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Abstract: The interaction between electrons in graphene under high magnetic fields drives the
formation of a rich set of quantum Hall ferromagnetic phases (QHFM), with broken spin or
valley symmetry. Visualizing atomic scale electronic wavefunctions with scanning tunneling
spectroscopy (STS), we resolve microscopic signatures of valley ordering in QHFM and
fractional quantum Hall phases of graphene. At charge neutrality, we observe a field-tuned
continuous quantum phase transition from a valley polarized state to an intervalley coherent
state, with a Kekule distortion of its electronic density. Mapping the valley texture extracted

from STS measurements of the Kekule phase, we visualize valley skyrmion excitations localized



near charged defects. Our techniques can be applied to examine valley ordered phases and their

topological excitations in a wide range of materials.

Main Text:

Quantum Hall ferromagnets are broken symmetry states, in which the exchange
interaction between electrons in Landau levels gives rise to quantum Hall phases with polarized
or coherent superposition of spin, valley, or orbital degrees of freedom'. In the presence of a
magnetic field, a variety of two-dimensional electronic systems, including those in
semiconductors', graphene?, and an increasing number of moiré flat bands materials host a
diversity of QHFM phases®~®. Thus far, these interacting and topological phases of matter have
been examined macroscopically, usually through study of their transport properties. However,
the microscopic features of the electronic wavefunctions of these phases can directly reveal the
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nature of their broken symmetry”-'’ and more importantly determine the nature of the excitations

they host. A particularly interesting aspect of broken symmetry states is their topological
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excitations, such as skyrmions' ', which not only determine the stability of such phases, but

their interactions may also lead to the formation of more exotic quantum phases, such as those
recently proposed in moiré materials!'+6.

Monolayer graphene’s SU(4) isospin space consisting of spin and valley gives rise to a
rich array of QHFM phases, which have been studied using transport and thermodynamic
measurements?. Particularly intriguing is the electrically insulating phase at charge neutrality
point (CNP) at high magnetic fields!”, since with two out of four isospin flavors occupied, spin
and valley cannot be simultaneously polarized due to Pauli exclusion. Theoretical efforts have

predicted a rich phase diagram of four possible broken symmetry QHFM states at charge

neutrality'®, a charge density wave (CDW) phase which is sublattice and valley polarized and



spin unpolarized, the spin ferromagnet (FM) which is a quantum spin Hall insulator, the canted
anti-ferromagnet (CAF) in which spins on different sublattices point in the near-opposite
directions, and intervalley coherent (IVC) state with a Kekule reconstruction, which is spin
unpolarized. While transport studies have constrained aspect of the phase diagram!®2%, in the
absence of microscopic measurements that probes the order parameter, nature of the ground state
of graphene at charge neutrality has remained unresolved. Also unexplored are the plethora of
topological excitations these phases have been predicted to host, such as a variety of skyrmions
which may have complex flavor textures and even harbor fractional charge on the scale of the
magnetic length?!'=23, Here we use spectroscopic mapping to visualize the broken symmetry
states in graphene as a function of carrier concentration, including at charge neutrality, where we
find evidence for localized valley skyrmions within the novel Kekule phase. Our work
demonstrates the power of spectroscopic imaging to detect valley ordering and their topological
excitations, which is applicable to a wider range of two-dimensional materials and their
heterostructures.

The monolayer graphene devices used for our studies are fabricated on hexagonal Boron
Nitride (hBN) substrates, with either graphite (devices A, C) or silicon back gates (device B) (see
Fig. 1 for the experimental setup and an optical image of device A). Figure 1b&c show

measurements of differential conductance dI/dV as function of sample bias Vg measured over a
wide range of filling factors v (v = 2mnlz?, where Iz = W is the magnetic length and n the
carrier density) controlled by the back gate voltage V. The Landau levels (LL) can be identified
by their peaks in dI/dV, the energy spacing between which corresponds to the cyclotron energy
Ey = hwVN, where N is the LL orbital index, and Aw,~110mV the cyclotron energy for B =
6T (Fig. 1d). As the filling factor increases, the Fermi energy is pinned within a LL as it is being

filled and then jumps to the next LL at v = +2, +6,4+10. For the incompressible states formed at



these fillings, we find that energy gaps across the Fermi energy are enlarged by approximately a
factor of two as compared to the expected cyclotron gap (Fig. S1). This effect is likely due to the
graphene’s bulk insulating behavior, when the chemical potential lies within these gaps (see
discussion in the supplementary materials).

Electron-electron interaction driven symmetry breaking states are detected in our
spectroscopic measurements as enlarged gaps at all the intermediate integer fillings, as shown in

Fig. 1c. Despite numerous previous STS studies of graphene at high magnetic fields**>4,

our
results are the first observation of symmetry breaking gaps in such experiments. The size of the
gaps in our experiments are larger relative to those observed in transport and thermodynamic
studies, a behavior similar to the incompressible insulating states at v = +2,+6,+10. The
absence of symmetry breaking gaps in previous STS measurements may be due the influence of
tip-induced band bending or disorder, which we find to be negligible in our studies. First, our
data as shown in Fig. 1¢ does not show any Coulomb diamond features associated with a tip-
induced quantum dot, as seen in previous studies?®. Second, we find that charge neutrality occurs
near zero gate voltage, testifying that our sample is not doped by impurities and our
measurements are not influenced by a tip-sample work function mismatch. Third, Vs does not
influence carrier density in the probed area since the dashed lines in Fig. 1¢c marking
incompressible states are nearly vertical, therefore showing that tip gating is negligible. Finally,
at partial fillings, the LLs are always pinned to the Fermi energy with their jumps aligned with
the occurrence of the incompressible states, suggesting there is no density mismatch between the
probed area and the bulk of the sample. It is possible that our tip effective radius is small
compared to the magnetic length, so that the work-function mismatch between the tip and sample

(which would typically lead to band-bending) traps at most zero or one electron charges below

the tip, rather than producing a well-defined change in filling factor in a larger region.



Beyond resolving the presence of broken symmetry states, our experiments also show
direct signature of fractional quantum Hall (FQH) phases in spectroscopic measurements.
Focusing on the STS properties between v = —2 and 2, as shown in Fig. 2a, we resolve enlarged
gaps at partial filling of the zeroth LL (ZLL) corresponding to the fractional quantum Hall states
atv = +4/3,+2/3,+1/3. We corroborate the formation of FQH states in our devices by
performing transport measurement while the STM tip height is reduced from the tunneling
condition to directly contact the monolayer graphene (Fig. 2b). In this Corbino geometry,
measurements of the conductance of our sample show dips at fractional fillings associated with
the formation of FQH states. The observation of fractional states, up to 4/9" in our samples, at a
modest magnetic field (6T) and at relatively elevated temperature (1.4K), attests to their high
quality, making them comparable to the fully hBN encapsulated and dual graphite gated devices
used for the highest quality transport measurements. Our ability to probe FQH phases in STM
measurements paves the way to explore these topological phases and their exotic excitations in
new ways, such as realization of methods for imaging anyons*® or probing fractional edge states
locally.

The spectroscopic measurements of the partially filled ZLL (Fig. 2a), including when the
sample transitions through the FQH phases, always show splitting of the ZLL with a gap across
the Fermi energy. This behavior is indicative of a Coulomb gap commonly observed when
tunneling in and out of a two-dimensional electron gas at high magnetic fields*¢—®. The strong
correlations among electrons in the flat LLs dictates that an additional energy is required for
addition or removal of electrons from the system, resulting in a gap at the Fermi level that scales

with the Coulomb energy E, = e?/ely, where € is the effective dielectric constant. The field

dependence of this gap at partial filling follows the expected VB behavior, as shown in Fig. 2c,



tracing Coulomb energy E. with a 0.62 scale factor, which corresponds well to those obtained
from our exact diagonalization calculations (see supplementary materials).

To directly visualize broken valley symmetry of graphene’s ZLL, we perform
spectroscopic mapping of the electron and hole excitations of the ZLL (E-ZLL and H-ZLL
respectively), with Vp at the split ZLL peaks below or above the Coulomb gap. These
spectroscopic dI/dV maps are performed with the STM tip at a constant height above the
graphene, and hence they are directly proportional to the electron/hole excitation probability
densities on the graphene atomic lattice. At filling v = —2, dI/dV map of electron excitations
only shows graphene’s honeycomb lattice, while at partial fillings between v = —2 and -1 the
dI/dV maps of hole excitations show sublattice polarization. A key feature of graphene’s ZLL is
that the electron states at the K or K’ valleys correspond to the A or B sublattice sites,
respectively>*. Therefore, the sublattice polarization observed in these maps, for example for
hole excitation at v = —1, is indicative of valley polarization in the ZLL, which agrees with the
expectation of a spin and valley polarized ground state |[K’1> at quarter-filling*°. The electron
excitation at this filling shows partial polarization of the orthogonal state comprising of K’ |>,
|K1>, K>|>. Our measurements at fillings —2 < v < —1 indicate that the ground state in this
range also remains valley polarized, thereby demonstrating that FQH states in this filling range
are single-component with valley symmetry breaking preceding the formation of FQH states*!.

Although valley polarization in the filling range —2 < v < —1 is dictated by interactions,
we demonstrate that the sublattice asymmetry energy plays an important role in choosing which
valley is occupied. We extract the sublattice polarization Z = (I, — Ig)/(I4 + Ig), where I, (I)
are the intensity of dI/dV signals at the A (B) sublattice (supplementary materials), and plot them
for the ZLL as a function of filling in Fig. 2e. Complimentary to fillings in the range —2 <v <

—1, where we find full polarization of the hole excitation, we find for the range 1 < v < 2, the

6



electron excitation maps probing the unoccupied states to be fully polarized in the A sublattice.
Significantly, we always find the occupied states, probed by the hole excitations, to be polarized
in the B sublattice regardless of the filling factor, evident from the blue line in Fig. 2d, which is
almost entirely below zero. This behavior indicates that while interactions drive the symmetry
breaking, the B sublattice is favored by an apparent AB sublattice asymmetry, likely originating
from partial alignment with the hBN substrate.

We turn our attention to spectroscopic imaging at charge neutrality to show that electron
interactions induce an intervalley coherent electronic state in half-filled ZLL at high fields.

Spectroscopic maps of v = 0 at 6T (Fig. 3a& b, device B) show a spatially varying electronic

density with a periodicity that is v/3 larger than that of the graphene lattice. Such reconstruction
of the unit cell, also referred to as the Kekule distortion, is expected when an intervalley coherent
(IVC) phase forms. This state, which is one of the four anticipated phases at charge neutrality,
has a real space electronic wavefunction with probability density at both lattice sites, with one
reported sighting in STM studies of multilayer graphene samples*?. To understand the real space
patterns for electron and hole excitations of this phase, we describe its valley order using a vector
on a Bloch sphere: |[{) = cos (8/2)|K) + sin (6/2)e'?|K’), with polar angle 8 and azimuthal
angle ¢. For states with ordering vector pointing to the poles (6 = 0, 180°), electron densities
correspond to full valley and sublattice polarization, forming a CDW state. In contrast, when the
ordering vector lies along the equator of the Bloch’s sphere (8 = 90°), we have equal weight on
both sublattice sites, with the azimuthal angle ¢ characterizing the phase coherence of the
wavefunctions between the two sublattices. Computing the probability density (i |i), we find
that IVC state as described by ¢p = 0° and 180° (Fig. 3¢) reproduces the Kekule patterns seen

experimentally for electron and hole excitation in Fig. 3a&b. Naturally, the hole excitation has



an orthogonal real space structure and valley polarization to the electron excitation of the same
state.

More detailed analysis of the ordering vector as a function of the magnetic field reveals a
continuous quantum phase transition between [VC Kekule phase and valley and sublattice
polarized CDW state. We study this transition by extracting the ordering vector’s polar angle 8
from the Fourier transforms of real space dI/dV maps and examined it as a function of the
magnetic field. With increasing field, 8 shows a continuous transition from the CDW phase
(6=0) to to an IVC state with 8 approaching 90° in both devices (Fig. 3d). A critical field (2.2T
for device C) can be identified where 8 becomes non-zero while inter valley coherence emerges,
as detected by the appearance of Kekule wavevectors in the FFT of dI/dV Maps. We find that
both the critical field and 8 at 6T measured in the two devices correlate with the influence of
sublattice asymmetry imposed by the hBN substrate. The less aligned sample (device B, 13°
misalignment between graphene and hBN lattice), with smaller sublattice asymmetry, shows a
smaller critical field and approaches a pure IVC state with 8 = 90° at a relatively lower field.
This behavior is consistent with the competition between the AB sublattice asymmetry, which
favors one sublattice over the other, and valley anisotropy induced by short range electron-
electron and electron-phonon interactions!'®, which favors valley polarization of = 90°. The
magnetic field controls the strength of the interactions and in turn the valley anisotropy energy,
thereby tuning 6 like the order parameter of a continuous phase transition, a behavior well
captured by a mean-field description (dashed lines in Fig. 3d, supplementary materials).

Finally, we show that measurements of the spatial variation of the ordering vectors in the
IVC phase can be used to directly visualize the presence of topological excitations in this state.
The spatial variations are extracted by performing local Fourier analysis on the dI/dV maps,

where large areas of the sample show spatially independent 8 and a constant gradient for ¢.



Uniform gradients in ¢ are expected in the presence either of strain or dilute short range
disorder?®. However, near charged defects on the graphene surface, likely due to atomic
adsorbates, such as that shown in Fig. 4a, we see dramatically different behavior. Near this
defect, we find ¢ displays a swirl-like spatial variation (Fig. 4b), while the variation of 8 plotted
as sublattice polarization Z = cos(8) (Fig. 4c) displays a dipole-like feature. Analysis of higher
resolution electron excitation maps near this defect (Fig. 4d) shows the variations of ¢ (with the
linear gradient background subtracted) and Z more clearly close to the defect. (Fig. 4f&g) A
visual representation of the valley ordering vector texture near this defect is shown in Fig. 4e.
This valley texture is consistent with that predicted for a canted anti-ferromagnetic (CAF)
skyrmion excitation of the Kekule phase??. This topological excitation forms when the valley
polarization of one spin species flips by 180° at its center, while the other spin species is devoid
of any valley texture. The two key signatures of this skyrmion excitation are the dipole behavior
in Z, which is equivalent to a meron-anti-meron pair (Fig. 41), accompanied with a perpendicular
oriented dipole in ¢ relative to the Z dipole (Fig. 4h). Simulating the valley texture using the
non-linear sigma model (NLSM) (details in supplementary materials), we find excellent
agreement between the results from the model calculations (Fig. 4h&i) and our experimental
results (Fig. 4f&g). This CAF skyrmion carries an electric charge of +e, which is likely what
caused their localization near a charged defect of the opposite sign. Our experiments show that
besides the CAF skyrmion other types of valley textures are also possible (Fig. S5). It also shows
that further work can map the zoo of predicted topological excitation in this and other QHFM
phases of graphene?!"?2. From a broader perspective, the microscopic approach to studying valley

ordering can be applied to other two-dimensional systems, such as twisted bilayer graphene.
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atomic lattice. The H-ZLL peak is fully sublattice polarized in this filling range. e, Sublattice
polarization Z as a function of filling factors for H-ZLL and E-ZLL peak extracted by Fourier

transformation of dI/dV maps.
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Fig. 3 Inter-valley coherent state at CNP. a, b, dI/dV maps at charge neutral point measured at
B = 6T in device B. The hexagons represent the graphene lattice. The dI/dV maps show a Kekule
reconstruction that triples the area of the unit cell. ¢, Bloch sphere plot and corresponding
simulated probability density of valley polarization for CDW (left), IVC with ¢ of 0° (middle)
and 180° (right). d, Polar angle 8 as a function of the magnetic field in devices B and C extracted
from dI/dV maps. For the E-ZLL (H-ZLL) peaks, 8 (180°- 8)is being plotted. The
complementary behavior of H-ZLL and E-ZLL peaks confirms their orthogonal nature. The
mean field (MF) behavior for 6 is shown as dashed line, with critical fields of 2.2T (device C)
and 0.6T (device B). The top panels on the sides show the dI/dV maps of the H-ZLL at a few
representative magnetic fields. The corresponding bottom panels show the Fourier transform of

the dI/dV maps above it. At B=2T, only Fourier peaks of the graphene lattice are visible, while at
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B=2.4T Fourier peaks of the Kekule pattern appear and increase in intensity with increasing

magnetic field.
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Fig. 4 Valley skyrmion of IVC state near a charged defect. a, Topography of the point defect
found on device C. b, ¢, Azimuthal angle ¢ and Z polarization extracted from dI/dV maps of E-
ZLL peak (Supplementary materials). d, dI/dV map of the E-ZLL zoomed in the area near the
defect shown in panel a. Side panel shows magnified images of a few representative areas with
matching labels. e, Valley texture extracted from panel d, visualized by arrays of arrows
representing valley polarization in a Bloch sphere at each point. f, g, Azimuthal ¢pand Z
polarization extracted from panel d. A linear background is subtracted from ¢ to produce ¢, . h,
i, Azimuthal angle and Z polarization extracted from a simulated map of electron density
computed for a canted-antiferromagnetic (CAF) skyrmion using the same Fourier procedure (see

supplementary information for details of the calculations).
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Supplementary Materials for

Visualizing Broken Symmetry and Topological Defects in a
Quantum Hall Ferromagnet

1 Sample preparation

Samples in this work were fabricated using a mechanical transfer technique. Our pickup stamp
is made from a polyvinyl alcohol (PVA) coated transparent tape, which covers a polydimethyl-
siloxane (PDMS) block on a glass slide handle. We used two different methods for picking up
the isolated flakes. Sample A was made similarly to the previously reported TDBG device (1).
Device B and C were fabricated with the pick-up order reversed: we first pick up monolayer
graphene directly with PVA, and use graphene to pick up the bottom layers, hBN and graphite
respectively to serve as the backgate. The stack was then transferred onto a SiO2/Si substrate
with pre-patterned gold contact after dissolving the PVA film with water. After fabrication,
all three samples were rinsed in water, n-methyl-2-pyrrolidone (NMP), and acetone in order to
dissolve polymer residue from the surface. The devices were eventually baked in UHV at 400C

overnight before transferring to the STM chamber.

2  STM measurements

The experiment is done in a home built UHV STM operating at T = 1.4 K. All data shown
unless specified otherwise are taken at B = 6T. The measurements are performed with a tungsten

tip prepared and characterized on a Cu(111) single crystal. Through controlled indentation, we



shape the tip until its poke mark is confined and its spectrum features the Cu(111) surface state at
the right energy. We then locate the graphene sample with a capacitance guiding technique (2).

In our spectroscopy measurements, the tip 18 grounded and the tunneling current is measured
from the tip. Bias voltage Vj is applied to the graphene sample while Vj + V), is applied to
the gate to achieve a gate voltage of V, relative to the graphene sample. Differential tunneling
conductance dI/dV in Fig. 1c and Fig. 2a is obtained by taking a numerical derivative of
tunneling current I with respect to V5 while keeping V|, constant. Other differential tunneling
conductances shown in this study are measured using the lock-in method with 1~2mV AC
modulation at 4 kHz. Normally, scanning tunneling spectroscopy is done at a certain setpoint
voltage and setpoint current. However, as we tune the sample to different densities with the gate,
measuring with the same current setpoint changes the tip height, leading to setpoint effects. To
circumvent this issue, all the gate-tuned spectroscopy shown in this study are measured with a
constant tip height. In principle, this can be done with the feedback turned off for the entire
gate-tuned spectra. However these datasets typically take a few hours to acquire, during which
the tip would drift by a significant amount. To overcome this, we first record the current at
a setpoint voltage with the feedback turned off. Then we measure the spectra with feedback
off but use the prerecorded constant height current to adjust tip drift compensation. This way
we obtain the entire gate-tuned spectra with a constant tip height. The tip height for these
measurements is set at v=1/2, V., = —04V, 1., = 2nA.

We also employ constant height in small scale (<5nm) spectroscopic imaging. Since each
image is obtained in only a couple of minutes, tip drifting is not a problem for this measurement.
We first adjust the tilt of the scan plane locally over the scan window, using the tilt correction
feature in Nanonis software. And dI/dV images are obtained by turning off the feedback and
scanning the preset plane at the bias voltage corresponding to the peak we are interested in. In

bigger scale spectroscopic imaging, such as the one shown in Fig. 4d, we use multipass scan



function. On the first pass of each line, a topography profile was obtained with constant current
at low set point ( V., = —0.4V, [, = 100pA) to avoid setpoint effects. Then on the second
pass, we lower the tip by ~200pm from the profile trace of the first pass and adjust V5 to desired

value to obtain the dI/dV.

3 Tip contact Corbino transport measurements

For the transport measurement, we lower the tip into the sample from the tunneling condition
by a few nanometers. We found this does not damage the graphene but only changes the tip
shape. The measurement circuit is similar to tunneling measurement but with a lower-gain
current preamplifier. The differential tip contact Corbino conductance G is measured by lockin

at 137~144Hz, (0.1~2mV oscillation.

4 Correlation between spectral gap and bulk transport properties in in-
compressible states
In Fig. S2, we compare a spectral measurement with a Corbino transport measurement as a
function of gate voltage and bias voltage. We find for incompressible states at v = 0, £1, £2,
both tunneling measurement and transport measurement shows the same large gap in bias volt-
age. Inside these gaps, bulk transport resistance is larger than 1GOhm. And when the bias
voltage exceed the threshold, the bulk conductance is suddenly turned on. The mechanism
behind such transport behavior is unclear. We emphasis that the bulk is highly conductive at
fillings other than incompressible states. And the bulk is also highly conductive at the LL peaks

inside incompressible states, which are above the threshold.

5 Numerical calculation of the LDOS

Numerical simulations of the LDOS were performed using the standard formalism for many

electrons in a single Landau level on the surface of a sphere (3). The symmetries of the electron



system — the total z-projection of both spin and angular momentum of the electrons — were
explicitly resolved. The effective interaction between the electrons is modeled according to
Ref. (4), and it includes the dielectric constant (for one-sided hBN) ¢,py = (1 + e”eL) /2~
2.5, with e —3.0and el = 5.33, as well as the screening by the filled Dirac sea at the RPA
level (5). The screening by the gate can be neglected as the gate is placed more than 6{5 away
from the sample. We fix the magnetic field to B = 6T, which is assumed to be strong enough
to fully spin-polarize the ground state.

We evaluate the LDOS by computing the spectral functions (6, 7)

Ale) = pdle— (B~ Ex)| (N +1,E[$'(0)|N) [ (1)

A (e =gble+(E—En){(N-LERO)|N) [, @)

where Ey is the energy of the ground state | V) at particle number N. In principle, A, also
depend on the spin of the removed or added electron, which in the numerical simulations can
be resolved explicitly. If A, = Ey — Eyand A_ = Ey_; — Ey, the thermodynamic charge
gapis A = A, + A_. The chemical potential is defined by A, — u(N) = A_ + u(N), or
w(N) = (A, —A_)/2. A, has support for ¢ > A, and A_ has support for ¢ < —A_.

The spectral functions in Egs. (1)-(2) obey a number of sum rules (7, 8). For example, the

zeroth-moment sum rules give the density:

et [ 4,0 de= (oOWON) =1, ®
ol / A_(€)de = (Wl OBO)¥) = v, )

where |/} denotes the ground state at filling .
Explicit evaluation of Eqgs. (1)-(2) is impractical due to a sum over (in principle, all) eigen-
states | £, N + 1) in the spectrum. Consequently, we used a Kernel Polymonial Method (KPM) (9)

which allows to iteratively evaluate .LDOS by applying a Chebyshev expansion. Using KPM

4



expansion into a Chebyshev basis of size ~ 100 with the Jackson kernel from Ref. (9), in Fig. 83
we show the resulting energy-resolved LLDOS (middle panel) and its integrated version (right
panel) for a system of N_=14 electrons on a sphere threaded by total magnetic flux Ng=27, i.e.,
near =1 /2. This corresponds to filling v——3/2 in experiment, where we assume one sublevel
(e.g., K1) is half filled, while the remaining three sublevels (K|, KT, K'|) of the N=0 graphene
Landau level are empty. In order to account for the possibly non-uniform ground state (i.e.,
with angular momentum 7.>0 on the sphere), the LDOS was explicitly averaged over different
magnetic orbitals m = 0,1, 2, . .., Ng of the added or removed electron. In Fig. 83 we observe
the LDOS displays two broad peaks located at —0.22F~ and 0.36 E~ (the peaks are identified

with the median of the curves), resulting in a gap of 0.58F or approximately 32meV at 67T

6 Exitracting valley polarization and intervalley coherence phase from
Fourier analysis of conductance maps

Focusing on one spin species (or when assuming a spin-singlet state in which the two spins
are equivalent), the IQIIE state is described by a spinor (v, ,%_) — (cos(8/2),sin(6/2)e™)
in the valley space. ¢ is the phase of the intervalley coherent (IVC) order while & describes
the degree of valley polarization, which we may also express as Z = \v,b+\2 — [ |’ We
would like to extract these angles from STM images of the occupied/empty density, which is
in proportion to the current /{V,r) for bias-voltages just above/below the top/bottom peak.
The K-valley orbitals are localized at sites R, ; = R; + ry, while the K " sites are localized
at Rp; = R; +rp. We let w,(r) denote the wavefunction for the A orbitals, with Fourier
transform [ e"*"w,(r)]> = F(q). For B, C; symmetry implies wg(r) = wy(—r). Since
sublattice and valley are locked in the N = 0 LL of MLG, it will be convenient to let 7 = +
denote (A/K) vs (B/K') together.

An electron in orbital m, valley 7 of the N = 0 LL thus has an ansatz real-space wavefunc-



tion

Prmlt) =3 @@ i (r — R, ) )

R‘r,i
—— z 2
Here ¢,,(2) ~ z™e ! are the lowest LL wavefunctions. The density of a uniform IQHE

state can then be obtained using

n(r) = 3 Pt n(r)e, (1) 6)
1 + . KR, —TR, )«
= e o Tiwi{r— R Jw (r—R_ 7
QTTEQB Z'w’l’wr T( T,Z) 'r( ’T,j‘) ( )
7,7 .07
where we have used the LLL completeness relation 3~ [¢,,(r)]* = #
TLR
Valley polarization

We first focus on the valley-diagonal contribution to the density 7 = 7'. If the orbitals are
tightly localized we can restrict to 2 = 7 and obtain the contribution
n(r) = Z [WHQWA(I' - RA,@)\Q ir |¢7|2|’WB(1' - RB,i)|2] (8)
In Fourier space at reciprotcal vector (&,
n(G) 3 [F(@), e+ F @)y o] ©

where F(q) is the Fourier transform (form factor) of |w,(r) .

From this expression we would like to extract the degree of valley polarization Z = |, \2 —
|4_|2. However, under a shift of the origin by Ry, the result transforms as n(G) — n(G)e ¢ o,
Since we don’t a priori know where to fix the origin in a given region of the STM image, we
need a way to extract order parameters in the presence of this ambiguity.

To do so, we consider products of the form J] i n{q;), where > . q; = 0, which is thus
invariant under a shift of Ry. Let G; = [Og}i Gy, 2 = 0,1,2, be the three (s-related re-

ciprocal vectors. The combination ® = argn(Go)n(GyIn(Gy) = 3arg(F(G)y, [2e*™/* +

6



FHGY_|2e™™ 7% = 3arg (|, |*e™ +[¢o_|*e ™) is thus an invariant, where arg F/(G)e*™/* =
«. Without knowing «, we can’t convert this directly to 7. However, if we assume w,(r) =
wy(—r) so that F(G) is real, & = 2f or @ = % + m, and assuming the former we find
Z = —tan(2)//3. By applying this method at v = —1, where we know the sublattice split-

ting ensures the valley-polarized state Z = +1, we can confirm that o ~ 0.
IVC (Kekule) order

Our discussion thus far neglected possible coherence between K and K’ coming from Wi
The coherences will be peaked on the set of nearest-neighbor bonds which we denote by <

1,7 >. The valley coherent contribution at wavevector K — K'is

1

nir) =
(x) QWEQB

Y pip e MRt ey (e — Ry Jwp(r — Rpy) + he.  (10)

<i,j>
There are three such bonds per unit cell, with centers we will denote by R, ; where v =0, 1,2
denotes the types. In terms of R, ; the above expression reduces to
1 * —iZK-R, ;
n(r) = ——= T =B, r—R,;) + h.c. 11
(r) ngwm (r— Ry (11)

where B, (r) = wi(r — R )wp(r — Ry ;) with B,,(r) = B, (—r). The Fourier transform is

n(K + G) = 4 Z B,(K + G)e—i(3K+G).Ra _ wiw—gzm/az B, (K + G)e—z’(K-}G)»Ra

) ) (12)
where B,(q) is the Fourier transform of B,(r). To extract this in a shift-invariant manner, we
note that n(Ko)n(K, )n(Ky) oc —(5_)* = —e¥? where K are the Cy-related K-points and
we have exploited C; torelate the B,,. Note thatby C-symmetry B, (q) is real, and we assumed
B,(K;) > 0, which is certainly reasonable for smooth orbitals. Regardless, if 5,(K;) < 0, we

instead obtain (wj@b,)g, which differs only by a redefinition ¢ —+ ¢ + 27/6.



7 Non-linear sigma model modelling of » = 0 phases

In this section we describe the non-linear sigma model (NLLSM) used to predict the mean field
phase diagram of the CDW - IVC ftransition and the spatial structure of the impurity-pinned
skyrmion textures.

An [QHE ferromagnet is characterized by a 4 = 4 projection matrix pPP=r describing
which of the 4 isospin states are filled. At neutrality, Tr(#) = 2, and it will be convenient to
write P = 1(1 + @) where Tr(Q) = 0 and Q* — 1. The @ captures the different symmetry-
broken phases. Letting 7,0 denote Pauli matrix in the valley/spin space, for example: (1)
spin ferromagnet Qpy = 71 - o; (2) the valley and sublattice polarized state Qcpw = 7°; (3) the
“partially sublattice polarized™ (alias IVC / Kekule) state Qpgp = sin(@){(cos(¢)7" +sin{¢)r?) +
cos(f)7* (4) the canted-antiferromagnet state (Jopp = 7° sin(#)(cos(@)o” +sin{¢)o¥)+cos(f)o”.
(10)

In Ref. (10) it was argued that energy per flux of a uniform IQHE state takes the general

phenomenological form

Hyp — % > w, [T P)? = Te(r"Pr*P)] — AupTr(Pr™) — AzTe(Po®)  (13)

e
Here A ,p and A are the single particle sublattice and Zeeman splittings (note the band gap
is thus 2A 4p in this convention). The coupling constants w,, are not precisely known (they
arise from a combination of short-range Coulomb and phonons), but should roughly scale with
2

B as U, = %Ec Gs where a is the lattice spacing, F- = 47;373 18 the Coulomb scale, and
Ge = Uy = Guy» 9 are some unknown B-independent constants. Assuming the g, are constant
for a given dielectric environment, they can be determined by measuring the location of phase
transitions in the Az, A ,p, B plane, as we will derive below.

Based on prior experimental work (10-12) it is believed that ¢, < O and g, > 0. As we

will review, this results in the CDW phase at low- B and the PSP (IVC) phase at intermediate- 5,

8



. s CDW—PSP
separated by a continuous transition at some 5,

, exactly as observed in our experiment.
If g, > —g,,. then for even larger-5 we predict a first order transition from the PSP to the
CAF state at some B->F T This transition is not observed in our experiments upto B = 6 T.

Following the discussion of Ref. (10), the critical B, for these two transitions are derived below.
Critical BSPY =Y of the CDW - PSP transition

Plugging in the ansatz () = n - 7, the energy of the PSP state is

27

EPSP = umy(ni + ni) + uzni - QAAan = Ugy + (uz - umy)nz QAAan (14)

The energy is minimized when the state cants to

AAB AAB €B 1 dme 1 AAB
n, = W L = (15)
U, — Upy EC G Gz — Guy €°a 9z — Guy el

1

 is remarkably close to our STM results (main text, Fig. 3d). Since the

The decrease of n,, as
CDW is just a limiting case n° = 1 of the PSP, the critical point for the CDW-PSP transition is

thusatn, =1, 0rg, — g, = %%. Knowing A , 5 and B, for a sample, we can then extract

9z = Gay

Using STM to measure the splitting of the ZLL in the B — 0 limit and in ¥ = 2 under
B = 6T, we obtain A, = 5 ~ 10meV in Device C (6py = 8°), and from our analysis of
the onset of the Kekule distortion, B, = 2.2T. Using ¢ = 4¢, and assuming A 45 = 7meV, we

thus conclude g, — g,, ~ 11. Device B is expected to have a smaller A ,5, due to a larger BN

&

alignment angle 65, = 13°, in agreement with its lower B, = 0.6'T. Unfortunately we were
unable to quantitatively measure A 45 in Device B before it was compromised, so we cannot

use it to independently estimate g, — g,

Within the PSP phase, the optimized energy is
A2
Epsp = 1y — —— (16)

U, — umy



Critical BFS"~CAF of the PSP-CAF transition

The above measurement detects g, — g,,,, butleaves g, + g, unconstrained. In principle it can
be determined by measuring the 5, of the PSP-CAF transition, should it exist. The energy of
the CAF is

AZ
24,

Ecar = —u, + (17

Y

assuming g, < 0. Comparing the energies of the PSP and CAF phases, the CAF is obtained at
high-B only if g, > —g,,. Based on earlier experiments which observed a transition consistent
with the existence of the CAF at high fields (11, 12), this was believed to be the case, at least in

samples with swo-sided hBN encapsulation. The critical point for the PSP - CAF transition is

2 2
Uy T, = gﬁfy + uf_ﬁ. At low fields, where Ay =~ 0, this reduces to (,,, +u,)(u, —t,,) =
ug — uiy = AQAB. For the typical values of ¢ ~ 5 — 10 estimated from earlier experiments,

obtaining a transition below B = 6T requires samples with smaller A , 5, which may explain the
absence of this transition in our experiments. Alternatively, it could be that impurities, which
will couple to the IVC order ¢ as a random-XY field, help pin the PSP state and further favor
PSP over CAL.

On the other hand, comparison of the observed defect textures with the NLSM suggests that
Gwy ~ —9, 9, ~ 2, s0 1t may be that in devices with only an hBN substrate (which are suitable
for STM), rather than full encapsulation (as in the previous experiments), are in a different

regime than these earlier experiments.
NLSM solution for skyrmion textures
In the presence of defects or excitations, the projector P(r) can vary in space, costing an ad-

ditional elastic energy H, = % f dzr(VP)z, where p, = ﬁEc- (13) In this section, we

obtain a non-linear sigma model for such textures which can be used to numerically solve for

10



the structure of skyrmions in the presence of the anisotropies, ¢,.,, 9., A4p. Our analysis gen-
eralizes Ref. (14) by including the effect of A , 5.

In general, the space of possible rank-2 projectors P is 8-dimensional at v = 0, leading to
a plethora of different possible textures. (14) Fortunately, in the regime g, < Oand g, > 0
of interest to experiment, only a restricted subspace i1s energetically relevant. (14) These are
states in which the skyrmions lie in the CDW/PSP/CAF manifold. Furthermore, when A5 ~ 0,
we can ignore the canting of the CAF, in which case it reduces to a colinear AF. We may thus
assume that spin-rotation symmetry is preserved about a particular spin axis (say 2). Under
these assumptions a sufficiently general ansatz is obtained by decomposing the projector into
the contribution from each spin sector ¢° = =+ individually, P = P™ + P~. Within each spin
sector, the projector Tr(Pi) = 1 is fully specified by an orientation n® . 7 in the valley space.
Again, this 18 not the most general possible ansatz - it rules out the FM phase and a non-colinear
AF for example - but it does account for the energetically relevant skyrmions. For example, the
spin-singlet CDW/PSP/Kekule manifold is n™ = n~, while the AFisn™ = —n~ = (0,0,1).

In terms of the NLSM parameters n*, the spatially uniform mean field energy is
Evp = Zuﬂn:n; — Aag(nt +ny) (18)
I

Thus, generalizing the NLSM model of the spinful integer quantum Hall effect, we obtain a

NLSM of the form

d° 1 B ) )

H= / . ;2 %((Vn+)2—|— (Vn )2) + Z umj’n2 — AAB(TL:_ +n) | + Heglp] + H:imp[p]
Tep -

i=x/y/z

(19)

where p, = Eo_ js the stiffness of an IQIH ferromagnet. I 1r|p| 18 the energy coming from
p 16\/2? g 10 gy g

the long-range part of the Coulomb interaction, which depends on the charge density p via the
formula for skyrmion charge density given below. H,,,[p| is the pinning impurity potential,

which we take to be a Coulomb impurity.

11



We obtain the lowest energy n® configuration by discretizing the NLLSM on a 200 = 200

toroidal grid and applying a numerical optimization method (BFGS).

Topological charge density. The general formula for the skyrmion charge density is p =

L " Tr(P8,P8,P). For our ansatz, P — P4 P~ itdecouples spin-by-spin, p= = ie“"Tr(PiaﬂPiayPi).

e 24

Substituting 8, P~ = 19,n™ - 7 and 8,/n| = 0, we obtain

1 1 - i_j
p* = 5 Ve (0, (0,nmd, Te(r'TIr) 20)
1.1 v i
= 32 ¢ OnD) @)™ G
1
pr =" (6n”) < (9n]) )

This gives the well-known expression equating the electrical charge with the topological charge

of the skyrmion. (13) The total charge p(r) = p*(r)+p~(r) then interacts via the gate-screened

1 1

2
Coulomb interaction Hyp = (3 :

_) and a gate-screened Coulomb impurity f;,,,, a
ro4+dd

distance of £z below the sample.

Analytic estimate of skyrmion sizes. IHow large are the expected skyrmions? We can answer
this question analytically if we assume that u;, A , are small compared to the stiffness. In this
case, we can make an approximation in which we assume that n+(r) contains a skyrmion,
while n~ remains at its constant bulk value. This neglects the “backreaction” effect in which
u,; causes n_ to adjust due to the deformation in n™, lowering the energy; this will thus slightly
under-estimate the skyrmion size. Referring to the anisotropy in Eq. (19), when holding n~
fixed we see that the n™ experiences a net “Zeeman” field of u;n; — A,g%. Plugging in the
bulk PSP solution for n~, we find an effective Zeeman field with magnitude precisely |u,,|.
Consequently the problem reduced to that of an SO(3) spin skyrmions in a magnetic field under

the replacement % gipB — uy,. Converting the expressions of Ref. (13) to units of &, we find

12



that (up to constants within the log) the skyrmion size is

1/3
0.0867
b= tp | T (23)
] og (22,

For values g, ~ 5 — 10meV at B = 6T, this gives {, = 6 — 8nm, consistent with experiment.
They are thus small skyrmions, comparable to the magnetic length. In this regime the NLSM
is not expected to be quantitatively accurate, but nevertheless appears to reproduce the gross

features of the experiment.

8 Comparison of NLSM results with experiment.

Based on the observed CDW-PSP transition, we fix g, — g,,, = 11 and treat g,,, < O as a
free parameter to be matched with experiment. Numerically solving for the ground state of the
NLSM in the presence of a charge-¢ skyrmion, we produce simulated experimental data as in
Fig 4.

Note that our experimental procedure for extracting the IVC phase ¢ = arg(y}_) from
the Fourier-transformed spectroscopy measurements (Sec.6) implicitly assumed that both spin
species have the same valley order, n™ = n™. This is true away from defects, but not in the core
of skyrmions, where n* 4 n~. Because STM does not resolve by spin, the LDOS is sensitive
only to the total electron density, and hence the spin-averaged valley polarizationn = (n™ +
n )/2. As aresult, when we apply our procedure for extracting ¢ from the Fourier-transformed
LDOS, we are in fact measuring the averaged quantity ¢ — arg(¥y by _ + ] () ).

In order to compare our NLSM result with experiment (main text, Fig. 4f-1) we thus compute
Z and ¢ for the spin-averaged NLSM fieldn = (n™ +n~)/2, with ¢ = arg(n, +n,,) (Fig.4(h))
and Z = n_ (Fig.4(i)). Note that for charge-¢ skyrmions, in which only one of either n* or
n contains the texture, we do not observe a full 360” winding in ¢ precisely because of this

averaging.
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We choose g,,, in order to qualitatively match theory and experiment. We find g, =-6 (-11)
results in a skyrmion with ~ 15nm (7nm) Z polarization core separation (the distance between
maximum Z polarization and minimum 7 polarization). And the value g, = —9 produces
a skyrmion with Z core separation of 10nm, similar to the experimental observation, though
due to the exponent of 1/3 which relates g,,, and the skyrmion size (Eq.(23)) , g,, cannot be

constrained very precisely.
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Figure 51: Zoomed in Spectra between v= -2.5 and 2.5 showing the details of incompress-
ible gaps. The slopes of the LL peaks inside the incompressible states are dVB/dL; = —1 (the
dashed black lines are guiding lines with exact -1 slope), which seem to suggest the backgate
is simply moving the Fermi level in the gap and there is no in-gap impurity state. However, for
single particle gaps, we found the LL peaks are discontinuous on one side of the gap, as a result
of gate voltage needed to tune through the gap (horizontal orange arrowed line) 18 larger than
the cyclotron gap itself. Equally puzzling is that the apparent gap across the Fermi energy (blue
vertical arrow) is about twice as big as the cyclotron gap.
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Figure S2: Tip contact Corbino transport measurement at finite bias and comparison with
spectral measurement. a, b, Corbino transport measurement by plunging the tip 2nm into the
sample. a(b) is plotted in the linear (logarithmic) scale. There is an insulating “diamond” at
each compressible state. e, Spectra measured in the same area as a&b. The black lines mark the
InS conductance contour of the transport measurement in a&b, which matches with where the
tunneling conductance vanishes. This suggests the expanded tunneling gap at incompressible
states is related to the bulk transport behavior of the sample. The strong peaks near £60mV and
+80mV are phonon-assisted tunneling copies of the direct tunneling peaks at lower energies.
They are more prominent in this dataset, presumably due to a blunter tip.
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Figure S3: L.DOS near v=1/2 computed via KPM method (9) [middle, right panels] versus
the experimental dI/dV spectrum at v= — 3/2 [left panel]. Middle panel: LDOS resolved by
the energy and averaged over all orbitals m where an electron could be added or removed. The
data for adding an electron includes contributions from either spin orientation, as well as the
three empty sublevels of the N=0 graphene Landau level (see text for details). In contrast, the
removed electron must have spin-up due to the ground state being fully spin-polarized. Right

panel: integrated LDOS, fH‘E‘ deA, (¢) and [* & deA_(e), illustrating the convergence to the
zeroth sum rule in Egs. (3)-(4).
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Figure S4. Energy splitting across the Fermi energy at higher LLs. a, Spectra at higher
filling factors on the electron side. b, Extracted energy splitting of the LL at the Fermi level at
half fillings from Fig. 2a and Fig. S2a. The split LL peaks are fitted by Gaussian functions,
and A F is the separation between the center of the lower peak and center of the upper peak. As
filling factor increases, AE get smaller at higher LLs, likely due to the reduction of Coulomb
interaction by Landau level mixing and dielectric screening. ¢, The width of the peaks (standard
deviation of the Gaussian fit) at half fillings.
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Figure S5: Another observed valley textures. Azimuthal angle ¢ and Z polarization of the
Kekule phase at charge neutrality around a different defect extracted from E-ZLL.
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