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Towards optimization of a wave-to-wire
energy device in a breakwater contraction

Jonathan M. Bolton, Onno Bokhove, Duncan J. Borman, Anna Kalogirou, and Harvey M. Thompson

Abstract—A wave-to-wire mathematical and numerical
model is explored for a wave-energy device ideally inte-
grated within a breakwater. It consists of a wave-focussing
contraction, a wave-activated buoy and an electromagnetic
power generator. The model with all its integrated compo-
nents has previously been derived from first principles in
wave hydrodynamics, constrained (vertical) buoy motion
and the 3D Maxwell equations for the electromagnetic
generator (the latter using the axisymmetry of the set-up
and thin-wire approximations). By revisiting this model,
the following novelties are presented: (i) dispersive long-
wave dynamics is included at similar computational costs
as, and in extension of, the nondispersive shallow-water
dynamics considered numerically hitherto, via inclusion
of so-called Benny-Luke wave dynamics; (ii) improvements
have been made to modelling the power generator and the
numerical formulation of the coupled, monolithic system
of wave-, buoy and electro-dynamics; and, (iii) a series
of simulations of the new shallow-water and Benney-
Luke wave-energy models are presented, exploring the
resonance characteristics of the system under varying wave
amplitudes and frequencies. It turns out that it is better
to directly use a potential flow model because it can be
made consistent like the shallow-water model, whereas the
Benney-Luke model cannot. Finally, it is discussed how the
modelling set-up is well-suited for further optimization
using both the reduced wave-energy model as well as
surrogate modelling.

Index Terms—wave-to-wire model, dispersive wave dy-
namics, amplitude-frequency resonance characteristics

I. INTRODUCTION

OCEAN waves produced by wind action are a
major potential source of energy. However, ex-

tracting this energy is complicated by a number of
factors, including complex diffraction and radiation
phenomena, the need to account for variability in
energy availability and survivability in extreme con-
ditions. As reported in several reviews of wave-energy
conversion (see e.g. [1]), numerous investigations have
explored the feasibility and practicality of wave-energy
converters, with a key consideration being that of
matching the resonant frequency of the converter to
the frequency of the incoming waves.
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These practical complexities have resulted in the
development of a wide variety of wave-energy tech-
nologies which rely upon a range of mechanisms for
absorbing energy from the waves. These include Os-
cillating Water Columns (OWCs) and Oscillating and
Heaving Body systems, such as the Salter Duck and
Swinging Mace systems that emerged from the Univer-
sity of Edinburgh [2]. Overtopping Converters (OTCs),
which convert the potential energy difference between
water in a reservoir and the ambient surroundings
into electrical energy using hydraulic turbines, are
also common. Of particular relevance to the present
study is the TapChan (Tapered Channel Wave Power)
OTC device, which comprises a collector, converter,
water reservoir and low-head water turbine [3]. Its
gradually narrowing channel amplifies the incoming
waves before they enter the converter, causing more
water to spill over the wall and fill the reservoir, thus
increasing the power output.

The present study focusses on the novel device pro-
posed and developed by Bokhove et al. [4], [5], follow-
ing their experimental and numerical study of extreme
nonlinear water wave amplification in a contraction,
where they observed up to a tenfold amplification of
an incoming soliton compound. The device consists
of a channel with a V-shaped contraction, in which a
buoy is placed. Attached to the buoy is a magnet (or
a set of multiple magnets) which, by constraining the
buoy to move along a fixed trajectory, travels through a
fixed induction coil when the buoy is displaced by the
waves. This electromagnetic induction system forms a
power take-off (PTO) mechanism and creates electrical
energy. Out of the ocean, a tank with a wavemaker is
used to generate and contain the waves, with Fig. 1
showing several views of the tank and buoy.

The device is suitable for breakwaters and docks,
and was inspired by features of three existing devices,
namely the aforementioned TapChan, the Interproject
Service (IPS) Heaving Buoy [6] and an OWC with
a vertical blowhole through which rapid air flow is
generated [7]. It also has similarities with the Berkeley
Wedge [8], which has a comparable PTO mechanism
without amplitude-enhancing contraction.

In addition to demonstrating a proof-of-concept of
the device, seen in a video [9], Bokhove et al. [4], [5]
developed a complementary and fully coupled nonlin-
ear mathematical model of the combined 3D potential-
flow hydrodynamics, wave-activated buoy kinematics
and electromagnetic power generation, cf. other wave-
to-wire models [10]. The governing equations were
derived using a single, concise variational principle,
an approach new to the fields of wave and tidal



2

(a) Artistic rendering of the device in the contraction with
PTO and loads, as well as an incoming wave.
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(b) Top view of the tank and buoy, outlining the tank’s
dimensions and how the buoy fits the shape of the contraction.
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(c) Side view at time t, with the buoy constrained to move vertically.

Fig. 1. (a) Artistic rendering with the slightly arced mast, attached red-white magnets, the coils and LED loads shown in red and green
(image courtesy Wout Zweers). The arced mast is modelled as a straight one. Sketches of the top (b) and side (c) views buoy (shaded). The
notation is defined in Section II. Values for the wavetank used are: Lx = 0.2m, Ly = 2.0m, H0 = 0.1m, Lc = 0.25m.

energy and introduced at EWTEC19. They generated
numerical solutions to the linearised coupled equations
using the 2D shallow-water (SW) approximation (for
increased numerical efficiency) and investigated the
effect of induction coils, buoy mass and wavemaker
frequency upon the amount of power generated, pro-
viding the first study of the resonant behaviour and
parameter dependence of the device.

This paper extends the previous studies through the
use of a 2D Benney-Luke (BL) approximation of the 3D
system of potential-flow equations. For higher-order
dispersive waves, the BL approximation has increased
accuracy relative to the SW approximation, while re-
taining the improvement in numerical efficiency rel-
ative to the full 3D potential-flow system. Using hy-
drodynamic wave models with such intermediate com-
plexity forms a key step towards the ultimate goal of
using accurate and efficient numerical methods within
an effective overall numerical optimisation strategy
for maximising the device’s power output subject to
practical operating constraints, see e.g. [11].

The paper outline is as follows. In Section II the
nonlinear wave-energy system and governing BL equa-
tions are introduced. In Section III the system is lin-
earised and discretised. Section IV presents numerical
results exploring the improvements afforded by the BL
approximation vis-à-vis the SW equations. Conclusions
and discussion follow in Section V.

II. PROBLEM SPECIFICATION

The device can be divided into three constituent sub-
systems, namely: the BL-approximated hydrodynam-

ics, driven by the motion of the wavemaker; the motion
of the buoy, driven by the movement of the water be-
neath it; and, the power generated by the electromag-
netic induction system, itself driven by the movement
of the buoy. The first two sub-systems are coupled
through the buoy-water interface, and there is a two-
way coupling between the buoy’s motion and the cur-
rent in the coil, with the current applying a magnetic
force back onto the buoy. Mathematical descriptions of
the three sub-systems are given next, followed by a
brief outline of the BL approximation process. Finally,
the 2D system of equations for the fully-coupled and
BL-approximated system is presented.

A. Tank and buoy

Fig. 1 shows an artistic rendering of the device and
outlines the geometry of the tank and buoy. The tank
has width Lx and length Ly , with the V-shaped wall
given by

y = ly(x) = Ly − Lc

∣∣∣∣1−
2x

Lx

∣∣∣∣ ,

where Lc is the length of the contraction, which is at
an angle of θ to the x-z plane. The water in the tank
has velocity u(x, y, z, t) and constant density ρ0, and
fills the region

x ∈ [0, Lx], y ∈ [R(t), ly(x)], z ∈ [0, h(x, y, t)],

where y = R(t) is the (prescribed) position of the
wavemaker and z = h(x, y, t) is the variable position
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of the (single-valued) water surface. Using the over-
dot short-hand to denote a time-derivative, the wave-
maker’s velocity is Ṙ(t).

The buoy is a tetrahedron, with: a flat top; two sides,
perpendicular to the top, that fit along the walls of the
contraction; and, a slanted hull at an angle α to the top.
Its mass, including an attached rod and magnet, is M .
The buoy can be constrained to travel in the vertical
(Fig. 1c) or along an arc, with the latter having two
advantages: a rotating axle is more durable than the
bearings on a vertical rod, while holding the pivot fixed
with the buoy sustained above the water means it can
be taken out of action in a storm. Since the mathematics
of the arced trajectory is more involved, only vertical
motion is considered presently.

The buoy’s position along this trajectory is z = Z(t)
and is measured to be where its nadir lies (as in Fig. 1c),
with W (t) = Ż its velocity (pertaining to surge and
heave). The position of the hull is given by z = hb(y, t)
and the waterline by y = yb(x, t). Beyond this, for y >
yb, the surface of the water is constrained to match the
hull’s shape, i.e

h = hb for y > yb, or (h− hb)Θ(y − yb) = 0,

where Θ is the Heaviside step function, defined to be
zero for y ≤ yb and unity for y > yb. For all t, the angle
of the hull to the horizontal remains the same, so

hb(y, t) ≡ hb(y, Z(t)) = Z(t) + (Ly − y) tanα.

(More complex shapes can be considered as well as
non-shallow configurations, which would require ei-
ther coordinate transformations or moving meshes.)

At t = 0, the water, wavemaker and buoy are at rest
(so u|t=0 = 0, Ṙ(0) = 0 and W (0) = 0), the wavemaker
is at R(0) = 0, the waterline is at yb(x, 0) = Lb, the
(unconstrained) free-surface height is H0 and the buoy
rests at Z(0) = Z0. The at-rest hull position is therefore

hb|t=0 ≡ hb|z=Z0
≡ Hb(y) = Z0 + (Ly − y) tanα, (1)

and the position of the surface can be written as

h|t=0 ≡ H(y) =

{
H0 y ≤ Lb,

Hb(y) y ≥ Lb.
(2)

By considering the partially-submerged portion of
the buoy and using that H is continuous at the wa-
terline, unknowns Z0 and Lb can be written in terms
of known parameters via Archimedes’ principle. From
[5], they are given by

Z0 = H0 −

(
3M tan θ tan2 α

ρ0

) 1

3

and

Lb = Ly −

(
3M tan θ

ρ0 tanα

) 1

3

.

B. Magnet and coil

A mast is fixed onto the top of the buoy, with
a cylindrical magnet (or multiple magnets) of (total)
magnetic dipole moment m and length Lm attached

to it. The magnet is aligned vertically and spans the
time-dependent region

z ∈ [Z(t) +Hm − Lm/2, Z(t) +Hm + Lm/2] ,

with Hm the distance between the nadir of the buoy
and the magnet’s centre. The induction coil, of length
L, is also aligned vertically and is coaxial to the mag-
net, but is fixed at such a height that its centre is offset
from the magnet’s centre when the system is at rest.
That is, the coil spans the fixed region

z ∈ [Z0 + (1 + αh)Hm − L/2, Z0 + (1 + αh)Hm + L/2] ,

with αhHm the offset and αh 6= 0. This offset ensures
that, upon linearising, the buoy and induction system
remain coupled (see Section III). The coil has nc loops,
radius a (greater than the magnet’s radius) and resis-
tance Rc.

The coil has inductance Li and forms part of a
circuit, which circuit has resistance Ri. The movement
of the magnet causes a current I(t) to flow through
the coil via electromagnetic induction, with charge Q(t)
satisfying Q̇ = I . At rest, the magnet is stationary and
there is no ambient current or charge, so I(0) = 0 and
Q(0) = 0. The voltage driven by the movement of the
magnet, which can be calculated using Faraday’s and
Ohm’s laws (see [5]), is γG(Z)Ż. The function G(Z)
acts to apply the magnetic field of the magnet to the
coil and γ is a constant corresponding to the size and
strength of the electromagnet given by

γ = µ0ma2nc/(2L),

where µ0 ≈ 4π × 10−7 Hm−1 is the permeability of free
space. In the far-field approximation, G(Z) given by

G(Z) ≈
1

(a2 + [Z0 + αhHm − Z + L/2]2)3/2

−
1

(a2 + [Z0 + αhHm − Z − L/2]2)3/2
. (3)

The full expression of (3) is found in (5) of [4] and
(44f) of [5], with Fig. 3 of [4] showing that the far-field
approximation is valid despite the coil being in close
proximity to the magnet.

To enable monitoring of the power output, the cir-
cuit contains a component which draws out a voltage
V (Q, I) ≡ V (t) and turns it into electrical power
P (t) = I(t)V (t), with the mean power output between

time t = 0 and t = T given by P̂ = 1

T

∫ T

0
P (t) dt =

1

T

∫ T

0
I(t)V (t) dt. As in [4], [5], one pair of LEDs (cir-

cuited in parallel and in opposite directions) is used
here. Its voltage is modelled by the adapted Shockley
equation

V = −sign(I)nqVT ln (1 + |I|/Isat) , (4)

with nq the quality factor, VT the thermal voltage
and Isat the saturation current. Note that (4) does not
depend on Q and V = 0 when I = 0. To model large-
scale harvesting, multiple pairs of LEDs can be used.
Alternatively, batteries can be modelled via (modified)
Shepherd models (e.g. [12]), likely needing AC-DC
conversion via a rectifier. In this case, V would depend
on both Q and I .
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In the system of equations presented in Section II-D,
the conjugate momentum of Q, denoted PQ(t) and
defined as

PQ = LiQ̇−K(Z) with K(Z) ≡ γ

∫ Z

0

G(Z) dZ,

is first used instead of I . This allows a consistent, geo-
metric time-discretisation to be formed (see Section III).
Given PQ and Z, the current I = Q̇ = (PQ+K(Z))/Li.

C. Benney-Luke wave dynamics

As an alternative to the 3D potential-flow hydrody-
namics derived in [5], a 2D Benney-Luke (BL) approxi-
mation can be formed. First introduced by Benney and
Luke in [13], the BL approximation is valid for weakly
nonlinear waves with long wavelengths. The approx-
imation enables the effective removal of the vertical
coordinate in exchange for terms with higher-order
derivatives, which capture dispersive gravity waves.
Compared to the 2D shallow-water (SW) approxima-
tion used in [4], [5], this provides similar benefits in
terms of computational cost with increased accuracy.

In potential-flow theory, the hydrodynamics are as-
sumed to be irrotational, incompressible and inviscid,
and are governed by a mathematical description of
two fields: the velocity potential φ(x, y, z, t) satisfying
u = ∇φ and the (single-valued) water depth h(x, y, t).
The incompressibility assumption then requires the po-
tential to satisfy the Laplace equation ∇ · u = ∇2φ = 0
in the entire 3D domain. Assuming a flat bottom and
no wave breaking, such that h denotes the height of
the free surface, the prognostic Bernoulli and kinematic
equations govern the dynamics of the velocity potential
at the free surface and the free-surface height itself.

The BL approximation of these three equations pro-
ceeds as follows. First, the variables x, y, z and
t and the hydrodynamic fields φ and h are non-
dimensionalised using so-called BL scalings (given in
e.g. [14], [15]). For the present application, this non-
dimensionalisation is then extended to include the
non-standard wavemaker and buoy functions, which
are coupled directly to the hydrodynamics. Since the
electromagnetic terms do not directly impact upon the
hydrodynamics, these terms can be neglected while
deriving the approximation and can be recovered after-
wards, with no changes relative to the shallow-water
case.

Using these BL scalings, a dimensionless Laplace
equation and boundary conditions (BCs) for the po-
tential are obtained, which are used to write the (non-
dimensional) potential as an asymptotic expansion of
a z-invariant function in powers of z2, i.e.,

φ(x, y, z, t) = Φ(x, y, t)−
µz2

2
∇2Φ+O(µ2z4), (5)

with Φ ≡ φ|z=0 the potential at the bottom of the
tank and µ ≪ 1 a dimensionless dispersion/long-
wavelength parameter. This expansion is then placed
into the dimensionless form of the 3D Lagrangian
presented in [4], [5] with terms of order µ2 and
above neglected, and the explicit z-dependence is then

integrated out. The resulting 2D Lagrangian is re-
dimensionalised and given in (A.1). The 2D system of
equations derived from this Lagrangian is presented
next.

D. Wave-to-wire dynamics

The system of equations for the entire, coupled
wave-to-wire device under the BL approximation can
be generated by taking the variation of a single La-
grangian, or variational principle, given in (A.1), aug-
mented with circuit losses in the electromagnetic gen-
erator and the energy output harvested by the LEDs.
The resulting 2D system, including the novel BL wave
dynamics, reads:

BL Bernoulli & kinematic equations:

∂Φ

∂t
−

H2
0

2

∂

∂t

(
∇2Φ

)
+

1

2
‖∇Φ‖2

+ g(h−H0) + λΘ(y − yb) = 0, (6a)

∂h

∂t
−

H2
0

2

∂

∂t

(
∇2h

)
+∇ · (h∇Φ)−

2H3
0

3
∇4Φ = 0, (6b)

Buoy dynamics:

Ż = W, (6c)

Ẇ = −g −
γG(Z)(PQ +K(Z))

MLi
+

ρ0
M

Lx∫

0

ly∫

yb

λ dy dx,

(6d)

Electromagnetic generator:

Q̇ =
PQ +K(Z)

Li
≡ I, (6e)

ṖQ = −
(PQ +K(Z))(Rc +Ri)

Li
+ V (I), (6f)

Free-surface-equals-buoy-shape constraint:

h = hb = Z + (Ly − y) tanα for y > yb(x, t), (6g)

Boundary conditions (for nonlinear system):

λ = 0 at y = yb(x, t), (6h)

∂Φ

∂y
= Ṙ at y = R(t), (6i)

∇Φ · n̂ = 0 on Σw, (6j)

∇
(
∇2Φ

)
· n̂ = 0 on Σ, (6k)

∂

∂t
(∇h · n̂) = 0 on Σ, (6l)

with the operator ∇ ≡ (∂/∂x, ∂/∂y) now holding in 2D,
Σ denoting all five vertical tank walls (including the
wavemaker) and Σw the four stationary walls (exclud-
ing the wavemaker). The system includes three pairs
of equations relating to the device’s three components,
each of which govern the rate-of-change of a pair of
conjugate variables.

The first pair of equations are the Bernoulli and
kinematic conditions at the free surface z = h, formu-
lated with the bottom potential Φ and fluid depth h.
Note that within BL, the valid dimensional free-surface
potential is Ψ = Φ−(H2

0/2)∇
2Φ. The Bernoulli equation

is coupled to the wetted part of the buoy (where
y > yb) via the Lagrange multiplier λ and Heaviside
function Θ(y − yb).
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The second pair of equations govern the position
and velocity of the buoy. (6d) is Newton’s second
law, involving the gravitational force −Mg, the electro-
magnetic force applied by the induction motor above
(second term on the RHS) and the force applied by the
water below (final term). The Lagrange multiplier λ
in the final term is thus seen to be the hydrodynamic
pressure under the buoy, whose BC (6h) is found by
imposing constant density weakly rather than strongly
(see [5] for details).

The third pair of equations concern the electromag-
netic power generator. Note that without the resistance
Rc + Ri and voltage output V on the RHS of (6f), the
conjugate momentum PQ is conserved, i.e. ṖQ = 0.

When compared to the SW approximation used
in [4], [5], the additional underlined terms in the
BL Bernoulli and kinematic equations introduce long-
wave dispersion to the problem, which is otherwise
absent in the SW system. There are additional BCs
on ∇2Φ and h, introduced by the second term in (5)
and required due to the introduction of fourth-order
spatial derivatives by the final term of the Bernoulli
equation. The order of these derivatives can be reduced
by introducing an auxiliary variable q = −2/3∇2Φ, with
the BC ∇q · n̂ = 0 on Σ replacing (6k). This reduction
of order is relevant in the numerical discretisation
discussed shortly.

III. LINEARISATION AND DISCRETISATION

A. Linearisation

As a stepping-stone towards nonlinear modelling,
we first linearise the new system and perform a pre-
liminary optimisation of the PTO-system, therefore
assessing effects of the dispersive hydrodynamic terms
in an optimisation. System (6) is linearised about a rest-
state using the following decompositions:

Φ(x, y, t) = 0 + Φ̃(x, y, t), Z(t) = Z0 + Z̃(t),

h(x, y, t) = H(y) + η(x, y, t), W (t) = 0 + W̃ (t),

λ(x, y, t) = Λ(y) + λ̃(x, y, t), Q(t) = 0 + Q̃(t), (7)

yb(x, t) = Lb + ỹb(x, t), I(t) = 0 + Ĩ(t),

PQ(t) = −K(Z0) + P̃Q(t), R(t) = 0 + R̃(t),

where Λ(y) = g(H0 − Hb(y)) follows from evaluating
(6a) at rest for y > yb, and I(0) = 0 implies PQ(0) =
−K(Z0). All of the rest-state variables cancel out,
while Taylor-expansions can be applied throughout
to separate terms linear in the displacement variables
from higher-order terms. It is then assumed that the
displacements are small, such that any higher-order
terms can be neglected. In this linearised limit, the
moving boundaries at y = R(t) and y = yb(x, t) become
stationary boundaries at y = 0 and y = Lb, respectively.

In particular, an explicit expression for the waterline
displacement ỹb is found from (6g) to be (see [5])

ỹb = (Z̃ − η|y=L−

b
)/tanα, (8)

giving that the position of the waterline is not an inde-
pendent variable but instead depends on the positions

of the buoy and free-surface. Relation (8) can be used
as post-processing to display the waterline dynamics.

Upon dropping tildes, the linearised form of (6) is:

∂Φ

∂t
−

H2
0

2

∂

∂t

(
∇2Φ

)
+ gη + λΘ(y − Lb) = 0, (9a)

∂η

∂t
−

H2
0

2

∂

∂t

(
∇2η

)
+∇ · (H∇Φ) +H3

0∇
2q = 0, (9b)

q +
2

3
∇2Φ = 0, (9c)

Ż = W, (9d)

Ẇ = −
γG(Z0) (PQ + γG(Z0)Z)

MLi
+

ρ0
M

Lx∫

0

ly∫

Lb

λ dy dx,

(9e)

Q̇ =
PQ + γG(Z0)Z

Li
≡ I, (9f)

ṖQ = −
(PQ + γG(Z0)Z)(Rc +Ri +Rl)

Li
, (9g)

η = Z for y ≥ Lb, (9h)

λ = g(η|y=Lb
− Z) at y = Lb, (9i)

∂Φ

∂y
= Ṙ at y = 0, (9j)

∇Φ · n̂ = 0 on Σw, (9k)

∇q · n̂ = 0 on Σ, (9l)

∇η · n̂ = 0 on Σ, (9m)

where V (I) ≈ RlI for small I with Rl = nqVT /Isat
an effective resistance arising from the LEDs. The
boundary condition on the displacement of λ (9i) arises
after Taylor-expanding (6h) and using (8) (see [5]).
The linearisation of the PTO part of the model can be
related to the one in [16].

Consider (9e) and (9g). The (linearised) coupling
term γG(Z0)Z between the buoy’s displacement and
the electromagnetic generator involves G(Z0). The
coil’s centre is offset (αh 6= 0, recall Section II) to ensure
that G(Z0) 6= 0.

An integro-elliptic equation for λ is derived by differ-
entiating the free-surface-equals-buoy-shape constraint
(9h) twice in time and using other equations to manip-
ulate the result. This equation is given by

∇ ·

[
H∇λ+H2

0

(
3H

4
−H0

)
∇

(
∂q

∂t

)]

−
ρ0
M

Lx∫

0

ly∫

Lb

λ dy dx = −∇ · (gH∇η)

−
γG(Z0) (PQ + γG(Z0)Z)

MLi
, (10)

for y > Lb. In the SW limit, the underlined term is
absent (as in (23h) of [5]) and (10) can be solved given
η, PQ, Z and the BCs (9i) and ∇(λ+η)·n̂ = 0 on Σ|y>Lb

.
However, in the present case (10) needs to be coupled
with an equation for ∂tq, found by differentiating (9c)
in time and using (9a), yielding:

∂q

∂t
−

H2
0

2

∂

∂t

(
∇2q

)
−

2

3
∇2 (λΘ(y − Lb)) =

2

3
g∇2η, (11)
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x

y

Fig. 2. An example of the mesh used in the simulations. A semi-
regular structured mesh is used in the contraction, making use of
only quadrilateral element shapes. The linearised/rest-state water-
line y = Lb lies along one of the straight lateral (x-direction) grid
lines. To the right of this line (dark gray) is where the wetted part of
the buoy lies. The first column of elements to the left of the waterline
is shaded in light gray, used for the consistent solution of λ.

for all y. These equations serve as consistency condi-
tions, ensuring that the constraint and its two time-
derivatives are maintained over time.

B. Discretisation

The system (9), with (9h) replaced by (10) and (11),
will be discretised in both space and time. The spatial
discretisation employed is the finite element method
(FEM) with continuous, piecewise-linear Lagrange ba-
sis functions, while the symplectic Euler time-stepping
scheme [17, p. 189] is used to ensure that the coupling
constraint (9h) is kept consistent over time. Hence, the
spatial discretisation is formally second-order, while
the time-stepping scheme is formally first order.

This geometrically compatible numerical method en-
sures that, in the absence of dissipative elements (i.e.
when ṖQ = 0) and when the wavemaker is turned off,
such that the entire system is energy-conserving, os-
cillations in the numerical energy are bounded. These
oscillations disappear when the time-step ∆t is de-
creased to zero, guaranteeing proper and consistent
energy transfer between the three subsystems.

An example of the quadrilateral spatial mesh used
is found in Fig. 2. It contains Nx × Ny elements in
the rectangular region and Nx(Nx + 1)/2 elements in
the contraction, with Nx required to be even. The total
number of nodes is thus Nn = (Nx + 1)(Ny + 1) +
Nx(Nx + 2)/2, and the various parameters defining
the mesh and tank geometry are chosen such that
the linearised/rest-state waterline lies along one of the
straight lateral (x-direction) grid lines (i.e. one without
a kink around the kite-shaped element seen along the
centre-line).

To utilise the FEM, a consistent weak formulation
of the spatially-dependent equations needs to be pro-

duced. This is done by multiplying each equation
by a suitable test function ϕ(x, y) and integrating in
space, with any second-order derivatives removed via
suitable integration-by-parts and boundary conditions.
These spatially-continuous integral equations are then
discretised on the mesh by taking the test function at
each node k to be the Lagrange basis function ϕk(x, y).
Subsequently, the spatially-dependent variables inside
the integrals are approximated by the sum over all
nodes of unknown, time-dependent coefficients multi-
plied by the known, time-independent basis functions
- e.g. Φ(x, y, t) ≈ Φl(t)ϕl(x, y), with the repeated index
l implying the sum. The coefficients are taken outside
of the spatial integrals, which can then be explicitly
evaluated since the basis functions are known. Vectors
of the coefficients then become the unknown variables
being solved for, with the evaluated integrals becoming
so-called “mass” and “stiffness” matrices.

The entire system of continuous, spatially-dependent
differential equations then becomes a system of in-
dividual linear (matrix-vector) systems, which can be
readily solved on a computer. The basis functions are
defined to only span neighbouring elements, such that
the matrices are sparse. In the present work, as in [4],
[5], these matrices are explicitly calculated and inverted
using MATLAB. Implementation in the more ver-
satile, Python-based, finite-element environment Fire-
drake [18] is in progress. Consistency relations (10)
and (11) need to met also by the discretisation, which
could be proven for the (linear) shallow-water and full
potential flow system but not for the intermediate-
complexity BL-system, due to the presence of the un-
derlined time-derivative terms in (9a) and (9b). Further
discretisation details are found in Appendix B.

IV. PRELIMINARY OPTIMISATION RESULTS

The results of two model systems are investigated:
the linearised BL-system (9) and the limiting linearised
shallow-water system (i.e., (9) without the underlined
terms). The BL model is solved in two ways: either the
consistency relations are solved as a discrete system
with λ and ∂tq as coupled unknowns, or numerically
as one equation for λ. The shallow-water model is
solved in one way. For the BL-system, the two solution
techniques lead to highly similar results, while there
are some differences for the shallow-water solutions, in
the latter case only one equation for λ needs solving.
Constraints are obeyed up to machine precision in
the shallow-water case, but for the two BL-solutions
(system/one equation solve), the primary constraint
η − Z = 0 and secondary constraint ∂tη − W = 0 on
y > Lb are obeyed up to circa order 10−6.

Resonance is investigated as function of wavemaker
frequency ωi and wavemaker amplitude Ai for har-
monic waves. The wavemaker R(t) = Ai sinωit. The
parameter values are as in Table 5 of [5] with the
following differences and additions:

H0 = 0.1m, M = 0.1kg, α = 0.3655rad,

Lx = 0.2m, Ly = 2.0m, d = 0.27m,

Lc =
√

d2 − 1

4
L2
x = 0.2508,
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Fig. 3. Wavemaker output and free surface evolution (in m) at y = 0
as function of time t (in s). The wavemaker is on for Tw = 10 periods
and then switched off with time shown for 2Tw . The fastest, shallow-
water reflected waves arrive back at the wavemaker at approximately
t = 4s but due to dispersion slowing down shorter waves this is less
prominent in the BL-system. A = 0.0653m and ω = 9.33Hz.

Fig. 4. Generated current I (in Ampere) and power Pg (in
Volt×Ampere) as functions of time t (in seconds), obtained in the
case of shallow water (left-hand panels) or from the Benney-Luke
system (right-hand panels).

Fig. 5. Evolution of the force on the buoy’s surface F (t) (in N)
against time t (in s), computed for shallow water (blue) and Benney-
Luke (orange) according to equation (12).

g = 9.81m/s2, Nx = 10, Ny = 50, Z0 = 0.056m,

Rc = Ri = 202.3V/A, nq = 1,

Li = 0.35Nm/A2,

and the coil winding number taken is nc = 2889. The
simulation time is generally T = 10s, such that it is
longer than 10 wave periods Tp with Tp = 2π/ωi. The
standard simulation has Nn = 621 nodes and 555 ele-
ments. The BL model has higher-order, more accurate
dispersive terms than the shallow water model, ex-
plaining differences seen in the respective simulations.

The wavemaker output and resulting free-surface

evolution at y = 0 can be seen in Fig. 3, for a set of
simulations using the same parameters but based on
the shallow water or Benney-Luke systems. Note that
till time t = 2 there is no reflection, at t = 4, reflections
reach the wavemaker, and at t = 6 the (partially)
reflected waves from the wavemaker impact the buoy
again. On the one hand, these counter reflections at
the wavemaker are interfering; on the other hand, at
sea reflections from the breakwater and device will be
present as well, making the wavetrain more irregular,
here at later times. Fig. 4 presents the generated current
I(t) and power Pg(t) = RlI(t)

2 from the same simula-
tion set, while Fig. 5 shows the integrated pressure on
the buoy which yields the force F (t) imposed by the
water pressure on the buoy’s surface, i.e.

F (t) = ρ0

Lx∫

0

ly∫

Lb

λ dy dx. (12)

The mathematical and numerical models conserve
energy except for the in/outflux rate of energy Ow

via the waves generated by the wavemaker or enter-
ing/leaving the domain plus the rate of energy loss
Pl in the electrical circuits and the power (rate of
wave-energy) Pg harvested, stored in batteries or –
here– used in the power-absorbing (LED-)loads. The
energy balance reads: dE/dt = −Pl − Pg + Ow, with
Pl = (Rc + Ri)I

2 and Pg = RlI
2. In the shallow-water

case Ow = Ṙ
∫
gH0 η|y=0 dx. The integrated loss or

power over time is defined as: (P̂l, P̂g) =
∫ T

0
(Pl, Pg) dt.

The numerically computed energy of the shallow-
water and Benney-Luke systems are shown in Figs. 6
and 7, respectively, including the respective energies
of the three subsystems (water, buoy, and electro-
magnetic system). Before the wavemaker is shut off
energy oscillations converge to a fixed profile and
thereafter the energy does converge towards a constant
value. Simulations with twice the spatial resolution at
Nx = 20, Ny = 100 agree within a few percent for the
shallow-water system but are seen to diverge for the
BL-system. Apparently, the numerical consistency of
the constraints needs to be met at machine precision
rather than at 10−6. The power lost or generated in the
shallow-water and BL simulations are given in Figs. 8
and 9, respectively, for a range of wavemaker frequen-
cies and amplitudes. Remarkable is the reduction of
resonance frequencies in the BL-simulations as well as
the slight reduction in power, the latter which is due
to less energy having been released into the system via
the wavemaker, see Figs. 6, 7.

V. CONCLUSION

Further investigations have been undertaken regard-
ing the modelling of a new wave-energy device in-
volving a wave-activated buoy and an electromag-
netic generator in a V-shaped contraction. Several im-
provements have been made to the (numerical) model
formulations, augmented with the identification and
analysis of a dispersive Benney-Luke (BL) wave model
of interim complexity, in addition to probing prelim-
inary simulations of the linearised BL wave-energy
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Fig. 6. Energy evolution over time t (in s) for overall energy E
and energies Ewater , Ebuoy and Ecurrent (all in J) of the three
subsystems for a shallow-water simulation. Mean energy for t > Tw

is 0.39J. A = 0.0653m and ω = 9.33Hz. Energy for time-steps
∆t,∆t/2,∆t/4; Nx = 10, Ny = 50. (Inset panel shows time
convergence).

Fig. 7. Energy evolution over time t (in s) for overall energy E
and energies Ewater , Ebuoy and Ecurrent (all in J) of the three
subsystems for a BL-simulation. Mean energy for t > Tw is about
0.245J. A = 0.0653m and ω = 9.33Hz. Energy for time-steps
∆t,∆t/2,∆t/4; Nx = 10, Ny = 50. (Inset panel shows time
convergence).

system. Unfortunately, the numerics of the BL-system
diverges most likely because the consistency in the
continuum model could not be met in the numerics,
due to the coupling with the wave-buoy, in contrast to
novel proofs for the shallow-water model as well as
the potential-flow model (details of which are omitted
for brevity). The recommendation is therefore to con-
tinue with the potential flow model to capture wave
dispersion, where a lower resolution in the vertical
direction can be taken if computational speed needs
to be maintained, which would be similar to a BL-
system with its quadratic velocity potential profile in
the vertical but without the numerical inconsistencies.
Alternative higher-order 2D models such as Boussinesq
models or modified BL-systems are another option.

The device is best situated in a breakwater to lower
construction and maintenance costs by combining and

Fig. 8. Generated power (in Volt×Ampere) as function of wave-
maker frequency ω for three wavemaker amplitudes A for the non-
dispersive linearised shallow-water system, over T = 10s, at various
resolutions. Resonance at circa 11Hz.

Fig. 9. Generated power (in Volt×Ampere) as function of wave-
maker frequency ω for three wavemaker amplitudes A for the
dispersive linearised Benney-Luke system, over T = 10s. Resonance
at circa 9.33Hz. The solution eventually diverges.

altering the normal wave-obstructing function of a
breakwater with the damping of waves by the gen-
eration of electromagnetic power.

In the design stage of a wave-energy device, sim-
plified linear models are often used to optimise and
control the device’s performance. However, maximis-
ing the power output often requires the device’s mo-
tion to be magnified, violating the underlying small-
amplitude assumption of the linearisation. This con-
tradiction has been deemed a modelling paradox [19].
In practice, in wavetanks and at sea, wave-energy
devices are subjected to strong nonlinear effects, be that
hydrodynamic, mechanical or electromagnetic. Such
nonlinearities are clearly notable in the nonlinear mod-
els of the present device (in the 2D BL system (6)) and
in the 3D potential-flow equations given in [4], [5].

To address this paradox, several studies have em-
ployed a (pseudo-)two-phase Navier-Stokes-based hy-
drodynamic model in an attempt to analyse both linear
and nonlinear effects, and quantify the severity of the
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contradiction [19], [20]. Alternatively, nonlinear wave
models of interim complexity, such as the one used in
the present work, are advocated for use in (nonlinear)
optimisation and control, owing to their computational
cheapness relative to Navier-Stokes-based models.

The formulation of the weakly nonlinear wave
model (either a 3D potential-flow model with low or
high resolution in the verical direction) and the imple-
mentation and consistent numerical formulation of its
linearisation carried out here constitute the necessary
first steps towards building this framework. Subse-
quent steps are as follows: (i) to perform further op-
timisation of the device’s output with respect to static
parameters such as the tank dimensions, buoy mass
and electromagnet size and strength, and to investigate
the scope for real-time control by varying dynamic pa-
rameters such as the loading and induction-coil charac-
teristics; (ii) to adapt the current numerical framework
to solve the nonlinear potential-flow model with wave-
breaking parameterisation for improved optimisation
and control; and (iii) to validate the analytical and
numerical work against laboratory tests, initially at the
scales used in the presented simulations.

Regarding (ii), the mathematical model allows an
overall coordinate transformation to be carried out, as
in [21], [22], such that the moving nonlinear boundaries
y = R(t) and y = yb(x, t) become fixed and the
hydrodynamic sub-domains in both the linear and
nonlinear models become equivalent. While the numer-
ical framework for the nonlinear model will require
additional features (i.e. iterative solvers) to deal with
the nonlinear hydrodynamic and geometric terms (the
latter arising from the coordinate transformation), the
methodologies developed here will remain valid. The
use of Firedrake will facilitate this development [18].

In summary, the wave-modelling approach followed
here is a step towards the creation of a multi-fidelity
surrogate nonlinear modelling approach, where most
of the computational work needed to create surrogate
models of the performance objectives can be based
on cheaper 2D or vertically low-resolution 3D wave
modelling. These efficiency gains will, in turn, facili-
tate optimisation of the device’s power output, sub-
ject to practical operating constraints, within feasible
timescales. Finally, regarding survivability, the device
can be sunken off in severe weather, cf. [8], or con-
tracting walls can be slanted such that high waves can
escape onto the continued break water, thus protecting
the device, by limiting its amplitude.
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APPENDIX A
VARIATIONAL PRINCIPLE

The variational principle used to derive equations (6)

is given by S ≡
∫ T

0
L[v] dt, with arbitrary end-point t =

T , v = (h,Φ, λ, Z,W, PQ, Q) the vector of unknowns
and Lagrangian L(t) of the system, defined as

L[v] =ρ0

Lx∫

0

ly∫

R

{
h
∂Φ

∂t
−

H2
0h

2

∂

∂t

(
∇2Φ

)
+

h

2
‖∇Φ‖2

+
H3

0

3

(
∇2Φ

)2
+

gh(h− 2H0)

2
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+ λ(h− hb)Θ(y − yb)

}
dy dx

−MWŻ − PQQ̇+
1

2
MW 2

+MgZ +
1

2

(PQ +K(Z))2

Li
. (A.1)

The equations satisfy the variation of S given by

δS ≡ lim
ε→0

[
1

ε

∫ T

0

{L[v + εδv]− L[v]} dt

]
= 0,

where δv denotes an arbitrary change in v. For more
details and examples of this process, see [23]–[25].

APPENDIX B
DISCRETISATION AND WEAK FORMS

Using the superscripts n and n+ 1 to denote values
at the nth and (n + 1)th time-step, the symplectic (or
semi-implicit) Euler scheme [17, p. 189] is applied to
pairs of conjugate variables {p,q}, and is given by

pn+1 − pn

∆t
= fp(p

n+1,qn),
qn+1 − qn

∆t
= fq(p

n+1,qn).

So, pn+1 is first calculated implicitly using pn+1 and qn

on the RHS, and then qn+1 is computed explicitly using
qn and the obtained pn+1. In the present system, the
three variable pairings are {Φ, η}, {W,Z} and {PQ, Q},
with p = (Φ,W, PQ) and q = (η, Z,Q).

To be consistent, appropriate weak forms of the
coupled system of consistency relations must be exclu-
sively derived from the basic weak forms, as well as
the ODEs involved. Weak forms arise as follows. First,
an additional test function ϕ̂ = ϕΘ(y−Lb) is defined on
y > Lb under the buoy, such that ϕ̂(x, y) = 0 on y ≤ Lb.
This ensures that (the restriction of) ∇ϕ at y = Lb is
defined and finite. Second, the basis functions for λ
are chosen to smoothly extend one layer of elements
for y < Lb with λ = 0 at any key nodes y < Lb or
faces not connected to nodes on y = Lb, see Fig. 2.
Furthermore, λ(x, Lb, t) is given by (9i). This ensures
that ∇λ is defined at y = Lb as well.

Given the above-outlined time-stepping scheme and
the constraint nature of the system, the complete time-
discrete weak forms and ODEs, solved either within
Matlab or with Firedrake, are as follows, in which
double integrals concern 0 ≤ x ≤ Lx, 0 ≤ y ≤ ly and
single integrals 0 ≤ x ≤ Lx,

Waterline BC:

λn = g(ηn|y=Lb
− Zn) at y = Lb, (B.1a)

Consistency conditions, i.e. system for λ and ∂q/∂t:∫∫ {
H∇ϕ̂ · ∇λn +

ϕ̂ρ0
M

∫∫
λn dy dx

+H2
0

(
3H

4
−H0

)
∇ϕ̂ · ∇

(
qn+1 − qn

∆t

)

−
ϕ̂γG(Z0)I

n

M
+ gH∇ϕ̂ · ∇ηn

}
dy dx = 0 (B.1b)

∫∫ {
ϕ
(qn+1 − qn)

∆t
+

H2
0

2
∇ϕ · ∇

(
qn+1 − qn

∆t

)

+
2

3
∇ϕ · ∇ {λn + gηn}

}
dy dx

−
2

3

∫
ϕ|y=0

(Ṙn+1 − Ṙn)

∆t
dx = 0, (B.1c)

Remaining time-stepping equations:
∫∫ {

ϕ
(Φn+1 − Φn)

∆t
+

H2
0

2
∇ϕ · ∇

(
Φn+1 − Φn

∆t

)

+ gϕηn + ϕλnΘ(y − Lb)

}
dy dx

+
H2

0

2

∫
ϕ|y=0

(Ṙn+1 − Ṙn)

∆t
dx = 0,

(B.1d)∫∫ {
ϕqn+1 −

2

3
∇ϕ · ∇Φn+1

}
dy dx

−
2

3

∫
ϕ|y=0Ṙ

n+1 dx = 0, (B.1e)

(Wn+1 −Wn)/∆t = −γG(Z0)I
n/M

+
ρ0
M

∫∫
λ̃nΘ(y − Lb) dy dx, (B.1f)

(Qn+1 −Qn)/∆t = In, (B.1g)
∫∫ {

ϕ
(ηn+1 − ηn)

∆t
+

H2
0

2
∇ϕ · ∇

(
ηn+1 − ηn

∆t

)

−H∇ϕ · ∇Φn+1 −H3
0∇ϕ · ∇qn+1

}
dy dx

−H0

∫
ϕ|y=0Ṙ

n+1 dx = 0, (B.1h)

(Zn+1 − Zn)/∆t = Wn+1, (B.1i)

Li
(In+1 − In)

∆t
= γG(Z0)W

n+1

−
1

2
(Rc +Ri +Rl)(I

n+1 + In). (B.1j)

The equation (B.1b) includes a slight abuse of no-
tation, given that we have extended λ one layer of
elements into the free-surface area. The above can be
reformulated by defining a new variable µv(x, y, t) =
λ(x, y, t) − g(η(x, y, t) − Z) or µv(x, y, t) = λ(x, y, t) −
g(η(x, Lb, t)−Z) such that µv(x, Lb, t) = 0, with further
accompanying finite-element approximations.

Consistency relations (B.1b) and (B.1c) are obtained
by eliminating variables evaluated at time level (n+1)
of the weak form of the maintained constraint, i.e.

∫∫
˜̂ϕ(ηn+1 − Zn+1) dy dx = 0, (B.2)

while using the weak forms above in (B.1) in which
updates of these variables are defined. For the BL sys-
tem, it is not possible to show numerical consistency,
while numerical consistency is now proven for both
the shallow-water model and the linear potential flow
model.

Note that the current I is modelled to ensure a sym-
metric time discretisation of the dissipative term, as
in (B.1j), see [26] (their Fig. 9). The above discretisation
yields Pn+1

Q = Pn
Q when dissipation Rt ≡ Rc+Ri+Rl =

0, i.e. it is consistent with ṖQ = 0 when Rt = 0.
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