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Abstract

Algorithm configurators are automated methods to optimise the parameters
of an algorithm for a class of problems. We analyse the impact of the cutoff
time κ (the time spent evaluating a configuration for a problem instance) on
the expected number of configuration comparisons required to find the optimal
parameter value for the performance metrics (the measure used to judge the
performance of a configuration) that compare configurations using either the
best-found fitness values or optimisation times. We first prove that the configu-
rators that use optimisation time as performance metric are not able to tune any
unary unbiased algorithm for any function with up to an exponential number
of optima using κ ≤ (n lnn)/2. Afterwards, we show that for simple algorithm
configuration scenarios the required cutoff time for the optimisation time metric
may be considerably larger while using the best fitness metric allows the tuners
to configure the target algorithm in linear time in the number of parameters.

Keywords: Algorithm configurators, parameter tuning, runtime analysis,
performance metrics, cutoff time

1. Introduction

General purpose heuristics, such as evolutionary algorithms, have the ad-
vantage that they can generate high quality solutions to optimisation problems
without requiring much knowledge about the problem at hand. All that is
required to apply a general purpose heuristic is a suitable representation for
candidate solutions and a measure (the fitness function) that enables the com-
parison of the quality of different solutions against each other. However, it is
well understood that different design choices and settings of their numerous pa-
rameters (e.g., mutation rate, crossover rate, selective pressure and population
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size for generational genetic algorithms (GAs)) may considerably affect their
performance and in turn the quality of the identified solutions. In particular,
the capability of heuristics to identify high quality solutions in a short time
depends crucially on the use of suitable parameter settings [1].

Traditionally, the design and parameter tuning of the algorithm for the prob-
lem at hand has mainly been done manually. Typically, the developer chooses
some algorithmic designs and values for the associated parameters and executes
them on instances of the problem. Refinements to the previous choices are then
made according to how well each algorithm/parameter configuration has per-
formed. However, such a procedure (or a similar one) is a time-consuming and
error-prone process. From a scientific research point of view, it is also biased
by personal experience hence difficult to reproduce. Consequently it has be-
come increasingly common to use automated and principled methodologies for
algorithm development [2, 3, 4, 5, 6].

Many automated algorithm configurators have gained widespread usage since
they have often identified better parameter values compared to carefully chosen
default configurations [5, 7, 8, 9, 10]. While varying in several algorithmic
details, all algorithm configurators generally aim to evolve increasingly good
parameter values by evaluating the performance of candidate configurations
on a training set of instances and using some perturbation mechanism (e.g.,
iterated local search in ParamILS [5] or updating the sampling distributions in
irace [7, 11]) to generate new ones based on the better-performing ones in the
previous generation. The overall aim is that the ultimately identified parameter
values perform well (generalise) on unseen instances of the tackled problem.

Despite their popularity, there is a lack of theoretical understanding of such
configurators. For instance, it is unclear how good the identified parameter
values are compared to optimal ones and how long it takes for these to be
identified. Furthermore, there are no theoretical indications on how to set the
algorithm configurator’s own parameters such as the cutoff time (how long each
algorithm configuration should be run) or which performance metric to use to
estimate the performance of different configurations.

One exception is a recent worst-case analysis of using optimisation time as
performance metric [12]. It was proven that all algorithm configurators using
this performance metric and a cutoff time that is either static or bounded by the
runtime of a previously-run configuration have poor performance in the worst
case. On the other hand, the authors design a worst-case-tailored algorithm
called Structured Procrastination (SP) that adaptively increases the cutoff time
if it is too small to allow the configuration to reach the optimum and which prov-
ably performs better in the worst case. However, worst-case analyses do not ex-
plain the success that popular algorithm configurators have in practice. Indeed,
experimental evidence has recently been provided that many algorithm config-
uration landscapes exhibit unimodal (even convex) characteristics, and hence
are more benign for gradient-based algorithm configurators than the worst-case
scenario [13].

In this paper, we take a first step towards the time complexity analyses
of specific configurators for different scenarios to explain their behaviour and
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performance. Our aim is to highlight the impact of the chosen performance
metrics both in cases when the parameter values that minimise the optimisation
time are sought and when those that maximise solution quality within some time
budget are preferred. In particular, we argue that the most natural performance
metric for a given application is not necessarily the optimal choice. For instance,
it may be natural to assume that if the set of parameter values that minimises
the optimisation time of the target algorithm for a problem class is sought,
then using the optimisation time itself as performance metric is preferable. Our
analyses reveal that this is not necessarily the case even in simple algorithm
configuration scenarios: using the best-identified fitness within a cutoff time as
performance measure allows algorithm configurators to identify more quickly
the parameter values that minimise the target algorithm’s optimisation time in
the considered scenarios.

More precisely, we prove that any algorithm configurator that uses opti-
misation time as performance metric requires a cutoff time of Ω(n log n) with
overwhelming probability (w. o. p.)1 to tune any unary (i.e., using only mu-
tation operators) unbiased target algorithm with a single parameter for any
target function containing up to an exponential number of optima in the prob-
lem size n. For smaller cutoff times such configurators behave as if all parameter
values have the same performance. Afterwards, for specific, yet simple, scenarios
we show that the required cutoff time may be considerably larger, while using
the fitness-based performance metric allows the tuner to identify the parame-
ter values that minimise the optimisation time in linear time in the number of
parameter values.

For our puproses we will consider a simple stochastic hillclimbing tuner,
called ParamRLS as well as the popular and established ParamILS configura-
tor which uses iterated local search. We will analyse the number of iterations
required by algorithm configurators to identify the optimal parameter values
w. o. p. for the randomised local search (RLSk) algorithm, where k, the only pa-
rameter, is the local search neighbourhood size (i.e., k bits are flipped without
replacement in each iteration) for two well-known black-box benchmark function
classes: Ridge [14] and OneMax [15]. The choice of performance metric affects
which configuration is the target that the configurator seeks. An F-optimal con-
figuration achieves the highest expected solution quality within the cutoff time
and is therefore the target when using the fitness-based performance metric,
whereas a T-optimal configuration has the smallest expected optimisation time
and therefore is the target when using optimisation time as performance metric.

The two target function classes have considerably different characteristics.
For Ridge, each parameter value has the same improvement probability in-
dependent of the position of the candidate solution in the search space. For
OneMax, however, it is better to flip fewer bits the closer the candidate so-

1We say that a probability is overwhelming if it is at least 1 − 2
−Ω(nε) for some con-

stant ε > 0. We frequently use that by a union bound, any polynomial number of events that
all occur w. o. p. occur together w. o. p. as nO(1) · 2−Ω(nε)

= 2
−Ω(nε)+O(logn)

= 2
−Ω(nε).
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lution is to the optimum. This implies that for Ridge the optimal parameter
value (i.e., k = 1) is independent of the chosen performance measure: k = 1 will
have better performance independent of for how long the algorithm is run i.e.,
even for very small cutoff times as long as sufficiently many runs are performed
in each configuration comparison. Roughly speaking, for OneMax, larger val-
ues of k find better solutions in short runs of RLSk, whereas smaller values of k
perform better in longer runs. Hence, for this problem class, which parameter
value k is optimal depends on the chosen performance measure.

Our results are summarised in Table 1, where we use ‘Opt-Time’ to re-
fer to all configurators that use optimisation time as performance metric and
‘ParamRLS-F’ and ‘ParamRLS-T’ to indicate respectively whether ParamRLS
uses the best-identified fitness or the optimisation time as performance metric.
ParamILS uses its traditional optimisation time metric with penalised average
runtime (PAR).

Our analysis shows that ParamRLS-F can efficiently identify that k = 1 is
the optimal parameter value for Ridge independent of the cutoff time as long as
the performance of each parameter configuration is evaluated a sufficient num-
ber of times (recall that k = 1 is both F-optimal and T-optimal). On the other
hand, configurators that use optimisation time as performance metric require
at least quadratic cutoff times in the problem size. This implies that Param-
RLS-F can identify the T-optimal configuration with any cutoff time, whereas
configurators using a performance metric explicitly designed for this task can-
not. For OneMax, ParamRLS-F identifies that k = 1 is the optimal parameter
value for any cutoff time greater than 0.975n for which it is both F-optimal and
T-optimal while, for cutoff times in the range [0.02n, 0.72n] it will identify that
k = 5 is an F-optimal configuration. In contrast, configurators using optimi-
sation time as performance metric require at least superlinear cutoff times to
identify the T-optimal parameter value for OneMax or they will return one cho-
sen uniformly at random. Therefore, ParamRLS-F is once again able to identify
the T-optimal configuration using cutoff times that are asymptotically smaller
than those required by configurators that use optimisation time as performance
metric.

Compared to the extended abstract of this paper [16], this version includes
all previously omitted proofs and a tightened analysis of the configuration of
RLSk for OneMax. Furthermore, the mutation operator of ParamRLS has
been generalised to allow for arbitrarily large step sizes, and the results con-
cerning ParamRLS-T have been extended to also hold for all configurators that
use optimisation time as performance metric. Finally, we include positive and
negative results for the popular ParamILS configurator exactly as it is used in
practice. This is remarkable for a first runtime analysis paper on algorithm
configurators since, concerning function optimisation, for many years simplified
evolutionary algorithms had to be analysed before it became possible to perform
runtime analyses of standard realistic ones [17, 18, 19, 20, 21, 22, 23].

This paper is split into four main sections. In Section 2 we provide formal
descriptions of the algorithm configuration problem, the algorithm configura-
tors, the target algorithms and the optimisation function classes considered in
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Configurator Cutoff Time (κ)
Runs per

Evaluation (r)
Result

Configuring RLSk if all training instances have ≤ exp(
√
n/ log2 n) optima

All Opt-Time κ ≤ (n lnn)/2 ∀r ∈ poly(n) blind
Any algorithm with single parameter θ

ParamILS
large enough to

optimise all training
instances w. o. p.

∀r ∈ poly(n) optimal θ

Configuring RLSk for Ridge*

ParamRLS-F κ = 1 ∀r ≥ n3/2 optimal k (k = 1)
ParamRLS-F κ = ω(n) ∀r ≥ 1 optimal k (k = 1)
All Opt-Time κ ≤ (1− ε)n2 ∀r ∈ poly(n) blind
ParamRLS-T κ ≥ (1 + ε)n2 ∀r ≥ 1 optimal k (k = 1)
ParamILS κ ≥ (1 + ε)n2 ∀r ≥ 1 optimal k (k = 1)

Configuring RLSk for OneMax*

ParamRLS-F 0.02n ≤ κ ≤ 0.72n ∀r ≥ 1 optimal k (k = 5)
ParamRLS-F κ ≥ 0.975n ∀r ≥ 1 optimal k (k = 1)
All Opt-Time κ ≤ (n lnn)/2 ∀r ∈ poly(n) blind
ParamRLS-T κ ≥ n1+ε ∀r ≥ 1 optimal k (k = 1)
ParamILS κ ≥ n1+ε ∀r ≥ 1 optimal k (k = 1)

Table 1: A summary of our results. ParamRLS-F is able to identify the configuration that
attains the highest solution quality within the cutoff time, whereas configurators using the
optimisation time as performance metric are blind (i.e. behave as though all configurations
have the same performance) for cutoff times considerably smaller than the expected optimi-
sation time. Ridge* and OneMax* (defined in Section 2.4) are modifications of Ridge and
OneMax that allow the optimum to be reached by any configuration of RLSk.

this paper as well as the mathematical tools used in the analyses. In Section 3
we provide general upper and lower bounds on cutoff time required for configu-
rators that use the optimisation time metric to be efficient. In Sections 4 and 5
we respectively present our analysis of ParamRLS and ParamILS configuring
RLSk for Ridge and OneMax.

2. Preliminaries

2.1. The Algorithm Configuration Problem

In this section we briefly outline the Algorithm Configuration Problem, fol-
lowing the definition given in [2]. Informally, given an algorithm A, its set of
parameters {p1, . . . , pNP

} and an optimisation problem Π with instance distri-
bution I, the algorithm configuration problem is that of identifying a parameter
configuration (i.e. a value for each parameter) that optimises the performance
of A for Π with instances distributed following I. We call the algorithm solving
the configuration problem the configurator (or tuner) and the algorithm to be
tuned (A) the target algorithm.
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More formally, we say that, if each parameter pi has a set of feasible values
Θi, then Θ ⊆ Θ1× . . .×ΘNP

is the parameter space of A (i.e., the search space
of all feasible parameter configurations). We denote a specific configuration by
θ ∈ Θ and the instantiation of A using the parameter values in configuration
θ as A(θ). Finally, let costI(θ) be a measure of the performance of running
A(θ) on instances distributed according to I. Then the algorithm configuration
problem is that of finding

θ∗ ∈ argmin
θ∈Θ

costI(θ)

In practice, the value of costI(θ) is often estimated using a training set
of problem instances Π′ ⊆ Π. The training set should be chosen such that
configurations that perform well on it also perform well on the problem class
itself.

In order to evaluate the performance of configurations, the following deci-
sions need to be made:

• The definition of the training set of problem instances Π′ ⊆ Π.

• The cutoff time κ (i.e. the time for which a configuration is executed in a
single run in an evaluation).

• The number of runs r per evaluation (i.e. the number of times an instance
is drawn using the distribution I and the configuration run on it).

• The performance metric (i.e. which quality measure to use to assess the
performance of different configurations for an instance, e.g. “the best-found
solution within a time budget” or “the time required to reach a solution of
at least a given quality”). It is important to note that different performance
metrics may yield different optimal configurations.

• The method used to aggregate performance measures over multiple runs
of a configuration.

Since for the two problem classes considered in this paper (see Section 2.4)
one random instance suffices to identify the optimal configuration, we need
not worry about the choice of the training set. In this work, results showing
that configurators will be blind hold for any aggregation function. For positive
results, the performance of configurations is aggregated over multiple runs on
the same problem instance as follows. In ParamRLS-F, the configuration that
wins the most runs wins the comparison; in ParamRLS-T and ParamILS, the
configuration with the smallest mean penalised runtime wins the comparison.
We will consider two different performance metrics:

1. Optimisation time: the time required for A(θ) to find the optimal solu-
tion of an instance πi. If the optimum is not found before the cutoff time κ,
then C ·κ is taken as the time to reach the optimum, where C is a penalty
constant (i.e. PAR-C). This metric is commonly used in ParamILS where
usually C = 10 [5].
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2. Best fitness: the fitness of the best solution found within the cutoff time,
paired with the time at which progress was last made (this second compo-
nent of the performance metric is only used in the event of a tie, in which
case we favour the configuration which made progress least recently).

Let T be the number of configuration comparisons performed by the con-
figurator before the optimal configuration θ∗ is identified. Then for ParamRLS
and ParamILS the total tuning time (i.e., the number of fitness function eval-
uations) will be at most B = T · κ · r. Our aim in this paper is to estimate,
for each performance metric, how the cutoff time κ and the number of runs r
impact T and B for the ParamRLS and ParamILS configurators. In particular,
we will estimate the value of T , from which B can also be easily derived.

2.2. The Configurators: ParamRLS and ParamILS

In this section we present the tuners which we analyse in this paper. We first
give details of ParamRLS which is the simplest possible stochastic local search
tuner. We then present the popular ParamILS tuner.

2.2.1. ParamRLS

We design a simple configurator following the framework laid out for
ParamILS [5]:

1. Initialise the configurator with some initial configuration θ;
2. Mutate θ by modifying a single parameter and accept the new configura-

tion θ′ if it results in improved performance;
3. Repeat Step 2 until no single parameter change yields an improvement.

Following the above scheme, we initialise the configurator by choosing a
configuration uniformly at random from Θ and, in an alteration to the above
framework, accept the new configuration if it performs at least as well as its
parent. The target algorithms considered in this paper only have one param-
eter. We refer to the current value of θ in our tuner as the active parameter.
Concerning Step 2, ParamILS applies an iterated local search procedure. We
instead consider the more simple random local search operator ±{1, . . . , ℓ}, and,
thus call our algorithm ParamRLS. Under the local search operator ±{1, . . . , ℓ},
the active parameter value is increased or decreased by any integer between 1
and ℓ inclusive, where both this integer and whether to increase or decrease are
decided uniformly at random each time the value of the active parameter is mu-
tated. The operator ±{1} has previously been analysed for the optimisation of
functions defined over search spaces with larger alphabets than those that can be
represented using bit strings [24]. We assume that any mutation that oversteps
a boundary is considered infeasible by ParamRLS and would automatically lose
the comparison against a feasible parameter value2.

2We make this assumption to simplify the analysis. In practice, infeasible configurations
could clearly be rejected before being run in a comparison. This assumption is thus pessimistic.
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The resulting configurator is described in Algorithm 1. The termination
condition may be either a predetermined number of iterations without a change
in configuration (i.e., the solution is likely a local or global optimum) or a
fixed number of iterations. In this paper, we calculate both (1) the expected
number of comparisons until the configurator first sets the active parameter to
the optimal parameter configuration and (2) the configurator settings required
such that it returns the optimal value w. o. p. We thus provide bounds on the
necessary termination criterion for the configurator.

If the configurator uses the fitness-based performance metric for perfor-
mance comparison described in the previous section, then we call the algo-
rithm ParamRLS-F while if it uses the time-based metric, then we refer to it
as ParamRLS-T. The two configurators are described in Algorithm 2 and Al-
gorithm 3, respectively. In Algorithm 3, we denote the capped optimisation
time for A(θ) on instance π using cutoff time κ and penalty constant C as
CapOptTime(A(θ′), κ, π, C). Since the behaviour of a parameter configuration
is identical on all instances of the problem classes considered in this paper, for
simplicity we only use one instance for each comparison. Using larger training
sets would not affect our results (i.e. the number of required comparisons to
identify the optimal configuration would remain the same). In practice, it may
be desirable to cache the performances of configurations. However, in order to
simplify the analysis, we assume throughout this paper that no caching takes
place. Re-evaluating the performance of configurations may also be useful since
it allows the configurator to overcome local optima introduced by the noisy
evaluation of configurations.

Algorithm 1: ParamRLS (A,Θ,Π′, κ, r, ℓ)

Input: target algorithm (A), parameter space (Θ), training instances
(Π′), cutoff time (κ), number of runs per evaluation (r), step
size (ℓ).

1 θ ←initial configuration chosen uniformly at random
2 while termination condition not satisfied do

3 θ′ ← ±{1, . . . , ℓ}(θ)
4 θ ← better(A, θ, θ′,Π′, κ, r) // Comparison between θ and θ′

5 return θ

2.2.2. ParamILS

We now give an outline of the popular ParamILS tuner [5]. The main dif-
ference with ParamRLS is that iterated local search is performed by ParamILS,
instead of simple random local search i.e., just comparing the current config-
uration against a random neighbour in each iteration (the neighbourhood of
a configuration θ is defined as the set of configurations that differ from θ by
exactly one parameter value).

We reproduce the pseudocode given in [5] as Algorithm 4. Essentially, after
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Algorithm 2: ParamRLS-F (A,Θ,Π, κ, r, ℓ)

Input: target algorithm (A), parameter space (Θ), training instances
(Π), cutoff time (κ), number of runs per evaluation (r), step
size (ℓ).

1 θ ←initial configuration chosen uniformly at random
2 while termination condition not satisfied do

3 θ′ ← ±{1, . . . , ℓ}(θ)
4 repeat r times

5 π ← problem instance drawn from Π according to I
6 Fit← A(θ) fitness after κ iterations on π
7 Fit′ ← A(θ′) fitness after κ iterations on π
8 ImprTime←time of last improvement of A(θ) on π
9 ImprTime′ ←time of last improvement of A(θ′) on π

10 if Fit > Fit′ then W←W+ 1
11 else if Fit′ > Fit then W′ ←W′ + 1
12 else

13 if ImprTime < ImprTime′ then W←W+ 1
14 else if ImprTime′ < ImprTime then W′ ←W′ + 1

15 if W′ > W then θ ← θ′

16 else if W == W′ then with probability 0.5 do θ ← θ′

17 return θ

Algorithm 3: ParamRLS-T (A,Θ,Π′, κ, r, ℓ)

Input: target algorithm (A), parameter space (Θ), training instances
(Π′), cutoff time (κ), number of runs per evaluation (r),
penalisation constant (C), step size (ℓ).

1 θ ←initial configuration chosen uniformly at random
2 while termination condition not satisfied do

3 θ′ ← ±{1, . . . , ℓ}(θ)
4 OptTimes← 0 // runtime counter for A(θ)
5 OptTimes′ ← 0 // runtime counter for A(θ′)
6 repeat r times

7 π ← problem instance drawn from Π′ according to I
8 OptTimes← OptTimes + CapOptTime(A(θ), κ, π, C)
9 OptTimes′ ← OptTimes′ + CapOptTime(A(θ′), κ, π, C)

10 if OptTimes′ < OptTimes then θ ← θ′

11 else if OptTimes = OptTimes′ then

12 with probability 0.5 do θ ← θ′

13 return θ

9



having selected the best initial configuration out of ρ+1 random ones, ParamILS
repeats the following main loop:

1. It applies an iterated local search procedure to the current solution called
IterativeFirstImprovement ;

2. It perturbs the identified local optimum by performing a random walk of
length s through the parameter space, i.e. it performs s random moves
where in each move it chooses a parameter u.a.r. and randomly selects a
new value for it (perturbation phase);

3. It re-initialises the search procedure with probability prestart.

The selection criterion used by ParamILS is to accept parameter configurations
that have performed better or equally well over the training set.

The IterativeFirstImprovement procedure is described in Algorithm 5. Given
an input configuration θ, the procedure visits its undiscovered3 neighbours (i.e.,
all the neighbours which have not been tested in the current call of Iterative-
FirstImprovement) UndiscNbh(θ) in a randomised order and then accepts the
first one it finds which is at least as good as θ. It then performs the same pro-
cedure on this newly-discovered configuration. This process is repeated until it
finds a configuration with no undiscovered neighbours that are at least as good.

Two different approaches are commonly applied to choose which instances of
the training set (and how many) should be used to compare different configura-
tions. The basic approach, referred to as BasicILS, compares the mean runtime
of each configuration to optimise a training set of N instances chosen uniformly
at random. A more sophisticated approach, referred to as FocusedILS, avoids
wasting configuration budget on the evaluation of suboptimal configurations.
As a result not necessarily all of the training instances need to be used for
the winner of a comparison to be decided. For results where we prove that
ParamILS is blind, it is irrelevant whether BasicILS or FocusedILS is used since
the cutoff time is simply too small to allow the optimal configuration to be
identified. For results where we show that ParamILS is able to identify the
optimal configuration, we assume that it uses BasicILS in order to simplify the
analysis. This is a pessimistic assumption: using FocusedILS may allow fewer
runs to be used. However, for our results where only a single run per evalu-
ation is used, BasicILS and FocusedILS will behave identically. Thus, for the
better procedure of ParamILS we simply use the comparison procedure used in
ParamRLS-T as defined in Algorithm 3, with the only difference that ParamILS
always accepts the newest configuration amongst two equally performing ones
(i.e. when OptTimes = OptTimes′ in line 11 of Algorithm 3, ParamILS sets
θ ← θ′ with probability 1 instead of 0.5).

3The consideration of undiscovered neighbours fixes a typo in the pseudocode given in
[5] which could lead to an infinite loop if equally good configurations belong to the same
neighbourhood. Our pseudocode follows the implementation of ParamILS available at http:

//www.cs.ubc.ca/labs/beta/Projects/ParamILS.
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Algorithm 4: ParamILS pseudocode, recreated from [5].

Input: Initial configuration θ0 ∈ Θ, parameters r, prestart, and s.
Output: Best parameter configuration θ found.

1 for i = 1, . . . , ρ do

2 θ ← random θ ∈ Θ
3 if better(θ, θ0) then θ0 ← θ

4 θinc ← θils ← IterativeFirstImprovement(θ0)
5 while not TerminationCriterion() do

6 θ ← θils
7 for i = 1, . . . , s do

// Random perturbation step of size s
// Nbh contains all neighbours of a configuration

8 θ ← random θ′ ∈ Nbh(θ)

9 θ ← IterativeFirstImprovement(θ)
10 if better(θ, θils) then θils ← θ
11 if better(θils, θinc) then θinc ← θils
12 with probability prestart do θils ← random θ ∈ Θ

13 return θinc

2.2.3. Blind tuners

We prove several times in this work that a tuner is effectively unable to
configure a target algorithm for a problem class because in the vast majority
of runs, the tuner will simply return a parameter value chosen uniformly at
random. We formalise this notion as follows.

Definition 1. We call a tuner blind if there is an event A that occurs w. o. p.
and, conditional on A, the tuner returns a configuration chosen according to a
distribution which would be generated if all configurations had the same per-
formance.

Here the event A characterises a “typical” run of a tuner; it is necessary since
in an “atypical” run, we may not know the output of the tuner. Our notion of
blindness implies that if ParamRLS or ParamILS are blind then their output
is virtually indistinguishable from a uniform random distribution of parameter
values for any polynomial time period.

2.3. The Target Algorithm: RLSk

In this paper we will analyse the performance of the presented algorithm
configurators for tuning the RLSk target algorithm which has only one param-
eter, k. RLSk differs from conventional RLS in that the latter flips exactly one
bit per iteration whereas RLSk flips exactly k distinct bits per iteration, chosen
uniformly at random. Our aim is to identify the time required by the tuners
to identify the best value for the parameter k. We provide the pseudocode for
RLSk in Algorithm 6. We define the permitted values for k as the set {1, . . . , φ}.
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Algorithm 5: IterativeFirstImprovement(θ) procedure, recreated from
[5].

1 repeat

2 θ′ ← θ
3 forall θ′′ ∈ UndiscNbh(θ′) in randomised order do

// UndiscNbh contains all undiscovered neighbours of

a configuration

4 if better(θ′′, θ′) then θ ← θ′′; break

5 until θ′ = θ
6 return θ

Algorithm 6: RLSk for the maximisation of a function f

1 initialise x // according to initialisation scheme

2 while termination criterion not met do

3 x′ ← x with k distinct bits flipped, chosen uniformly at random
4 if f(x′) ≥ f(x) then x← x′

2.4. The Function Classes Ridge* and OneMax*

Apart from providing some general results in the following section, in the
rest of the paper we will analyse the performance of the configurators for tuning
RLSk for two optimisation problems with considerably different characteristics.
One where the performance of each parameter configuration does not change
throughout the search space and another where, according to the cutoff times,
different configurations will perform better.

We first consider the standard Ridge benchmark problem [14]. This func-
tion consists of a gradient of increasing fitness with the increase of the number
of 0-bits in the bit string that leads towards the 0n bit string (i.e., ZeroMax).
From there a path of n points consisting of consecutive 1-bits followed by con-
secutive 0-bits, called the ridge, leads to the global optimum (i.e. the 1n bit
string). Ridge is defined as:

Ridge(x) =

{

n+ |x|ones, if x is in the form 1i0n−i

n− |x|ones, otherwise

where |x|ones is the number of 1-bits in the bit string. Note that the approach
to the ridge is very easy for common optimisers, whereas following the ridge
is significantly more challenging. Since our focus is on tuning algorithms for
optimising the ridge, we follow the approach from [25] and assume in the fol-
lowing that RLSk is initialised at the start of the ridge, i.e., in 0n. Since RLSk

always flips exactly k bits, it will not always be possible to reach the opti-
mum (i.e. 1n). The optimal value of Ridge which we are able to reach when
using RLSk, starting from 0n, is in fact ⌊nk ⌋k. In order to avoid an infinite
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expected optimisation time (i.e. where the expected time for RLSk to identify
the optimum is infinite), in this work we will consider reaching a fitness of at
least 2n − √n + 1 (i.e. the final

√
n points on the ridge) as having optimised

the function, as this allows all configurations with 1 ≤ k ≤ √n to reach the
optimum. We do not consider k >

√
n since these values lead to an almost

random search. We ensure that all optima have the same fitness by defining
Ridge*(x) := min{Ridge(x), 2n−√n+1} and instead configure for this func-
tion.

The black box optimisation version of Ridge* consists of 2n functions. For
each a ∈ {0, 1}n the fitness of a solution x for the corresponding function
can be calculated using the following XOR transformation: Ridge*a(x) :=
Ridge*(x1 ⊕ a1 . . . xn ⊕ an) [26]. Under this transformation, we assume that
RLSk is initialised with the bit string a. For convenience of analysis we will use
the Ridge*0n function given above where the path starts at the 0n bit string
and terminates at the 1n bit string. The best parameter value for RLSk for
a random instance will naturally be optimal also for any other instance of the
black box class.

The second optimisation problem we will consider is the well-studied One-

Max benchmark function. Its black box class consists of 2n functions each of
which has a different bit string as global optimum and the fitness of a bit string
decreases with the Hamming distance to the optimum [26]. We tune RLSk for
only one instance since the identified optimal parameter value will naturally
also be the best one for any of the other 2n instances of the black box class. In
particular, we will use the instance:

OneMax(x) =

n
∑

i=1

xi.

Since it is not possible for RLSk to make progress if the distance to the optimum
is at most ⌊k/2⌋, we treat any search point with a distance to the optimum of
at most ⌊φ/2⌋ as an optimum (recall that φ is the largest permitted value of k).
This allows us to avoid an infinite expected optimisation time. It is relevant for
later analyses to note that this implies that the number of optima is therefore,
using

(

n
m

)

≤ (en/m)m,

⌊φ/2⌋
∑

i=0

(

n

i

)

≤
(⌊

φ

2

⌋

+ 1

)(

n

⌊φ/2⌋

)

≤
(⌊

φ

2

⌋

+ 1

)

·
(

e

⌊φ/2⌋

)⌊φ/2⌋
· n⌊φ/2⌋,

which is polynomial for φ = O(1). As with Ridge*, we ensure that all optima
have the same fitness by defining OneMax*(x) := min{OneMax(x), n−⌊φ/2⌋}
and configure for this function instead.

The fact that the performance of the configurators does not change with
the size and contents of the training set, allows us to analyse the impact of the
cutoff times and number of runs used for configuration comparisons in the ideal
situation where the training set perfectly reflects the problem class for which
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we aim to tune the target algorithm i.e., it is unlikely that configurators that
fail to perform effectively in our settings will perform well in more sophisticated
algorithm configuration scenarios. The problem of identifying a training set
that allows proper generalisation is a different one that we do not aim to tackle
in this paper.

2.5. Standard Mathematical Tools Used in this Work

We now introduce some standard tools that we use in this work. Theorems 1
and 2 are Chernoff bounds, a family of techniques used to bound the probability
that a random variable deviates from its expected value by a given amount.

Theorem 1 (Theorems 1.10.1 and 1.10.5 in [27]). Let X1, . . . , Xm be indepen-
dent random variables taking values in {0, 1}. Let X =

∑m
i=1 Xi. Then for

0 ≤ δ ≤ 1,

Pr(X ≤ (1− δ) E[X]) ≤ exp

(

−δ2 E[X]

2

)

and for δ ≥ 0

Pr(X ≥ (1 + δ) E[X]) ≤ exp

(

−min{δ, δ2}E[X]

3

)

.

Theorem 2 (Theorem 1.10.7 in [27]). Under the same assumptions as in The-
orem 1, for all δ ≥ 0

Pr(X ≥ E[X] + δ) ≤ exp

(

−2δ2

m

)

Pr(X ≤ E[X]− δ) ≤ exp

(

−2δ2

m

)

.

The method of bounded martingale differences (Theorem 3) is a powerful tool
for bounding the probability that a function deviates from its expected value.
It requires that the impact of each variable Xi on the expected function value
is bounded by some value ci.

Theorem 3 (Method of Bounded Martingale Differences (Theorem 3.67
in [28])). Let X1, . . . , Xm be an arbitrary set of random variables and let f
be a function satisfying the property that for each i ∈ {1, . . . ,m} there is a
ci ≥ 0 such that

|E[f | X1, . . . , Xi]− E[f | X1, . . . , Xi−1]| ≤ ci.

Then

Pr(f ≥ E[f ] + δ) ≤ exp

(

− δ2

2
∑m

i=1 c
2
i

)

and

Pr(f ≤ E[f ]− δ) ≤ exp

(

− δ2

2
∑m

i=1 c
2
i

)

.
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Note that the Xi terms are not required to be independent.

3. General Upper and Lower Bounds for the Optimisation Time Met-

ric

In this section we provide general upper and lower bounds on the cutoff time
required by configurators that use optimisation time as performance metric. We
start with a lower bound on the cutoff time which is necessary to prevent the
configurator from being blind. We show that if the cutoff time is small enough
such that the target algorithm does not find the optimum of any member of the
training set, then any configurator that uses optimisation time as performance
metric, including both ParamRLS-T and ParamILS, is blind. As a corollary
it will follow that if the cutoff time is set to κ ≤ (n lnn)/2 then any such
configurator is blind when tuning any unary unbiased algorithm (a class that
includes RLSk) for any function with up to exp(

√
n/ log2 n) optima.

Theorem 4. Consider a configurator that uses optimisation time as perfor-
mance metric tuning an algorithm A for a training set Π (with problem size n
and |Π| = poly(n)) with any choice of instances per comparison and any means
of aggregating cost measures. Assume that, w. o. p., no configuration of the tar-
get algorithm A reaches the optimum of any member of the training set. Then
for any polynomial number of runs per evaluation r the configurator is blind.

Proof. Since there are polynomially many comparisons, by the union bound no
configuration will reach the optimum of any problem instance within the cutoff
time, w. o. p. Therefore every configuration will have the same fitness: the
cutoff time multiplied by the penalisation constant. This satisfies our definition
of blindness.

The theorem allows us to prove that any configurator that uses the optimisa-
tion time as performance metric with a cutoff time of at most (n lnn)/2 is blind
when tuning any member of a large class of target algorithms and the training
set consists of problem instances each with up to exp(

√
n/ log2 n) optima. The

proof refers to a black-box complexity result [29] that shows that a large class of
algorithms needs at least (n lnn)/2 fitness evaluations to optimise any function
with up to exp(

√
n/ log2 n) optima. More specifically, the class of algorithms is

that of unary unbiased black-box algorithms: algorithms that query new search
points generated by unary operators i.e., those that take one search point as
input and produce another search point as output. These operators must be
unbiased as defined in [30]; in a nutshell, this means that operators treat all bit
values and all bit positions in the same way. RLSk belongs to the class of unary
unbiased algorithms.

Corollary 5. Consider any configurator that uses optimisation time as per-
formance metric tuning any unary unbiased black-box algorithm with a single
parameter using a training set Π (with problem size n and |Π| = poly(n))
where each instance has up to exp(

√
n/ log2 n) optima. If the cutoff time is
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κ ≤ (n lnn)/2 and the number of runs per comparison is polynomial, then the
configurator is blind.

Proof. Applying [29, Theorem 20] with δ := 1/2 tells us that all unary un-
biased black-box algorithms require at least (n lnn)/2 iterations to reach the
optimum of any function with up to exp(

√
n/ log2 n) optima, with probability

1− exp(−Ω(√n/ log n)). By the union bound, the probability that none of the
polynomially many runs of the algorithm reach the optimum within (n lnn)/2
iterations is still overwhelming. Then Theorem 4 implies that the tuner is
blind.

We now derive an upper bound on the cutoff time that is sufficient for config-
urators that use the optimisation time metric to identify the T-optimal configu-
ration if this configuration wins any comparison against any other configuration
w. o. p.

Theorem 6. Consider a configurator that uses optimisation time as perfor-
mance metric tuning an algorithmA using a training set Π′ with instance sizes n.
Assume that in each iteration the configurator samples a new configuration and
compares it against the best-found so far. Assume also that there are |Θ| con-
figurations of A, that the configurator uses at most r runs per configuration
evaluation, that the cutoff time is large enough such that the configuration with
the smallest expected optimisation time, θ∗, reaches the optimum of every in-
stance π ∈ Π′, w. o. p., and that θ∗ reaches the optimum of every instance π ∈ Π′

in less time than all other configurations, w. o. p.

• If the configurator uses a mutation operator that samples configurations
uniformly at random, then the expected number of comparisons sufficient
to sample θ∗ is |Θ|. After running for t comparisons, the probability that
the best-found configuration is θ∗ is at least

(1− exp (−Ω(nε)))
rt ·
(

1−
(

1− 1

|Θ|

)t
)

,

for some constant ε > 0.

• Assume that the configurator uses a global mutation operator: at every
step it samples every configuration with probability at least pmin > 0.
Then, for every constant ε > 0, after t = Ω(nε/pmin) comparisons, assum-
ing rt ∈ poly(n), the configurator has sampled θ∗ and it remains unbeaten
w. o. p.

Proof. By the waiting time argument (i.e. that a geometric random variable with
success probability p requires, in expectation, 1/p trials before a success occurs),
the expected number of configuration samples required before sampling θ∗ is |Θ|.

Since by assumption the cutoff time is large enough to allow θ∗ to reach the
optimum of each training instance w. o. p. and, also by assumption, it reaches
the optimum of each training instance in less time so in less time than all other
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configurations, also w. o. p., the probability that both of these events occur in
all of the at most rt comparisons (and thus a lower bound on the probability
that it will win all comparisons in which it is involved) is the product of two
overwhelming probabilities raised to the power rt, which is equal to

(1− exp (−Ω(nε)))
rt
,

for some constant ε > 0. The second term in the stated probability is the
probability that θ∗ is sampled at least once in t comparisons.

For the second claim, the probability that θ∗ is not sampled within t =
Ω(nε/pmin) steps is at most (1− pmin)

t ≤ e−tpmin ≤ e−Ω(nε). Hence, w. o. p. θ∗

is sampled within t steps. Once θ∗ is sampled, it is not beaten in any remaining
comparison w. o. p.: as rt ∈ poly(n), a union bound over polynomially many
events that all occur w. o. p. (as shown in the proof of the first claim) proves
that the claimed events occur w. o. p.

Note that the condition that the T-optimal configuration reaches the opti-
mum of all training instances in the least time is likely to be far stronger than
is required in practice (where it is only necessary that this configuration has a
smaller mean penalised optimisation time than its competitors over the sampled
training instances).

For configurators that sample configurations uniformly at random without
replacement, such as ParamILS when configuring single-parameter algorithms,
it is possible to derive stronger guarantees on the time required to identify the
optimal configuration.

Theorem 7. Consider ParamILS for the configuration of an algorithm A with
a single parameter θ for a training set Π′ with instance sizes n, arbitrary poly-
nomial values for r, s, ρ and arbitrary prestart. Assume that the domain of θ
has a size φ that is at most polynomial in n. Assume that the cutoff time is
large enough such that the configuration with the smallest expected optimisa-
tion time, θ∗, reaches the optimum of every instance π ∈ Π′, w. o. p. Assume
also that θ∗ reaches the optimum of every instance π ∈ Π′ faster than all other
configurations w. o. p. Then ρ+φ comparisons suffice for ParamILS to return θ∗,
w. o. p.

Proof. After the first ρ+ 1 comparisons, ParamILS starts the IterativeFirstIm-
provement procedure. In this procedure, since the target algorithm has only a
single parameter, the set of unvisited neighbours of a configuration consists of
all configurations which have not yet been sampled during that call to the pro-
cedure. Since there are only φ configurations in the scenario which we consider,
this implies that θ∗ is discovered within φ− 1 comparisons with probability 1.

Now, θ∗ will be returned by IterativeFirstImprovement if, once sampled,
it wins every subsequent comparison. By assumption, the cutoff time is large
enough such that this happens w. o. p. in any given comparison. Taking a union
bound over ρ+φ comparisons, the probability that, once sampled, θ∗ never loses
a comparison is overwhelming.
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4. Tuning RLSk for Ridge*

From the general case analysed in Section 3 we now turn our attention to
the ability of ParamRLS and ParamILS to configure RLSk for the Ridge*

benchmark problem class. This allows us to characterise the behaviour of these
configurators for ranges of cutoff times. We prove that ParamRLS-F is able to
return the T-optimal and F-optimal configuration k = 1 for RLSk and Ridge*

for any cutoff time. The range of permitted parameter values goes up to
√
n (i.e.

φ =
√
n) as larger values of k degrade to an almost random search. If the cutoff

time is large enough (i.e. κ = ω(n)), then even just one run per configuration
evaluation suffices. For smaller cutoff times, ParamRLS-F requires more runs
per configuration evaluation to identify that RLS1 is optimal. We will show
this for the extreme case κ = 1, where n3/2 runs per comparison suffice for
ParamRLS-F to return k = 1 w. o. p. On the other hand, ParamRLS-T and
ParamILS will be blind for any κ < (1 − ε)n2, for every constant ε > 0. Note
that this negative result for Ridge* is stronger than the general negative results
provided by Corollary 5 (although that result holds for a wide class of functions
including Ridge*).

4.1. Analysis of RLSk Optimising Ridge*

Before we can analyse the performance of the tuners when configuring for
Ridge*, we must first gain an understanding of how the value of k affects the
performance of RLSk on this function class. We therefore derive the expected
optimisation time with respect to k, and then show that this is minimised for
k = 1 (i.e. k = 1 is T-optimal).

Lemma 8. For k ≤ n/2, when initialised at 0n the expected optimisation time
of RLSk on Ridge* is ⌈n−

√
n+1

k ⌉
(

n
k

)

.

Proof. During a single iteration, it is only possible to increase the fitness of an
individual by exactly k since we must flip exactly the first k zeroes in the bit
string (any other combination of flips will mean that the string is no longer in the
form 1i0n−i and will be rejected). We call an iteration in which we flip exactly
the first k zeroes in the bit string an improvement. There are

(

n
k

)

possible ways
in which we can flip k bits and exactly one of these combinations flips the first k
zeroes. Therefore the probability of making an improvement at any given time
is 1/

(

n
k

)

.
By the waiting time argument, we wait

(

n
k

)

iterations in expectation to make
a single improvement. Since the algorithm is initialised at 0n, we need to make
⌈(n−√n+1)/k⌉ improvements in order to reach the optimum. We therefore wait
⌈(n−√n+ 1)/k⌉

(

n
k

)

iterations in expectation until we reach the optimum.

Corollary 9. A value of k = 1 leads to the shortest expected optimisation time
for RLSk on Ridge* for any k ≤ n/2.

The optimisation time is highly concentrated around the expectation, with
deviations from

(

n
k

)

(n/k) by a factor of (1± ε), for every constant ε > 0, having
an exponentially small probability.
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Lemma 10. With probability at least 1 − exp(−Ω(n/k)), when initialised at
0n RLSk requires at least (1−ε)

(

n
k

)

(n/k) and at most (1+ε)
(

n
k

)

(n/k) iterations
to optimise Ridge*, for every constant ε > 0 and large enough n.

Proof. Let Xi equal 1 if RLSk makes an improvement in iteration i and equal 0
otherwise. Let Xt denote the number of improvements made by RLSk within
the first t iterations. That is, Xt =

∑t
i=1 X

i. Recall that RLSk can only
make improvements by exactly k when optimising Ridge* and therefore needs
to make ⌈(n − √n + 1)/k⌉ improvements to reach the optimum. Since the
probability of making an improvement is 1/

(

n
k

)

when at any non-optimal point,
we have E[Xt] ≤ t/

(

n
k

)

, by the linearity of expectation (this is not an equality
since progress stops once we reach an optimum).

Let t = (1 − ε)
(

n
k

)

n
k , for a constant ε satisfying ε > 0. For ε ≥ 1 the claim

that the runtime is at least t holds automatically since t ≤ 0. To prove the
claim for ε < 1, we first observe that E[Xt] ≤ (1− ε)nk . We now apply Chernoff
bounds (Theorem 1), treating this upper bound on E[Xt] as an equality (this
Chernoff bound remains correct despite an upper bound on the expectation
being used [27]):

Pr

(

Xt ≥
⌈

n−√n+ 1

k

⌉)

= Pr



Xt ≥



1 +





⌈

n−√
n+1

k

⌉

(1− ε)nk
− 1







E[Xt]





≤ exp

(

−Θ(1) ·Θ(n)

3 ·Θ(k)

)

= exp(−Ω(n/k)).

The above Chernoff bound holds as ⌈(n−√n+ 1)/k⌉ /((1− ε)(n/k))− 1 =
Θ(1) is positive for large enough n.

We proceed similarly to obtain an upper bound on the runtime. However,
since we cannot use the upper bound on E[Xt] in the Chernoff bound for the
lower tail (as we did above), we instead assume that the algorithm is operating
on an infinite bit string and thus can make progress at any time, still with
probability 1/

(

n
k

)

. The time required by this modified process to make ⌈(n −√
n + 1)/k⌉ improvements is identical to that required to do so by RLSk on

Ridge*. This time, we let t = (1 + ε)
(

n
k

)

n
k , which yields E[Xt] = (1 + ε)nk .

Hence, again by Chernoff bounds:

Pr

(

Xt <

⌈

n−√n+ 1

k

⌉)

≤ Pr

(

Xt ≤
⌈

n−√n+ 1

k

⌉)

= Pr



Xt ≤



1−



1−

⌈

n−√
n+1

k

⌉

(1 + ε)nk







E[Xt]





≤ exp

(

−Θ(1) ·Θ(n)

2 ·Θ(k)

)

= exp(−Ω(n/k)).

The above Chernoff bound holds as 1−⌈(n−√n+1)/k⌉/((1+ε)(n/k)) = Θ(1)

19



converges to 1− 1/(1 + ε) < 1 for large enough n.

The tight runtime bounds derived in Lemma 10 mean that we can now
consider the relative performance of RLSa and RLSb on Ridge*, for some a <
b. We first derive a general bound which can be applied to any two random
processes with probabilities of improving which stay the same throughout the
process. We derive a lower bound on the probability that the process with the
higher probability of improving is ahead at some time t. We then apply this
result to RLSa and RLSb optimising Ridge*.

Lemma 11. Let A and B be two random processes which both take values from
the non-negative real numbers, and both start with value 0. At each time step,
A increases by some real number α ≥ 0 with probability pa, and otherwise stays
put. At each time step, B increases by some real number β ≥ 0 with probability
pb, and otherwise stays put. Let ∆a

t and ∆b
t denote the total progress of A and

B in t steps, respectively. Let q := pa(1 − pb) + (1 − pa)pb, qa := pa(1 − pb)/q,
and qb := pb(1− pa)/q. Then, for all 0 ≤ pb ≤ pa and α, β ≥ 0

Pr(∆b
t ≥ ∆a

t ) ≤ exp
(

−qt
(

1− 2q
α/(α+β)
b qβ/(α+β)

a

))

Proof. Let q := pa(1 − pb) + (1 − pa)pb be the probability that exactly one
process makes progress in a single time step. Let qa := pa(1 − pb)/q be the
conditional probability of A making progress, given that one process makes
progress, and define qb likewise. Assume that in t steps we have ℓ progressing
steps. Then the probability that B makes at least as much progress as A is
Pr(Bin(ℓ, qb) ≥ ⌈ℓα/(α+ β)⌉). Then,

Pr(∆b
t ≥ ∆a

t ) =
t
∑

ℓ=0

Pr(Bin(t, q) = ℓ) · Pr(Bin(ℓ, qb) ≥ ⌈ℓα/(α+ β)⌉) (1)

Note that pb ≤ pa is equivalent to qb ≤ qa. Thus, qb/qa ≤ 1. Hence

Pr(Bin(ℓ, qb) ≥ ⌈ℓα/(α+ β)⌉) =
ℓ
∑

i=⌈ℓα/(α+β)⌉

(

ℓ

i

)

qibq
ℓ−i
a

=

ℓ
∑

i=⌈ℓα/(α+β)⌉

(

ℓ

i

)

q
ℓα/(α+β)
b qℓ−(ℓα/(α+β))

a (qb/qa)
i−(ℓα/(α+β))

≤ 2ℓq
ℓα/(α+β)
b qℓ−(ℓα/(α+β))

a =
(

2q
α/(α+β)
b qβ/(α+β)

a

)ℓ

.

Using the above in (1) and Pr(Bin(t, q) = ℓ) =
(

t
ℓ

)

qℓ(1− q)t−ℓ yields
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Pr(∆b
t ≥ ∆a

t ) ≤
t
∑

ℓ=0

(

t

ℓ

)

qℓ(1− q)t−ℓ ·
(

2q
α/(α+β)
b qβ/(α+β)

a

)ℓ

=

t
∑

ℓ=0

(

t

ℓ

)

(1− q)t−ℓ ·
(

2q · qα/(α+β)
b qβ/(α+β)

a

)ℓ

(using the Binomial Theorem)

=
(

1− q + 2q · qα/(α+β)
b qβ/(α+β)

a

)t

=
(

1− q
(

1− 2q
α/(α+β)
b qβ/(α+β)

a

))t

≤ exp
(

−qt
(

1− 2q
α/(α+β)
b qβ/(α+β)

a

))

.

Applying this lemma allows us to derive a lower bound on the probability
that RLSa wins a comparison against RLSb (with a < b) with a cutoff time of κ.
Additional arguments for small κ/

(

n
a

)

show that the probability that RLSa wins
is always at least 1/2.

Lemma 12. For every 1 ≤ a < b = o(n), in a comparison with a single run
on Ridge* with cutoff time κ, RLSa wins a comparison against RLSb with
probability at least

max

{

1

2
, 1− exp

(

−κ/
(

n

a

)

· (1− o(1))

)

− exp(−Ω(n/b))
}

Proof. Using the notation from Lemma 11, we have pa = 1/
(

n
a

)

and pb = 1/
(

n
b

)

,
which implies pb = o(pa) since b = o(n). Further, q ≥ 1/

(

n
a

)

· (1 − o(1)),
qa = 1 − o(1) and qb = pb(1 − pa)/q ≤ pb(1 − pa)/(pa(1 − pb) ≤ pb/pa =
b!(n−b)!
a!(n−a)! ≤ (b/(n− b))b−a. This implies qa/(a+b)

b ≤ (b/(n− b))a(b−a)/(a+b). Using
b/(n− b) = o(n)/n = o(1) and a(b− a)/(a+ b) ≥ a/(2a+ 1) ≥ 1/3, we obtain
q
a/(a+b)
b = o(1). Lemma 11 tells us that RLSa is ahead of RLSb with probability

at least

1− exp

(

−κ/
(

n

a

)

· (1− o(1))

)

.

The above argument ignores that progress stops once a global optimum is
reached. If RLSa reaches a global optimum and RLSb does not, RLSa still
wins. We use the union bound to include a term reflecting the possibility that
RLSb finds the global optimum. By Lemma 10, if κ ≤ (1− ε)

(

n
b

)

n
b , for constant

ε satisfying 0 < ε < 1, the probability that RLSb does find the optimum is at
most exp(−Ω(n/b)). For κ ≤ (1− ε)

(

n
b

)

n
b this proves a lower bound of

1− exp

(

−κ/
(

n

a

)

· (1− o(1))

)

− exp(−Ω(n/b)). (2)
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For larger κ we argue that by Lemma 10, the probability that RLSa finishes
within the first (1 − ε)

(

n
b

)

n
b ≥ (1 + ε)

(

n
a

)

n
a steps is 1 − exp(−Ω(n/a)) ≥ 1 −

exp(−Ω(n/b)). Along with the fact that RLSb with probability 1−exp(−Ω(n/b))
needs more than (1− ε)

(

n
b

)

n
b steps, this proves that RLSa wins with probability

at least 1− exp(−Ω(n/b)) for κ > (1− ε)
(

n
b

)

n
b .

We have proved the claim for all κ ≥
(

n
a

)

, assuming n is large enough to
make (2) at least as large as 1/2. For κ <

(

n
a

)

we additionally have to show
that the probability of RLSa winning a comparison against RLSb is at least 1/2.
To this end, we argue that RLSb can only win if it makes progress in κ steps.
The probability for this is at most κ/

(

n
b

)

, by the union bound. RLSa wins for
sure if it does make progress in κ steps and RLSb does not make progress. The
probabilities for these events are at least 1−

(

1− 1/
(

n
a

))κ ≥ κ/(κ+
(

n
a

)

) (using
1−(1−p)λ ≥ pλ/(1+pλ) [31, Lemma 6]) and 1−κ/

(

n
b

)

= 1−o(1), respectively.
So the probability that they both occur is at least

κ

κ+
(

n
a

) · (1− o(1)) ≥ κ

2
(

n
a

) · (1− o(1)) >
κ
(

n
b

)

for large enough n. Hence, in all cases where at least one algorithm makes
progress, RLSa is more likely to win than RLSb. In all other cases there is a tie
and the probability that RLSa is declared winner is 1/2. This proves a lower
bound of 1/2 for the probability that RLSa wins.

4.2. ParamRLS-F Performance Analysis

Using the lemmata derived in the previous section, we now analyse the ex-
pected number of comparisons required before the active parameter in Param-
RLS-F has been set to k = 1. We also bound the probability that the active
parameter has not been set to k = 1 after a given number of comparisons.
The following theorem shows that, for large enough cutoff times, one run per
configuration evaluation suffices for ParamRLS-F to return the F-optimal and
T-optimal configuration k = 1 for RLSk optimising Ridge*. Note that it is
not sufficient for the active parameter merely to be set to k = 1, since it is still
possible for it to then change again to a different value. We therefore require
that the active parameter remains at 1 for the remainder of the tuning time. We
deal with this requirement in the same theorem. For both of the following two
theorems, a ±{1} mutation operator suffices for ParamRLS-F to be efficient.

Theorem 13. Consider ParamRLS-F for the configuration of RLSk for Ridge*

with φ ≤ √n. Assume that ParamRLS-F uses the local search operator ±{1}
and each evaluation consists of only a single run. Then, in expectation, for
any initial active parameter value, ParamRLS-F requires at most 2φ(φ − 1)
comparisons before it has set the active parameter to k = 1 for the first time.
After t ≥ 4φ(φ − 1) comparisons it returns the parameter value k = 1 with
probability at least

1− 2−Ω(t/φ2) − t · (2−Ω(κ/n) + 2−Ω(n)).
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Note that this is overwhelming for t = Ω(φ2nε), polynomial t and κ = Ω(n1+ε),
for a positive constant ε.

Proof. By Lemma 12, the probability that RLSa beats RLSb in a comparison
with any cutoff time is at least 1/2. We can therefore model the tuning process
as the value of the active parameter performing a lazy random walk4 over the
states 1, . . . , φ. We pessimistically assume that the active parameter decreases
and increases by 1 with respective probabilities 1/4 and that it stays the same
with probability 1/2.

Using standard random walk arguments [32, 33], the expected first hitting
time of state 1 is at most 2φ(φ − 1). By Markov’s inequality, the probability
that state 1 has not been reached in 4φ(φ − 1) steps is at most 1/2. Hence
the probability that state 1 is not reached during ⌊t/4φ(φ − 1)⌋ periods each
consisting of 4φ(φ− 1) steps is 2−⌊t/4φ(φ−1)⌋ = 2−Ω(t/φ2).

Once state 1 is reached, we remain there unless RLS2 beats RLS1 in a run.
By Lemma 12, this event happens in a specific comparison with probability at
most 2−Ω(κ/n) + 2−Ω(n). By a union bound over at most t comparisons, the
probability that this ever happens is at most t · (2−Ω(κ/n) + 2−Ω(n)).

We remark that the probability bound from Theorem 13, and similarly for
later results, can be refined for a superpolynomial number of comparisons t by
considering only the last nc steps, for some polynomial nc ≤ t. This yields a
probability bound of 1− 2−Ω(min{t,nc}/φ2) −min{t, nc} · (2−Ω(κ/n) + 2−Ω(n)).

We now show that even for the smallest possible cutoff time of κ = 1 (i.e.
where each configuration is only run for a single iteration), ParamRLS-F can
identify the optimal configuration as long as a sufficient number of runs are
executed per configuration evaluation. Recall that, when comparing two con-
figurations in ParamRLS-F using multiple runs per problem instance, the con-
figuration that wins the most runs wins the overall comparison.

Theorem 14. Consider ParamRLS-F for the configuration of RLSk for Ridge*

with φ ≤ √n and local search operator ±{1}. Assume that the number of runs
is r = n3/2 each with cutoff time κ = 1. Then in expectation the tuner requires
at most 2φ(φ − 1) comparisons to set the active parameter to k = 1 for the
first time. After t ≥ 4φ(φ − 1) comparisons it returns the value k = 1 with
probability at least

1− 2−Ω(t/φ2) − t · exp(−Ω(
√
n)).

Note that this is exponentially small for t = Ω(φ2nε), for a positive constant ε,
and polynomial t.

Proof. We begin by showing that the active parameter value remains at k = 1
w. o. p. once it has been set to this value for the first time. Define X as the

4A lazy random walk, at each time step, does not move with some positive probability and
otherwise moves to a neighbouring state selected uniformly at random.
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number of runs out of n3/2 runs, each with cutoff time κ = 1, in which RLS1

makes progress. Define Y as the corresponding variable for RLS2.
Let Xi = 1 if RLS1 makes progress in run i and let it equal 0 otherwise. Then

X =
∑n3/2

i=1 Xi and by the linearity of expectation E[X] =
∑n3/2

i=1 1/n =
√
n. By

a Chernoff bound (Theorem 1),

Pr
(

X ≤
√
n/2

)

= Pr

(

X ≤
(

1− 1

2

)

E[X]

)

≤ exp

(

−
(

1
2

)2√
n

2

)

= exp(−Ω(
√
n)).

Similarly, let Yi = 1 if RLS2 makes progress in run i and let it equal 0

otherwise. Then Y =
∑n3/2

i=1 Yi and by the linearity of expectation E[Y ] =
2
√
n/(n− 1). By applying Chernoff bounds again,

Pr

(

Y ≥
√
n

2

)

= Pr

(

Y ≥
(

1 +
n− 5

4

)

2
√
n

n− 1

)

≤ exp

(

−
n−5
4 ·

2
√
n

n−1

3

)

= exp(−Ω(
√
n)).

Therefore, w. o. p., RLS1 has made progress in more of these n3/2 runs than
RLS2. That is, w. o. p., RLS1 wins the comparison.

We can analyse this tuning process as a whole in the same way in which we
analyse the tuning process in the proof of Theorem 13. We first observe that,
in order for RLSa to beat RLSb (with a < b) in a run with cutoff time κ = 1, it
is sufficient for it to have made an improvement and for RLSb to have failed to
do so. Letting A be the event that RLSa beats RLSb in a run with cutoff time
κ = 1, we have

Pr(A) ≥ 1
(

n
a

)

(

1− 1
(

n
b

)

)

Let B denote the event that RLSb beats RLSa in a run with cutoff time κ = 1.
Since RLSb making progress is a necessary condition for event B to take place,
we have Pr(B) ≤ 1/

(

n
b

)

. For large enough n, we have that

1
(

n
a

)

(

1− 1
(

n
b

)

)

≥ 1/

(

n

b

)

which implies that Pr(A) ≥ Pr(B). This means that, for any 1 ≤ x ≤ r the
probability that RLSa wins x runs in a comparison is at least the probability
that RLSb wins x runs. Observing that if a comparison does not end in a draw
then the winner must have won more runs than its competitor, we see that,
since, Pr(A) ≥ Pr(B), the winner must be RLSa with probability at least 1/2.
This means that we can make the same pessimistic assumption as we do in the
proof of Theorem 13: i.e. that the value of the active parameter decreases and
increases by 1 with respective probabilities 1/4 and that it stays the same with
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probability 1/2. By the same arguments as in the proof of Theorem 13, we
have that the expected number of comparisons required to reach state k = 1 is
at most 2φ2. We also have that the probability that state k = 1 has not been
reached after t comparisons is 2−Ω(t/φ2). Thus the probability that the tuner
returns k = 1 after t comparisons is 1− 2−Ω(t/φ2) − t · exp(−Ω(√n)).

4.3. ParamRLS-T Performance Analysis

The analysis conducted in Section 4.2 shows that ParamRLS-F performs
well regardless of the cutoff time. In this section, we show that this is not the
case for ParamRLS-T. The tuner is unable to tune RLSk for Ridge* with any
mutation operator for small cutoff times but is successful for larger cutoff times.

Theorem 15. Consider ParamRLS-T for the configuration of RLSk for Ridge*

with φ ≤ √n, any local search operator ±{1, . . . , ℓ} and cutoff time κ ≤ (1−ε)n2

for any constant ε > 0. Then, for any polynomial choice of r, the tuner is blind.

Proof. By Lemma 10, applied for all k ≤ √n, we have that for κ ≤ (1 − ε)n2,
for constant ε satisfying 0 < ε < 1, RLSk will not have reached the optimum of
Ridge* within κ iterations, with probability at least 1− exp(−Ω(n/k)). Thus,
with probability at least 1 − r · t · exp(−Ω(n)), no configuration reached the
optimum of Ridge* in any of the r runs in any of the t comparisons. We can
therefore use Theorem 4 to see that ParamRLS-T is blind.

Whilst, as shown above, ParamRLS-T fails for smaller cutoff times, we now
prove that if the cutoff time is set large enough then, w. o. p., ParamRLS-T can
correctly tune RLSk for Ridge* even with the simple ±{1} mutation operator.

Theorem 16. Consider ParamRLS-T for the configuration of RLSk for Ridge*

with φ ≤ √n. Assume that ParamRLS-T has cutoff time κ ≥ (1 + ε)n2 for any
constant ε > 0, r runs per evaluation, where r is assumed to be polynomial, and
uses the local search operator ±{1}. Then in expectation ParamRLS-T requires
at most 2φ(φ − 1) comparisons before it has set the active parameter to k = 1
for the first time. After t ≥ 4φ(φ − 1) comparisons it returns the parameter
value k = 1 with probability at least

1− 2−Ω(t/φ2) − t · r · exp(−Ω(n/φ)).

Note that this is exponentially small for t = Ω(φ2nε), for a positive constant ε
and polynomial t.

Proof. According to Lemma 10, RLS1 has reached the optimum of Ridge*

within (1 + ε)n2 iterations (for constant ε satisfying 0 < ε < 1), with
probability 1 − exp(−Ω(n)). Lemma 10 also implies that, with probability
1− exp(−Ω(n/b)) ≥ 1− exp(−Ω(n/φ)), RLSa reaches the optimum of Ridge*

before RLSb, for a < b. This implies that, in ParamRLS-T with r runs per
evaluation and t comparisons tuning RLSk for Ridge*, RLSb never beats RLSa

(with a < b) in a comparison, with probability at least 1− t · r · exp(−Ω(n/φ)).
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Let us assume that the value of the active parameter performs a lazy ran-
dom walk over the possible parameter values, with the parameter value 1 cor-
responding to an absorbing state. That is, the value of the active parameter
either increases or decreases by 1 (assuming that these new value is permitted)
with probability 1/4 each, and remains the same with probability 1/2. This
is a pessimistic assumption since it is the case which arises in the scenario in
which neither configuration reaches the optimum within the cutoff time. Since,
as shown above, RLSb does not beat RLSa in a comparison w. o. p. if the cutoff
time is large enough such that both configurations reach the optimum, it holds
that this random walk assumption is therefore a worst-case scenario, and, pro-
vided that the cutoff time is large enough, progress towards the state k = 1 will
in fact be faster. Note that we cannot assume that RLSa beats RLSb w. o. p.
for all a and b > a since, for some values of a, the cutoff time may not be large
enough to ensure that RLSa has reached the optimum w. o. p. The resulting
tuning scenario is therefore the same as that encountered in the proof of The-
orem 13. The remainder of the proof follows using the same arguments as in
that proof.

4.4. ParamILS Performance Analysis

Section 4.3 showed that the success of ParamRLS-T is heavily dependent
on the cutoff time. In this section, we demonstrate that the same is true for
ParamILS.

Theorem 17. Consider ParamILS for the configuration of RLSk for Ridge*.
Assume that ParamILS has initial parameter value θ0 chosen uniformly at ran-
dom, and arbitrary polynomial values for r, s, ρ and arbitrary prestart. If the
cutoff time is κ ≤ (1− ε)n2, for any constant ε > 0, then the tuner is blind.

Proof. Theorem 4 tells us that if, w. o. p., the target algorithm does not reach the
optimum of any instance of the training set within the cutoff time then, when
run for a polynomial number of comparisons, ParamILS is blind. Lemma 10
tells us that, w. o. p., no configuration of RLSk reaches the optimum of Ridge*

within (1 − ε)n2 iterations, for a positive constant ε. Combining these two
results we can therefore observe that, in this context, ParamILS is blind.

We now prove a positive result with respect to ParamILS tuning RLSk for
Ridge*, provided that the cutoff time is large enough. In particular, we show
that the first call to IterativeFirstImprovement results in the configuration k = 1
being returned w. o. p.

Theorem 18. Consider ParamILS for the configuration of RLSk for Ridge*,
with k ∈ {1, . . . , φ}, φ ≤ √n, cutoff time κ ≥ (1 + ε)n2 for any constant ε >
0, arbitrary polynomial values for r, s, ρ and arbitrary prestart. Then ρ + φ
comparisons are sufficient for ParamILS to return the configuration k = 1 w. o. p.

Proof. By the same arguments as in the proof of Theorem 16, in a single run
RLS1 will reach the optimum of Ridge* before any other configuration with
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probability at least 1 − exp(−Ω(n/φ)), which is overwhelming since φ ≤ √n.
Hence, RLS1 wins a comparison against RLS with any other parameter, w. o. p.
The result then follows from the general upper bound in Theorem 7.

5. Tuning RLSk for OneMax*

The Ridge* problem class analysed in the previous section had the same
optimal parameter value regardless of the amount of time for which RLSk was
run (i.e. the F-optimal parameter value was always k = 1). This will not be
the case for every problem class. In this section we analyse the performance of
ParamRLS when configuring RLSk for OneMax*. If RLSk is only allowed to
run for few fitness function evaluations, then the algorithm with larger values
of k achieves solutions of a higher quality than the version with smaller values
of k. On the other hand, if more fitness evaluations are allowed, then RLS1

will be the fastest at identifying an optimum [34]. Our aim is to show that
ParamRLS-F can identify whether k = 1 is the optimal parameter choice or
whether a larger value for k performs better according to whether the cutoff
time is small or large.

To prove our point, it suffices to consider the setting where k is permitted
to take values k ∈ {1, 2, 3, 4, 5}. This also simplifies the analysis. We will prove
that, even for a single run per configuration evaluation, ParamRLS-F identifies
that k = 1 is optimal for any κ ≥ 0.975n. This implies that ParamRLS-F
is able to identify the T-optimal configuration for any such cutoff time. This
time is shorter than the expected time required by any configuration to opti-
mise OneMax* (i.e., Θ(n lnn) [30]) and shorter than the (n lnn)/2 cutoff time
required by any configurator using optimisation time as performance metric. If,
instead, the cutoff time is in the range 0.02n ≤ κ ≤ 0.72n, then ParamRLS-F
will identify that k = 5 is a better choice, as desired. Recall that we define any
point with a distance to the optimal bit string of at most ⌊φ/2⌋ = 2 as optimal
and therefore any point with a fitness of at least n − 2 is considered optimal.
However, note that, for brevity, we refer to the bit string 1n as “the optimum”
throughout this section and therefore the “distance to the optimum” of a bit
string is the Hamming distance to 1n.

The first step in the analysis is to bound the expected progress towards the
optimum in one iteration of RLSk. We do so in the following lemma.

Lemma 19. The expected progress ∆k(s) of RLSk with current distance s to
the optimum is

∆k(s) =
k
∑

i=⌊k/2⌋+1

(2i− k) ·
(

s

i

)(

n− s

k − i

)

/

(

n

k

)
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In particular, for s ≥ k,

∆1(s) =
s

n

∆2(s) =
2s(s− 1)

n(n− 1)
≤ 2

( s

n

)2

∆3(s) =
3s(s− 1)

n(n− 1)
≤ 3

( s

n

)2

∆4(s) =
8s(s− 1)(s− 2)(n− s/2− 3/2)

n(n− 1)(n− 2)(n− 3)
≤ 8

( s

n

)3

∆5(s) =
10s(s− 1)(s− 2)(n− s/2− 3/2)

n(n− 1)(n− 2)(n− 3)
≤ 10

( s

n

)3

.

Proof. We first compute the probability of flipping a certain number of bits in
a bit string using RLSk. If the bit string currently has Hamming distance s to
the optimum, then the probability that a k-bit mutation flips exactly i bits that
disagree with the optimum and k − i bits that agree with the optimum is

(

s

i

)(

n− s

k − i

)

/

(

n

k

)

(3)

This corresponds to a hypergeometric distribution with parameters s and n.
If a k-bit mutation flips i disagreeing bits and k−i agreeing bits, the distance

to the optimum decreases by i−(k−i) = 2i−k. This is only accepted if 2i−k ≥ 0,
and progress is only made if 2i − k > 0 or, equivalently, i > ⌊k/2⌋. The claim
then follows from (3) and the definition of the expectation.

By [34, Lemma 28] we have ∆2(s) = 2∆3(s)/3 and ∆4(s) = 4∆5(s)/5, hence
we only need to show the claims for ∆1(s),∆3(s), and ∆5(s). The formula
∆1(s) = s/n follows immediately. For ∆3(s) we have

∆3(s) =

((

s

2

)(

n− s

1

)

+ 3

(

s

3

)(

n− s

0

))

/

(

n

3

)

=

(

s(s− 1)(n− s)

2
+

3s(s− 1)(s− 2)

6

)

/

(

n

3

)

=

(

s(s− 1)(n− 2)

2

)

/

(

n

3

)

=
3s(s− 1)

n(n− 1)

In order to bound ∆3(s) we calculate that

3s(s− 1)

n(n− 1)
≤ 3

( s

n

)2

⇐⇒ s− 1

n− 1
≤ s

n
⇐⇒ s− 1

s
≤ n− 1

n

⇐⇒ 1− 1

s
≤ 1− 1

n
⇐⇒ s ≤ n

which is trivially true. We can use a nearly identical argument to bound ∆2(s).
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For ∆5(s) we have

∆5(s) =

((

s

3

)(

n− s

2

)

+ 3

(

s

4

)(

n− s

1

)

+ 5

(

s

5

)(

n− s

0

))

/

(

n

5

)

=

((

s(s− 1)(s− 2)

6

)(

(n− s)(n− s− 1)

2

)

+
3s(s− 1)(s− 2)(s− 3)(n− s)
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+
5s(s− 1)(s− 2)(s− 3)(s− 4)

120

)

/

(

n(n− 1)(n− 2)(n− 3)(n− 4)

120

)

=
s(s− 1)(s− 2)(10n2 − 5ns− 55n+ 20s+ 60)

n(n− 1)(n− 2)(n− 3)(n− 4)

=
5s(s− 1)(s− 2)(2n− s− 3)(n− 4)

n(n− 1)(n− 2)(n− 3)(n− 4)

=
10s(s− 1)(s− 2)(n− s/2− 3/2)

n(n− 1)(n− 2)(n− 3)

By similar arguments to those used to bound ∆3(s) we can see that

10s(s− 1)(s− 2)(n− s/2− 3/2)

n(n− 1)(n− 2)(n− 3)
≤ 10

( s

n

)3 n− s/2− 3/2

n− 3

We therefore need to show that

n− s

2
− 3

2
≤ n− 3

which holds if and only if s ≥ 3. The stated bound holds if s < 3 since ∆5(s)
will equal 0. These two facts therefore prove the claim for all s. As above, we
can use a nearly identical argument to prove the bound on ∆4(s).

It is well known that RLS1 has the lowest expected optimisation time on
OneMax (and thus OneMax*) for all RLSk. It runs in expected time n lnn±
O(n), which is best possible for all unary unbiased black-box algorithms [35, 34]
up to terms of ±O(n). It is also known [35, 34] that, regardless of the fitness
of the individual, flipping 2c bits never gives higher expected drift than flipping
2c+1 bits (for any positive integer c)5. For this reason, it is necessary to be able
to move from k = 2c+ 1 to k = 2c− 1 since k = 2c+ 1 often (but not always:
see Table 2, page 37) constitutes a local optimum. To enable the configurator
to escape such local optima, we use the local search operator ±{1, 2}.

5Although it is not necessarily optimal to maximise the drift in order to minimise the
optimisation time for OneMax [36].
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5.1. ParamRLS-F Identifies the Optimal Neighbourhood Size for the Cutoff
Time

For large cutoff times, ParamRLS-F is able to identify the optimal parameter
value k = 1. The analysis is surprisingly challenging as most existing methods in
the runtime analysis of evolutionary algorithms are geared towards first hitting
times. Results on the expected fitness after a given cutoff time (fixed-budget
results) are rare [34, 25, 37, 38, 39] and do not cover RLSk for k > 1.

Our analysis shows that RLSk follows a “typical” behaviour on OneMax*.
We divide a run into periods of a fixed length and show that w. o. p. at the end
of each period the fitness is contained within a narrow interval of fitness values.
The location of these intervals depends on k. When the tuning time is large
enough, these intervals become non-overlapping, proving that one algorithm is
ahead of the other w. o. p.

In the proof of Lemma 21, we make an assumption about the current distance
to the optimum at the start of a new period to simplify the analysis. In brief,
we assume that we start the period at the smallest distance contained in the
interval. In [16] this was justified by saying that “This assumption is pessimistic
here since starting period i closer to the optimum can only decrease the distance
to the optimum at the end of period i.”, where the assumption was “pessimistic”
because it minimises the drift.

We now give a rigorous argument to show that this assumption, whilst min-
imising the drift, also generally decreases the distance to the optimum at the
end of the period6.

The following lemma says that, for any two distances i < j, the distance af-
ter t generations is generally smaller when starting close to distance i (according
to a specific probability distribution), compared to when starting at distance j.

Lemma 20. Consider RLSk on OneMax*, for an arbitrary value of k ≥ 1,
during t generations, for an arbitrary value of t. For every two integers i ≤ j
there is a probability distribution αi,j over distances to the optimum in [i− k+
1, i] such that the distance to the optimum of RLSk after t generations, when
initialised according to αi,j , is stochastically dominated by that of RLSk after t
generations, when initialised with distance j.

Proof. If j = i, the statement is trivial if we take αi,j as the point distribution
at i = j.

Assume i < j and note that RLSk has to pass through the distance interval of
I = [i−k+1, i] in order to progress from an initial distance j to a distance smaller
than i− k + 1. For ℓ ∈ I, let pℓ be the probability that the first fitness reached
in I is ℓ. The distance of RLSk after t generations, when initialised at distance ℓ,

6A universal statement such as “starting closer to the optimum is always better” is not
true. For instance, when considering RLS2 running on the unmodified OneMax function,
starting at distance 1 to the optimum means that the algorithm cannot reach the optimum
as it will always flip at least one bit incorrectly. However, RLS2 starting at distance 2 will
eventually reach the optimum, given enough time. Hence, given enough time, the algorithm
achieves a better final distance when starting further away from the optimum.
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is stochastically dominated by the distance of RLSk after t generations, when
initialised at distance j if we condition on traversing distance ℓ as the first
distance in I; this is because the former algorithm runs for all t generations
from distance ℓ and the latter algorithm runs for fewer than t generations from
distance ℓ.

Note that we may have
∑

ℓ∈I pℓ < 1 since there may be a positive probability
that RLSk does not reach the interval I at all. Conditional on not reaching I,
the distance when starting anywhere in I will be smaller than the distance of
RLSk starting at distance j, with probability 1. We therefore may construct αi,j

by first assigning αi,j(ℓ) := pℓ and then distributing the remaining probability
mass 1−∑ℓ∈I pℓ arbitrarily to states in I.

The following lemma splits the run of RLSk into periods of linear length and
then establishes intervals [ℓi, ui] such that, at the end of period i, the distance
to the optimum is contained in these intervals w. o. p.

Lemma 21. Consider RLSk on OneMax* with k = O(1) and a cutoff time
κ ≥ 3.225n. Divide the first 3.225n generations into 645 periods of length n/200
each. Define ℓ0 = n/2− n3/4 and u0 = n/2 + n3/4 and, for all 1 ≤ i ≤ 645,

ℓi = ℓi−1 −
n

200
∆k(ℓi−1)− o(n) and ui = ui−1 −

n

200
∆k(ℓi) + o(n).

Then, w. o. p. at the end of period i for 0 ≤ i ≤ 645, the current distance to the
optimum is in the interval [ℓi, ui] and throughout period i, 1 ≤ i ≤ 645, it is in
the interval [ℓi−1, ui].

Proof. We prove the statement by induction. We first show that, at time 0, the
current distance to the optimum is in [n/2− n3/4, n/2+ n3/4] w. o. p. Let Xi =
if bit i is equal to 1, and let it equal 0 otherwise. Then let X =

∑n
i=1 = Xi

be the number of 1-bits at time 0. Since the bit string is initialised uniformly
at random, E[X] = n/2. By applying additive Chernoff bounds (Theorem 2)
with δ = n3/4 we calculate that the number of 1-bits at initialisation is in
[n/2− n3/4, n/2 + n3/4] with probability at least 1− exp(−Ω(√n)). The same
applies to the distance to the optimum at this time as this is given by n minus
the number of 1-bits.

Assume that at the end of period i−1 the current distance to the optimum is
d∗i−1 ∈ [ℓi−1, ui−1]. We now derive a lower bound on the distance to the optimum
at the end of period i (i.e. ℓi). We do so by first arguing that the assumption
that d∗i−1 ∈ [ℓi−1, ui−1] can be replaced by another assumption under which the
current distance to the optimum is in the interval [ℓi−1−k+1, ℓi−1]. According
to Lemma 20, there is a probability distribution αℓi−1,d∗

i−1
over distances in

[ℓi−1 − k + 1, ℓi−1] such that the distance to the optimum after period i when
starting from αℓi−1,d∗

i−1
is stochastically dominated by the distance after period i

when starting this period from distance d∗i−1. In other words, starting in the
region [ℓi−1 − k + 1, ℓi−1] is generally preferable to starting at distance d∗i−1.
Hence, in order to determine the next lower bound ℓi on the distance, we may
optimistically assume that at the end of period i− 1, we are at some distance in
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the interval [ℓi−1−k+1, ℓi−1] and the probability that we are at each distance in
this interval is given by the distribution αℓi−1,d∗

i−1
. The precise distribution will

be immaterial hereinafter; we will only use the fact that the distance at the end
of period i− 1 the distance to the optimum is in the interval [ℓi−1− k+1, ℓi−1].
When bounding ℓi, this replaces the original assumption that the distance to
the optimum is in [ℓi−1, ui−1].

During period i, since the current distance can only decrease and the ex-
pected progress is increasing in the distance, under this new assumption the
expected progress in each step is at most ∆k(ℓi−1). We now use the method
of bounded martingale differences (Theorem 3) to bound the total progress in
n/200 steps. Let us optimistically assume that the expected progress is always
∆k(ℓi−1) throughout this period. Let f(X1, . . . , X n

200
) be a function yielding the

progress over the period given the amount of progress Xj at each iteration j.

Then f =
∑n/200

j=1 Xj and by the linearity of expectation E[f ] = n∆k(ℓi−1)/200.

Also, E[f | X1, . . . , Xj ] =
∑j

m=1 Xm +
∑n/200

m=j+1 ∆k(ℓi−1). Notice that, for
any i, once the variable Xi is observed it subtracts a term of ∆k(ℓi−1) from the
expectation of f and can contribute a term of at most k. If no progress is made
at time j then Xj = 0 and the change in the expectation of f is −∆k(ℓi−1). If
progress of k is made (i.e. Xj = k), then the change in the expectation of f is
k −∆k(ℓi−1). Thus

|E[f | X1, . . . , Xj ]− E[f | X1, . . . , Xj−1]| ≤ max{| −∆k(ℓi−1)|, |k −∆k(ℓi−1)|}
≤ k =: cj ,

since 0 ≤ ∆k(ℓi−1) ≤ k.
We are now ready to apply the method of bounded martingale differences.

Applying said method with δ = (n/200)3/4 − k + 1 yields

Pr(f ≥ n/200 ·∆k(ℓi−1) + (n/200)3/4 − k + 1) ≤ exp

(

− ((n/200)3/4 − k + 1)2

2nk2/200

)

= exp(−Ω(
√
n)).

That is, the total progress in n/200 steps is thus at most n/200 · ∆k(ℓi−1) +
(n/200)3/4 − k + 1 = n/200 · ∆k(ℓi−1) + o(n) w. o. p. Hence we obtain ℓi =
ℓi−1− k+1− n

200∆k(ℓi−1)− o(n) = ℓi−1− n
200∆k(ℓi−1)− o(n) as a lower bound

on the distance at the end of period i, w. o. p.
Since the distance in period i is at least ℓi, the expected progress in every step

is at least ∆k(ℓi). Again using the method of bounded martingale differences,
by the same calculations as above, the progress is at least n/200 ·∆k(ℓi)− o(n)
w. o. p. This establishes ui = ui−1 − n/200 ·∆k(ℓi) + o(n) as an upper bound
on the distance at the end of period i. Taking the union bound over all failure
probabilities proves the claim.

Iterating the recurrent formulas from Lemma 21 tells us that, w. o. p., the
fitnesses of different configurations differ by a linear amount after 3.225n itera-
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tions.

Lemma 22. Define ℓi,k as ℓi Lemma 21 with respect to RLSk. Define ui,k

similarly. After 3.225n steps, w. o. p. RLS1 is ahead of RLS2 and RLS3 by a
linear distance: u645,1 ≤ ℓ645,2 − Ω(n) and u645,1 ≤ ℓ645,3 − Ω(n) respectively.
Furthermore, w. o. p. RLS3 is ahead of RLS4 and RLS5 by a linear distance:
u645,3 ≤ ℓ645,4 − Ω(n) and u645,3 ≤ ℓ645,5 − Ω(n) respectively. And w. o. p. the
distance to the optimum is at most 0.13n for RLS1, RLS3 and RLS5.

In order to prove Lemma 22, however, we must first show the following
result.

Lemma 23. Define ℓi,k and ui,k as in Lemma 22. Then ℓi,2 ≥ ℓi,3 as well as
ℓi,4 ≥ ℓi,5 and

ui,1 = ui−1,1 −
ℓi,1
200

+ o(n)

ℓi,3 ≥ ℓi−1,3 −
3ℓ2i−1,3

200n
− o(n)

ui,3 ≤ ui−1,3 −
3ℓ2i,3
200n

+ o(n)

ℓi,5 ≥ ℓi−1,5 −
10ℓ3i−1,5

200n2
− o(n).

Proof. The inequalities ℓi,2 ≥ ℓi,3 and ℓi,4 ≥ ℓi,5 follow from the fact that for
even k, ∆k(s) ≤ ∆k+1(s) for all distances s [34, Lemma 28].

The other results essentially follow from Lemma 21 along with the drift
bounds from Lemma 19. The equality for ui,1 follows immediately from

∆1(ℓi−1,1) = ℓi−1,1/n. The lower bound for ℓi,3 follows from ∆3(ℓi−1,3) ≤
3ℓ2i−1,3

n2

and, likewise, the lower bound for ℓi,5 follows from ∆5(ℓi−1,5) ≤
10ℓ3i−1,5

n3 . The

upper bound for ui,3 follows from ∆3(ℓi,3) =
3ℓi,3(ℓi,3−1)

n(n−1) ≥ 3ℓ2i,3
n2 −O(1/n). Along

with a factor of n/200, the term −O(1/n) leads to an error term of −O(1) that
is absorbed in the −o(n) term.

We can now prove Lemma 22.

Proof of Lemma 22. We first argue that it is safe to focus on the leading con-
stants in the recurrences given in Lemma 23, that is, that the terms of o(n)
can essentially be neglected. Since the drift ∆k(s) is increasing in s, we have
∆k(s − o(n)) ≤ ∆k(s) and thus any negative small order terms in ℓi,1/200,
3ℓi,3/(200n), and 10ℓi,5/(200n) can be ignored since the lower bounds on the
distance obtained by ignoring the negative small order terms will be smaller
(that is, looser) than those which could be obtained by considering them. Ev-
ery application of a recurrence formula from Lemma 23 subtracts another term
of −o(n). But since we only consider a constant number of applications, the
total error term is still −o(n).
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For the upper bounds, it is also not hard to show that ∆k(s + o(n)) ≤
∆k(s) + o(1) for k ∈ {1, 3, 5}, which introduces an additional +o(n) term in
each application of a recurrence. By the previous arguments, the total error in
a constant number of applications sums up to +o(n).

This implies that, modulo small order terms, the distance to the opti-
mum in any period can be bounded by considering the leading constants cℓ,i,k
in ℓi,k and cu,i,k in ui,k, when taking the inequalities as equalities. Then
cℓ,0,k = cu,0,k = 1/2 for all k and cℓ,i,1 = cℓ,i−1,1− cℓ,i−1,1/200, cℓ,i,3 = cℓ,i−1,3−
3c2ℓ,i−1,3/200, cℓ,i,5 = cℓ,i−1,5 − 10c3ℓ,i−1,5/200 and cu,i,3 = cu,i−1,3 − 3c2ℓ,i,3/200.

We solved these recurrences numerically7. After 645 periods of length n/200,
that is, after 3.225n iterations, we observe that all distance intervals are non-
overlapping and are in what we would assume will be their final ordering (i.e.
RLS1 is the closest to the optimum, followed by RLS3, then RLS5: see Fig-
ure 1 for a plot of these intervals, including ones not relevant until the proof
of Lemma 27). We show that this is indeed the final ordering in the proof of
Lemma 25. The resulting leading constants were (we also show cℓ,645,1 and
cu,645,5 defined similarly, though we do not need them):

[cℓ,645,1, cu,645,1] = [0.019717738, 0.022119149]

[cℓ,645,3, cu,645,3] = [0.085458797, 0.089099249]

[cℓ,645,5, cu,645,5] = [0.120636109, 0.126798327].

Noticing that these intervals are non-overlapping, with gaps of order Ω(1), im-
plies the claim for the stated comparisons of bounds for RLS1, RLS3, and RLS5,
even when taking into account error terms of o(n). The results for RLS2 and
RLS4 follow immediately from these results along with Lemma 23.

The additional statement about the distance being at most 0.13n follows
since all cu,645,k values are less than 0.13− Ω(1).

As a by-product, we can use the techniques from the proof of Lemma 22
to derive closed-form bounds that, w. o. p., contain the distance to the optimal
bit string for RLS1 after a linear number of iterations. These statements of the
bounds are not used further in this work, but we nevertheless state them here
since they significantly improve on the state-of-the-art fixed-budget bounds for
RLS1 optimising OneMax [25].

Theorem 24. For constant i ≥ 0, RLS1 after κ = (n · i)/200 iterations running
on OneMax has Hamming distance sκ to the optimal bit string that satisfies

n

2

(

199

200

)i

≤ sκ ≤ n ·
(

1

2

(

199

200

)i+1

+
1

400

)

,

7The code we used to do so and the data generated is available at https://

george-hall-sheff.github.io/rlsk_om_recurrences.
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w. o. p. This implies that

n

2

(

199

200

)200κ/n

≤ sκ ≤ n ·
(

1

2

(

199

200

)(200κ/n)+1

+
1

400

)

,

w. o. p.

Proof. As analysed in the proof of Lemma 22, the upper and lower bounds
on the coefficient of the linear term in the distance to the optimal bit string
after i periods of n/200 iterations are cℓ,i,1 = cℓ,i−1,1 − cℓ,i−1,1/200 and cu,i,1 =
cu,i−1,1−cℓ,i,1/200, respectively. Recall that cℓ,0 = cu,0 = 1/2. These recurrence
relations have solutions

cℓ,i,1 =
1

2

(

199

200

)i

and

cu,i,1 =
1

2

(

199

200

)i+1

+
1

400
.

The first claims follow by multiplying these solutions by n, and the second
follows by replacing i with 200κ/n, the number of iterations that corresponds
to the end of period i.

Lemma 22 states that, when using solution quality as performance metric,
for κ = 3.225n smaller odd parameter values win comparisons in ParamRLS-F,
w. o. p. The following lemma proves that in fact is the case for all cutoff times
κ ≥ 3.225n.

Lemma 25. Let (a, b) be a member of the set {(1, 2), (1, 3), (3, 4), (3, 5)}, let
κ ≥ 3.225n, and let RLSa and RLSb both be run on OneMax* for κ iterations.
Then, w. o. p., RLSa either has a higher fitness than RLSb or, if both algorithms
have reached the optimum, RLSa did so first.

Proof. Lemma 22 proves the claim for a cutoff time of κ = 3.225n. For cutoff
times larger than 3.225n, it is possible for the algorithms that lag behind to
catch up after time 3.225n. To this end, we define the distance between two
algorithms RLSa, RLSb with a < b as Da,b

t := st,b−st,a, where st,a and st,b refer
to the respective distances to the optimum at time t. Initially, by Lemma 22,
we have Da,b

t = Ω(n) w. o. p. for all considered algorithm pairs. We will apply
the negative drift theorem [40, 41] in the version for self-loops [42] to show that
w. o. p. Da,b

t does not drop to 0 until RLSa has found an optimum (st,a ≤ 2).
Consider the situation where Da,b

t has decreased to a value of at most n1/4.
We then argue that

E[Da,b
t+1 −Da,b

t | 0 ≤ Da,b
t ≤ n1/4, st,a > 2, st,b] = Ω(∆a(st,a)).

For RLS1 and RLS3 the above expectation is at least (using Lemma 19 and
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st,1 ≤ 0.13n)

∆1(st,1)−∆3(st,3) ≥
st,1
n
− 3(st,1 + n1/4)2

n2

=
st,1
n

(

1− 3st,1
n
− o(1)

)

≥ st,1
n

(1− 3 · 0.13− o(1)) = Ω(∆1(st,1)).

For RLS3 and RLS5 the above expectation is at least (using Lemma 19 and
st,3 ≤ 0.13n)

∆3(st,3)−∆5(st,5) ≥
3st,3(st,3 − 1)

n(n− 1)
− 10(st,3 + n1/4)3

n3

=
3st,3(st,3 − 1)

n(n− 1)
−

3s2t,3
n2

(

10st,3
3n

+ o(1)

)

= Ω(∆3(st,3))

The statement also follows for even b as ∆b(s) < ∆b+1(s).
We also have ∆k(s)/k ≤ Pr(st+1,k < st,k) ≤ ∆k(s) for all k, s. The above

calculations have further established ∆b(st,b) = O(∆a(st,a)). Hence Pr(Da,b
t+1 6=

Da,b
t ) = Θ(∆a(st,a)).

This implies that the first condition of the negative drift theorem with self-
loops [42] is satisfied with respect to Da,b

t and the interval [0, n1/4]. The second
condition is trivial as the jump length is bounded by b = O(1). Applying said
theorem yields that probability of RLSb catching up to RLSa before RLSa finds
an optimum in 2Ω(n1/4) generations is e−Ω(n1/4). By Markov’s inequality, the
probability that RLSa has not found an optimum within this time is Θ(n log n) ·
2−Ω(n1/4) = e−Ω(n1/4). Summing up all failure probabilities proves the claim.

Lemma 25 implies that w. o. p. RLS1 has a smaller optimisation time than
any rival configuration and RLS3 has a smaller optimisation time than RLS4

and RLS5. We prove this in the following corollary.

Corollary 26. The following statements hold when optimising OneMax*:

• RLS3 has a smaller optimisation time than RLS4 and RLS5, w. o. p.

• RLS1 has a smaller optimisation time than RLSk with k ∈ {2, 3, 4, 5},
w. o. p.

Proof. We prove the claim for RLS3 in a comparison against RLS5. The same
technique can be used to prove the result for RLS3 vs. RLS4, RLS1 vs. RLS2,
and RLS1 vs. RLS3. The remaining claims for RLS1 hold by transitivity.

Lemma 25 tells us that, for cutoff times κ ≥ 3.225n, RLS3 beats RLS5 in a
comparison in ParamRLS-F w. o. p. Recall that, in ParamRLS-F, RLSa beats
RLSb in a comparison if and only if: (1) RLSa has a higher fitness than RLSb

at the cutoff time; or (2) both configurations have the same fitness at the cutoff
time, but RLSa reached this fitness first.
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Let τ3 and τ5 be the expected optimisation times of RLS3 and RLS5, respec-
tively, and let τ = max{τ3, τ5}. Then, by Markov’s inequality, both algorithms
have reached an optimum within en ·τ iterations, w. o. p. We can therefore apply
Lemma 25 since κ ≥ 3.225n. Lemma 25 tells us that, given both configurations
have reached an optimum (and therefore the same fitness) w. o. p., then RLS3

did so first, w. o. p. That is, in a run with κ = en · τ , RLS3 took less time than
RLS5 to reach an optimum, w. o. p. Taking a union bound over all exponentially
small failure probabilities proves the claim.

Proving the claim for a run with κ = en · τ implies the claim for runs with
any other κ.

From Lemma 25 it follows that w. o. p. configurations with smaller odd
values of k will beat their opponents in a ParamRLS-F comparison with cutoff
time κ ≥ 3.225n. We now use the techniques introduced in its proof to analyse
the relative performance of configurations in ParamRLS-F when using a cutoff
time of κ ≥ 0.02n.

Lemma 27. For ParamRLS-F configuring RLSk for OneMax*, for cutoff
times κ ≥ 0.02n, the fitness landscape induced by the configurator has the
structure given in the following table:

Region Cutoff Time Ordering of Configurations
A κ ∈ [0.020n, 0.375n] RLS5 > RLS4 > RLS3 > RLS1 > RLS2

κ ∈ (0.375n, 0.495n) RLS5 > {RLS3, RLS4} > RLS1 > RLS2

B κ ∈ [0.495n, 0.590n] RLS5 > RLS3 > RLS4 > RLS1 > RLS2

κ ∈ (0.590n, 0.645n) RLS5 > RLS3 > {RLS1, RLS4} > RLS2

C κ ∈ [0.645n, 0.720n] RLS5 > RLS3 > RLS1 > RLS4 > RLS2

κ ∈ (0.720n, 0.975n) {RLS1, RLS3, RLS5} > RLS4 > RLS2

D κ ∈ [0.975n, 1.760n] RLS1 > RLS3 > RLS5 > RLS4 > RLS2

κ ∈ (1.760n, 2.130n) RLS1 > RLS3 > RLS5 > {RLS2, RLS4}
E κ ∈ [2.130n, 2.535n] RLS1 > RLS3 > RLS5 > RLS2 > RLS4

κ ∈ (2.535n, 3.225n) RLS1 > RLS3 > {RLS2, RLS5} > RLS4

F κ ≥ 3.225n RLS1 > RLS3 > RLS2 > RLS5 > RLS4

Table 2: Ordering of configurations for all cutoff times κ ≥ 0.020n. “RLSa > RLSb” indicates
that RLSa has a higher fitness than RLSb at the cutoff time w. o. p. and “{RLSa, RLSb}”
indicates that we cannot draw any conclusions about the relationship between RLSa and
RLSb. The region names correspond to Figure 1.

Proof of Lemma 27. We use a similar approach to that used in the proof of
Lemma 22. We again use periods of length n/200 to determine the cutoff times
at which the fitness of the individuals in different configurations of RLSk are
distinct by a linear amount. In addition to the quantities defined in the proof

37



of Lemma 22, we similarly define

ℓi,1 =ℓi−1,1 −
ℓi−1,1

200
+ o(n)

ℓi,2 ≥ ℓi−1,2 −
2ℓ2i−1,2

200n
− o(n)

ui,2 ≤ ui−1,2 −
2ℓ2i,2
200n

+ o(n)

ℓi,4 ≥ ℓi−1,4 −
8ℓ3i−1,4

200n2
− o(n)

ui,4 ≤ ui−1,4 −
8ℓ3i,4
200n2

− o(n)

ui,5 ≤ ui−1,5 −
10ℓ3i,5
200n2

− o(n).

and obtain that the coefficients of their Θ(n) terms are cℓ,i,1 = cℓ,i−1,1 −
cℓ,i−1,1/200, cℓ,i,2 = cℓ,i−1,2 − 2c2ℓ,i−1,2/200, cu,i,2 = cu,i−1,2 − 2c2ℓ,i,2/200,
cℓ,i,4 = cℓ,i−1,4 − 8c3ℓ,i−1,4/200, cu,i,4 = cu,i−1,4 − 8c3ℓ,i,4/200, cu,i,5 = cu,i−1,5 −
10c3ℓ,i,5/200.

Iterating these recurrences in the same way as in the proof of Lemma 22, we
observe that, for the named ranges of cutoff times in Table 2, the configurations
are ordered in the stated way (we illustrate these intervals in Figure 1). Con-
sider, for instance, the range of cutoff times κ ∈ [0.975n, 1.760n] (we only prove
the claim for this range of cutoff times: the claim for other ranges of cutoff
times named in Table 2 can be proved in the same way). We prove that RLS1 >
RLS3 > RLS5 > RLS4 > RLS2 for all cutoff times in this range (where “RLSa

> RLSb” indicates that RLSa has a higher fitness than RLSb w. o. p.) by re-
calling that by definition (Lemma 21) the interval [ℓi−1,k, ui,k] w. o. p. contains
the distance to the optimum of the individual in RLSk throughout period i and
observing that, for all periods i with 195 ≤ i ≤ 352 we have cℓ,i−1,1 < cu,i,1 <
cℓ,i−1,3 < cu,i,3 < cℓ,i−1,5 < cu,i,5 < cℓ,i−1,4 < cu,i,4 < cℓ,i−1,2 < cu,i,2.

For cutoff times κ ≥ 3.225n, the result follows from Lemma 25.
For the unnamed ranges in Table 2 it is the case that the distance intervals

for almost all configurations are non-overlapping, but they are overlapping for
the sets of configurations for which no ordering is stated.

We now derive an upper bound on the expected number of comparisons
before ParamRLS-F first sets the active parameter to k = 1 for cutoff times
κ ≥ 3.225n. We also derive the number of comparisons sufficient for it to return
k = 1 as optimal for this cutoff time, w. o. p. This finally shows that linear cutoff
times are sufficient for it to return the T-optimal configuration, despite cutoff
times of Θ(n log n) being necessary for any configurator that uses optimisation
time as performance metric.

Theorem 28. Consider ParamRLS-F for the configuration of RLSk for One-

Max* with φ = 5. Assume that it uses cutoff time κ ≥ 0.975n, a single run per
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Figure 1: Intervals within which the fitness of the individual in RLSk, with 1 ≤ k ≤ 5, is
contained w. o. p. Calculated using periods of length n/200. The distance intervals for each
configuration at the end of period i for 0 ≤ i ≤ 800 (corresponding to linear cutoff times
κ ≤ 4n) are displayed (note that each curve shown consists of 801 vertical lines indicating the
interval at the end of each considered period).

configuration evaluation (i.e. r = 1), and that it uses the local search operator
±{1, 2}. Then the expected number of comparisons before ParamRLS-F sets
the active parameter to k = 1 for the first time is at most 16+2−Ω(nε) (for some
constant ε > 0). After nε′ comparisons, for some constant ε′ > 0, ParamRLS-F
returns the parameter value k = 1 w. o. p.

Proof. Lemma 27 tells us that, for all cutoff times κ ≥ 0.975n, no configuration
is more than two away from one that, w. o. p., will beat it in a ParamRLS-F
comparison. This implies that the ±{1, 2} operator is sufficient to escape the
local optima caused by even values of k for some ranges of cutoff times.

In the gaps between the named ranges of cutoff times given in Table 2,
exactly one pair of distance intervals is overlapping (i.e. where the outcome
of a comparison between them is ambiguous), meaning that the number of
comparisons required to locate k = 1 will be no larger than that required before
or after the region with the overlap. For all cutoff times κ ≥ 0.975n, the
interval corresponding to RLS1 is non-overlapping with all others and is smaller
than those corresponding to all other considered configurations (i.e. RLS1 has
a higher fitness than all other considered configurations by a distance of Ω(n),
w. o. p.). Since for each ambiguity-free ordering of configurations given in the
table the ±{1, 2} operator is sufficient to reach RLS1, we can conclude that it
is also sufficient at all points during the gap.

Therefore, at any point, the active parameter can reach k = 1 within two
comparisons. Each of these two steps towards k = 1 happens with probability
at least 1/4−2−Ω(nε). The probability that in two consecutive comparisons the
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active parameter reaches k = 1 is hence 1/16 − 2−Ω(nε). Therefore the active
parameter is set to k = 1 within 16 + 2−Ω(nε) comparisons, in expectation.

By Markov’s inequality we have that the probability that the active param-
eter has not been set to k = 1 after 32 comparisons is at most 1/2 + 2−Ω(nε).
Hence the probability that it has not been set to k = 1 after 32nε′ comparisons

is at most 2−Ω(nε′ ), for some positive constant ε′. Combining this with the fact
that, in a single run, by Lemma 27, the configuration RLS1 beats both RLS2 and
RLS3 w. o. p., a union bound over the polynomially many comparisons proves
the claim.

We now prove that, for cutoff times 0.02n ≤ κ ≤ 0.72n, ParamRLS-F is able
to identify that k = 5 is optimal.

Theorem 29. Consider ParamRLS-F for the configuration of RLSk for One-

Max* with φ = 5. Assume that ParamRLS-F uses cutoff time 0.02n ≤ κ ≤
0.72n, a single run per configuration evaluation (i.e. r = 1), and that it uses
the local search operator ±{1, 2}. Then the expected number of comparisons
before ParamRLS-F sets the active parameter to k = 5 for the first time is at
most 16 + 2−Ω(nε). After nε comparisons, for some constant ε > 0, the tuner
returns the parameter k = 5 w. o. p.

Proof. As in the proof of Theorem 28, we observe that for 0.02n ≤ κ ≤ 0.72n
no configuration is more than two away from one that, w. o. p., will beat it in a
ParamRLS-F comparison. This implies that, for all cutoff times in these ranges,
the ±{1, 2} operator is again sufficient to reach the optimal parameter value of
k = 5.

In the gaps between the named ranges of cutoff times given in Table 2 it is
again the case that exactly one pair of distance intervals is overlapping. How-
ever, for all cutoff times satisfying 0.02n ≤ κ ≤ 0.72n the interval corresponding
to RLS5 is non-overlapping with all others and is smaller than that correspond-
ing to all other considered configurations (i.e. RLS5 has a higher fitness than
all other considered configurations by a distance of Ω(n)). Since in each named
range of cutoff times given in Table 2 the ±{1, 2} operator is sufficient to reach
k = 5, we can conclude that it is also sufficient at all points during the gap.

The bounds on the number of comparisons required by the configurator to
set the active parameter to k = 5 for the first time therefore hold by the same
reasoning as in the proof of Theorem 28.

We conclude this section by pointing out that the above analyses reveal the
surprising insight that for all considered linear cutoff times, either RLS1 or RLS5

(or both) identify higher fitness values than RLS3 w. o. p. (RLS2 and RLS4 are
similarly outperformed, but this is expected). This can be observed in Figure 1
for almost all linear cutoff times κ ≥ 0.02n. However, there is one region of
ambiguity (for cutoff times κ ∈ [0.72n, 0.975n]) in which the fitness interval for
RLS3 is not distinct from those corresponding to RLS1 and RLS5. We resolve
this ambiguity using a period length of n/2000 (instead of n/200 as otherwise
used in this section), and observe that the fitness interval for RLS3 becomes
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distinct for all cutoff times in this range (see Figure 2). Therefore, for all cutoff
times κ ≥ 0.02n, it is always optimal to use either k = 1 or k = 5 and never
optimal to use k = 3.

Whilst, for a range of fitness values, RLS3 has a higher drift than both of
these configurations, it is too far behind RLS5 when entering this region of
the search space (failing to overtake it before leaving the region) and not far
enough ahead of RLS1 when leaving this region (being overtaken before taking
advantage of its momentarily higher drift) to become the optimal configuration
at any point. It is unlikely that using k = 3 is optimal for smaller cutoff times,
however we do not prove such a result.
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Figure 2: Intervals within which the fitness of the individual in RLSk, with k ∈ {1, 3, 5},
is contained w. o. p. Calculated using periods of length n/2000. The distance intervals for
each configuration at the end of period i for 1440 ≤ i ≤ 1950 (corresponding to cutoff times
0.72nκ ≤ 0.975n) are displayed. Note that at no point does RLS3 have a smaller distance to
the optimum than both RLS1 and RLS5, w. o. p.

We can also prove that ParamRLS-F returns k = 1 if we update the value
of the active parameter uniformly at random (that is, we don’t only move to
neighbours of the active parameter value). This is the mutation operator used
in ParamILS, thus the theorem indicates how its performance may be improved
by switching performance metric.

Theorem 30. Consider a variant of ParamRLS-F which updates the value
of the active parameter by selecting a new, distinct value for k uniformly at
random from the set {1, . . . , φ}. Assume that κ ≥ 3.225n, φ = 5, and any
number of runs per configuration r are used. Then, when configuring RLSk for
OneMax*, the tuner requires at most 5 comparisons in expectation to set the
active parameter to k = 1 for the first time. After t comparisons it returns
k = 1 with probability at least 1 − (3/4 + e−Ω(nc))t − t · r · e−Ω(nc) for some
constant c > 0.

Proof. Lemma 25 tells us that, by transitivity, RLS1 wins an individual run
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in a comparison against RLSk for 2 ≤ k ≤ 5 w. o. p. Hence the probability
that RLS1 beats RLSk, for 2 ≤ k ≤ 5, in a comparison is 1 − r · e−Ω(nc),
for some constant c > 0. This is overwhelmingly small since we assume r
to be polynomial. Therefore, it is a sufficient condition of returning k = 1
to compare RLSk with 2 ≤ k ≤ 5 against RLS1 at any time in the tuning
process. That is, we simply need the tuner to set the active parameter to
k = 1 at some point during the tuning process. Assuming that the current
active parameter value is not k = 1, then the probability that it is set to
k = 1 for the next iteration of the tuner is 1/4 − e−Ω(nc), where the term
being subtracted is the probability that RLS1 does not win in a comparison
against RLSk with 2 ≤ k ≤ 5. Therefore in expectation the tuner requires at
most 1/(1/4 − e−Ω(nc)) = 4 + e−Ω(nc) comparisons (for some constant c > 0)
before setting the active parameter to k = 1 for the first time. The probability
that, after t comparisons, the parameter value k = 1 has been evaluated at some
point is 1− (1− (1/4− e−Ω(nc)))t = 1− (3/4+ e−Ω(nc))t. Subtracting the same
failure probability as above yields the claim.

5.2. ParamRLS-T Succeeds with Large Enough κ

Having shown in the previous section that ParamRLS-F is able to find a
configuration appropriate for the cutoff time (i.e. an F-optimal configuration),
as well as being able to identify a T-optimal configuration using linear cutoff
times, we now show that ParamRLS-T is able to tune RLSk for OneMax*,
provided that we use a cutoff time of at least n1+ε, for a positive constant ε.
Note that, by Corollary 5, ParamRLS-T is blind for cutoff times of κ ≤ (n lnn)/2
since OneMax* has a sub-exponential number of optima (as noted in Section 3).

The following lemma gives an upper bound on the tail of the optimisation
time of RLS1. Its simple proof uses well-known and elementary arguments.

Lemma 31. For every initial search point, RLS1 reaches the optimum of One-

Max* within n1+ε iterations, for any positive constant ε, with probability at
least 1− n exp(−nε).

Proof. A sufficient condition for RLS1 having found the optimum is that every
bit has been mutated at least once. The probability that a fixed bit i is not
mutated in n1+ε steps is (1− 1/n)n

1+ε ≤ exp(−nε). The probability that there
is a bit that has not been mutated in n1+ε steps is, by the union bound, at most
n · exp(−nε).

We now the main result of this section.

Theorem 32. For ParamRLS-T for the configuration of RLSk for OneMax*,
let the cutoff time be κ ≥ n1+ε for a positive constant ε, φ = 5, local search
operator ±{1, 2} and any polynomial number of runs r per evaluation. Then
in expectation at most 32 + 2−Ω(nε) comparisons (for some constant ε > 0)
are required for the active parameter to be set to k = 1 for the first time. If
t = Ω(nε) for some constant ε > 0 then the tuner returns the parameter k = 1
w. o. p.
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Proof. By Corollary 26, RLS1 has a lower optimisation time than RLSk, with
k ∈ {2, 3, 4, 5}, w. o. p., and RLS3 has a lower optimisation time than RLS4 and
RLS5, w. o. p.

Lemma 31 implies that RLS1 reaches the optimum within n1+ε iterations,
w. o. p. At any point, the active parameter can reach k = 1 within two compar-
isons: in the worst case it is at k = 5 and can move to k = 3, which happens
with probability at least 1/8− 2−Ω(nε) (the probability is larger than this lower
bound if the cutoff time is large enough to allow RLS3 to reach the optimum)
and then to move to k = 1, which happens with probability 1/4− 2−Ω(nε). The
probability that in two consecutive comparisons the active parameter reaches
k = 1 is hence 1/32 − 2−Ω(nε). Therefore the active parameter is set to k = 1
within 32 + 2−Ω(nε) comparisons in expectation.

5.3. ParamILS Succeeds with Large Enough κ

Using similar arguments to those in the previous section, we now prove that
ParamILS is able to tune RLSk for OneMax*, provided that the cutoff time is
set large enough.

Theorem 33. Consider ParamILS for the configuration of RLSk for OneMax*,
with k ∈ {1, . . . , 5}, cutoff time κ ≥ n1+ε for a positive constant ε, arbitrary
polynomial values for r, s, ρ and arbitrary prestart. Then after ρ+4 comparisons,
the configuration k = 1 is returned by ParamILS w. o. p.

Proof. As shown in the proof of Theorem 32, if κ ≥ n1+ε then, w. o. p., RLS1

reaches the optimum of OneMax* before any other RLSk with 2 ≤ k ≤ 5.
Then the result follows from the general upper bound in Theorem 7.

6. Conclusions

Through a comparative analysis of performance metrics that minimise opti-
misation time and that maximise solution quality within some time budget we
have provided theoretical evidence that the most natural performance metric
for a given application is not necessarily the optimal choice. In particular, we
have provided general lower bounds for the optimisation time metric that hold
for any parameter tuner for the configuration of any unary unbiased target al-
gorithm for the optimisation of any function containing up to an exponential
number of optima in the problem size. Furthermore, we have shown that even
for simple configuration scenarios the cutoff time required using the optimisa-
tion time metric may be considerably larger than the provided lower bound,
while using the fitness-based metric allows tuners to configure target algorithms
in linear time in the number of possible parameter values.

One by-product of our work is the strengthened state-of-the-art of fixed
budget runtime analysis or OneMax. Another is the insight that switching
from the optimisation time metric to the fitness-based one may considerably
speed up the standard ParamILS configurator as our analysis for OneMax

shows.
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An obvious advantage in the use of the fitness-based performance metric
over optimisation time is that the cutoff time can be naturally set to the time
budget that the target algorithm has available. On the other hand, setting
the cutoff time for the optimisation time metric requires some knowledge or
an informed guess of the target algorithm’s optimisation time at least for the
optimal parameter values, apart from the requirement of knowing the optimal
fitness in the first place. Neither of these requirements are necessarily satisfied
in practical applications.

While we have proven the significant reliance on appropriate choices for the
cutoff time of the optimisation time performance metric, the same conclusions
naturally apply to the performance metric if other solution-quality targets were
used (e.g., an approximate solution of at least some quality is sought rather than
the global optimum i.e., fixed target analysis). Appropriate bounds on the value
of the cutoff time would still need to be used (i.e., at least the runtime required
by the optimal parameter value to reach a solution of the sought quality) for the
configurators to be able to identify the optimal parameter values while using
the fitness-based metric may allow the identification of the optimal parameter
values faster.
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