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Abstract

When analysing a voltammetric experiment, the goal is often to obtain an estimate of pa-

rameter values — as defined by models which predict the current obtained by applying a

time-varying potential input to an electroactive species under investigation. There are a

variety of methods used to obtain these estimates, such as the heuristic approach, which in-

volves extracting some feature from one or multiple voltammetry experiments, and obtaining

an estimate of one or two parameters by analysing the extracted feature(s). In this paper

we simulate voltammetry data using pre-defined parameter values for a purely Faradaic
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surface-confined redox process, and then attempt to recover these values in the presence of

varying amounts of synthetically-added noise, using both heuristic methods and a Bayesian

inference approach. We show that the Bayesian approach recovers the true parameter val-

ues with either a greater or equivalent level of accuracy when compared to the heuristic

approach, depending on the form of the data analysed. We show that the loss of accuracy

for the heuristic case is primarily driven by the discarding of large amounts of data during

the feature-extraction process.

Introduction

Voltammetry is a field with a strong numerical underpinning; analysis of data generated by a

voltammetric experiment is almost universally informed by mathematical models describing

the current response to the given potential input.1,2 Examples of such models include the

Butler-Volmer (BV) or Marcus-Hush relationships in the case of electron-transfer reactions.3

Parameters contained within these models relate to fundamental properties of the redox-

active species under investigation; for the BV case (which we use to generate the results in

this paper), the reversible potential E0 is a description of the thermodynamics of the reaction,

and the rate constant k0 the kinetics. Consequently, a large part of analysis of electrochemical

data is an attempt to infer the values of such parameters. For the experimentalist, there is

a large array of inference approaches to choose from. One such method is to use simulations

of the total current — by systematically altering the parameters, the analyst aims to find a

set of parameters that produce a simulation that is a good fit to the data, with this process

taking place either on a manual or an automatic basis.4,5 An alternative, which we analyse

in this paper, is to extract some feature from the current data, often as a function of varying

experimental conditions, such that the extracted feature has a predictable relationship to one

or two parameters of interest. We consider how these methods are affected by the presence

of independent and identically-distributed (i.i.d.) noise, the simplest form of noise model, in
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the most ideal of cases — purely Faradaic current with no capacitance or dispersion in the

thermodynamic or kinetic parameters,6 for a single-electron surface-confined redox process

with no catalytic activity. We have adopted this approach for simplicity, but it should be

noted that there is extensive interest in the literature in systems with catalytic activity.7–9

For a surface-confined species, the Faradaic current If is defined as

If = FAΓ
dθ

dt
= FAΓ

(

(1− θ)kox(E)− θkred(E)

)

, (1)

where F is Faraday’s constant, A is the electrode surface area, Γ the surface coverage of the

electroactive species, θ the proportion of the species which is oxidised, and the potential-

dependant rate constants kox and kred. These are expressed using the Butler-Volmer equa-

tions

kred(E) = k0 exp

(

−αF

RT
(E − E0′)

)

, (2)

kox(E) = k0 exp

(

(1− α)F

RT
(E − E0′)

)

, (3)

such that k0 is a potential-independent rate constant, α is symmetry factor, R the ideal gas

constant and E0′ is the reversible potential. Feature relationships can be experimentally10,11

or analytically3 derived, and are used as an alternative to total current analysis for a num-

ber of reasons. One such reason is ease of analysis, as the derived relationships are often

mathematically simpler than the necessary simulation procedures for predicting the total

current. They often take the form of a linear relationship between the extracted feature and

a dependent variable, and consequently calculating the gradient or intercept of the line of

best fit is all that is required to obtain a value for a parameter of interest; a process that

can be trivially implemented in spreadsheet software such as excel. Another reason is that

often the total experimental current contains non-idealities such as dispersion and non-linear

capacitance that would require additional considerations to incorporate into a model of the

total current, but that have a small effect on the extracted feature. Additionally, in the past
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when performing large numbers of total current simulations was computationally infeasible,

these approaches were far more achievable on available hardware. In this paper we quantify

the impact of adding varying amounts of noise when attempting to perform one of 5 differ-

ent inference techniques from the literature, two using direct current or cyclic voltammetry

(DCV) and three using square wave voltammetry (SWV). We compare these results to an

automatic approach which analyses either the same set of extracted features or the total

current, and allows us to quantify the level of uncertainty inherent to either approach.

Approach

Heuristic inference

In order to determine the robustness of the various inference processes described below to the

presence of i.i.d. noise, we generated multiple noisy voltammograms, using the simulation

procedures for DCV and SWV described in our previous work,6 and an excellent textbook on

square wave voltammetry by Lovrić and coauthors respectively.12 Noise was subsequently

added using the process described in the “Noise” section. We then applied the various

inference techniques to attempt to recover the appropriate parameter used in the simulation

of the synthetic voltammogram. This process involves extracting some feature(s) from the

synthetic current, or set of synthetic currents, and using those features to determine the

value of the appropriate parameter. This value was recorded for each attempt, and the set

of inferred parameters was used to assess the robustness of the technique. The parameters

used for the simulation of the synthetic voltammograms can be found in table S1 and S2

for the DCV and SWV cases respectively, along with information about the number of

features, and simulation times. Simulation parameters were chosen to be in a regime where

the corresponding heuristic inference approach was maximally effective.
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Markov-chain Monte Carlo

To benchmark the robustness of the various inference approaches, we compare the range

of values obtained using our heuristic inference approach to the appropriate inferred pa-

rameter distribution obtained by an alternative statistical methodology, Bayesian inference,

using a Markov-chain Monte Carlo (MCMC) algorithm. We have published previously on

using MCMC methods in an electrochemical context, including a comprehensive review by

Gavaghan et al.1 The purpose of the MCMC algorithm is to sample from the posterior distri-

bution, a distribution of parameters that best describe the observed data. At each iteration

of the algorithm, a set of parameters is proposed and used to generate a simulation. This

simulation is then compared to the observed data to calculate a likelihood. The value of

this likelihood is then compared to the current best-likelihood, and the proposed parameters

are accepted or rejected accordingly. By recording a history of the parameter vectors that

were accepted, we obtain a distribution of likely values. A more fulsome discussion of this

can be found in the supplementary information. The distributions generated by this process

are not exactly comparable to the process of benchmarking the inference methods described

in the previous section, since with the MCMC algorithms we only analyse one noisy set of

data. However, if we were to repeat the MCMC process multiple times, it would not sig-

nificantly alter the inferred parameter distributions (as the level of noise would be the same).

As long as we are consistent with how the parameters are used to generate a given simulation,

it is possible to perform inference on either the total current from a single voltammogram,

or the extracted features used for the heuristic approaches. This allows us to obtain both an

explicit comparison between the MCMC and heuristic approaches (when fitting to sampled

features) and allows us to observe the impact of feature extraction (by performing MCMC

on the total current from a single voltammogram).

5



Noise

When creating artificially noisy voltammograms, our procedure for the addition of i.i.d. noise

is simply

Inoisy(t) = Isim(t) + ǫ(t), ǫ(t) ∼ N (0,max(Isim)p), (4)

such that N (0,max(Isim)p) indicates a normally-distributed random variable with 0 mean,

and a standard deviation proportional max(Isim), and p is a scaling factor in the range of

0.005-0.05, or 0.5-5% of the maximum. We have found that a noise level of 0.5% of the max-

imum current is usually a good approximation to the noise observed in actual experimental

voltammetry data.13

Heuristic inference approaches

DCV

DCV is one of the simplest and most widely used voltammetry techniques. A single DCV

experiment uses a potential input that increases or decreases linearly (i.e. with a constant

potential scan rate) to a switching potential, and then returns to the starting potential.

Surface coverage

The surface coverage parameter Γ can be determined from the area under either the reductive

or oxidative peak, such that, for a purely Faradaic current beginning at time t = 0 and ending

at time t = tN , where F is Faraday’s constant, if is the total Faradaic current, n the number

of electrons transferred, v is the scan rate and a the electrode area3

FAnvΓ =

∫ tN

0

if (5)
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In practice, the integral in equation 5 is calculated using numerical quadrature, for example

by using Simpson’s rule.3 An example of this process is shown graphically in figure 1

Figure 1: Purely Fardaic DCV experiment vs. time, with black lines indicating how the
integral is approximated using numerical quadrature

Rate constant

Trumpet plots, where multiple DCV experiments are performed at different scan rates and

the potential position Ep(ox)/Ep(red) of the peak current is recorded, can be used to de-

termine the rate constant k0. These plots are popular as the relationship between the peak

position and the scan rate is not affected by background currents arising from double-layer

capacitance to the same extent as the rest of the voltammogram. Consequently, analysis of

the trumpet plot is less dependent on the ability to correctly subtract away background cur-

rent. By rearranging the Butler-Volmer equations, we obtain an expression for the potential
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of the oxidative/reductive peak as a function of the logarithm of the scan rate ln(v) and k0,

such that

Ep(ox) − E0 = −
RT

αnF
ln(v)−

RT

αnF
ln

(

αnF

RTk0

)

, (6)

and

Ep(red) − E0 =
RT

(1− α)nF
ln(v) +

RT

(1− α)nF
ln

(

(1− α)nF

RTk0

)

, (7)

where F is Farday’s constant, T is the temperature, R the ideal gas constant and n the

number of electrons. A linear function of the form f(x) = mx + c can consequently be

fit to the the linear regions of an appropriately normalised trumpet plot, which represents

Ep(ox/red)−E0 as a function of ln(v), as shown on the left hand plot of figure 2. Consequently,

the recovered gradient m can be used to calculate the value of α, and subsequently the

recovered intercept c can be used to determine the value of k0.
3

SWV

Square-wave voltammetry uses a square-wave potential superimposed over a staircase poten-

tial — jumps between potential values are hypothetically instantaneous, and the potential

is then maintained at a constant value until the subsequent jump. The current is sampled

at the end of each pulse, and this sampling is separated into “forwards current”, where

the sampling occurs at the maximum of each square-wave oscillation, “backwards current”

which is sampled at the minimum, and the net current, which is simply the backwards cur-

rent subtracted from the forwards.12 The sampling procedure is shown graphically in the

supplementary information in figure S1.

A note on noise in square-wave voltammetry

Initially, when generating noisy SW voltammograms, we used the magnitude of the total

current (as opposed to the sampled) to calculate the level of noise. In other voltammetric

experiments, the magnitude of the current arising from the signal to be analysed (in DCV,
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Figure 2: Left: Purely Faradaic DCV current vs. potential, where v = 5 V s−1 and k0 = 100
s−1. Right: Trumpet plot showing normalised peak positions of oxidative and reductive
peaks, and the linear region through which we draw a line of best-fit (red)

for example, the reductive and oxidative peaks) is usually on a similar order of magnitude

as the value of the maximum current. In the case of SWV, the current is sampled at the end

of a pulse, which is effectively the minimum magnitude of the current on the timescale of

that pulse. Consequently, any set of parameters generates a current which contains a large

discrepancy between the maximum total current and the average magnitude of the sampled

current will result in a magnitude of ǫ in equation 4 that is sufficient to obscure any signal

observed in the sampled current, sometimes two or three orders of magnitude larger. As the

impact of noise does not seem to be a particularly high concern among SWV practitioners,

and after observation of real SWV data, we have decided, for the purposes of this exercise,

to use the maximum of the sampled SWV net current rather than the maximum of the total
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current to calculate the noise value.

Reversible rate constants

At sufficiently high values of K (i.e. the dimensionless kinetic parameter k0
f
, where f is the

square-wave frequency) for a surface-confined redox process interrogated using a square-wave

potential, a phenomenon known as “peak-splitting” is observed, which refers to the sampled

net current exhibiting two distinct peaks. Lovric et. al determined that the separation

between these two peaks (∆Ep) was a function of the square wave amplitude in mV (Esw)

and K, such that ∆Ep = 5k0
f
+2nEsw−50mV .10 This expression can be rearranged into the

form y = mx + c, such that mx = k0
f
, and consequently the value of k0 can be determined

from the fitted value of m.

Figure 3: Left: net SWV current, generated using f = 25 Hz and k0 = 75 s−1, with the
peak distance metric shown in red. Right: Normalised peak distances plotted as a function
of the inverse frequency (blue dots), with the best-fit line used to calculate k0 shown in red.
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Symmetry factor

In the same paper, Lovric et. al also describe a method to obtain an estimate of the symmetry

factor α, with similar assumptions about the value of k0
f
, by calculating the ratio of the two

peak heights, such that

α = −
1

3.4606
ln

(

|If |

5.614|Ib|

)

, (8)

where If and Ib are the maximum currents for the sampled forwards and backwards SWV

currents respectively.10 The process of obtaining If and Ib is shown on the left hand side

of figure 4. The right hand shows the value of alpha calculated from SW voltammograms

simulated with differing values of α (and a k0
f

value of 6), along with the predictions from

equation 8, indicating very good agreement

Quasi-reversible rate constants

The peak-splitting inference approach for k0 is only valid under conditions where peak-

splitting is observed, i.e. k0
f

> 2. Compton and coauthors described an approach for de-

termining the rate constant when 0.01 < k0
f
< 0.5. They termed this approach the “quasi-

reversible maximum”. Multiple SW voltammograms are measured at varying frequencies f

and amplitudes Esw. For each experiment, the peak net current, normalised by Esw is noted.

The maximum of these maxima IQRM is recorded as a function of frequency, which is then

used to determine k0 using the following relationship11

k0

f
= 10

IQRM−0.8

−148.08 . (9)

As before, we determine the gradient m of the normalised IQRM values vs. the inverse

frequency, giving us a value for k0. This process is shown in figure 5.
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Figure 4: Left: Forward and backward currents from a SWV experiment f = 1 Hz, k0 = 6
s−1 and α = 0.5, with the key features If and Ib indicated. Right: Peak ratios obtained
from sampled current simulated with different values of α vs the values of α calculated using
equation 8 (blue) and “ideal” peak ratios calculated by rearranging equation 8 (red)

Results and Discussion

DCV: Surface coverage

The first heuristic method, inferring the surface coverage in a surface-linked DCV experiment

by determining the area under the oxidative and reductive peaks, was extremely robust to

the addition of I.I.D. noise. This can be observed in figure 6 and in table 1, where even

with 5% noise, the standard deviation of inferred Γ values is less that 1% of the true value.

This can be explained by the fact that, because the mean of the noise in equation 4 is 0,

the overall impact on the area under the curve of the current is minimal, leading to the very

accurate estimates observed. Because of this accuracy, we did not believe it was necessary to
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Figure 5: Left: Net SWV current, simulated using f = 7 Hz, k0 = 0.5 s−1 and Esw = 0.13 V ,
with the maximum current indicated by the red dot. Centre: maximum current (normalised
by the value of Esw), plotted against the varying Esw value for three different frequencies.
The IQRM value is indicated by the red cross. Right: IQRM plotted as a function of the
inverse frequency, with the best-fit line drawn in red.

compare this technique to MCMC. Although it is outside of the scope of the paper (which

focuses on the impact of i.i.d. noise), we should note that this heuristic is highly impacted by

the efficacy with which the background current is subtracted. In figure 6, and all subsequent

histograms, “frequency” refers to the number of samples of that parameter value returned

by the MCMC algorithm, explained in more detail in the SI.

DCV: Kinetic parameter

The method of inferring the kinetic parameter from trumpet plots was by far the least

robust to the presence of i.i.d. noise of all the techniques assessed. The spread of values, as
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Table 1: Ratio of the standard deviation of the inferred parameter values for each inference
approach to the true value of that parameter, with varying amounts of added noise. Where
appropriate, the values in brackets were inferred from fitting to the total current, and the
other values are from fitting to the extracted features.

Method Noise level DCV Γ DCV k0 SWV k0 (R) SWV α SWV k0 (QR)

Heuristic

0.5% 0.06% 4.04% 1.99% 0.28% 1.73%
1% 0.13% 5.8% 2.88% 0.51% 2.23%
2% 0.26% 7.98% 3.82% 0.98% 2.9%
3% 0.38% 9.83% 4.67% 1.33% 3.65%
4% 0.5% 13.25% 5.39% 1.68% 4.1%
5% 0.64% 15.95% 5.8% 2.14% 4.51%

MCMC

0.5%

N/A

0.97%(0.05%) 3.26%(0.02%) N/A(0.12)% 2.74%(0.05%)
1% 1.2%(0.11%) 2.97%(0.04%) N/A(0.24)% 3.64%%(0.11%)
2% 1.83%(0.22%) 3.43%(0.07%) N/A(0.51)% 2.55%(0.18%)
3% 2.41%(0.32%) 3.73%(0.11%) N/A(0.73)% 3.86%(0.27%)
4% 2.3%(0.43%) 4.06%(0.16%) N/A(1.1)% 4.32%(0.4%)
5% 2.68%(0.55%) 4.13%(0.18%) N/A(1.17)% 6.33%(0.52%)

communicated in table 1, and shown in figure 7 is 4-8 times worse than when using MCMC

using the same (peak-position) observations, and 1-2 orders of magnitude worse when fitting

to the total current. We believe that the reason for the poor performance of this method is

that it requires accurate estimates of both the intercept and gradient of the best-fit line, as

opposed to the peak-splitting and quasi-reversible maximum methods (discussed below) that

only require an estimate of the gradient. As the method requires normalisation of the peak

potentials using the reversible potential, we also assessed the impact of incorrect estimates

of E0, but found that it did not significantly alter the results presented in table 1 and figure

7.

SWV: Kinetic parameter, reversible case

The performance of the MCMC algorithm when fitting to ∆Ep recovers values with an

accuracy that has the same order of magnitude as the heuristic approach, although it is more

affected relative to the heuristic approach at the lower noise percentages, but less affected at

the higher percentages. This may reflect the fact that the majority of the uncertainty in this
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Figure 6: Values of the surface coverage parameter Γ, where the true value was 10 pmol
cm−2, inferred using the approach described in the heuristic section, with varying amounts
of noise. The noise percentage is indicated in the legend. We did not compare the results of
this to MCMC in this case, because the values inferred by this method were so close to the
true value.

approach is driven by the amount of information that is discarded at the feature extraction

stage (i.e. the representation of a SWV experiment as a single ∆Ep value). This is reinforced

by the fact that the values inferred when analysing a single SWV experiment using MCMC

have a spread around the true value that is ∼ 1 − 2 orders of magnitude smaller, as shown

in figure 8.

SWV: Symmetry factor

The method of estimating α from the ratio of peak heights present in the net SWV current

was the second most effective heuristic approach when judged by having the smallest range
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Figure 7: Left and centre: Kinetic parameter values inferred by fitting to the linear region of
a trumpet plot for varying amounts of noise, where the noise percentage is indicated by the
legend, and the true value of k0 was 100s−1. For the linear fitting, the inferred anodic and
cathodic values were pooled. Right: Inferred parameter values for k0 using MCMC, fitted
to a trumpet plot.

of inferred values around the true parameter, with the spread being only 2-3 times larger

than for the MCMC case, as observed in figure 9. We did not use MCMC on the peak ratio

data, as this would have required fitting to a single datapoint, which is not appropriate for

MCMC.

SWV: Kinetic parameter, irreversible case

As with the peak-splitting case, the performance of the heuristic approach and MCMC when

applied to the heuristic features is of a similar order of magnitude, with the values inferred

using the total current analysed by MCMC being 1-2 orders of magnitude more accurate, as
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Figure 8: Left: Values of the kinetic parameter inferred from the net sampled SWV current
using the peak splitting method described in the heuristic inference section, for varying
amounts of noise where the noise percentage is shown in the legend. The true value of k0
was 75s−1. Centre and right: Values of the kinetic parameter inferred using MCMC, using
sampled net current (centre) and total current (right).

shown in figure 10.

Conclusions

These results indicate that, under the conditions analysed here, methods which involve the

extraction of features from the total current are outperformed by analysing the total current.

The worst-performing heuristic method, using the linear region of a trumpet plot, performs

worse than both fitting to the total current and fitting to the extracted features, presum-

ably because it requires accurate estimates of both the gradient and intercept of the fitted

line. The approach with the best accuracy (DCV surface coverage) did not use a linear
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Figure 9: Left: α values inferred from noisy sampled forwards and backwards SWV currents
using the peak ratio approach described in the heuristic inference section, for different values
of noise, where the noise percentage is shown in the legend. The true value of α was 0.5.
Right and centre: α values inferred from noisy sampled net current (centre) and total SWV
current (right)

fit at all. The analysis of SWV data is more interesting - the performance of the heuristic

approaches are comparable to the results obtained from using MCMC to fit to the same

set of features, implying that the linear fitting (requiring only an estimate of the gradient)

is as robust as the MCMC approach. In addition, when using MCMC to fit to features

for the peak-splitting and QRM approaches, the standard deviation of the recovered values

does not increase monotonically with the added noise (as it does with MCMC fitting to the

total current) — these two observations suggest that the majority of the uncertainty with

these techniques is driven by the feature extraction process, where information is discarded

in order to compress a voltammetric experiment into a single data-point, rather than the

18



Figure 10: Left: Kinetic parameter values inferred from sampled net SWV current using the
quasi-reversible maximum method, for different values of noise where the noise percentage is
shown in the legend. The true value of k0 was 0.5s−1. Right and centre: Kinetic parameter
values inferred using MCMC using noisy sampled (centre) and total (right) SWV current.

actual fitting process. Interestingly, increasing the number of extracted features for the peak

splitting case from 20 (as used to generate the values in figure 8) to 70, which is consistent

with the number of points in the sampled total current, reduced the width of the kinetic

distribution inferred by MCMC analysis of ∆Ep, which is expected as this is increasing the

amount of data “visible” to the MCMC. For the 0.5% noise case, the standard deviation of

the inferred kinetic distribution decreased from 2.74% to 0.5% of the true value (of 75s−1) as

a result of this increase in the amount of data. However, this standard deviation obtained

from fitting to the ∆Ep was still 10 times larger than the MCMC-inferred standard devia-

tion of the kinetic parameter for the total current at 0.5%, which implies that the difference

between the standard deviations of distributions inferred by fitting to extracted features vs.
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total current using MCMC is not entirely due to a simple discrepancy in the number of

observations. The remainder of the difference is due to the intrinsically greater information

present in the total current relative to the extracted features. Additionally, as detailed in

the SI, the assumption of i.i.d. noise for the heuristic case may lead to some biasing of the

kinetic distribution away from the true value.

It should also be noted that the non-monotonic behaviour may be the result of inaccurate

assumptions about the noise model, which we discuss in the supplementary information.

Additionally, all simulation of synthetic current was performed in the absence of background

current, and that the presence of the background current is one of the reasons discussed for

using the feature extraction methods in the first place. However, even when fitting to the

extracted features instead of the total current, MCMC methods at minimum offer similar

levels of accuracy. This is in addition to their other advantages, in particular the ability to

provide a measure of confidence for multiple parameters simultaneously, while the heuristic

approach only returns a single estimate for one or two parameter values. Of the three reasons

discussed for using the heuristic approach, namely ease of implementation, smaller impact

from non-idealities and computational feasibility, only the second motivation is really valid,

as it is becoming consistently easier to implement statistical approaches such as MCMC, and

computing power is no longer a limiting factor. However, even in this case, the extracted

features can still be analysed using an MCMC approach, rather than using a linear fit.
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(10) Mirčeski, V.; Lovrić, M. Split square-wave voltammograms of surface redox reactions.

Electroanalysis 1997, 9, 1283–1287.
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