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Multi-Trait Genetic Analysis Identifies
Autoimmune Loci Associated with
Cutaneous Melanoma

Upekha E. Liyanage1,2,3, Stuart MacGregor1, D. Timothy Bishop5, Jianxin Shi6, Jiyuan An1,
Jue Sheng Ong1, Xikun Han1, Richard A. Scolyer7,8,9, Nicholas G. Martin10, Sarah E. Medland10,
Enda M. Byrne11, Adèle C. Green2,12,13, Robyn P.M. Saw7,8,14,15, John F. Thompson7,8,14,
Jonathan Stretch7,8,9, Andrew Spillane7,8, Yunxuan Jiang16, Chao Tian16,
23andMe Research Team16, Scott G. Gordon10, David L. Duffy10, Catherine M. Olsen4,17,
David C. Whiteman17, Georgina V. Long7,8,18,19, Mark M. Iles5, Maria Teresa Landi6 and
Matthew H. Law1,20
Genome-wide association studies (GWAS) have identified a number of risk loci for cutaneous melanoma.
Cutaneous melanoma shares overlapping genetic risk (genetic correlation) with a number of other traits,
including its risk factors such as sunburn propensity. This genetic correlation can be exploited to identify
additional cutaneous melanoma risk loci by multitrait analysis of GWAS (MTAG). We used bivariate linkage
disequilibriumescore regression score regression to identify traits that are genetically correlated with clinically
confirmed cutaneous melanoma and then used publicly available GWAS for these traits in a multitrait analysis
of GWAS. Multitrait analysis of GWAS allows GWAS to be combined while accounting for sample overlap and
incomplete genetic correlation. We identified a total of 74 genome-wide independent loci, 19 of them were not
previously reported in the input cutaneous melanoma GWAS meta-analysis. Of these loci, 55 were replicated (P
< 0.05/74, Bonferroni-corrected P-value in two independent cutaneous melanoma replication cohorts from
Melanoma Institute Australia and 23andMe, Inc. Among the, to our knowledge, previously unreported cuta-
neous melanoma loci are ones that have also been associated with autoimmune traits including rs715199 near
LPP and rs10858023 near AP4B1. Our analysis indicates genetic correlation between traits can be leveraged to
identify new risk genes for cutaneous melanoma.
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INTRODUCTION
Cutaneous melanoma (hereafter melanoma) is the most
aggressive form of skin cancer; while representing only 2% of
skin cancers diagnosed, 80% of deaths due to skin cancers
are due to melanoma (Linos et al., 2009; US Preventive
Services Task Force et al., 2016). In 2019 in Australia
alone, there were over 15,000 cases of invasive melanoma
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and 1,700 deaths (Australian Institute of Health and Wlefare,
2019), while in the United States, there were over 97,000
cases and 7,000 deaths (American Cancer Society, 2019).
Twin studies have estimated the heritability of melanoma to
be 58% (95% confidence interval [CI], 43e73%) (Mucci
et al., 2016). Depending on the approach and the dataset
used, the single nucleotide polymorphism (SNP) heritability
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Table 1. Sample Sizes, Correlation with Melanoma, and LD Score Analysis of GWAS Datasets

Trait Cases or *Total N for Linear GWAS Controls rg
1 SE2 P3

KC (UKBB)4 18,538 340,302 0.46 0.088 2.0 � 10e7

Skin burn type (QSkin)4 *16,169 — 0.64 0.123 2.1 � 10e7

Mole count (Duffy et al., 2018)4 *65,777 — 0.57 0.113 3.4 � 10e7

Potassium in urine (UKBB)4 *425,892 — 0.13 0.034 1.0 � 10e4

Skin color (QSkin)4 *16,185 — e0.56 0.149 2.0 � 10e4

Rheumatoid arthritis (Okada et al., 2014)4 14,361 43,923 e0.21 0.057 2. 0 � 10e4

KC (QSkin)4 8,145 4,797 0.48 0.129 2.0 � 10e4

Skin tan type (QSkin)4 *16,141 — e0.55 0.160 5.0 � 10e4

Red hair (QSkin) 973 15,202 0.48 0.150 1.5 � 10e3

Vitamin D (Blood) (UKBB) *401,529 — 0.10 0.033 1.6 � 10e3

Hair color exc. Red (UKBB) *411,967 — e0.27 0.084 1.6 � 10e3

Childhood sunburns (UKBB) *331,020 — 0.37 0.128 3.5 � 10e3

Skin color (UKBB) *433,288 — e0.34 0.123 5.8 � 10e3

Cr (enzymatic) in urine (UKBB) *426,794 — 0.08 0.029 8.6 � 10e3

Leukocyte count (UKBB) *426,772 — e0.06 0.025 0.011

Hypothyroidism (Zhou et al., 2018) 14,871 391,429 0.10 0.042 0.012

Skin burn type (UKBB) *430,447 — e0.30 0.123 0.014

Total protein (UKBB) *384,728 — e0.09 0.038 0.019

Risky behavior (Karlsson Linnér et al., 2019) *466,571 — 0.09 0.040 0.020

Hair color except for red (QSkin) *15,202 — e0.29 0.133 0.033

ALP (blood) (UKBB) *419,535 — e0.06 0.028 0.036

KC cancer (eMERGE) 1,565 8,756 0.27 0.139 0.048

Abbreviations: ALP, alkaline phosphatase; Cr, creatinine; KC, keratinocyte; SE, standard error; UKBB, United Kingdom Biobank; WBC count, white blood
cell count.
1rg ¼ genetic correlation with melanoma.
2SE of the rg.
3P-value of rg estimate.
4Traits included in the secondary sensitivity analysis P-value < 0.00091 (0.05 corrected for the 55 GWAS).
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measured using melanoma genome-wide association study
(GWAS) data ranges from 12 to 30% (Landi et al., 2020; Lu
et al., 2014; Yang et al., 2011; Zhang et al., 2018), rein-
forcing that there is still a large proportion of melanoma
heritability to be discovered. One approach to identify
additional genes associated with melanoma is to increase
statistical power by leveraging its (genetic) correlation with
other traits. If the same SNPs are associated with both traits,
then a combined analysis will have greater statistical power.

A number of traits that are themselves polygenic have been
shown to be correlated with risk of melanoma. Having many
moles is the strongest single risk factor for melanoma, and
combining mole count and melanoma GWAS data has
identified additional loci (Duffy et al., 2018; Gandini et al.,
2005; Landi et al., 2020). Ultraviolet radiation (UVR) is the
main environmental risk factor for all skin cancers. As a
result, melanoma and the keratinocyte cancers (KCs), basal
cell carcinoma (BCC) and squamous cell carcinoma (SCC)
are more frequent in people with traits associated with
sensitivity to the effects of UVR exposure such as fair skin and
propensity to sunburn. These skin pigmentation‒related traits
are themselves under genetic control (Pavan and Sturm,
2019). Given this, it is unsurprising that several genetic var-
iants and genes common to all skin cancers are involved in
regulating human pigmentation, for example, MC1R, IRF4,
and SLC45A2 (Gerstenblith et al., 2010; Roberts et al., 2019).
The importance of UVR exposure suggests that other traits
may share genetic risk with melanoma. UVR exposure is also
Journal of Investigative Dermatology (2022), Volume 142
important for vitamin D synthesis, and higher levels of serum
vitamin D have been associated with an increased risk of
melanoma in observational studies (Mahamat-Saleh et al.,
2020). While our recent Mendelian randomization analysis
suggests that vitamin D levels themselves may not be causal
for melanoma (Liyanage et al., 2020), that does not rule out a
genetic overlap with melanoma with respect to pigmentation
and sun exposure. The involvement of pleiotropic genes such
as CASP8, CYP1B1, and TERT among skin cancers suggests a
shared genetic architecture that cannot be wholly explained
by a common effect of pigmentation. Finally, although the
exact relationship/underlying mechanism between a dysre-
gulated immune system and risk of skin cancer has not yet
been explored extensively, autoimmune conditions,
including psoriasis are known to be associated with mela-
noma (Bhattacharya et al., 2016).

We hypothesized that a combined analysis of GWAS of
traits genetically correlated with melanoma will identify
additional risk loci for melanoma. The utility of a traditional
meta-analysis is limited when genetic correlation (rg) is
incomplete (i.e., much less than 1) and also where there is
sample overlap in contributing GWAS. To address this, we
have employed the multitrait analysis of GWAS (MTAG)
method (Turley et al., 2019). MTAG provides accurate SNP
effect size estimates even with overlapping samples and
incomplete rg. As the gain in statistical power for melanoma
gene discovery is proportional to the added GWAS’ sample
sizes and their rg with melanoma, we screened potential



Total no. of traits 55

8 traits with rg P < (0.05/55)
0.00091 included secondary
melanoma multitrait analysis

22 traits with melanoma rg P <
0.05 included in primary

multitrait analysis of GWAS

Summary GWAS data from
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and biochemical traits)

Confirmed melanoma meta-
analysis from Landi et al.,

(PMID 32341527)
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rheumatoid arthritis
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calculate rg with melanoma
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Figure 1. Study design. Flow chart of

the study design. LD Hub was from

Zheng et al. (2017); LD score

regression was from Bulik-Sullivan

et al. (2015a and 2015b). KC,

keratinocyte; LD, linkage

disequilibrium; rg, genetic correlation;

UKBB, United Kingdom Biobank;

QSkin, QSkin Sun and Health Study.
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traits using linkage disequilibrium (LD) score regression
(Bulik-Sullivan et al., 2015a, 2015b). Following this selec-
tion process, we incorporated 22 GWAS of traits correlated
with melanoma in MTAG to identify previously unreported
SNPs associated with melanoma risk. As with all multi-trait
approaches, there is the potential for false-positives where a
SNP is not associated with melanoma but is associated
(strongly) with another input trait; to validate our findings,
we followed recommended best practices (Turley et al.,
2019) and tested for replication of identified loci in an in-
dependent melanoma GWAS meta-analysis.
RESULTS
Genetic correlation between melanoma and other input
traits

We assessed the correlation of melanoma, firstly, with a wide
range of traits included in the LD Hub database and, sec-
ondly, with a selected set of traits of potential relevance to
melanoma (many of which were not included in LD Hub, or
were included only based on a limited sample size). We
found traits associated with pigmentation were moderately
correlated with melanoma, for example, skin color in QSkin
rg w e0.6 and KCs rg w0.5 (Table 1 and Supplementary
Table S1). An exception to this was red hair; the low corre-
lation with melanoma was likely a result of this not being a
polygenic trait (Liu et al., 20181). While the United Kingdom
Biobank (UKBB) pigmentation rg estimates were lower than
those from QSkin, the confidence intervals overlapped,
indicating comparable genetic architectures (Supplementary
Table S2). As previously reported (Duffy et al., 2018), mole
count and melanoma have a moderately strong rg ¼ 0.57
(standard error ¼ 0.11). Interestingly, given the importance of
the immune system in melanoma, we observed a correlation
with autoimmune traits, including rheumatoid arthritis (RA)
1 Liu X, Loh PR, O’Connor LJ, Gazal S, Schoech A, Maier RM, et al. Quantification

of genetic components of population differentiation in UK Biobank traits reveals

signals of polygenic selection. bioRxiv 2018.
with rg of e0.21 (standard error ¼ 0.06); however, the exact
biological relationship underlying this correction is not yet
clear (Supplementary Table S2).

Multitrait analysis results

In a two-step process, we first prioritized a set of 55 traits
where there was a correlation with melanoma before
reducing them to a set of 22 traits (Figure 1, Methods).
Our primary multitrait analysis included 22 traits we
found to be genetically correlated with melanoma at an
rg P < 0.05 and to be having an effective sample size N
* rg

2 > 400 (Table 1 and Supplementary Table S2,
Methods). The linkage disequilibrium score regression
(LDSC) intercept for each included GWAS is in
Supplementary Table S2.

In the multitrait results, we computed the LDSC intercept
for the melanoma output trait from MTAG and found no
inflation: 0.86 (standard error ¼ 0.04) (Supplementary
Table S2). Using FUMA (Methods [Watanabe et al.,
2017]), we identified 74 independent genome-wide sig-
nificant loci associated with melanoma (Supplementary
Figure S1). A Q‒Q plot is provided in Supplementary
Figure S2. Of these loci, 19 have not previously reached
genome-wide significance for melanoma (Table 2) (Landi
et al., 2020).

As a sensitivity analysis, we performed a secondary analysis
restricted to the eight traits where the rg P-values were below
the Bonferroni-corrected threshold of 0.001. As expected, due
to the reducedeffective sample size, fewer SNPswere genome-
wide significant (60 SNPs) (Supplementary Table S3), but the
concordancewith the primary analysis resultswas high. A total
of 51 of 60 SNPs from the secondary analysis were significant
in the primary analysis, and effect sizes from the primary and
secondary analyses were highly correlated (r2 ¼ 0.89)
(Supplementary Figure S3).

Replication of MTAG melanoma results

To validate the loci identified by MTAG, we replicated our
findings via two independent melanoma GWAS datasets
www.jidonline.org 1609
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Table 2. New Loci Identified by a Multitrait Analysis of Melanoma

SNP Chr BP EA/NEA EA FREQ Cutaneous Melanoma conf. P Cutaneous Melanoma MTAG P
Cutaneous Melanoma MTAG

OR (95% CI)
Replication

P Gene Trait

rs1613999 1 66,895,085 T/G 0.58 0.41 1.73 3 10e11 1.06 (1.04e1.08) 4.95 3 10e4 SGIP1 Pigm.

rs10858023 1 114,448,752 C/T 0.64 5.3 3 10e6 2.18 3 10e10 1.06 (1.04e1.08) 1.73 3 10e9 AP4B1 AI

rs231779 2 204,734,487 C/T 0.63 3.6 � 10e4 2.22 � 10e11 1.07 (1.05e1.09) 0.0381 CTLA4 AI, KC cancer

rs9846396 3 141,140,968 C/T 0.58 0.045 8.67 � 10e10 0.95 (0.93e0.96) 0.0538 RASA2 Pigm.

rs9818780 3 156,492,758 T/C 0.53 2.1 � 10e6 5.86 � 10e16 0.93 (0.91e0.95) 7.13 � 10e4 LEKR1 Pigm.

rs715199 3 188,126,536 C/A 0.54 1.6 3 10e7 3.68 3 10e9 1.06 (1.04e1.07) 1.85 3 10e5 LPP AI

rs117431511 5 38,756,717 C/T 0.66 1.6 3 10e6 9.37 3 10e10 1.06 (1.04e1.08) 1.32 3 10e11 OSMR —

rs4714520 6 41,913,778 G/A 0.73 4.4 � 10e5 1.30 � 10e10 1.07 (1.05e1.09) 8.91 � 10e3 BYSL Pigm., Meta.

rs7761544 6 159,235,343 G/T 0.54 0.093 2.30 � 10e9 0.95 (0.93e0.96) 0.0121 EZR Pigm.

rs12350739 9 16,885,017 G/A 0.47 0.44 8.24 3 10e67 0.85 (0.84e0.87) 1.49 3 10e6 BNC2 Pigm., KC cancer

rs7098111 10 119,573,178 C/T 0.84 7.6 3 10e4 9.09 3 10e23 1.13 (1.11e1.16) 7.12 3 10e8 RAB11FIP2 Pigm.

rs10899453 11 77,997,482 A/C 0.83 0.012 1.58 � 10e14 1.1 (1.07e1.13) 7.09 � 10e3 USP35 Pigm.

rs1857903271 12 88,996,942 G/A 0.92 0.24 5.47 � 10e9 1.1 (1.06e1.13) 4.00 � 10e3 KITLG Pigm.

rs10774625 12 111,910,219 A/G 0.46 0.30 1.46 � 10e11 0.94 (0.92e0.96) 0.1470 SH2B3 AI, Meta.

rs4470024 13 95,170,420 G/A 0.67 0.47 7.47 � 10e11 0.94 (0.92e0.96) 0.2014 DCT Pigm., Meta.

rs9923354 16 4,450,421 T/G 0.24 1.1 3 10e4 2.09 3 10e8 0.94 (0.92e0.96) 1.97 3 10e6 CORO7 Pigm.

rs72833461 17 45,938,105 T/G 0.7 0.027 4.94 � 10e10 0.94 (0.92e0.96) 0.1067 SP6 Pigm.

rs6565597 17 79,526,821 C/T 0.66 0.51 2.13 � 10e8 0.95 (0.93e0.96) 0.9460 FAAP100 Pigm.

rs2421321 20 25,590,744 A/G 0.02 0.011 1.20 � 10e11 1.22 (1.15e1.29) 0.06662 NANP Pigm.

Abbreviations: BR, base pair; Chr, chromosome; CI, confidence interval; conf., confirmed; EA, effect allele; EAF, effect allele frequency; KC, keratinocyte; Meta., metabolic; MIA, Melanoma Institute Australia;
MTAG, multitrait analysis of GWAS; NEA, noneffect allele; Pigm., pigmentation.

Hg19 Chr, BP, EA and NEA, Haplotype Reference Consortium EAF, and nearest protein-coding gene (Gene) are reported. P-values for the input cutaneous melanoma clinically conf. meta-analysis (cutaneous
melanoma conf. P) are provided, as are P-values, OR, and 95% CI for EA reported for the cutaneous melanoma MTAG of 23 GWAS datasets. We also report the MIA and 23andMe meta-analysis replication P-
value; SNPs with replication P-values significant after Bonferroni correction (P < 6.76 � 10e4) are bolded (Methods). Full SNP results are in Supplementary Table S4. Trait indicates that the lead SNPs are
associated at P < 5 � 10e8 with hair/skin color, sun burning, or tanning (Pigm.); rheumatoid arthritis or hypothyroidism (AI); KC; and metabolic trait (Meta). Details are provided in Supplementary Tables S7 and 8.
1Reported in Landi et al. (2020) but was not significant after multiple-testing correction.
2SNP not reported by 23andMe; only MIA results are reported.
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(Supplementary Table S4). The first was drawn from a cohort
from Melanoma Institute Australia (MIA); there was no
overlap with MIA samples used in the input melanoma
GWAS meta-analysis (Landi et al., 2020). Manhattan plot and
Q‒Q plot of MIA set are provided in Supplementary
Figures S4 and 5. The second replication set was from
23andMe, Inc. As expected, given the modest size of the MIA
replication set relative to that of the large discovery MTAG,
few SNPs were associated (P < 0.05) with melanoma in the
MIA GWAS alone, with the exception of previously identified
melanoma risk loci with moderately large effect sizes such as
rs7943603 (TYR) (P ¼ 3.65 � 10e7) (Supplementary
Table S4). The majority of the previously reported mela-
noma SNPs were replicated in 23andMe, with exceptions of
rs10782477 (SLC24A4), rs11217816 (TMEM136),
rs72928038 (BACH2), and rs6424095 (STPG1). The previ-
ously reported melanoma GWAS loci reaching GWAS sig-
nificance in the MIA replication set is provided in
Supplementary Table S5.

To maximize our power, we meta-analyzed the MIA
and 23andMe replication sets; 55 loci identified by MTAG
were replicated at a Bonferroni-corrected P-value
threshold of 6.76 � 10-e4 (<0.05/74) (Supplementary
Table S4), strongly suggesting that our multitrait
approach has identified previously unreported loci asso-
ciated with melanoma. Effect sizes from the multitrait
analysis and the replication are highly correlated (r2 ¼
0.81; Figure 2). In terms of the previously unreported loci
discovered by MTAG, of the 19 loci not previously asso-
ciated with melanoma, seven replicated at P < 6.76 �
10e4, including rs1613999 (SGIP1), rs10858023 (AP4B1),
rs715199 (LPP), rs11743151 (OSMR), rs12350739 (BNC2),
rs7098111 (RAB11FIP2), and rs9923354 (CORO7)
(Table 1).
Comparison of P-values of significant SNPs across individual
input GWAS

We compared lead melanoma MTAG SNPs with their sig-
nificance across the individual input GWAS (Supplementary
Table S7). The purpose of this comparison was to determine
the likely functional relevance of these newly identified ge-
netic variants. For example, rs231779 (CTLA4) was signifi-
cantly associated with RA at P ¼ 1.20 � 10e10 and
hypothyroidism at P ¼ 8.71 � 10e40 but not with pigmen-
tation traits (UKBB skin color P ¼ 0.55, UKBB child sunburn
P ¼ 0.028) (Okada et al., 2014; Zhou et al., 2018). With the
caution that while the lead CTLA4 SNP was associated with
melanoma in the replication set (P ¼ 0.038, Table 2), it did
not reach the Bonferroni-corrected threshold of P < 6.76 �
10e4, this may suggest that the CTLA4 locus is mediating
melanoma risk through immune response rather than through
traditional melanoma risk phenotypes. The CTLA4 locus was
also significantly associated with KC cancers (Liyanage et al.,
2019), suggesting an overlap across skin cancers. Similarly,
rs10858023 (AP4B1) has been associated with RA (P ¼
5.00 � 10e38) and hypothyroidism (P ¼ 2.06 � 10e25), and
rs715199 (LPP) has been associated with hypothyroidism
(P ¼ 2.48 � 10e16), but neither were associated with
pigmentation (P > 0.5, Supplementary Table S7).

In contrast and as expected, given the importance of
pigmentation in melanoma risk, many previously unreported
loci such as rs1613999 (SGIP1) and rs12350739 (BNC2)
were associated with skin and hair color, freckling, and skin
burn type (Table 2 and Supplementary Table S7). Other
traditional risk factors for melanoma are represented;
rs11743151 (OSMR) is also associated with mole count (P ¼
1.3 � 10e4). Finally, we found evidence of potentially pre-
viously unreported pathways influencing melanoma risk. The
SNP rs34517439 (GIPC2) was associated with multiple
biochemical traits (P ¼ 3.5 � 10e14) and alkaline phospha-
tase levels (P ¼ 1.4 3 10e15) but was not significantly (P <
5 � 10e8) associated with pigmentation or autoimmune traits
(Supplementary Table S7).

Annotation of associated loci

Following replication, previously unreported loci were
explored for any associations with phenotypes other than
melanoma, and expression quantitative trait loci datasets
were interrogated to identify the likely candidate genes
(Supplementary Materials and Methods). Putative drug targets
were then identified on the basis of these candidate genes.
This is summarized in Table 3; complete information is in
Supplementary Table S8. Candidate genes at associated loci
include several potential drug targets, including ones already
used to treat melanoma (CTLA4) as well as those that are not
reported previously to our knowledge. Results for gene-based
analyses are reported in the Supplementary Note and
Supplementary Table S6.

DISCUSSION
Using LD Hub and publicly available GWAS, we identified
traits that exhibited rg with melanoma (Supplementary
Table S2). Building on this, we used a multitrait approach
that leverages their rg with melanoma and/or the large sample
sizes of their respective GWASs, identifying 74 independent
www.jidonline.org 1611
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Table 3. Annotation of Not Previously Reported Melanoma Loci

SNP CHR BP eQTL Skin
eQTL Whole

Blood eQTL Other Tissue PheWAS summary Drug(s) Usage

rs1613999 1 66,895,085 — — SGIP1, TCTEX1D1 Pigmentation, tanning — —

rs10858023 1 114,448,752 — AP4B1,
BCL2L15,
AP4B1-AS1

AP4B1, BCL2L15, PTPN22,
RSBN1, AP4B1-AS1, MAGI3,

DCLRE1B

Auto(immunity) — —

rs231779 2 204,734,487 — — CTLA4 Auto(immunity) CTLA4 - IPILIMUMAB, TREMELIMUMAB - cancer
inc.melanoma

CTLA4 -
IPILIMUMAB

rs9846396 3 141,140,968 ZBTB38 ZBTB38 ZBTB38 Anthropometric, pigmentation,
cancer, auto(immunity)

— —

rs9818780 3 156,492,758 LINC00886,
METTL15P1

LINC00886 LINC00886, METTL15P1, LEKR1,
TIPARP

Pigmentation, cancer — —

rs715199 3 188,126,536 — — — Autoimmune — —

rs11743151 5 38,756,717 LIFR-AS1 — — — — —

rs4714520 6 41,913,778 — USP49 USP49, MED20, RP11-298J23.10 Anthropometric — —

rs7761544 6 159,235,343 EZR — EZR Pigmentation — —

rs12350739 9 16,885,017 — BNC2 — Pigmentation, tanning, BCC — —

rs7098111 10 119,573,178 — — — — — —

rs10899453 11 77,997,482 GAB2 NARS2 NARS2, USP35, GAB2, RP11-
452H21.4, GAB2,

Anthropometric, pigmentation,
tanning, lymphocyte

percentage

NDUFC2 - METFORMIN - type II diabetes mellitus,
polycystic ovary syndrome, SLE

—

rs185790327 12 88,996,942 — — — — — —

rs10774625 12 111,910,219 ALDH2 — ALDH2, TMEM116, LINC01405 Auto(immunity),
anthropometric

ALDH2- DISULFIRAM alcohol dependence, infections,
melanoma, cancer

ALDH2 -
DISULFIRAM -
melanoma

rs4470024 13 95,170,420 — — — — — —

rs9923354 16 4,450,421 NMRAL1,
CDIP1,
HMOX2

NMRAL1,
CDIP1

NMRAL1, CDIP1, CORO7,
HMOX2, DNAJA3

Pigmentation, tanning,
anthropometric

— —

rs72833461 17 45,938,105 — — — Pigmentation, tanning platelet
count

— —

rs6565597 17 79,526,821 TSPAN10 OXLD1,
ARL16

TSPAN10, AC139530.1, ARL16 Pigmentation, tanning
anthropometric

AC139530.1 - DIPYRIDAMOLE - stroke, diabetes mellitus,
coronary artery disease, ischemia, rheumatoid arthritis,

ovarian carcinoma, hypertension, HIV infection
PENTOXIFYLLINE Hepatitis, alcohol intake, type II diabetes
mellitus, chronic kidney disease, irritable bowel syndrome,

infections, cancer

—

Abbreviations: BCC, basal cell carcinoma; BP, base pair; CHR, chromosome; eQTL, expression quantitative trait locus; WBC, white blood cell.

Hg19 CHR and BP positions are provided for each SNP. Only genes reaching the significance threshold of 5� 10� or for PheWAS traits reaching 5 � 10� are shown. To limit the size of the table, we provide only a
brief summary of the PheWAS traits; for full details of the identified traits, see Supplementary Table S8. For example, PheWAS results of ease of skin tanning, skin color, and childhood sunburn occasions have been
summarized as pigmentation/tanning. The usage field indicates whether the listed drug is currently used or undergoing clinical trials for melanoma. Auto(immunity) indicates PheWAS traits, including both general
immune traits (e.g., WBC levels) and autoimmune disorders. Autoimmune refers solely to autoimmune traits.
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genome-wide significant loci (Supplementary Table S8); these
comprise those previously identified for melanoma risk var-
iants as well as previously unreported variants (Table 2). Of
particular interest is rs231779 (MTAG melanoma P ¼ 2.22 �
10e11; OR ¼ 1.07, 95% CI 1.05e1.09), which is an expres-
sion quantitative trait locus (eQTL) for the CTLA4 gene.
CTLA4 is targeted by ipilimumab for melanoma treatment
(Gensous et al., 2018), and although not a previously re-
ported clinical target, this provides proof of principle that a
multitrait approach can identify genes that are drug targets.
However, the result of rs231779 must be viewed with caution
because it did not reach the Bonferroni-corrected P-value
threshold (cutaneous melanoma association P ¼ 0.038).

Findings from multi-trait GWAS analyses can be difficult to
interpret, given that the inflation in MTAG test statistics is
sensitive to the input traits and can potentially generate false-
positive findings (Turley et al., 2019). We used two ap-
proaches to address this concern. First, we conducted a
secondary multi-trait analysis limited to the eight traits with a
melanoma rg P < 0.00091 (Table 1). SNP effect sizes were
highly concordant between the primary and secondary ana-
lyses (r2 ¼ 0.89, Supplementary Figure S3), and the majority
(51 of 60) of the loci significant in the secondary analysis
were also identified in the primary analysis (Supplementary
Table S3). Second, we required replication in an indepen-
dent melanoma GWAS. Together, these checks give us
confidence that our multitrait approach is overall identifying
loci associated with melanoma.

As expected, many of the newly identified SNPs were
associated with pigmentation (Table 2 and Supplementary
Table S8). However, we also identified the SNPs associated
with other pathways. rs715199 has been associated with
hypothyroidism and KC (Liyanage et al., 2019) but not with
any of the pigmentation traits in our analysis (Supplementary
Table S7). This SNP is in LD r2 with rs13076312, which has
been associated with vitiligo (Shen et al., 2016). rs715199
was an eQTL for BCL6, which is involved in the development
of T-follicular cells; these cells are implicated in skin
inflammation and autoimmune disorders (Gensous et al.,
2018; Sabat et al., 2019). This may highlight further evi-
dence of a shared pathway between autoimmune conditions
and skin cancer.

Our multitrait analysis included RA, which is treated with
immunomodulatory biologics that have been associated with
a modestly increased risk for melanoma, OR of 1.20‒1.56
depending on the specific agent (de Germay et al., 2020; Esse
et al., 2020). If treatment-induced melanoma is common, this
misclassification or misdiagnosis could potentially lead to
(spurious) genetic correlation. In the absence of a true genetic
correlation, one-way misdiagnosis where disease A is mis-
diagnosed as disease B proportionally generates a spurious rg
(Wray et al., 2012). However, given these modest ORs and
the low prevalence of both RA (w1e2%) and cutaneous
melanoma (w2.5% depending on population and latitude),
the proportion of RA cases misdiagnosed as cutaneous mel-
anoma owing to medication effects and resultant cryptic
positive rg would be very low (<2%). As we find a negative
correlation between RA and melanoma (Table 1), it is un-
likely that treatments are driving the observed genetic cor-
relation. We also observed a genetic correlation with
hypothyroidism; because this disease is not treated by
immunomodulatory biologics, it further supports a genetic
overlap between melanoma and autoimmunity.

In addition to a standard GWAS meta-analysis, Landi et al.
(2020) identified potential additional melanoma risk loci by
performing P-value meta-analyses with mole count, or hair
color GWAS and also through transcriptome-wide associa-
tion approaches (Landi et al., 2020) (Supplementary
Table S8). Of these, rs34517439 (GIPC2), rs2453042
(ADAM30), rs10948654 (AL355997.1), rs9322309
(AKAP12), rs10498512 (SYNE2), and rs11625064 (ZFP36L1)
had P < 0.05 in the combined replication sets, suggesting
that they may be real melanoma risk loci (Supplementary
Table S4).

Strengths and limitations

Using MTAG, which models the rg (estimated using LD score
regression) between input traits, we have combined a clini-
cally confirmed melanoma GWAS with genetically corre-
lated traits, greatly improving our power to detect previously
unreported loci. Each contributing GWAS utilized an ethni-
cally homogeneous European ancestry population and
controlled for residual population stratification, reducing the
possibility of spurious associations due to population sub-
structure. To validate our findings, we drew on two large,
independent melanoma GWAS, with 55 of 74 melanoma
MTAG loci associations showing strong (P < 6.76 � 10e4)
evidence of being replicated. We identified further pigmen-
tation loci as well as loci potentially related to the immune
system, enhancing our understanding of genetic pathways to
melanoma.

However, some GWAS include self-reported data or cases
where histological confirmation was performed for only a
fraction of study participants. We have previously found that
23andMe’s self-report melanoma phenotype used in the
replication set has rg w1 with clinically confirmed melanoma
(Landi et al., 2020). The KC cancers data used in this study
from the QSkin included cases identified through Australian
Medicare data. While these records are highly reliable in
terms of identifying KC cancers (Thompson et al., 2016)
because pathology records were only available for a subset of
QSkin KC cancers cases, they could not be assigned a spe-
cific diagnosis of either BCC or SCC (Liyanage et al., 2019).
UKBB BCC and SCC data include self-reports that are
confirmed with the national cancer registers (Sudlow et al.,
2015). However, the rg with melanoma (Supplementary
Table S2) were similar for both UKBB KC cancers and
QSkin KC cancers (rg of 0.48 vs. 0.46), suggesting that they
represent comparable phenotypes.

Conclusion

We undertook a large-scale multitrait analysis of cutaneous
melanoma and correlated traits. We identified 19 loci not
previously associated with melanoma, of which seven repli-
cated after correction for multiple testing. The pathway of
greatest interest identified in this study relates to autoimmu-
nity; the key previously unreported discoveries include
rs715199 (LPP) and rs10774625 (SH2B3). Treatments tar-
geting CTLA4 have contributed to a transformation in the
management of advanced melanoma, and identification of
further genes involved in both autoimmunity and melanoma
www.jidonline.org 1613
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is promising. Future functional analyses of the loci reported
in this study to confirm the underlying genes may identify not
previously reported targets for chemoprevention of
melanoma.

MATERIALS AND METHODS
Identifying traits correlated with melanoma for a multitrait
analysis

We performed a stepwise approach (Figure 1) using bivariate linkage

disequilibrium (LD) score regression (LDSC) (version 1.0.0) to

identify traits genetically correlated with a large clinically confirmed

cutaneous melanoma GWAS meta-analysis (see the following par-

agraphs) (Supplementary Table S9) (Landi et al., 2020). LD score is a

measure of the number of additional SNPs in LD with a given ge-

netic variant and can be calculated from an appropriate reference set

enabling its application to GWAS summary data (Bulik-Sullivan

et al., 2015a, 2015b). Because a given SNP’s association with mel-

anoma or its bivariate association with two traits is influenced by all

other genetic variants it is in LD with, rg can be estimated by the

regression of the association of a given SNP with two traits on its LD

score (Bulik-Sullivan et al., 2015, 2015b).

In the first step, we used LD Hub, which implements bivariate

LDSC, to screen its database of 849 GWAS (Bulik-Sullivan et al.,

2015a; Zheng et al., 2017). The purpose of this stage was to iden-

tify traits or GWAS genetically correlated with melanoma that could

be included in a multitrait analysis. We considered all immune traits

entered in the LD Hub, including ulcerative colitis, systemic lupus

erythematosus, and Crohn’s disease; however, none of these addi-

tions were strongly correlated with melanoma. The results of this

screen are reported in Supplementary Table S1. GWAS or traits with

a melanoma rg > 0.1 or < e0.1 and with a P < 0.05 were identified

as suitable for inclusion in stage 2.

As the second step, where available, summary GWAS results

were downloaded for the selected stage 1 traits. Where suitable

phenotypes were available for the selected stage 1 traits,

GWASs were performed directly in UKBB and QSkin cohorts.

The initial list of traits derived from stage 1 was supplemented

by additional GWASs that were not included in LD Hub. Added

traits included GWAS known to be associated with melanoma

risk from previous studies but not themselves included in LD

Hub (e.g., GWAS of pigmentation, BCC, and SCC [Liyanage

et al., 2019] or mole count [Duffy et al., 2018]). We also

considered GWAS with large sample sets but without previous

evidence of association (e.g., risky behavior, total bilirubin).

Together, stage 2 comprised data from UKBB, QSkin, and

dbGaP, including metabolic measurements. Specific details

describing the contributing cohorts, data cleaning, and analysis

of specific trait GWAS within these cohorts are in the

Supplementary Note.

Not all traits identified through LD Hub were included in the

second step, either owing to redundancy (e.g., number of self-

reported cancers from the UKBB includes both melanoma and KC

cancers, GWAS of which were included in the MTAG directly) or

because we could not access the necessary GWAS summary data

such as for lung cancer.

The rg with melanoma for these GWAS was then confirmed with

bivariate LDSC. In total, 55 GWASs were surveyed in this second

step (Supplementary Table S2).

The sample size required to detect association on the basis of a

correlated variable (e.g., between a marker SNP and an unmeasured
Journal of Investigative Dermatology (2022), Volume 142
causal SNP) is w1/r2 (Pritchard and Przeworski, 2001); extending

this concept, the effective gain in sample size in a multitrait genetic

analysis is proportional to rg
2. To ensure that we are only including

well-powered GWAS of relevance to melanoma, we further filtered

the 55 GWAS (Supplementary Table S2) to those with a melanoma rg
P < 0.05 and a proportional multitrait sample size (N � rg

2) > 400

(selected arbitrarily; as a guide, 400 cases is w0.5% of the effective

sample size of the input melanoma GWAS meta-analysis), where N

is the total sample size for quantitative GWAS, or 4/(1/case þ 1/

controls) for case-control GWAS.

This left 22 GWASs, which we used in the primary multitrait analysis

(Table 1). Weighting traits by their rg with melanoma allows for straight-

forward inclusion of GWAS where the phenotype coding is reversed; for

example, skin burn type in QSkin and UKBB is coded in terms of greater

and less burning, respectively (Table 1). Genome-wide significance for

the multitrait analysis of melanoma was set to P < 5 � 10e8.

As a secondary sensitivity analysis to ensure that including

GWASs only modestly correlated with melanoma was not strongly

affecting our results, we further filtered input GWAS to those with a

melanoma rg P < 0.00091 (0.05 corrected for the 55 GWAS). This

left eight GWASs: KC cancers (UKBB), skin burn type (QSkin), mole

count (Duffy et al., 2018), potassium in urine (UKBB), skin color

(QSkin), RA (Okada et al., 2014), KC cancers (QSkin), and skin tan

type (QSkin) (Table 1). Effect sizes for lead SNPs identified in the

primary analysis were compared with those from the secondary

analysis (Supplementary Figure S3).

Study participants

For this analysis, we had access to summary data from a recent

clinically confirmed melanoma GWAS meta-analysis (Landi et al.,

2020): the QSkin cohort (Olsen et al., 2012) and the UKBB (Sudlow

et al., 2015). A detailed description of each cohort and additional

publicly available GWAS datasets is provided in Supplementary

Table S2 and the Supplementary Note. All study participants were

from European ancestry populations. Written informed consent has

been obtained from each participant in each individual study (Landi

et al., 2020; Olsen et al., 2012; Sudlow et al., 2015).

Melanoma replication sets

To confirm whether the loci identified by MTAG were associated

with melanoma risk, we used two independent replication sets from

MIA and 23andMe, Inc. A full description of each dataset and

methods used in meta-analysis of the replication datasets is in

Supplementary Note. Results for each of the 74 lead SNPs from the

melanoma MTAG loci were combined using a fixed-effects inverse-

variance weighted meta-analysis (Table 2 and Supplementary

Table S4). The SNP effect sizes for the MTAG output versus the

replication meta-analysis set are plotted in Figure 2.

Loci identification, gene-based analysis, and annotation of
GWAS loci

Identifying independent lead SNP and loci was performed in the

functional mapping and annotation application (Watanabe et al.,

2017). Gene-based analysis was used to identify additional loci

that were not significant in the single SNP MTAG using FastBAT

(Bakshi et al., 2016). Post-GWAS annotation, including MAGMA

gene-set enrichment analysis, was conducted in functional mapping

and annotation (Watanabe et al., 2017). For full details, see the

Supplementary Note.
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Data availability statement

The genome-wide summary statistics from 23andMe data were ob-

tained under a data transfer agreement. Further information about

obtaining access to the 23andMe summary statistics is available

from https://research.23andme.com/collaborate/. The raw genetic

and phenotypic UK Biobank data used in this study, which were

used under license, are available from http://www.ukbiobank.ac.uk/.

For nevus data, see the study by Duffy et al. (2018). For QSkin data,

see the study by Olsen et al. (2012). For melanoma GWAS meta-

analysis, see the study by Landi et al. (2020). For rheumatoid

arthritis GWAS summary data, see the study by Okada et al. (2014),

for hypothyroidism, see the study by Zhou et al. (2018), and for risky

behavior data, see the study by Karlsson Linnér et al. (2019). Kera-

tinocyte cancer data (eMERGE) are available through dbGaP (dbGaP

identification phs000360) and Kho et al. (2011).
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