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Abstract—Potential-induced degradation (PID) of 

photovoltaic (PV) modules is one of the most severe types 
of degradation in modern modules. PID can affect 
crystalline silicon PV modules, and while extensive 
studies have already been conducted in this area, the 
understanding of how to recover PID is still incomplete, 
and it remains a significant problem in the PV industry. In 
this paper, an electronic circuit that can mitigate the 
impact of PID in PV modules is utilized. This was achieved 
by inducing the PV string of 1000 V when a threshold 
current of 100 mA is detected. A microcontroller was used 
to manage the current sensor data and actuate the whole 
circuit. The impact of the proposed circuit on PID affected 
PV modules are (i) improve the electroluminescence 
regeneration, (ii) increase the output power by up to 30% 
of newly PID affected modules, and up to 7.8% for old 
modules, (iii) reduce their temperature, known by 
hotspots, and (iv) despite the variations in the solar 
irradiance and temperature, the recovery of the PID can be 
obtained within 15 days or less. 

 
Index Terms— Potential-Induced Degradation 

Photovoltaics; power electronics; hotspots. 

I. INTRODUCTION 

NE of the most valuable characteristics of photovoltaic 

(PV) technology is its high stability, with potential 

operational lifetimes of over 30 years. Continuous 

developments from academic and industrial researchers to 

improve PV efficiency and overcome manufacturing costs has 

contributed significantly to PV’s success. In the wake of the 
accelerated growth of the PV industry, the durability and 

reliability of PV technologies have recently caught 

considerable attention from researchers, manufacturers, and 

investors. Although PV modules have long been considered 

reliable under field conditions with low degradation and 

failure rates, they can be affected by diverse degradation 

mechanisms, which collectively reduce the module crop 

power over time. One of the main degradation mechanisms is 

called potential-inducted-degradation (PID) [1-3]. For many 

PV systems, PID is one of the leading causes of module 

degradation caused by the high voltage between the 

encapsulants and the front glass surface, which is grounded 

via the substructure of the cell or the frame [4]. 
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PID becomes more prevailing as the module ages, and 

whilst it normally doesn’t affect all the solar cells in the 

module, it does have a critical impact as it cannot be repaired 

[5]. For example, in recent studies [1, 6], PV modules with 

different types of structure (poly/monocrystalline silicon) were 

subjected to PID experiments under the IEC61215 standard 

[7]. They explain that there are 8-30% power losses under 

standard test conditions. However, they do not consider the 

impact of varying the solar irradiance, temperature or 

analyzing the thermal behaviour in the PID tested PV 

modules. 

To mitigate PV modules affected by PID, it has been argued 

that a working electronics device cannot be permissible. In 

contrast, two solutions in this regard have been proposed in 

the literature. The first solution is to build a solar cell resistant 

to PID via adding another substance layer (i.e., Thin Ionomer 

Film [8]) or improve the glass protection of the modules [9]. 

The second mitigation strategy is to induce a positive voltage 

into the PV modules in the range between 100 to 1500 [10], 

and this would typically act as a reverse PID recovery. 

However, this has not been practically developed or at least 

experimented on a PV system; multiple PV modules rather 

than a standalone PV module. 

Other algorithms are introduced to alleviate the PID through 

detecting PV faults such as partial shading, dust, arcing and 

hotspots [11, 12], yet these algorithms cannot overcome the 

PID problem, while they can only indicate whether the PV 

system has an early fault; in other words, ideally, they are 

classified as PV fault detection algorithms rather than PID 

mitigation. 

To identify the consequence of PID on PV modules, 

electroluminescence (EL) imaging is usually performed [13-

15]. In contrast, other researchers [16, 17] have suggested 

using photoluminescence (PL) imaging. PL imaging is more 

practical for inspecting large-scale PV modules. However, PL 

imaging cannot identify inactive areas in the cells, and the 

interconnection failure, whereas an EL imaging setup, can 

identify both failure modes [18]. 

This paper will discuss the construction and operation of 

our new electronic circuit that can mitigate the impact of PID 

electronically. The proposed circuit comprises a limited 

number of components, a current sensor, a microcontroller, 

MOSFET, relay, and a protection diode. Thus, marking it 

manageable to construct and utilize with new or old PV 

installations. 
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II. PROPOSED CIRCUIT DESIGN AND EXPERIMENTAL 

PROCEDURE  

A. Proposed PID recovery circuit 

This section presents a detailed description of the proposed 

PID recovery circuit. The overall design of the circuit is 

shown in Fig. 1(a).  

First, the circuit consist of a PV string that comprising five 

series-connected PV modules. The number of PV modules 

could be enlarged, depending on the voltage, current sensors 

and the dc-dc converter used in the system. Therefore, there is 

no limitation in expanding the PV capacity. Here, we used 

four PV modules compatible with the actual practical setup 

discussed in the next section. In addition, the PV string is 

connected in series with a current sensor before the dc-dc 

converter. This is a practical interpretation so that the circuit 

can effortlessly combine with older PV setups. 

During the daytime, the PV string is generation power, 

hence current, and therefore, the circuit is on OFF state. Thus, 

a threshold current of 𝐼𝑇𝐻 < 100 𝑚𝐴 was identified before 

actuating the circuit. The advantages to introducing this 

threshold are (i) to ensure that the PV string is operating under 

nighttime (or in some instances in a complete overcasting 

condition), and (ii) the circuit does not require any solar 

irradiance data, so that minimum number of inputs/variables 

are required. 

A microcontroller (16f877a) is used to gather the data of the 

current sensor and determine its level. If 𝐼𝑇𝐻 < 100 𝑚𝐴, the 

circuit is shifted into ON mode. This implies that the 

microcontroller will provide enough voltage (>0.7 V). As a 

result, the N-channel's gate-source (𝑉𝐺𝑆) voltage increases 

about its threshold (𝑉𝑇), the MOSFET channel will open, and 

a current flow into the relay.  Here, the value of 𝑉𝑇 must be 

taken from the MOSFET datasheet. Therefore, we can directly 

adjust the minimum voltage produced by the microcontroller 

to open the MOSFET's channel. The resistance value between 

the Drain and Source of the MOSFET, 𝑅𝐷𝑆(𝑜𝑛), has also been 

considered. Because of the smaller 𝑅𝐷𝑆(𝑜𝑛), the lower power 

loss it can cause. For our used MOSFET (IXFH10N100P), the 

value of 𝑅𝐷𝑆(𝑜𝑛) is equal to 1.4 Ω. Its continuous drain current 
(𝐼𝐷) of 10 A and the Drain Source voltage (𝑉𝐷𝑠𝑠) of 1000 V. 

These values are accurate under test temperature conditions is 

between 25°C to 150°C. 

A current flow into the relay when the MOSFET's channel 

is open (the relay type: Relay RL 42-I). The relay coil is 

operated at this stage, and 1000 V is now passed to the (±) 

relay output terminals. According to the IEC62804 standard, 

the PID experiment applies -1000 V; hence, we used a 

reversed voltage of 1000 V to recover the PID. In addition, to 

prevent damage to the MOSFET, a flywheel diode (RGP10M) 

is connected across the relay coil. This diode clamps the 

reverse voltage across the coil to about 0.7 V, dissipating the 

stored energy and protecting the MOSFET. However, this 

diode can only work under dc voltage, which is the case in our 

application. Therefore, an alternative protection arrangement 

must be considered for an AC application, for example, if the 

circuit is applied with a dc-ac inverter. 

The positive relay's output terminal is connected with the 

PV string positive terminal. However, the negative relay's 

output terminal is connected with the frame/panel of the last 

PV module in the string. This is typically the reverse 

construction of a PID experiment. In addition, it is worth 

noting that the actual circuit is always not on active mode. The 

PID recovery is only required when the circuit detects a 

massive increase in the voltage (usually hundreds of volts) 

during the nighttime. In this scenario, the circuit identifies a 

PID, and a reverse PID is applied. Another advantage of using 

the circuit is that it can be utilized with an already installed PV 

system with minimal construction effort. It can simply be 

arranged by installing the circuit before the dc-dc converter 

and connecting the relay's output terminals to the PV system. 

In Fig. 1(b), we show the physical hardware implementation 

of the circuit. 

B. Experimental procedure 

To verify the effectiveness of the proposed circuit, a PV 

string comprising five series-connected polycrystalline silicon 

PV modules was used (Figure 2(a)). This is a relatively new 

PV string that was installed back in 2016. The PV string main 

electrical parameters are summarized in Table I. 

 

Table I Electrical parameters of the first examined PV string at STC 
conditions. 

Parameter Value 

Power at maximum power point (𝑃𝑀𝑃𝑃) 1100 W 

Current at maximum power point (𝐼𝑀𝑃𝑃) 7.68 A 

Voltage at maximum power point (𝑉𝑀𝑃𝑃) 143.25 V 

Short circuit current (𝐼𝑆𝐶) 8.10 A 

Open circuit voltage (𝑉𝑂𝐶) 183 V 

 

 

(a) 

 
(b) 

Fig. 1. (a) Proposed circuit design of the PID PV recovery, (b) Physical 
hardware implementation of the circuit. 



 
 

3 
 

Before connecting the proposed circuit into the PV string, 

we have first provoked a PID experiment following the 

IEC62804 standard by applying -1000 V for 96 hours. Note 

here that the temperature and humidity cannot be controlled as 

we have prepared this experiment on the PV system in outdoor 

conditions. Nevertheless, this experiment allows us to induce 

PID to the modules. Then we can connect the proposed circuit 

and investigate if it can regulate the modules to their standard 

working conditions. 

This work also investigated the power measurements and 

examined the EL images before and after integrating the 

proposed circuit with the PV string. BrightSpot Automation 

EL imager was used to capture the EL images, as shown in 

Fig. 2(b). In addition, we have taken all the EL images under 

short circuit current conditions to capture the best image 

quality. And to obtain the power measurements, a maximum 

power point tracking unit (FLEXmax 80) was used; this 

device has a 98% tracking efficiency, and the current-voltage 

(I-V) [19, 20] curve can also be extracted from the collected 

measurements. 

III. RESULTS 

A. PID effect on the PV string 

As we understand from former research that PID severely 

impacts the performance of PV modules [1, 7], we had 

experienced the same outcomes after employing the PID test 

on the PV string. Accordingly, we have taken the EL images 

before the PID test (Figure 3(a)). After the PID test was 

completed, 96 hours, another EL image was taken (Figure 

3(b)). A critical PID condition impacts the modules, affecting 

the solar cells with breakdown regions, and some solar cells 

exhibit no electrons, known as blackout EL images [21].  

In addition, the I-V curve measurements at 807 W/m2 and 

PV cell temperature of 21°C were taken before and after the 

PID. There is 24.41% power loss due to PID, whereas 𝐼𝑆𝐶  and 𝑉𝑂𝐶  dropped by 7.43% and 0.89%, respectively. 

B. PID recovery 

After the PID experiment was completed, the proposed 

circuit was connected with the PV string. As shown in Figure 

4, at the end of the first day, 1000 V was induced by the relay 

to the PV string; of course, this happened when the PV string 

had limited output current (𝐼𝑇𝐻 < 100 𝑚𝐴). At the beginning 

of the second day, the relay switched again to OFF when the 

PV string generated a current of more than 100 mA. 

The response time of the relay is shown in Fig. 5. It 

approximately took three seconds to apply 1000 V on the 

string. It is recognized that for the transition between 0 V to 

1000 V, the circuit experienced a short spike/increase in the 

voltage, up to 1070 V. This has no impact on the PV modules, 

and according to the IEC62804 standard, applying up to 1500 

V across the string could have no influence on the 

performance of the modules. 

  

(a)                                                               (b) 
Fig. 2. (a) Tested PV string, (b) EL imaging camera. 

Fig. 4. Output PV power and relay voltage.  

(a) 

(b) 

 
(c) 

Fig. 3. EL and I-V of the PV string. (a) Before PID experiment, (b) After PID 
experiment was completed, (c) Comparison of the I-V curves of the PV string 
operating under solar irradiance 807 W/m2, and PV cell temperature 21°C.  
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The EL images during the PID recovery experiment are 

shown in Fig. 6. Every three days, we took the EL image to 

capture the transition of the electroluminescence (light 

intensity) of the individual solar cells. There is a significant 

difference between the image taken on the 3rd day (Fig. 6(a)) 

and the EL image taken on the 6th day (Fig. 6(b)). 

However, we noticed a slight improvement in the EL image 

after 9-days, as presented in Fig. 6(c). This result suggests that 

the proposed circuit requires at least six successive days or 

more to complete the PID mitigation process. The results 

beyond the 9th day are equivalent to the circuit effects on the 

PV modules obtained on the 8th - 9th day. 

The power loss presented in Fig. 7(a) is obtained using (1), 

while the MPPT unit determines the reference power 

(𝑃𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒), and the actual measured power of the PV string 

is expressed as 𝑃𝑃𝑉_𝑆𝑡𝑟𝑖𝑛𝑔. Here we can reflect that the power 

losses of the PV string decreased as more PID recovery (1000 

V) was injected into the PV string. The figure also includes 

the moving average curve labelled on the top of the measured 

samples. As a result, the power loss on the first day was 

estimated at 25±9%, and it stabilized after day 8, at 8±3%.   

𝑃𝑜𝑤𝑒𝑟 𝐿𝑜𝑠𝑠 (%) = 𝑃𝑃𝑉_𝑆𝑡𝑟𝑖𝑛𝑔−𝑃𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑃𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 × 100    (1) 

 

In contrast, according to Fig. 7(b), the I-V curves of the PV 

string during days 3, 6, and 9 were taken at solar irradiance 

807 W/m2 and PV cell temperature at 21~23°C. The results 

are summarized in Table II. The proposed circuit had 

significantly increased the PV string's output power by 32.2% 

after being activated for nine days.   

Finally, we have investigated the thermal impact of the PID 

on the examined PV string. Therefore, thermal images are 

captured (Fig. 8) using a FLIR E54 thermal imaging camera 

with thermal sensitivity of ±0.1°C, and these images were 

taken under solar irradiance at 790 W/m2 and ambient 

temperature 23°C. 

According to Fig. 8(a), it is realized that after the initial PID 

test on the PV string, the PV modules had an increase in their 

surface temperature, while the average solar cell temperature 

across the modules is 37°C. In contrast, Fig. 8(b) shows that 

after 9-days of PID recovery, the modules are operating at 

nearly 23°C. There are still several hotspots even after the PID 

recovery was applied; this is typically due to the severe impact 

of the PID, forming cracks, breakdown regions, and an 

increase in the solar cells shunt resistance [16, 22]. 

 
Fig. 5. Transient response of the relay.  

(a) 

(b) 

(c) 
Fig. 6. EL images of the PV string during the PID recovery test. (a) 3rd day, 
(b) 6th day, (c) 9th day. 

(a) 

(b) 
Fig. 7. (a) Output power losses, including moving average, (b) Comparison of 
the I-V curves after the PID recovery test, the I-V curves were taken under 
solar irradiance 807 W/m2, and PV cell temperature 21°C. 

Table II Electrical parameters of the examined PV string after the PID 
recovery. 

Parameter PID 

Modules 

After PID recovery 

3-days 6-days 9-days 

 𝑃𝑀𝑃𝑃 (W) 705.4 731.6  

(±3.7%) 

817.5  

(±15.8%) 

933.2 

(±32.2%) 𝐼𝑆𝐶  (A) 7.48 7.603  

(±1.6%) 

7.88 

(±5.3%) 

7.90 

(±5.6%) 

 𝑉𝑂𝐶 (V) 178.1 179.1  

(±0.5%) 

179.4 

(±0.7%) 

179.4 

(±0.7%) 
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IV. EXPERIMENTAL VERIFICATION ON AGED PV SYSTEM 

In the previous section, we have demonstrated the results of 
the proposed circuit on relatively new PV systems, where we 
have injected the modules with a PID (-1000 V) for 96 hours. 
Then we experiment with how our circuit can mitigate the PID 
effect on the modules. However, in this section, we show the 
results of employing the proposed circuit into an old PV 
system installed in 2013 (Fig. 9(a)). The PV string comprises 
nine series-connected polycrystalline silicon PV modules, and 
its main electrical parameters are summarized in Table III. 

We have discovered that the PV modules have already been 
subjected to PID for an unknown period through EL imaging 
detection (Fig. 9(b)). We also have noticed that several cells 
have been affected by major cracks. After utilizing the 
proposed circuit in the PV system, we have taken the EL 
image after nine days, presented in Fig. 9(c). After that, we 
carried out the EL process for 15 days and realized that there 
were no further increases in the light intensity of the EL 
images of the cells or the output power from day eight 
onwards. 

To examine the impact of the proposed circuit on the output 
power of the PV system, we had to correlate the output power 
with reference irradiance and PV cell temperature, calculated 
using (2). Here the temperature can be within ±5°C because it 
is impossible to capture the identical irradiance and 
temperature every day; adding this range allows us to add 

extra data for the power difference identification. 𝑃𝐷𝑎𝑦(1)𝐺(𝑗)𝑇(𝑘) represents all measurements taken on day one 

at selected irradiance (𝐺(𝑗)) and temperate (𝑇(𝑘)). This data is 

then subtracted by the subsequent days 𝑃𝐷𝑎𝑦(𝑖)𝐺(𝑗)𝑇(𝑘). If the 𝑃𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒  is positive, it indicates an increase in the PV 

output power, it also confirms that our proposed circuit had 
partially recovered the PID affecting the PV modules. 
 

     𝑃𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒(%) = 𝑃𝐷𝑎𝑦(𝑖)𝐺(𝑗)𝑇(𝑘)− 𝑃𝐷𝑎𝑦(1)𝐺(𝑗)𝑇(𝑘)𝑃𝐷𝑎𝑦(1)𝐺(𝑗)𝑇(𝑘) × 100      (2) 

 
As stated earlier, the circuit was activated for 15 days. 

However, we have still taken the measurements and computed 
the 𝑃𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒  using (2) for continues 30-days.  In contrast, 

the data log of the solar irradiance and the PV cell temperature 
is shown in Fig. 10(a), and Fig 10(b) presents the PV output 
power. 

The results of the power difference are shown in Fig. 10(c). 
The power difference is zero on the first day as this day 
corresponds to 𝑃𝐷𝑎𝑦(1)𝐺(𝑗)𝑇(𝑘) in equation (2). It is then 

recognized that the power difference is always below +5% up 
to the fifth day. We have seen an immeasurable increase in the 
power difference starting from day 6, where the peak increase 

 

(a) 

 

(b) 
Fig. 8. Thermal image of the examined PV string. (a) After PID, (b) After PID 
recovery (day 9). 

(a) 

(b) 

(c) 
Fig. 9. (a) Second examined PV system, (b) EL image of the modules before 
the PID test, (c) EL image of the modules after the PID recovery was 
deployed, this image has been taken after 9-days of the deployment of the 
proposed circuit. 

Table III Electrical parameters of the second examined PV string at STC 
conditions. 

Parameter Value 

Power at maximum power point (𝑃𝑀𝑃𝑃) 1950 W 

Current at maximum power point (𝐼𝑀𝑃𝑃) 7.55 A 

Voltage at maximum power point (𝑉𝑀𝑃𝑃) 258.3 V 

Short circuit current (𝐼𝑆𝐶) 8.05 A 

Open circuit voltage (𝑉𝑂𝐶) 331.2 V 
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in the power, 7.8%, is discovered on days 8 and 11. In the 
subsequent days (16 to 30), where the circuit was deactivated, 
we have seen a slight drop in the power difference but still 
achieving more than +5%. Therefore, this result proves that 
our proposed circuit can increase the output power of the 
old/aged PV modules already affected by PID, and it is not 
necessary to activate the PID recovery circuit for longer than 
15-days. Finally, we summarized some cases in Table IV to 
explain the cell EL image transformation. 

Based on this experiment's results, we can further conclude 
that the device's activation and the PID's recovery have been 
accomplished despite the variations in the solar irradiance or 
temperature. 

V. IMPACT OF VARYING PID RECOVERY VOLTAGE 

 Four different monocrystalline silicon PV modules were 
examined while varying the indirect voltage supplied by the 
PID recovery circuit. The PV modules' main electrical 
parameters are summarized in Table V. These modules were 
purchased in 2018 and were frequently used for indoor testing 
experiments.   

This experiment was accomplished by changing the voltage 
source of the relay. Four different voltage levels were 
analysed: 250 V, 500 V, 750 V, and 1000 V. The applied the 
PID test for ten continuous days. For example, in Fig. 11 we 
show the construction of the experiment, the positive high-
voltage power supply is connected with the frame of the PV 
module, while the negative is connected with the junction box 
connectors.   

Table IV Solar cell sample before and after the PID recovery. 

PID cell After PID recovery comments 

 
 

 

Increase in the light 
intensity of the cell all 
around the surface. 

 
 

 

The bottom side has been 
improved, yet the top side 
of the cell has a slight 
change in the light 
intensity. 

 
 

 

A substantial recovery is 
observed in this case. The 
combination of the 
breakdown and cracks 
has severely affected the 
cell, but it only can be 
identified after the PID 
recovery. 

 
 

 
 

In this case, no recovery 
was possible. This might 
be due to a significant 
breakdown or critical 
leakage in the current 
[23, 24]. 

 
 

 

The breakdown and 
cracks cannot be 
mitigated after the PID 
recovery. However, the 
cell has an increase in the 
light intensity across the 
non-cracked parts of the 
cell. 

 

 

(a) 

(b) 

(c) 
Fig. 10. Data taken from the second examined PV system. (a) Solar 
irradiance, (b) Output power measurements, (c) Power difference calculated 
using equation (2). 

  
Fig. 11. Schematic of the actual connection of the PID recovery with a PV 
module. 

Table V Electrical parameters of the PV modules at STC conditions. 

Parameter Value 

Power at maximum power point (𝑃𝑀𝑃𝑃) 136.3 W 

Current at maximum power point (𝐼𝑀𝑃𝑃) 5.8 A 

Voltage at maximum power point (𝑉𝑀𝑃𝑃) 23.5 V 

Short circuit current (𝐼𝑆𝐶) 6.10 A 

Open circuit voltage (𝑉𝑂𝐶) 32.2 V 
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The output EL images at each voltage level are shown in 
Fig. 12. At the first two voltage levels, 250 V and 500 V, we 
can conclude that there were no enhancements in the insanity 
of the solar cell EL images. However, a minor change in the 
intensity of the EL image taken for the module connected with 
750 V. In contrast, the best EL image transformation is 
observed for the PV module connected with 1000 V.  

Similar to the previous section, we have calculated using (2) 
the power difference of each PV module, compared with its 
first-day output power. The results of the four tested PV 
modules are shown in Fig. 13. There is no increase in the 𝑃𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒  for the first and second PV modules (subjected to 

250 V and 500 V). However, it is observed that there is a 
slight increase in the 𝑃𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 for the third PV module, 

which was subjected to a PID recovery voltage of 750 V. The 
maximum power difference is equal to 2.9% observed on the 

9th day. The last PV module, connected with 1000 V, had the 
highest increase in the output power, peaking at 7% on days 9 
and 10. 

This section shows that careful consideration of the voltage 
level of any PID recovery circuit development must be 
considered. In our case, the optimum performance of the PID 
recovery was achieved using 1000 V; we assume here that we 
require to mitigate the PID in a short period. 

VI. COMPARATIVE STUDY 

Our work has been compared with recent studies on PID 
recovery designs, as shown in Table VI, [10] and [25-27]. All 
the PID recovery algorithms available in the literature require 
changing the actual solar cells' anti-reflection coating (APC), 
such as adapting Poly Olefin [10] or using Ti/IrO2–CoO2 
anode [26]. Also, different models propose changing the back 
sheet of the PV modules, such as [27]. These are non-practical 
solutions to mitigate PID for already made PV modules or 
those installed in the field. To the best of our knowledge, we 
have not come across any previous work on mitigating the 
PID genuinely using power electronic devices as we suggest in 
this work. Hence, our work shines in the direction of 
mitigating PID for new as well as aged PV modules with 
limited complexity in terms of the design and integration of 
the device. 

The limitation of our proposed device is that it has to supply 
1000 V into the PV string. Therefore, it is required to connect 
the device to the PV string with careful attention to the 
positive and negative pins of the relay. In addition, it is shown 
earlier in Fig. 1 that a flywheel diode is connected to protect 
the circuit when the relay is faulty. However, we still 
recommend controlling the device via a low-voltage 
microcontroller. If a reverse voltage develops, the 
microcontroller can immediately go faulty (open-circuit), 
protecting the dc-dc converter from receiving the reversed 
high voltage. 

   
(a) (b) 

   
                            (c)                                                            (d) 
Fig. 12. EL images before the PID recovery and after 10 days of the PID 
recovery under different voltage levels. (a) 250 V, (b) 500 V, (c) 750 V, and
(d) 1000 V.  

Table VI Comparative study of the results obtained in this paper vs [10] and 
[25-27]. 

Paper Anti-PID method 𝑃𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒(%) Validation 
process 

Ref. [10] Using Poly Olefin 
materials with low 

water vapor through 
rate 

12% EL imaging for 
690 hours 

Ref. [25] Applying direct 
plasma enhanced 
chemical vapor 

deposition 

2.79%  EL imaging for 
96 hours 

Ref. [26] Utilizing a liquid 
oxidation technique 
by utilizing Ti/IrO2–

CoO2 anode 

10% EL imaging for 
96 hours 

Ref. [27] Using aluminum 
backsheet 

composed of 
polyethylene 
terephthalate 

(PET)/aluminum/PET 

5% 𝑃𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒(%) 

ratio 

This work Using Anti-PID 
indirect voltage of 

+1000V 

7% EL imaging for 
96 hours and  𝑃𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒(%) 

ratio Fig. 13. Power difference calculated using equation (2). 
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On the other hand, the previous anti-PID methods presented 
in Table VI depend on improving the solar cells' physical or 
chemical structure. However, our solution to the PID problem 
is combining an electronic device without crossing with the 
actual PV manufacturing. Therefore, the proposed device is 
expected to consume a small amount of energy, which is 
calculated using (3). The device has an applied voltage of 
1000 V, and the current is limited to 20 mA. Therefore, the 
maximum power is equal to 20 W. On the activation of the 
device over 10-hours every day (time from sunset to sunrise), 
the total consumed energy is maximum equal to 0.2 kWh. 

 𝐸𝑛𝑒𝑟𝑔𝑦 =  𝑃𝑜𝑤𝑒𝑟 𝑖𝑛 𝑊𝑎𝑡𝑡𝑠 1000 × 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 ℎ𝑜𝑢𝑟𝑠    (3) 

 
Suppose we consider the experiment previously explained 

in section IV. The actual measured vs theoretical energy 
difference is 47.99 kWh; this value is set as our threshold. 
Therefore, the increase in PV energy for the first day is equal 
to zero (47.99 kWh subtracted by 47.99 kWh), as shown in 
Fig. 14(a). For the subsequent days, an increase of 13 kWh in 
PV energy production started to peak on the eighth day. This 
result suggests that even though the device is consuming 0.2 
kWh, there is an increase of about 13 kWh in total after using 
the proposed device. 

In addition, the efficiency (calculated using (4)) was 
estimated for the 30-days experiment. As a result, it is 
confirmed in Fig. 14(b) that the efficiency of the PV system 
increased from approximately 76% on the first day to above 
80% on days six onwards. 

 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝐸𝑛𝑒𝑟𝑔𝑦 − 𝐸𝑛𝑒𝑟𝑔𝑦 𝐶𝑜𝑛𝑠𝑢𝑚𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝐷𝑒𝑣𝑒𝑙𝑜𝑝𝑒𝑑 𝐷𝑒𝑣𝑖𝑐𝑒𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 𝐸𝑛𝑒𝑟𝑔𝑦      (4) 

VII. CONCLUSIONS 

An electronic circuit that can mitigate the impact of PID in 

PV modules was presented in this study. This was achieved by 

inducing the PV string of 1000 V when a threshold current of 

100 mA is detected. A microcontroller was used to manage the 

current sensor data and actuate the whole circuit. It was 

demonstrated that the impact of the proposed circuit on PID 

affected modules are (i) improve the electroluminescence 

regeneration, (ii) increase the output power by up to 30% of 

newly PID affected modules, and up to 7.8% for old modules, 

and (iii) reduce the temperature (hotspots) of the modules. 

Ultimately, our proposed circuit can benefit the PV industry to 

produce an appropriate PID-resistance design and materials 

and help understand PID modules' operation response under 

such events. Finally, the activation of the circuit and the full 

PID recovery can be obtained within 15-days despite the 

variations of solar irradiance and temperature. 
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