrepancy inference. However, none of these techniques seek to 

identify and select the best set of system model components; capturing any model discrepancy 

that may occur and inferring any system parameters at the same time. 

Motivated by the above concerns, this paper tries to account for model discrepancy during an 

equation discovery procedure, i.e., removing erroneous model components (that are not 

physically representative of the real system) whilst accounting for model discrepancy and 

reducing any parameter bias simultaneously. The proposed method in this paper builds upon 

work using Relevance Vector Machines (RVM) [21], a form of sparse Bayesian inference, that 

were first suggested for performing equation discovery in [7]. The novel contribution of the 
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proposed approach in this paper is to extend this method to include a GP model [17] in order 

to account for model discrepancy. The idea is that the flexible GP model will be able to account 

for the behaviour of a system that is not covered by the formulaic model components included 

in the RVM. The RVM and GP model are encapsulated within a Bayesian formulation using a 

hierarchical prior structure, meaning posterior distributions for the model discrepancy and 

parameter uncertainty can be obtained. 

In order to efficiently solve the inference problem and to constrain the explanatory power of 

the GP model such that non-identifiability issues are reduced, an iterative expectation 

maximisation (EM) algorithm [22] is proposed. This is a similar approach to that taken in  [21] 

for performing inference in an RVM, even though the statistical model is formed in a Bayesian 

manner. The approach is demonstrated to not only reduce the selection of erroneous terms, but 

also reduce parameter bias compared to using an RVM for equation discovery. Additionally, 

compared to conventional model discrepancy approaches where fully non-parametric models 

are used, the method allows physics to be identified by estimating the system parameters. 

This paper is organised as follows. Details of the problem context investigated in this work are 

presented in Section 2. The Bayesian formulation used for parameter inference is proposed in 

Section 3. The EM-based inference procedure and the properties of the likelihood function are 

discussed in Sections 4 and 5, respectively. The proposed method is summarised in Section 6. 

Subsequently, parametric studies involving simulated and experimental data are presented in 

Section 7 before conclusions are made. 

2. Problem context and model specification 

Without loss of generality, the system considered in this study is assumed to have a set of 

measured inputs x  ( N D  matrix where N  is the number of measured points and D  is the 

dimension of input) and outputs y  ( 1N   vector). The governing equation can be represented 

as 

( ) ( ), ,f = + +y x θ x ψ ε  (1) 

where ( ),f x θ  is the system model (describing the physics of the system) and is a function of 

the inputs x  and a set of model parameters θ ; ( ), x ψ  is the model discrepancy term that is a 
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function of the inputs x  and a set of model hyperparameters ψ . The output of ( ), x ψ  is 

denoted as δ  ( 1N  ) and ε ( 1N  ) is the measurement error.  

First consider the system model ( ),f x θ  as a linear superposition over a set of basis functions 

given by 

( ),f =x θ Φθ  (2) 

where ( ) ( )1 M=    Φ x x  denotes the N M  ‘design’ matrix with its columns 

representing M  basis functions with respect to the inputs x . Conventionally, θ  is an 1M 

weighting vector. In this work, θ  is treated as a set of associated system parameters to be 

identified when components of the physics-based model are used as basis functions. 

A Gaussian Process (GP) model is adopted for the model discrepancy ( ).,.  in order to capture 

the missing physics of the system model. Specifically,  

( ) ( ) ( )( ), , , 'm k x ψ x ψ x x ψGP  (3) 

where ( ).m  and ( ).,.k  are the mean and covariance function (also known as a kernel function), 

with outputs of these functions denoted as m ( 1N  ) and K  ( N N ) respectively, which 

characterize the GP  model and also depend on a set of hyperparameters ψ . More details on 

choices of mean and covariance functions are given in [17].  

Finally, the measurement error ε  is modelled as an independent and identically distributed 

(i.i.d.) zero mean Gaussian with variance 2 .  

Here an example in structural dynamics is presented to illustrate the proposed model. For 

structural dynamic systems, the governing equation is often represented in a state-space form, 

which can be expressed in the form of Eq.(2). Consider a Single-Degree-of-Freedom (SDOF) 

non-linear dynamic system as an example: 
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( ),mq cq kq g q q u+ + + =  (4) 

where , ,m c k  are the mass, damping and stiffness, ( ).,.g  is an arbitrary function of 

displacement q  and velocity q , q  is the acceleration and u  is the input forces. Assuming 

1x q=  and 
2x q= , the state-space form of this system can be written as 

1 2x x=  (5) 

( )( )2 1 2 1, 2

1
x u kx cx g x x

m
= − − −  (6) 

Consider ( ) 3

3,g q q k q=  (a duffing oscillator) for example, the measured system response can 

be written in a compact matrix-vector notation as  

( ),= + +y Φθ x ψ ε  (7) 

Here, 2=y x , 3

2 1 1
 =  Φ u x x x  and  31/ / / /

T
m c m k m k m= − − −θ  (note that the 

input force can also be merged into the design matrix).  In this example, the input x  includes 

the input force u , the displacement 1x  and the velocity 2x . The output y  is the acceleration 

response of the system. The system parameters θ , the hyperparameters of the GP model ψ , 

and the noise variance 2  are the parameters to be inferred. 

The premise of this work is that physics-based models, and more specifically the design matrix 

used in equation discovery, typically will have some level of missing physics due to 

simplifications or lack of knowledge (i.e., the design matrix, to some degree, is incomplete). It 

is therefore a typical scenario that the complete set of ‘true’ model components are not included 

in the design matrix and some of the candidate model components are likely to be incorrect, 

leading to model discrepancy and bias in the estimated system parameters. In order to address 

this problem, sparse Bayesian inference is used to infer ( ).,.f , which allows some of the model 

components that do not provide a significant contribution to be removed during inference. The 

Least Absolute Shrinkage and Selector Operator (Lasso) method is the classic approach of 

introducing sparsity [23]. However, the most suitable sparsity level is determined in a non-

probabilistic manner. In this work, following [7] the RVM [21] is used, which allows the 

posterior distribution of the system parameters to be obtained and for terms inside the design 
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matrix to be removed in a probabilistic manner. It is also capable of being embedded in the 

Bayesian formulation that will be proposed in this work.  

The Gaussian process model used for discrepancy modelling in this work is a non-parametric 

model that does not make strong assumptions about the form of the function but depends more 

on the training data compared to conventional regression models. It should be noted that ‘non-

parametric’ here does not mean there is no model parameter to be inferred. A non-parametric 

model in this context means that the function is not defined explicitly and instead is defined 

through mean and covariance functions (which depends on hyperparameters ψ ). 

Finally, the assumption of the measurement error (i.e., i.i.d. zero mean Gaussian) is justified 

because the main difference between the measured system output and physics-based model are 

captured by model discrepancy, which may even have captured some element of a coloured 

noise process. It can therefore be assumed that Gaussian noise on the residual model 

discrepancy is sufficient in most cases.  

3. Bayesian formulation 

Based on the specified model introduced in the last section, a Bayesian statistical model is 

proposed in this section, defining the hierarchical structure that governs the system parameters 

θ , the hyperparameters ψ , and the noise variance 2 . The sparsity of the model components 

for the system model is first introduced using the RVM method [21] which allows erroneous 

model components in the design matrix to be removed. Meanwhile, the posterior distribution 

of the model discrepancy term is defined through a GP formulation [17]. These two models are 

combined into the Bayesian formulation proposed in this section. Detailed derivation and 

discussion are given as follows.  

First consider the system model ( ).,.f . In order to allow some of the model components to be 

removed from the design matrix, sparsity is introduced to the system parameters θ  through 

hyperparameters α  ( 1M  ) as 

( ) ( )1,p
−=θ α 0 AN  (8) 

where ( )diag=A α . Specifically, the hyperparameters α  control the variance of the 

hierarchical prior distribution of the system parameters θ . The effect of this prior α  on θ  is 
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that when 
i

 → , ( )i ip    will become a delta function, i.e., i  equals zero and the 

corresponding model component is excluded during inference. 

For a Gaussian process model, the probability density function of δ  (i.e., the output of model 

discrepancy term) given the hyperparameters ψ  can be expressed as 

( ) ( ),p =δ ψ m KN  (9) 

where m ( 1N  ) and K  ( N N )  are the outputs of the mean and covariance function (i.e.,  

( ).m  and ( ).,.k  in Eq.(3)) for the GP model, respectively.  

Following these definitions, the conditional distribution of y  given the system parameters θ , 

the model discrepancy δ  and noise variance 2  can be written as 

( ) ( )2 2, , ,p  = +y θ δ Φθ δ IN  (10) 

The marginal likelihood function ( )2, ,p y α ψ  can then be given by 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 2

1/2 1/2 2 1 2 1

, , , ,

1
2 exp

2

N TT T

p p p p d d 

  
− −− − −

=

 = + + − − + + − 
 

y α ψ y θ δ θ α δ ψ θ δ

I K ΦA Φ y m I K ΦA Φ y m

 
(11

) 

Fundamentally, the hyperparameters α , ψ  and 2  should be inferred based on the posterior 

distribution ( )2, ,p α ψ y  , which is given by 

( ) ( ) ( )
( )

2 2

2
, , , ,

, ,
p p

p
p

 
 =

y α ψ α ψ
α ψ y

y
 (12) 

This is generally intractable since the normalising integral (i.e., 

( ) ( ) ( )2 2 2, , , ,p p p d d d  = y y α ψ α ψ α ψ ) cannot be analytically obtained. Instead, the 

parameter inference can be achieved using a type-II maximum-likelihood method [24]. 

Assuming a uniform prior ( )2, ,p α ψ , the parameters then can be obtained by maximising 

the marginal likelihood in Eq.(11) or equivalently, its logarithm: 
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( ) ( ) ( )

( ) ( )

2

1

1
, , log 2 log det

2 2

1

2

T

N
L  

−

= − −

− − −

α ψ C

y m C y m

 (13) 

where 

2 1 T −= + +C I K ΦA Φ  (14) 

It should be noted that different priors over α  and 2  can also be considered. For example, a 

suitable choice can be Gamma distribution [24], which may lead to additional terms in the 

marginal likelihood (see details in Appendix A of [21]). The system parameter θ  can be 

estimated through its posterior distribution given by 

( ) ( ) ( )
( )

( )

2

2

2

, ,
, , ,

, ,

,

p p
p

p





=

y θ ψ θ α
θ y α ψ

y α ψ

μ Σ= N

 (15) 

where 

( )
1

1
2T


−− = + +  

Σ Φ I K Φ A  (16) 

( ) ( )1
2 T


−

= + −μ Σ I K Φ y m  (17) 

Regression models based on Gaussian process have very strong explanatory power to 

approximate any arbitrary functions, especially when universal kernels are used [25]. It is 

possible that the global maximum of the likelihood function (i.e., Eq.(11)) is located at a certain 

set of hyperparameters ψ  with the system parameters θ  equal to zero. Under this situation, 

the Gaussian process model takes over the role of the system model and ( ),= +y x ψ ε , which 

defeats the initial purpose (i.e., using ( ).,.  to capture the model discrepancy).  To balance the 

explanatory power of ( ).,.f  and ( ).,.  properly, i.e., finding the maximum of the likelihood 

function where the system model ( ).,.f  dominates, the EM method is used to infer the 

parameters of these two models. Details are discussed in the next section. 
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4. Inference Method 

The proposed formulation in Section 3 allows system parameters to be inferred in a fully 

Bayesian manner. i.e., the posterior distribution of the parameters is stated in Eq.(12). Although 

different inference methods can be used to solve the Bayesian model specified in Section 3, 

this work considers utilising the expectation maximisation (EM) [22] method. The EM method 

is chosen as the inference method, as it is an efficient parameter estimation technique based on 

the marginal likelihood function (i.e. Eq.(11)) when a uniform prior is assumed (as is assumed 

in Section 3). The EM method is a popular approach of maximising the likelihood function in 

an iterative way by using models that depend on latent variables. Specifically, consider the 

model parameters θ  as the latent variables. The parameters α , ψ  and  2  can then be updated 

between the expectation (E-) step and the maximisation (M-) step in the following way: 

E-step: Compute the expected log-likelihood function 

   ( )
 ( ) ( ) ( )( )

2

2 2 2

, , ,

, , , , E log , ,
t

t

Q p p


     =     θ y α ψ
α ψ α ψ y θ ψ θ α  (18) 

where E[.]  is the expectation operation and t  is the iteration number. Then 

M-step: Maximise    ( )2 2, , , ,
t

Q    
 
α ψ α ψ  to obtain 

 ( )    ( )1
2 2 2, , arg max , , , ,

t t

Q  
+  =  

 
α ψ α ψ α ψ  (19) 

Calculating the ( ).Q  function involves the first and second moment of θ  based on the current 

estimation of  2, ,α ψ , which can be obtained based on the conditional distribution 

( )2, , ,p θ y α ψ  in Eq.(15). The first moment of θ  is equal to μ  given in Eq.(17) and the 

second moment can be calculated as 

2

2

, , ,
E T


  = + θ y α ψ
θ Σ μ μ  (20) 

Substituting Eq.(17) and Eq.(20) into Eq.(18), the ( ).Q  function can then be rewritten as 
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 ( ) ( ) ( )( )

 ( )
( )

 ( ) ( )
2

2 2

2

, , ,

2

, , , , , ,

1 2

E log , ,

E log E log , ,

t

t t

Q p p

p p

Q Q



 





 =
 

  = +   

= +

θ y α ψ

θ y α ψ θ y α ψ

y θ ψ θ α

θ α y θ ψ  (21) 

where 

 ( )
( )

( )

21
, , ,

2
1

1
1

E log

log 2 log
2

t

N
ii i

i

i i

Q p

N
a

a



 −
−

=

 =  

 +
= − − + 

 


θ y α ψ
θ α

Σ
 (22) 

and 

 ( ) ( )

 ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

2

2

2

2
, , ,

2

, , ,

2

1 1
2 2

E log , ,

E log , ,

1
log 2 log det

2 2

1 1
tr

2 2

t

t

TT

Q p

p p d

N









 

 
− −

 =  

 =  

= − − +

 − − + + − + − +         



θ y α ψ

θ y α ψ

y θ ψ

y θ δ δ ψ δ

I K

y m Φμ I K y m Φμ Φ I K ΦΣ

 (23) 

It can be seen that α  and  2,ψ  are involved in the ( ).Q  function through 1Q  and 
2Q , 

respectively, which means they can be updated separately. The hyperparameters α  can be 

inferred by maximising 1Q . Note that α  is related to 1Q  through the form of ln /x c x+ , which 

has a unique minimum 1 ln c+  at x c= . The hyperparameters α  can then be updated as: 

2

1
i

ii i




=
+Σ

 (24) 

It can also be shown that Eq.(24) is equivalent to ( )2, , / 0iL    =α ψ  [21]. Investigation of 

( )2, ,L α ψ  with respect to α  is presented in the next section, which further facilitates the 

computation. On the other hand, the hyperparameters of the GP model ψ  as well as the noise 

variance 2  can be updated by maximising 
2Q . Noting that 2 +I K  is a symmetric matrix, 

and so techniques like Cholesky decomposition can be used for estimating its inverse. 



12 

 

The foregoing E and M steps are iteratively repeated until convergence of the marginal 

likelihood function, where the convergence criteria are discussed at the end of Section 6. Based 

on the assumption that the system model can capture the main behaviour of the real system, 

the EM iteration can be started with initial values of  2,ψ  set to zero (i.e., the measured 

output contains system model response only). By doing so,  2, ,α ψ  converges to the target 

optimum estimation corresponding to an balance between ( ).,.f  and ( ).,.  in which ( ).,.f  

is the dominant term. It should be noted that unlike conventional inference methods that try to 

find the global maximum of the likelihood function, the proposed method in this work uses an 

EM method to find the physically relevant maximum (regardless of whether it is global or not) 

where the system model dominates by deliberately controlling the initialisation point (and 

hence the searching space). 

5. Analysis of Marginal Likelihood 

The properties of the log-likelihood function ( )2, ,L α ψ  (i.e., Eq.(13)) with respect to α  are 

further investigated in this section. The sparsity due to α  is revealed, showing that α  can be 

updated analytically given the remaining parameters. The analysis in this section helps to 

facilitate computation in the proposed method.  

Consider the dependence of ( )2, ,L α ψ  on a single hyperparameter i . The covariance 

function C  can be decomposed as: 

2 1 1

1

T T

m m m i i i

m i

T

i i i i

a a

a

 − −



−
−

= + +   +  

= +  

C I K

C

 (25) 

The determinant and inverse of C  can then be given as 

( ) ( ) ( )1 1det det det 1 T

i i i i ia
− −

− −= +  C C C  (26) 

1 1
1 1

1

T

i i i i
i T

i i i i

− −
− − − −

− −
−

 
= −

+ 
C C

C C
C

 (27) 

The log-likelihood function ( )2, ,L α ψ  can be rearranged as 



13 

 

( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( )

2 1

2
1

1

1

1
, , log 2 log det

2

1
log log

2

T

i i

T

i iT

i i i i i T

i i i i

i i

L N

L l

 

 




−
− −

−
−−

− −
−

−

 = − + + − − 

   −  + − +  − +   
= +

α ψ C y m C y m

C y m
C

C

α

 (28) 

where ( )i
L −α  is the term which does not depend on i  . The maximum of ( )2, ,L α ψ  with 

respect to i  can then be obtained by calculating ( ) / 0
i i

l    = , which gives 

 

2

2

i
i

i i

s

q s
 =

−
 

2

i iq s  (29) 

 
i =   2

i iq s  (30) 

where 

( )1T

i i i
q −

−=  −C y m  (31) 

1T

i i i is
−
−=  C  (32) 

This means when 2

i iq s , i  does not equal zero and the corresponding basis function should 

be involved in the design matrix. When 2

i iq s ,  ( )i ip    becomes a delta function at zero, 

which means the corresponding basis function can be removed from the model. It can also be 

shown that Eq. (29) is equivalent to Eq.(24) when the corresponding i  is currently in the 

model. For computation and updating, it is more convenient to compute  

( )1T

i iQ −=  −C y m  (33) 

1T

i i iS
−=  C  (34) 

such that iq  and 
i

s  can be given by 
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i i
i

i i

Q
q

S




=
−

 (35) 

i i
i

i i

S
s

S




=
−

 (36) 

Noting that when 
i

 → , i iq Q=  and 
i i

s S= . 

The above analysis shows that given the remaining parameters, the parameter α  can be updated 

analytically through Eq.(29) and (30) without resorting to brute force optimisation, which helps 

to facilitate computation. 

6. Summary of Procedure 

The proposed method can be conducted as follows: 

1. Initialise  2,ψ . 

2. Initialise with a single basis function in the design matrix, e.g., the first basis function, 

and calculate the initial 1 using Eq.(29), set other i =  . 

3. Update  ,μ Σ  using Eq.(15) and Eq.(16), together with all iQ  and iS  using Eq.(33) 

and (34). 

4. Select a candidate basis i  from the whole design matrix Φ  and compute iq  and 
i

s .  

5. Compare 2

iq  and 
i

s : 

a. If 2

i iq s  and i    (i.e., i  is currently in the model), re-estimate i  using 

Eq. (29). 

b. If 2

i iq s  and i =  ,  add i  into the model with updated i  using Eq. (29). 

c. If 2

i iq s , delete i  from the model and set i =  . 

6. Update  2,ψ  by maximising Eq.(23). 

7. Go to Step 3 until convergence. 

In this work, the hyperparameters ψ  are initialised as zero (i.e., without a Gaussian process 

model involved in the beginning) and the noise variance 2  is set as a nominal value, 1% (say) 

of the variance of the system output to start iteration. The convergence criteria can be set based 
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on the marginal likelihood L  in Eq.(13) or based on the change in the parameters  2, ,a ψ . 

In this work, it is set as 
610

new old

new old

L L

L L

−−


+
.  

7. Illustrative Examples 

Three examples are presented in this section to illustrate the proposed method. A parametric 

study has been conducted in the first example based on a simple one-dimension polynomial 

function. The properties of the likelihood function for both the conventional sparse Bayesian 

method (i.e., RVM) and the proposed method (referred to as GP-RVM in this Section for 

conciseness) are compared. The second example focuses on identifying the system parameters 

of a Duffing oscillator, a nonlinear system with position-dependent stiffness, where again the 

inferred parameters from the RVM and GP-RVM methods are compared. In addition, this 

example considers different forms of basis functions that can be used to capture the nonlinearity 

of the system. Finally, the applicability of the GP-RVM method in an experimental setting is 

investigated in the third example, where the experimental data from the Silverbox system [26] 

is considered.  

It is noted that in the following illustrative examples, the GP-RVM method is applied using a 

zero mean function and a squared exponential covariance function. That is, =m 0  and the 

( ),i j  entry of the covariance matrix K  is given by 

2

2

, 2
exp

2

i j

i j f
l


 −
 = −
 
 

x x
K  (37) 

where ix  and 
jx  denote the i -th and j -th index. This choice of covariance function means 

the hyperparameter set becomes   2 2,f l=ψ , denoting the signal variance and length-scale 

respectively.  

7.1 Parametric Study 

Consider a simple polynomial function defined as 



16 

 

true
y = +Φ θ ε  (38) 

where trueΦ  is the true design matrix given as 3 2 sintrue x x x =  Φ , θ is the associated system 

parameters set    5 1 2
T T

a b c= =θ , ε  is the measurement noise. The input data is 

sampled uniformly within the range of [-1, 1] with 100 points. The noise is randomly generated 

as zero mean Gaussian. The standard deviation of the noise is set to be 10% of the system 

output. 

The aim of this example is to explore the misspecification of basis function terms and missing 

‘physics’. Consider a candidate design matrix of 3 5

1 x x =  Φ  with the associated parameter 

 1

T
a d=θ .  Both the conventional sparse Bayesian method (i.e., RVM) and the proposed 

method (i.e., GP-RVM) have been applied to estimate the value of the associated system 

parameters. Figure 1 and Figure 2 show the distributions of the identified system parameters 

a  and d over 100 data sets (independent draws of noise process for each data set), respectively. 

Due to the model terms 2 sinx x    being excluded from the design matrix as well as the 

erroneously included term 
5

x , the estimated system parameters from the original RVM method 

are biased. On the other hand, the GP-RVM method provides a much better estimation, as 

shown in Figure 1. The estimated parameter a  is very close to the true value that is used to 

generate the data and the erroneous term 
5

x   is excluded after inference for all of the datasets 

(i.e., equal to zero) when using the GP-RVM method. 

Figure 3 shows the output mean model prediction as well as 2  posterior standard deviation 

based on these two methods for a typical training data set. The normalised mean square errors 

(NMSE) of the mean model prediction of RVM and GP-RVM methods (compared to the true 

function values) are calculated to be 43.4 10−  and 58.8 10− , respectively. It can be seen that 

the model prediction based on the GP-RVM method is much closer to the true system output 

compared to the RVM method.  

Figure 4 shows the marginal likelihood function (i.e., ( )p y θ ) against the system parameters. 

It can be seen that the maximum of the marginal likelihood based on the GP-RVM method is 

closer to the true values compared to that of the RVM method.  
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Figure 1. Histograms of identified parameter a from the training data sets (green bar: GP-

RVM method; blue bar: RVM method; dashed line: true value) 

 

Figure 2. Histograms of identified parameter d from the training data sets(green bar: GP-

RVM method; blue bar: RVM method; dashed line: true value) 
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Figure 3. Comparison of the true system output against model predictions from the RVM and 

GP-RVM methods (red solid line: true function; circle: sampled data; blue dashed line: 

predicted mean of RVM method; black dashed line: predicted mean of GP-RVM method; 

light grey area: +/-2 standard deviation of RVM method; dark grey area: +/- 2 standard 

deviation of GP-RVM method) 

 

Figure 4. Marginal likelihood against system parameters (red dot: true value; coloured 

contour: GP-RVM method; blue contour: RVM method) 
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For reference, the number of iterations before convergence for the GP-RVM method is around 

20 for each training dataset.  

7.2 Duffing Oscillator 

The second example considers a more realistic engineering problem, namely considering the 

equation discovery and parameter inference of a Duffing oscillator. The data is simulated based 

on the following equation: 

( ) ( ) ( ) ( ) ( )( )my t cy t k y t y t u t+ + =  (39) 

where ( )u t  denotes the excitation applied to the system and ( )y t  is the displacement. 

Parameters m  and c  denote the mass and damping of the system. An overdot represents 

differentiation with respect to time. The nonlinearity is introduced by position-dependent 

stiffness 

( ) ( )2( )k y t a by t= +  (40) 

where a  and b  are the associated stiffness parameters. 

Table 1 summarises the values of system parameters used for generating the system response 

data. The system is excited using Gaussian white noise with a standard deviation of 1kN. The 

system response is contaminated with a Gaussian white noise with a standard deviation equal 

to 1% of the standard deviation of the response signal. In this example, ten seconds of data are 

recorded for each data set with a sampling rate of 50Hz. Ten sets of data are used for analysis 

for each scenario. 

Table 1. System parameters for the simulated duffing oscillator 

Parameter m  c  a  b  

Value (in SI units) 1 2.151 10 105 

 

In this example, the displacement and velocity response of the system (i.e., y  and y , 

respectively) are assumed to be known and considered as input to the design matrix together 

with the applied excitation (i.e., u ). The acceleration response (i.e., y ) is considered as the 

system output. In this context, the system can be written in the form of a design matrix and 

system parameters as  
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true
y =Φ θ  (41) 

where 3

true u y y y =  Φ  and  1/ / / /
T

m c m a m b m= − − −θ . When conducting 

equation discovery using the GP-RVM method, the input of the GP model (for the model 

discrepancy term) is assumed to be the displacement of the system. This is justified based on 

the assumption that it is known the nonlinearity of the system depends on the displacement, 

but the exact form of the nonlinearity is unknown. 

In the first scenario, consider a linear system without the stiffness term as 

( ) ( ) ( ) 1 1

1 c
y t u t y t

m m
= − =Φ θ  (42) 

where  1 u y=Φ  and  1 1/ /
T

m c m= −θ . The term ( ) ( )( )k y t y t  is completely ignored in 

this case and becomes the model discrepancy term. It is uncommon in real applications that the 

stiffness term is not considered but here such model is used to investigate this situation where 

the missing physics is extremely significant.  

Both the RVM method and the GP-RVM method (where the Gaussian process model is 

expected to capture the model discrepancy term) have been applied to identify the model 

parameters. Table 2 shows the estimated system parameters for 10 independent realisations 

from the simulation. The identified system parameters from the RVM analysis are biased due 

to the absence of the term ( ) ( )( )k y t y t  in the model. The averaged bias of the mass and 

damping parameters are calculated to be 1.60% and 3.11%, respectively. This is not the case 

for the GP-RVM method however. The identified mass and damping parameters are close to 

the actual values used for data generation, with the average bias being 0.03% and 0.21%, 

respectively. Figure 5 shows model predictions (mean and 2  posterior standard  deviation) 

of these two methods (trained using data set No.10), as well as the simulated response based 

on an independent test data set. The NMSEs of the mean prediction from the RVM and GP-

RVM methods are calculated to be 44.4 10−  and 69.4 10− , respectively. The residuals 

between the mean prediction and the true data for both the RVM and GP-RVM are plotted in 

Figure 6. It can be seen that the mean prediction from the GP-RVM method fits well with the 

measured response compared to that from the RVM method. The residual of the GP-RVM 

method is very close to zero, indicating that the Gaussian process model can appropriately 
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capture the behaviour of the model discrepancy due to the absence of the stiffness term. The 

average iteration number for the GP-RVM method is 4 in this scenario. 

Table 2. Parameter identification results for the duffing oscillator example, first scenario 

where true values are m=1 and c=2.151 

Data Set No. 
RVM GP-RVM 

m  c  m  c  

1 0.973 2.051 1.001 2.154 

2 0.994 2.096 1.000 2.146 

3 1.023 2.166 1.000 2.156 

4 0.983 2.192 1.000 2.135 

5 0.982 2.121 0.999 2.149 

6 0.975 2.078 1.001 2.157 

7 0.982 2.059 1.000 2.153 

8 1.014 2.134 1.000 2.150 

9 0.989 2.090 1.000 2.149 

10 1.001 2.334 1.000 2.147 

 

In the second scenario, consider the system model as: 

( ) ( ) ( ) ( ) ( ) ( )3

2 2

1
( )

c
y t u t y t dy t ey t y t

m m
= − − + =Φ θ  (43) 

where 2 4

2 u y y y =  Φ  and  2 1/ / / /
T

m c m d m e m= − − −θ . The position 

dependant stiffness is considered in the model but in an incorrect form. Similar to the first 

scenario, the associated parameters are identified using both the RVM method and the GP-

RVM method based on ten datasets (independent realisations from the simulation). Table 3 

summarises the identification results. For the RVM method, the estimated mass and damping 

parameters are biased, with the average bias being 0.49% and 4.55%, respectively. The 

erroneous stiffness forms with associated parameters (i.e., d  and e ) are not excluded through 

the sparsity criteria (which are not involved in the true model). On the other hand, the GP-

RVM method provides a better estimation result, where the identified mass and damping 

parameters are much closer to the true values. The erroneous forms are removed and the 
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associated stiffness parameters are equal to zero in all datasets. In this scenario, the average 

iteration number of the GP-RVM method is 5. 

In the third scenario, consider the system model as the true form (i.e., identical to the design 

matrix and system parameters in Eq.(41)). In this case, there are no missing terms or erroneous 

terms involved in the design matrix. Table 4 lists the identification results based on the RVM 

and the GP-RVM methods. The identified system parameters based on these two methods are 

close to each other and they are also very close to the true values. This shows that the GP-RVM 

method works similarly to the classic RVM method when there is no model discrepancy 

involved; the flexibility of the GP does not reduce the explanatory power of the system model 

terms. The average iteration number for the GP-RVM method is 4.8 in this scenario. 

From these three scenarios, it can be seen that compared to the RVM method, the GP-RVM 

method provides better parameter estimation results with less bias involved when model 

discrepancy exists. However, it should be noted that in this example the displacement and 

velocity response of the system are assumed to be known so that the system output (i.e., the 

acceleration response) can be written as a linear combination of the input force, displacement 

and velocity with associated system parameters. In real applications, it is not always possible 

to measure all the system responses. Normally only the acceleration response is available. 

Integrating the measured acceleration to get displacement and velocity data may cause 

problems when the measurement noise is significant. It can also be challenging when 

considering the excitation as the system input only, in which case the system parameters will 

be coupled and it is not trivial to estimate system parameters through sparse Bayesian inference. 

It should also be noted that in this example the nonlinearity is known to be a function of the 

displacement. If this is unknown, one way of applying the GP-RVM method is to set all system 

states as the input of the GP model. However, this may lead to potential identifiability issues 

since now the GP model will become more flexible and more likely to take over the role of the 

system model. In this case, balancing the explanatory power between the system model and the 

GP model can be challenging and it would form a potential topic for future work. 
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Table 3. Parameter identification results for the duffing oscillator example, second scenario, 

where the true values are m=1, c=2.151, d=0 and e=0 

Data 

Set 

No. 

RVM GP-RVM 

m  c  ( )310d   ( )610e   m  c  ( )310d   ( )610e   

1 1.006 2.283 1.185 6.573 1.000 2.140 0.000 0.000 

2 0.998 2.248 3.556 12.612 1.000 2.158 0.000 0.000 

3 0.998 2.136 0.495 4.560 1.000 2.151 0.000 0.000 

4 1.003 2.146 2.107 12.389 1.000 2.147 0.000 0.000 

5 1.003 2.162 0.000 0.694 1.000 2.148 0.000 0.000 

6 1.002 2.152 2.764 16.634 1.000 2.151 0.000 0.000 

7 1.009 2.190 1.014 2.264 1.000 2.142 0.000 0.000 

8 0.999 2.159 1.986 8.654 1.000 2.148 0.000 0.000 

9 0.992 2.284 0.000 3.292 0.999 2.141 0.000 0.000 

10 0.991 2.137 0.299 1.338 1.000 2.140 0.000 0.000 
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Figure 5. Comparison of the simulated response and model predictions from the RVM and 

GP-RVM methods for the first scenario (red solid line: simulated value; black dashed line: 

predicted mean of applied method; grey area: +/-2 standard deviation of applied method) 
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Figure 6. Residual between the predictive mean and simulated response for RVM and GP-

RVM method, first scenario (blue line: RVM method; green line: GP-RVM method) 

 

Table 4. Parameter identification results for the duffing oscillator example, third scenario 

where true values are m=1, c=2.151, a=10, b=105. 

Data 
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RVM GP-RVM 
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7.3 Silverbox Benchmark Test 

The applicability of the GP-RVM method to real data are investigated in this example. The 

investigated system is an electric circuit simulating a mass-spring system with nonlinearity 

introduced by a position dependent stiffness term, forming the Silverbox benchmark dataset 

[26]. The system’s behaviour is similar to a Duffing oscillator following Eq.(39) (the system 

investigated in Section 7.2). Details about the experimental configurations can be found in [26]. 

The true system parameter values are unknown and the major focus here is to investigate if the 

GP-RVM method can pick the correct assumed model components of the system and also 

assess its model performance. 

The training data used in this example were measured by exciting the system with a Gaussian 

white noise (filtered by a 9th order discrete time Butterworth filter with a cut-off frequency of 

200Hz) with increasing amplitude. Both the input and output data (40000 samples) were 

recorded with a sampling rate of 
7 1410 / 2 610.35Hz . Figure 7 shows the input and output 

data from the silver box system. The initial data were chopped into 40 non-overlapping datasets 

(each contains 1000 samples) for analysis.  

 

Figure 7. Input and output signals from the Silverbox training data set 

In order to apply the equation discovery methods, all of the system states need to be obtained. 

Numerical differentiation has been conducted to get the first and second derivatives of the 

0 10 20 30 40 50 60 70
-0.2

-0.1

0

0.1

0.2

Input Signal

Time (s)

V

0 10 20 30 40 50 60 70
-0.4

-0.2

0

0.2

0.4

Output Signal

Time (s)

V



27 

 

output measurement. Similar to Section 7.2, considering the second derivatives of the output 

measurement as the system response of interest, the system then can be rewritten as 

y =Φθ  (44) 

where 

3
u y y y =  Φ  (45) 

1
T

a c b

m m m m

 =   
θ  (46) 

Assuming that the model form of the position dependent stiffness is unknown, the candidate 

design matrix used in this example are set as  

( ) ( )2 3 4 sin coscandi u y y y y y y y =  Φ  (47) 

Both the classic RVM method and the GP-RVM method are applied to infer the system’s 

equation. Figure 8 shows the percentage of each model component in the design matrix picked 

by these two methods after inference among these 40 training datasets. Both methods are able 

to pick out the linear components of the system (i.e., the first three model forms in the candidate 

design matrix) correctly. The percentages of the position dependent stiffness term 
3

y  involved 

in these two methods are about 30%. This is reasonable considering that the nonlinearity of the 

system is not significant, especially when the excitation amplitude is low. However, the RVM 

method is more likely to pick the erroneous model components in the design matrix, especially 

the 2
y  and ( )cos y  term. Compared to the RVM method, these erroneous forms are less likely 

to be picked for the GP-RVM method. The proposed method can exclude misrepresentative 

model components when constructing the physics-based model, illustrating its capability of 

revealing more about the physics of the real system.  
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Figure 8. Percentage of each candidate model form picked by the methods for the training 

datasets (blue bar: RVM method; magenta bar: GP-RVM method) 

The model predictions from the RVM and GP-RVM methods are validated using an 

independent test data set; the response to a random odd multi-sine excitation. Details of the 

signal can be found in [26]. Figure 9 shows the input and output signal of this data set from the 

Silverbox system. The NMSEs of the model predictions from the RVM and GP-RVM methods 

are plotted in Figure 10. The NMSEs of the RVM models based on the first four training data 
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the low excitation amplitude in these training data sets, which causes inaccuracy in inferring 

the system parameters, particularly for the nonlinear component. The NMSEs of the RVM 

models based on the remaining training data sets are similar to those using the GP-RVM 

method, which are around 
57 10− .  Figure 11 shows the test data set as well as the model 

predictions (mean and 2  posterior standard  deviation) based on these two methods (trained 

using data set No.10) as a reference. It can be seen the model performances of these two 

methods are similar. However, it should be noted that the GP-RVM method can reveal more 

physics of the system with less misrepresentative model components involved.  
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Figure 9. Input and output signal of Silverbox test data set  

 

Figure 10. NMSEs of the mean model prediction from the RVM and GP-RVM methods for the 

Silverbox test dataset (blue bar: RVM method; magenta bar: GP-RVM method) 
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Figure 11. Comparison of the Silverbox test data and model predictions from the RVM and 

GP-RVM methods(red solid line: simulated value; black dashed line: predicted mean of 

applied method; grey area: +/-2 standard deviation of applied method) 
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formulation and allows potentially erroneous components from a set of candidate model terms 

to be removed during inference. The novelty of the proposed method is that it uses a Gaussian 

Process model to capture the model discrepancy. A Bayesian formulation is developed to 
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encapsulate these two methods where the associated uncertainty is captured in the posterior 

distributions. An expectation maximisation (EM) algorithm has been adopted to perform 

inference, as the approach can be used to find the physically relevant maximum where the 

system model dominates. Numerical and experimental illustrative examples have been 

presented and it has been shown that compared to a classical sparse Bayesian inference method 

(i.e., the RVM), the proposed method can provide better parameter estimation results with less 

bias, especially when erroneous model forms occur in the design matrix. Furthermore, it has 

been shown that the model discrepancy due to missing physics can also be appropriately 

captured by the Gaussian process model. The results show that the EM algorithm is an 

appropriate choice for parameter inference since it can properly constrain the explanatory 

power of the GP model. 

One assumption in this work is that the system model can be expressed as a linear combination 

of basis functions and system parameters (i.e., in the form shown in Eq.(2)) in order to apply 

the proposed method. In addition, the system parameters are assumed to be independent from 

each other and all the system inputs are known. Future work will seek to apply sparsity and 

Gaussian process models to more complex systems. Normally, not all the states of the dynamic 

systems are measured. For example, when only input force and acceleration responses are 

measured without knowing the displacement and velocity (which is usually the case in real 

applications), the latent states (i.e., displacement and velocity) should also be inferred when 

applying the proposed method. In this case, additional numerical sampling methods (e.g. 

Markov chain Monte Carlo sampling) shall be encapsulated into the proposed method for latent 

states inference. Illustrative examples in this work focused on single-degree-of-freedom 

dynamic systems. Applying the proposed method to multiple-degree-of-freedom systems will 

be investigated in future work, where the correlation between different degrees-of-freedom 

needs be properly accounted for. Similar to the latent state situation, numerical sampling 

methods may be required.  
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