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Proteins are macromolecules that perform essential biological functions which

depend on their three-dimensional structure. Determining this structure

involves complex laboratory and computational work. For the computational

work, multiple software pipelines have been developed to build models of the

protein structure from crystallographic data. Each of these pipelines performs

differently depending on the characteristics of the electron-density map

received as input. Identifying the best pipeline to use for a protein structure

is difficult, as the pipeline performance differs significantly from one protein

structure to another. As such, researchers often select pipelines that do not

produce the best possible protein models from the available data. Here, a

software tool is introduced which predicts key quality measures of the protein

structures that a range of pipelines would generate if supplied with a given

crystallographic data set. These measures are crystallographic quality-of-fit

indicators based on included and withheld observations, and structure

completeness. Extensive experiments carried out using over 2500 data sets

show that the tool yields accurate predictions for both experimental phasing

data sets (at resolutions between 1.2 and 4.0 Å) and molecular-replacement data

sets (at resolutions between 1.0 and 3.5 Å). The tool can therefore provide a

recommendation to the user concerning the pipelines that should be run in order

to proceed most efficiently to a depositable model.

1. Introduction

The first protein structures were determined in the 1950s using

X-ray crystallography (Kendrew et al., 1958). By 2020, the

number of solved protein structures deposited in the Protein

Data Bank (PDB) exceeded 154 000 (Berman et al., 2000;

https://www.rcsb.org/stats/summary). To enable this progress,

researchers have automated the computational work of

determining the protein structure from X-ray crystallographic

data sets. Multiple protein model-building pipelines have

been developed within the last three decades: ARP/wARP

(Perrakis et al., 1999; Lamzin & Wilson, 1993; Morris et al.,

2003; Langer et al., 2008, 2013), Buccaneer (Cowtan, 2006,

2008), Phenix AutoBuild (Terwilliger et al., 2008; Liebschner

et al., 2019) and SHELXE (Sheldrick, 2008, 2010; Thorn &

Sheldrick, 2013; Usón & Sheldrick, 2018). In recent studies, we

have shown that the performance of these pipelines differs

significantly from one protein structure to another (Alharbi et

al., 2019), which makes selecting a particular pipeline difficult,

and that using a pair of pipelines is sometimes the best option

(Alharbi et al., 2020), which greatly increases the number of

options that crystallographers can choose from.

An important step in building the protein structure involves

solving the phase problem. The phase problem may be solved
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using either molecular replacement or experimental phasing

methods; see, for example, McCoy & Read (2010) and Evans

& McCoy (2008). These methods lead to electron-density

maps with rather different properties: in the case of experi-

mental phasing the maps usually contain noise due to ambi-

guity in the experimental phasing, whereas in the molecular-

replacement case errors in the map can arise from possible

bias towards the molecular-replacement model. The resolu-

tion of the experimental observations, the quality of experi-

mental phasing or the similarity of the molecular-replacement

model, and many other features such as ice rings may also

affect the quality of the data. Each of these factors impact

the performance of different model-building algorithms in

different ways (Vollmar et al., 2020; Alharbi et al., 2019; Morris

et al., 2004).

The model-building process also contains stochastic

elements. The placement of the first atom or residue in a chain

will in turn influence the placement of all subsequent

elements, and so substantially different model-building results

may be obtained from very slight perturbations of the initial

conditions. This is addressed in one model-building pipeline

by building multiple models at each stage of the process

(Terwilliger et al., 2008).

We examined a selection of 3273 research papers cited in

the PDB to evaluate how crystallographers currently choose

which model-building software pipeline to use, by searching

for occurrences of the pipeline names in the text of each paper

and excluding papers where the search results were ambig-

uous or where multiple tools were mentioned. The results are

plotted against year, journal and the country of the first author

in Fig. 1. The most striking feature of this analysis is the

correlation between the first author’s country and the country

where each pipeline has been developed, with US researchers

more likely to use Phenix Autobuild, UK researchers more

likely to use Buccaneer and German researchers more likely to

use ARP/wARP. While there are practical reasons which

might explain this correlation (for example access to devel-

opers and workshops), it would be surprising if cognitive

biases such as affinity bias (Ashforth & Mael, 1989), to which

we are all subject, did not play a role.

To help to eliminate this bias, we have developed a software

tool that uses a machine-learning (ML) model to predict the

performance of a wide range of model-building pipelines and

pipeline combinations for a given crystallographic data set.

Our prediction tool serves three purposes.

(i) To provide users with a more efficient route to a higher-

quality depositable structure for their specific data set.

(ii) To challenge users to try different pipelines, and

multiple combinations of pipelines, on the basis of likely

performance rather than on the basis of familiarity or affinity

research papers
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Figure 1
Analysis of the crystallographic model-building pipelines used in 3273 PDB protein-structure research papers published between 2010 and 2020. The
papers were identified using either their PubMed identifier or DOI obtained from the PDB. We omitted research papers that used multiple pipelines. We
compared the number of uses of each pipeline in its base country, depending on the home country of the first author’s organization. (a) The number of
research papers by publication year for each pipeline. (b) The journals in which the research papers were published; journals with fewer than 50 research
papers are combined into one group. (c) The number of uses of each pipeline in its base country and across the rest of the world; the pipeline names are
shown in bold in their base-country plot.



to the pipeline developers. Given that all pipelines provide

very convenient user interfaces, the overhead of trying a new

pipeline will cost less than the effort of model completion from

a suboptimal starting point.

(iii) To assist future developers in the development of meta-

tools which make use of multiple pipelines to further automate

the process of structure solution and to obtain more complete

models.

To the best of our knowledge, this is the first ML solution

that guides the user in selection of the model-building pipe-

lines that are most suitable for a given crystallographic data

set. While a predictive model that employs similar ML tech-

niques was recently proposed by Vollmar et al. (2020), that

model addresses the complementary problem of predicting

the usefulness of collected crystallographic data sets.

2. Predictive model

2.1. Data sets

We used data sets from three sources to train and evaluate

our ML predictive model: 1203 experimental phasing data sets

from the Joint Center for Structural Genomics (JCSG; van den

Bedem et al., 2011; Alharbi et al., 2019), 32 newer experi-

mental phasing data sets deposited between 2015 and 2021

and taken from the PDB, and 1332 molecular-replacement

(MR) data sets from Bond et al. (2020). These data sets

correspond to two techniques that can be used to build a

protein structure. Experimental phasing is when the phases

are determined from the observed data using the features of

special atoms, such as a large number of electrons; see, for

example, Dauter & Dauter (2017). In contrast, MR obtains

initial phases from a known protein structure that is similar to

the protein structure that we want to build; see, for example,

Evans & McCoy (2008).

The resolution of the JCSG experimental phasing data sets

ranges from 1.2 to 4.0 Å, with the low-resolution data sets

augmented by simulation as in Alharbi et al. (2019), the

resolution of the PDB experimental phasing data sets ranges

from 1.1 to 5.8 Å, and the resolution of the MR data sets

ranges from 1.0 to 3.5 Å. Lower resolution data sets have

fewer experimental observations, which decreases the

performance of the protein-building pipelines.

The way in which we partitioned these data sets into data

for training and data for evaluation of our ML model is

described in Section 2.5.

2.2. Crystallographic model-building pipelines

The four pipeline versions used in our work are Phenix

AutoBuild version 1.14, Buccaneer in CCP4i version 7.0.066,

ARP/wARP version 8 and SHELXE version 2019/1. These

pipelines were run using the default parameters, both indivi-

dually and in pairwise combinations where the protein model

produced by a first pipeline x was supplied as input to a second

pipeline y.

2.3. Protein structure evaluation

We focused on predicting three protein structure evaluation

measures, namely Rfree, Rwork and structure completeness. Rfree

and Rwork measure the fit of the protein structure against the

observed data, with Rfree only using observations which are

not used in the refinement calculation: typically 5% of the data

(Brünger, 1992). Structure completeness is the percentage of

residues in the deposited protein model with a matching

residue in the built model. Residues are considered to match if

they have the same type and the distance between their C�

atoms is less than 1 Å.

2.4. Electron-density map features

We trained our ML prediction model using the resolution of

the crystallographic data set and the following measures of the

quality of the electron-density map as input features.

(i) R.m.s.d.: the root-mean-square deviation of the electron

density from the mean of the map.

(ii) Skew: the third moment of the electron density about

the mean, which measures the asymmetry of the electron-

density histogram (Terwilliger et al., 2009).

(iii) Maximum density: the highest density of the electron-

density map.

(iv) Minimum density: the lowest density of the electron-

density map.

(v) Sequence identity: the sequence identity calculated by

superposition of the homologue chain onto the target chain

using GESAMT (Krissinel, 2012; Bond et al., 2020).

2.5. Predictive model training

The individual pipelines were run on all data sets listed in

Section 2.1. The pipeline combinations were only run on the

experimental phasing data sets, as building protein models

from such ‘raw data’ can often be improved by using combi-

nations of pipelines (Alharbi et al., 2020). The results of these

runs are described in detail in our recent work (Alharbi et al.,

2019, 2020). The data sets and the protein structures obtained

from these runs were used to train and evaluate the predictive

ML model as follows.

(i) 80% of the JCSG experimental phasing data sets and

80% of the MR data sets were used to train the predictive

model.

(ii) The remaining 20% of the JCSG experimental phasing

and MR data sets, and all 32 PDB experimental phasing data

sets, were used to evaluate the trained model.

We used random forests (Breiman, 2001) as implemented in

the Weka framework (Hall et al., 2009; Frank et al., 2016) for

the predictive model, as this approach showed the lowest error

rate across the ML algorithms that we tested, which included a

support vector machine (Cortes & Vapnik, 1995) and the

RepTree decision-tree algorithm. We varied the number of

trees in the random forest from 1 to 5000 in geometric

sequence, and 1024 was chosen for the final training as this

showed the lowest error rate. The depth of the trees was set to

unlimited, and bagging (Breiman, 1996) was used to reduce

the variance. We trained the predictive model using a 173-node
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high-performance cluster with 7024 Intel Xeon Gold/Platinum

cores and a total memory of 42 TB.

A separate regression ML model (random forest model)

was trained for each of the 24 pipeline variants (i.e. individual

pipelines or pipeline combinations) in Fig. 2 and for each of

the three structure evaluation measures in Section 2.3 relevant

to the considered pipeline variant. For instance, Rfree is not

relevant for ARP/wARP and SHELXE with and without

Parrot used on their own, so no ML model was built for these

individual pipelines and Rfree. We obtained a total of 69 and

ten regression ML models for experimental phasing and for

MR, respectively. Our predictive model consists of these

regression ML models taken together.

We used the root-mean-square error (RMSE) and mean

absolute error (MAE) measures to compare the accuracy of

our predictive model with that of a ‘baseline’ predictive

model. In line with the standard practice for the evaluation of

regression models, we used the Zero-R algorithm as a baseline

predictive model (Choudhary & Gianey, 2017). Given a

pipeline variant and any evaluation data set, the Zero-R

algorithm predicts that the Rfree/Rwork and structure comple-

teness for the structure built by the pipeline would be the same

as the median Rfree/Rwork and structure completeness for the

training data sets, respectively.

To evaluate the accuracy of the predictive model for data

sets of different resolutions, we partitioned the evaluation data

sets into classes based on their resolutions, and we examined

the prediction errors for each such class. Finally, to show the

time saved by running only the pipeline variant predicted to

build the best protein structure for a data set, we compared

the execution time of this pipeline with the time required to

run all of the pipeline variants for that data set.

To quantify the uncertainty of the ML prediction, we

calculated prediction intervals using the kernel estimator

method from Frank & Bouckaert (2009). The width of these

intervals reflects the prediction uncertainty. As such, we sort

and report the pipelines in increasing prediction interval width

order, with pipelines of similar prediction uncertainty (i.e. with

no more than 5% difference in prediction interval width)

grouped together.

Finally, we generate a script for each pipeline and pipeline

combination, ensuring that the users of our tool can run the

individual pipelines and pipeline combinations in the manner

used to obtain the training data sets for our ML prediction

model. Furthermore, these ready-to-run scripts are custo-

mized based on data provided by the tool users.

3. Predictive model evaluation

3.1. Evaluation of the crystallographic data-set features used

for model training

We evaluated the importance of the features used to train

our predictive model by removing one feature at a time and

comparing the accuracy of the model trained without that

feature with the accuracy of the predictive model when trained

on all of the features. Fig. 3 shows the difference in MAE and

RMSE when one feature is removed compared with when all

of the features are used in training for each of the four indi-

vidual pipelines, with separate MAE and RMSE presented for

the JCSG experimental phasing and MR data sets.

This analysis indicates that Phenix AutoBuild and ARP/

wARP are more dependent on the data-set resolution than

Buccaneer, which is in line with previous results (Alharbi et al.,

2019). However, Phenix AutoBuild and ARP/wARP are less

sensitive to the resolution for MR data sets compared with

experimental phasing data sets. R.m.s.d. and skew have

different effects on the performance of the pipelines. For

example, Buccaneer is affected by these two features more

than Phenix AutoBuild for the experimental phasing data set,

indicating a greater dependence on the noise level in the

starting map. For MR data sets, the sequence identity affected

the performance of all pipelines, with the highest effect for

Buccaneer.

3.2. Evaluation of predictive model performance

Fig. 2 shows the MAE and RMSE for both types of data sets

(experimental phasing and MR) for each of the three protein

structure evaluation measures. For the JCSG experimental

phasing data sets, both the MAE (0.04–0.19) and RMSE (0.08–

research papers
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Figure 2
Mean absolute error (MAE) and root-mean-squared error (RMSE) of structure completeness and Rfree/Rwork for two types of experimental phasing data
sets and for molecular-replacement (MR) data sets. ARP/wARP and SHELXE are not used for Rfree. For the MR data sets, only individual pipelines
were run. MAE and RMSE were calculated for the ML predictive model (P) and median predictor (M) used as a baseline (Zero-R) model.



0.26) for predicting the protein structure completeness are

higher than the MAE and RMSE for the other measures. The

values of MAE (0.02–0.06) and RMSE (0.02–0.08) decreased

when predicting Rfree/Rwork. For MR data sets, the MAE of

structure completeness increased to 0.15–0.21 and the RMSE

to 0.20–0.29. The MAE of Rfree/Rwork was between 0.02 and

0.07, compared with the RMSE, which is between 0.04 and

0.09.

Different levels of predictability were achieved for different

pipeline variants. For the experimental phasing data sets and

ARP/wARP after Phenix AutoBuild, the predictive model

achieved the lowest MAE for structure completeness (0.04),

with a similar RMSE, which indicates a small number of large

error predictions. On the other hand, for MR data sets, the

MAE for structure completeness for ARP/wARP and Phenix

AutoBuild run individually increased to 0.20 and 0.21,

respectively. Buccaneer run individually and after ARP/wARP

or Phenix AutoBuild showed the lowest predictability, with

MAE and RMSE values above 0.17.

Rfree/Rwork are more predictable across all pipeline variants

and for both types of data sets, with lower MAE and RMSE

values than those achieved for structure completeness. For the

JCSG experimental phasing data sets, the predictive model

achieved a low MAE for Rwork (0.02–0.03) and only a slightly

larger MAE for Rfree (0.03–0.05) for all of the individual

pipelines. The MAE obtained for pipeline combinations and

Rwork ranged between 0.02 and 0.05, and that for Rfree varied

between 0.04 and 0.06. RMSE is slightly higher than MAE for

both the individual and the combined pipelines. For the MR

data sets, the MAE of Rwork is between 0.02 and 0.06, with the

lowest value being obtained for SHELXE, and the MAE for

Rfree is between 0.04 and 0.07. Finally, the RMSEs of Rfree and

Rwork are between 0.06 and 0.09 and between 0.04 and 0.08,

respectively.

Compared with the baseline Zero-R predictive model (see

Section 2.5), our predictive model achieved lower or much

lower MAE and RMSE prediction errors for almost all of the

pipeline variants, types of data sets and protein structure

evaluation measures, i.e. for 288 of the 296 entries in Fig. 2.

Notably, the predictions for recently PDB-deposited experi-

mental phasing data sets (which we did not use in the training

of the predictive model) also have a much lower error for our

predictive model than for theZero-R predictive model (Fig. 4),

with the exception of the predictions for SHELXE before

Buccaneer and Phenix AutoBuild, for which the Zero-R

baseline model predictions achieve similar or marginally lower

errors.

To evaluate the fitting of our predictive model, Fig. 5 shows

the difference in MAE and RMSE between training and

testing for the JCSG experimental phasing and the MR data

sets. The difference in MAE and RMSE between training and

testing data sets for structure completeness is higher than that

in Rwork/Rfree for the JCSG experimental phasing and the MR

data sets. When comparing the pipelines by structure

completeness, Phenix AutoBuild and Buccaneer have the

lowest error difference for the JCSG experimental phasing

and the MR data sets, respectively. For Rwork/Rfree, the pipe-

lines have a smaller difference in MAE and RMSE between

the training and testing data sets compared with the structure

completeness.

To further evaluate the accuracy of our predictive model,

we analysed the mean and standard deviation (SD) of the

predicted and actual protein structure evaluation measures

for the crystallographic data sets grouped based on their

research papers
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Figure 3
Ablation studies showing the difference in MAE and RMSE when the ML model was trained on all features and when one feature is removed at a time.
Higher values indicate more important features.



resolutions. Figs. 6 and 7 show the results of this analysis for

JCSG experimental phasing data sets for the pipeline variants

without SHELXE and with SHELXE, respectively. For

resolutions between 1.2 and 3.1 Å, the predicted and actual

mean and SD values are very close for most pipeline variants.

The spread of the predicted structure completeness for ARP/

wARP run alone and run after SHELXE has a higher SD

compared with the completeness achieved when the pipelines

were run in reality. At worse than 3.2 Å, the predicted Rfree/

Rwork have mean and SD values close to the real results, while

the predicted structure completeness has a larger difference in

the SD and a smaller difference in the mean than the actual

results.

Fig. 8 shows the results of the same analysis as above for the

MR data sets. The mean of all the predicted structure

evaluation measures as well as the SD values for the predicted

Rfree/Rwork are close to the actual results. However, at reso-

lutions better than 3.0 Å the difference between the SD for

research papers
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Figure 5
MAE and RMSE of structure completeness and Rfree/Rwork for training and testing for the JCSG experimental phasing data sets and the MR data sets.
The entries are shaded based on the magnitude of the difference in MAE and RMSE between the training and testing data sets.

Figure 4
Prediction error for the ML predictive model and the median predictor for recently deposited and JCSG experimental phasing data sets.



the predicted and actual structure completeness is larger than

that for Rfree/Rwork. At resolutions of 3.1 Å or worse, this

difference decreases significantly.

To evaluate the predictive model uncertainty, we grouped

the pipelines using the method described in Section 2.5. We

evaluated this by checking whether the pipeline with the

lowest prediction error was classified in the first group for each

protein structure in our testing data set. For the JCSG

experimental phasing data set, 85%, 94% and 91% of the

pipelines with the lowest prediction error were classified in the

research papers
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Figure 7
Mean and SD of the real and predicted structure evaluation measures for the JCSG experimental phasing data sets for SHELXE and its combinations.
The resolutions of the data sets are between 1.2 and 3.1 Å. The results are shaded based on the difference between the real (R) and predicted (P) results.

Figure 6
Mean and standard deviation (SD) of the real and predicted structure evaluation measures for the JCSG experimental phasing data sets grouped based
on resolution, with the number of data sets in each group shown in parentheses. The entries are shaded based on the magnitude of the difference between
the real (R) and predicted (P) results.

Figure 8
Mean and SD of the real and predicted structure evaluation measures for the MR data sets grouped based on resolution, with the number of data sets in
each group shown in parentheses. The entries are shaded based on the difference between the real (R) and predicted (P) results.



first group for structure completeness, Rfree and Rwork,

respectively. For the MR data set the percentages were 60%,

69% and 87%, respectively.

Fig. 9 shows the inference time of the predictive model for

individual pipelines and pipeline combinations for the JCSG

experimental phasing and MR data sets. The inference time is

the total time taken to predict the structure completeness and

Rfree/Rwork. The SHELXE variants for the JCSG experimental

phasing data set and ARP/wARP and Buccaneer for the MR

data set have the lowest inference times.

3.3. Evaluation of the recommended pipeline variant

To further evaluate our predictive model, we analysed the

potential benefits of using the pipeline variant recommended

by the model, i.e. the pipeline variant predicted to achieve the

best completeness or Rfree/Rwork for each of the data sets.

To this end, we first analysed the time savings that can be

achieved by using the recommended pipeline variant instead

of running all of the pipeline variants in order to obtain the

best possible structure. Fig. 10 shows the total execution time

when running all of the pipeline variants and when only the

pipeline recommended by our predictive model was run.

The time saved (on the powerful high-performance cluster

mentioned in Section 2.5) was up to 20 h for a small protein

structure and up to 60 h for large structures. When these

pipeline variants were ran in parallel on our high-performance

cluster, this time saving was reduced; however, running the

recommended pipeline still saved up to 30 h when building

large structures.

Next, we analysed how close the completeness and Rfree/

Rwork of the protein structure built by the recommended

pipeline variant was to the best completeness and Rfree/Rwork

values achievable by running all of the pipeline variants.

Figs. 11 and 12 present the results of this analysis for the JCSG

experimental phasing and MR data sets, respectively. These

results show that the recommended pipeline variant built

protein structures with a completeness, Rfree and Rwork within

only 1% of those of the best pipeline for 32%, 50% and 59%

of the JCSG experimental phasing data sets and 70%, 99%

and 71% of the MR data sets, respectively, and within only 5%

of those of the best pipeline for 52%, 78% and 93% of the

JCSG experimental phasing data sets and 83%, 100% and

87% of the MR data sets, respectively.

Finally, for each of the 15 research papers that we could find

for our testing MR data sets that mentioned the pipeline used

to build the protein structure, we compared the pipeline used

in the paper with the pipeline variant recommended by our

predictive model. To ensure a fair comparison, we ran the
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Figure 9
Inference time for the predictive model for individual pipelines and pipeline combinations. For each data set in the JCSG experimental phasing and MR
data sets, the inference time is the total time taken to predict the structure completeness, Rfree and Rwork. (a) Inference time for the JCSG experimental
phasing data sets and (b) inference tine for the MR data sets.

Figure 10
Execution time required to run all of the pipeline variants (in parallel and
in sequence) versus the execution time required to run the pipeline
recommended by the predictive model (for best completeness, best Rfree

and best Rwork) for the JCSG experimental phasing data sets.



pipeline used in the paper and the pipeline recommended by

our predictive model using the same search model to obtain

initial phases for each structure. This search model could not

be the same as that used for the PDB-deposited structure,

which is unavailable.

Fig. 13 presents the structure completeness achieved by the

pipeline that was chosen to solve the protein structure when

deposited in the PDB compared with the completeness

achieved by our recommended pipeline for each of these MR

data sets. As shown in this figure, our recommended pipeline
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Figure 11
Difference between the best completeness, Rfree and Rwork achieved by running all of the pipeline variants and running the recommended pipeline
variant for the JCSG experimental phasing data sets. The percentage of the data sets for each difference group is shown on the left and the cumulative
percentage is shown on the right.

Figure 12
Difference between the best completeness, Rfree and Rwork achieved by running all of the pipeline variants and running the recommended pipeline
variant for the MR data sets. The percentage of the data sets for each difference group is shown on the left and the cumulative percentage is shown on the
right



achieved better completeness than the other pipeline for ten

of the 15 protein structures, and an identical completeness for

three additional structures for which the predictive model

recommended the same pipeline as that used to build the PDB

structure. The recommended pipeline achieved worse

completeness for only two of the 15 protein structures (with a

decrease in completeness of less than 1% for one of these).

4. Discussion

We have presented a predictive model of the performance of

four widely used protein model-building pipelines and of their

pairwise combinations. We have separately trained this

predictive model for both experimental phasing and molecular-

replacement data sets and for three commonly used structure

evaluation measures. Using this predictive model, we aim to

help users choose the best pipeline for solving their protein

structure based on the features of their starting data, to

encourage them to use pipelines which may be less familiar to

them and to increase the joint use of multiple pipelines, as

doing so is likely to yield a more complete and more refined

structure.

The features were calculated in scale-dependent measures;

however, scale-independent measures are more natural in the

crystallographic context. The scale-dependent measures were

implemented first, yielding almost indistinguishable results.

We assume that this is due to the machine-learning model

effectively factoring out scale internally.

The MAE and RMSE analysis showed that Rfree and Rwork

are more predictable than structure completeness in both

experimental phasing and MR data sets. This unpredictability

differs between the pipeline variants, suggesting that the

electron-density map features have different effects on the

performance of the pipelines. The predictability of pipelines

involving Phenix Autobuild tends to be higher, which is likely

to be due to the use of multiple models to offset stochastic

effects. Both the MAE and RMSE for our predictive model

are significantly lower than the MAE and RMSE for the

training data set median used by the baseline, Zero-R

predictive model.

When comparing the individual data sets by using the mean

and SD for the real and predicted structure evaluation

measures at high resolution, which is considered to be an

easier case, the performance of the pipelines is more

predictable than at low resolution. When the data sets become

worse in terms of resolution (which typically also means that

the phases become worse), the difference in SD between the

real and predicted results becomes larger.

The pipeline variant predicted to build the best protein

structure frequently produced structures with the same or

similar completeness and/or Rfree/Rwork as the best pipeline

variant. Moreover, using the pipeline variant recommended by

our predictive model save days of pipeline execution time on

high-specification computers, and the time saved increases

when the protein structure is larger. Finally, the predictive

model can be used to try massive search models in MR cases,

enabling the selection of good initial phases (Simpkin et al.,

2018; Bibby et al., 2012).

Future work will consider a multi-task method for

predicting structure completeness, Rfree and Rwork, and will

combine the ML models into a single model. We envisage that

this could lead to more accurate predictions and to better

pipeline ranking. Moreover, we will explore additional ML

algorithms, for example XGBoost (Chen & Guestrin, 2016), as

this may improve our predictive model.

5. Availability

We implemented the predictive model described in the paper

as a web application that is publicly available and free to use

at http://www.robin-predictor.org. The source code for the

application is available at https://doi.org/10.15124/ee9d169f-

c34b-44f2-8c75-3b68e7cd68a8.
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