
This is a repository copy of Numerical and experimental investigation of saturated granular
column collapse in air.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/181059/

Version: Published Version

Article:

Ceccato, F., Leonardi, A. orcid.org/0000-0002-7900-8376, Girardi, V. et al. (2 more 
authors) (2020) Numerical and experimental investigation of saturated granular column 
collapse in air. Soils and Foundations, 60 (3). pp. 683-696. ISSN 0038-0806 

https://doi.org/10.1016/j.sandf.2020.04.004

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 
(CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long 
as you credit the authors, but you can’t change the article in any way or use it commercially. More 
information and the full terms of the licence here: https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Numerical and experimental investigation of saturated granular
column collapse in air

Francesca Ceccato a,⇑, Alessandro Leonardi b, Veronica Girardi a, Paolo Simonini a

Marina Pirulli b

aUniversity of Padua, Department of Civil, Environmental and Architectural Engineering, Via Ognissanti 39, Padua, Italy
bPolitecnico di Torino, Department of Structural, Geotechnical, and Building Engineering, Corso Duca degli Abruzzi 24, Turin, Italy

Received 25 July 2019; received in revised form 7 April 2020; accepted 18 April 2020

Available online 10 June 2020

Abstract

Many hazardous natural phenomena like debris flows, avalanches and submerged landslides are governed by the interactions between
solid grains and interstitial fluid. They display a complex interplay of physical mechanisms, which are still very challenging to simulate
with numerical methods. Different methods have been proposed in the literature to achieve this goal. This paper compares the results of
two different numerical approaches: (i) a macromechanical continuum approach with the two-phase double-point Material Point
Method (MPM) and (ii) a micromechanical approach with Discrete Element Method coupled with the Lattice Boltzmann Method
(DEM-LBM). With the objective of highlighting potentialities and critical points of the two approaches, we conduct saturated granular
column collapses in a small-scale laboratory experiment, subsequently reproduced by the numerical codes. Unlike previous experiments
of collapse under gravity in dry or completely submerged conditions, in this paper the saturated material is released in air. These con-
ditions better reproduce real natural onshore landslides and allows a discussion on the solid–fluid interaction.
� 2020 Production and hosting by Elsevier B.V. on behalf of The Japanese Geotechnical Society. This is an open access article under the CC BY-

NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Many hazardous natural phenomena are characterized
by rapid movements of a mixture of solid particles and flu-
ids, and can be defined as flow-like landslides (Hungr et al.,
2014). Examples are debris flows, avalanches, and sub-
merged landslides. The study of these phenomena is impor-
tant for hydro-geological risk assessment and it has
attracted the interest of researchers for many years. Fast
flow-like landslides exhibit a wide variety of behaviors,
which are apparent at a multitude of relevant scales, thus
determining a staggering level of complexity (Delannay

et al., 2017). Due to these problems, a full understanding
of these processes has not been achieved yet.

A commonly employed small-scale model for the study
of flow-like landslides is the column collapse (Fig. 1).

Several numerical approaches have been applied to sim-
ulate column collapse. They can be conceptually divided
into: (a) discrete approach such as the Discrete Element
Method (DEM), in which the granular material is repre-
sented by an assembly of particles interacting at contact
points, and (b) continuum approach, in which the material
is modelled assuming the validity of continuum mechanics
theory.

In DEM, the macroscopic behavior of the mass directly
derives from micromechanical parameters (contact law,
grain characteristics) and state parameters (fabric and

https://doi.org/10.1016/j.sandf.2020.04.004

0038-0806/� 2020 Production and hosting by Elsevier B.V. on behalf of The Japanese Geotechnical Society.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Peer review under responsibility of The Japanese Geotechnical Society.
⇑ Corresponding author.
E-mail address: francesca.ceccato@dicea.unipd.it (F. Ceccato).

www.elsevier.com/locate/sandf

Available online at www.sciencedirect.com

ScienceDirect

Soils and Foundations 60 (2020) 683–696

H O S T E D  B Y



porosity). They naturally account for the dependence of the
material response to packing and to strain rate (Sun et al.,
2013), and can simulate segregation effects (Hill and Tan,
2014). However, the definition of the most appropriate
contact model between particles is both a conceptual prob-
lem and a source of computational issues. Due to the high
computational cost, their use for real-scale events requires
careful application of scaling procedures.

The interaction between solid skeleton and interstitial
liquid involves the coupling with a fluid solver. The fluid
is commonly modelled using simple rheological laws, and
solved using a computational mesh. Popular solvers are
those stemming from Computational Fluid Dynamics,
(CFD-DEM, as in Li and Zhao, 2018) or the Lattice Boltz-
mann Method (DEM-LBM, as in Švec et al., 2012). With
respect to dry DEM, these methods have superior capabil-
ities to describe mixtures, because the dynamics of the
ambient fluid is solved. However, they essentially suffer
from the same limitations of computational efficiency that
affect dry DEM.

Continuum methods, on the other hand, require the def-
inition of a constitutive model to reproduce the stress–
strain behaviour of the material. This is one of the major
issues of continuum models and the debate around the
most appropriate constitutive equation for describing geo-
physical flows is still active. For example, Fern and Soga
(2016) used Mohr–Coulomb and Nor-Sand models to sim-
ulate column collapse tests showing that the constitutive
model influences the slip surface onset and energy dissipa-
tion. Mast et al. (2014) compared a Drucker-Prager model
and a hardening–softening Matsuoka-Nakai model show-
ing that the choice of the constitutive model influences
the final deposition profile. Ceccato and Simonini (2016)
carried out simulations of granular flow impacting a rigid
barrier using an elastic perfectly plastic model with
Mohr–Coulomb failure criterion, and a viscoplastic model
with Drucker-Prager yielding condition, discussing the
effect of material parameters.

A continuum approach requires a solver able to accu-
rately manage the large displacements that characterize fast
landslides. The last couple of decades has seen a growing
use of continuum-based numerical methods to simulate
flow-like landslides, which has been tested on column col-
lapse examples. Among these are the Finite Volume Meth-

ods (FVM, as in Pirulli et al., 2007; Lagrée et al., 2011),
Arbitrary Lagrangian Eulerian Finite Elements (ALE, as
in Crosta et al., 2003), the Material Point Method
(MPM, as in Fern and Soga, 2016; Solowski and Sloan,
2013; Mast et al., 2014), Lattice Boltzmann Method
(LBM, Leonardi et al., 2015b), Particle Finite Element
Methods (PFEM, Zhang et al., 2015), and Smoothed Par-
ticle Hydrodynamics (SPH, e.g. Dai et al., 2017). These dif-
fer greatly in the mathematical description of the process
and the discretization of the continuum domain. The gen-
eral advantage of continuum methods is that they are well
suited to real scale events, as they do not suffer from drops
in computational efficiency when small particles or large
domains are modelled, as occurs in DEM.

In this work, comparison and evaluation of two different
numerical methods are carried out (see Section 3): a mixed
continuum-discrete DEM-LBM formulation from an in-
house code (Leonardi et al., 2015a), and a two-phase
double-point Material Point Method (2P-DP MPM)
(Bandara and Soga, 2015), recently implemented in the
software Anura3D (Martinelli, 2016, www.anura3d.com,
2019). With the objective of highlighting potentialities
and critical points of the two approaches, we simulated sat-
urated granular column collapses in air (Fig. 1). Similar
uses of DEM-LBM can be found in Kumar et al. (2017)
and Yang et al. (2019). However, these applications con-
sider submerged conditions, while this paper accounts for
the free surface at the interface between liquid and air.

In Section 5, the numerical results are discussed with
emphasis on the collapse dynamics, the run-out, and size
scale effects. Moreover, they are compared with small-
scale laboratory experiments carried out at the University
of Padua. Unlike previous experiments of column collapse
in completely submerged conditions, completely dry condi-
tions or with a very small amount of fluid (see e.g. Lube
et al., 2005; Artoni et al., 2013; Bougouin and Lacaze,
2018; Santomaso et al., 2018; Jing et al., 2018, among
others), the material is saturated and propagates in air
(see Section 2 for more details). These conditions are closer
to natural flow-like landslides.

2. Experimental tests

The experimental configuration is illustrated in Fig. 1. It
consists in a standard glass flume 0:70 m-long, 0:05 m-
wide, and 0:12 m-high, closed at one end. The flume is
equipped with a movable vertical gate at a distance of
L0 ¼ 0:04 m from the closed end: in this way, a storage par-
tition is created, where the saturated granular mixture is
placed. By modifying the filling height, columns with differ-
ent aspect ratios can be prepared. The channel base and the
lateral walls are made of glass, while the gate is made of
plexiglass. The gate and the opening mechanism have been
designed to address both water-tightness before collapse
and sudden gate uplift. The first is crucial to avoid partial
desaturation prior to the collapse, thus an immiscible fluid
(vaseline) was used to coat the interfaces between gate and

Fig. 1. Illustration of the experimental setup used for column-collapse

tests.
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flume sides; in addition, the same fluid favors the fast uplift
of the gate, triggering the propagation of the saturated
mixture in a way that can be well described by the sudden
removal of fixities in the numerical models.

The granular material has a uniform granulometric dis-

tribution with mean diameter D ¼ 2:5 � 10�3 m and grain

density qS ¼ 2625 kg=m3. The fluid phase is water dyed
with a natural colorant to improve the visualization of
the fluid motion.

The preparation method of the saturated sample aims at
controlling the initial volumetric fractions of the compo-
nents. At the beginning, the column volume is filled with

2 � 10�5 m3 of water. Subsequently, a controlled amount
of granular material is gently poured with a spoon
immersed in the water to allow deposition without com-
paction and to avoid gas bubble inclusion. Soil layering
continues until the column reaches the desired initial
dimensions. If necessary, the water level is adjusted using
a syringe. The liquid volume V L and the solid mass ms

are carefully measured; the porosity is computed from
the liquid volume as nV L

¼ V L=ðH 0L0W Þ, and subsequently
cross-checked with a second equation based on solid mass:
nms

¼ 1� ms=ðqsH 0L0W Þ. Some differences were reported
in the initial aggregation state due to the operator influence
on the preparation procedure, in fact the initial porosity
values were always bounded between 0:39 and 0:43, with
an average of 0:40.

The experimental tests considered in this paper are sum-
marized in Table 1. The initial column basal dimensions are
fixed, since they are related to the apparatus configuration,
while the height of the column is varied between
H 0 ¼ 0:03 m and 0:07 m, obtaining different aspect ratios
a ¼ H 0=L0. Three tests for each configuration are carried
out to verify the repeatability of the results and estimate
the experimental error.

The apparatus is illuminated by a constant artificial led
light. The process is recorded with a high-resolution and
high-speed camera (500 frames=s) placed at the channel
side, and aligned to the horizontal channel axis. Separate
frames are extracted from the video and the edges of the
column are detected extracting the corresponding coordi-
nates data set with an in-house MatLab code (Brezzi,
2018). Note that with this procedure only the lateral profile
of the column can be observed.

Fig. 2 provides an overview of the collapse evolution for
a ¼ 1:5, with four extracted frames overlapping with the

detected profiles (in red). Time is normalized with respect
to a reference time, defined in accordance with previous
numerical studies on dry and submerged granular column

collapse: tref ¼
ffiffiffiffiffiffiffiffiffiffiffi

H 0=g
p

for dry conditions and

tref ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

H 0=g0
p

for saturated conditions. The reduced grav-

ity g0 ¼ gðqS � qLÞ=qS accounts for the buoyancy effect in
the ambient fluid (Meruane et al., 2010; Jing et al., 2018).

When the gate is lifted, at the toe of the column both
grains and water start moving forward (Fig. 2a). Then,
the top part heads toward the flume base, slipping along
a failure surface progressively evolving with time
(Fig. 2b, c). Finally, the granular front decelerates and
stops, while water filters through the solid phase (Fig. 2d).

Table 1

Summary of experimental tests. The aspect ratio is computed as

a ¼ H 0=L0.

Conditions H 0 [m] L0 [m] a [–] Grain number

Saturated and Dry 0:07 0:04 1:75 � 9300

0:06 0:04 1:50 � 8000

0:05 0:04 1:25 � 6700

0:04 0:04 1:00 � 5300

0:03 0:04 0:75 � 4000

Fig. 2. Frames of the saturated soil collapse experiment (a ¼ 1:5) with

edge detection at different time instants.
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Fig. 3 plots the evolution of the normalized front posi-
tion ðX f � L0Þ=L0 as function of the normalized time
t=tref for different aspect ratios in dry and saturated condi-
tions. The evolution of the process and the runout are very
similar in dry and saturated conditions for a 6 1:0. In con-
trast, the process is slightly faster in terms of normalized
time and the runout is longer in saturated conditions for
a > 1:0.

3. Outline of the numerical methods

This section presents the numerical methods applied in
this study and discusses the differences and similarities with
other approaches.

In order to apply DEM to saturated media, it is coupled
with a fluid solver. Two main approaches can be used: (a) a
fluid mesh size D smaller than the characteristic particle
diameter D (Fig. 4a), in this way the interpore fluid pres-
sure field is solved accurately and the calculation of the
solid–fluid interaction force is carried out by direct integra-
tion; and (b) a fluid mesh size larger than the characteristic
particle diameter D� D (Fig. 4b), which requires to esti-
mate the interaction force with an analytical equation
based on a value of fluid velocity interpolated from the
neighbouring cells. The first strategy is commonly applied
in DEM-LBM, while the second is typically adopted by
CFD-DEM. However, there exist CFD-DEM applications

that compute drag through integration (Leonardi et al.,
2018), and DEM-LBM models that rely on interpolation
(Xiong et al., 2014).

The main differences among continuum-based numeri-
cal approaches applied for saturated media lie in the
assumptions used to derive the governing equations of
the process and in the discretization strategy. From the
mathematical point of view, the governing equations of
motion can be derived assuming that the solid–fluid mix-
ture behaves as an equivalent one-phase medium, as illus-
trated in Fig. 4 (c). Alternatively, the balance equations
of each phase can be solved separately. The latter is more
advanced, and in some methods complete separation
between the phases can be achieved, as shown in Fig. 4
(d). The 2P-DP MPM uses this approach (Abe et al.,
2013; Bandara and Soga, 2015; Martinelli and Rohe,
2015). From the numerical point of view the continuum
equations can be discretized using a grid (mesh-based
methods), as in FVM, ALE, LBM, or computational
points (particle-based methods), called material points
(MPs) or particles, as in MPM, PFEM, SPH.

3.1. DEM-LBM

DEM-LBM is a hybrid approach where two different
simulation strategies are employed for the two phases,

Fig. 3. Time evolution of normalized front position for dry (a) and

saturated cases (b).

Fig. 4. Comparison between (a) continuum-discrete coupling strategies

where the drag force is computed through integration (typical of DEM-

LBM and used in this work), (b) continuum-discrete coupling based on an

analytical drag formulation (typical of DEM-CFD), (c) continuum

methods employing a single-phase mixture, (d) continuum methods

representing independent interacting phases, as the 2P-DP MPM model

employed here.
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and a coupling algorithm tracks the inter-phase transmis-
sion of forces.

The granular phase is simulated with DEM as a collec-
tion of spherical particles which interact through binary
collisions. The particles contacts are resolved by allowing
a small overlap n, which determines a repulsive force nor-
mal to the contact surface. This is equal, in magnitude, to

F n ¼ knnþ an
ffiffiffiffiffiffiffiffi

knm
p dn

dt
; ð1Þ

with kn and an the normal contact stiffness and damping,
respectively, and m the particle mass. In the tangential
direction, an analogous force is exchanged, whose magni-
tude is modulated by a friction coefficient ls, and is equal
to

F t ¼ max lsF n; ktfþ at
ffiffiffiffiffiffiffiffi

ktm
p df

dt

� �

; ð2Þ

where f is the length of a spring connecting the initial con-
tacts points on the two particle surfaces, and kt ¼ 2=7kn
and at the tangential contact stiffness and damping. Addi-
tionally, a rolling resistance has been implemented in order
to reduce the spurious effects due to the use of spherical
particles. It consists of an additional torque M r, which
opposes to relative rolling between particles. Its magnitude
is proportional to the normal contact load:

M r ¼ lrF n

D

2
; ð3Þ

where lr is a coefficient of rolling friction, analogous to ls.
Note that in case particles with different diameters collide,
effective values for the mass and the diameter should be
used instead of m and D. More details about the contact
model can be found in Marchelli et al. (2019).

The particles are immersed in a fluid phase, whose
dynamics is solved with LBM. The fluid mesh size is smal-
ler than the characteristic diameter of the particles, i.e.
D < D, Fig. 4 (a). This implies that the pore pressure is
effectively resolved, and that the drag force can be com-
puted by integration of singular drag contributions coming
from all fluid cell interacting with each particle (Leonardi
et al., 2015a). The free surface position is updated using
a volume-of-fluid method (Janßen and Krafczyk, 2011).

In LBM, field variables such as macroscopical fluid
velocity vL and density qL are recovered by tracking the
state of a distribution function, which is discretized in
space on a regular lattice with spacing D, time t, and micro-
scopical velocity. The latter is performed by selecting a
small set of discrete microscopical velocities. The lattice
model used here works with 19 discrete velocities in 3
dimensions, and is known as D3Q19.

Following Feng et al. (2010), a Smagorinsky turbulence
model is implemented, with a turbulent viscosity mt, pro-
portional to the shear rate, added to the molecular viscosity
of water mm:

m ¼ mm þ mt ¼ mm þ ðCDÞ2 _c; ð4Þ

where C is the Smagorisnky constant, here assumed con-
stant and equal to 0:16, and _c is the second invariant of
the shear-rate tensor.

A key aspect of DEM-LBM, as already mentioned, is
that the DEM particle diameter D is required to be larger
than the lattice spacing D (Fig. 4 (a)). Therefore, multiple
fluid cells are located within each DEM particle. These cells
exchange a drag force fd with the particles, determined with
a direct-forcing immersed-boundary method (Švec et al.,
2012), as:

fd ¼ D
3
qLðvL � vPÞ; ð5Þ

where D3 is the volume of the fluid cell, and vP the particle
velocity.

The integration in time is explicit for both DEM and
LBM, but the time-step required by DEM is usually smal-
ler than the one required by LBM. The two solvers are thus
called in a staggered fashion, with multiple DEM iterations
in between two consecutive LBM steps. More details about
the method, its limitations, and possible applications can
be found in Leonardi et al. (2015a).

3.2. Two-phase double-point MPM

The 2P-DP formulation for MPM was initially pre-
sented by Abe et al. (2013), and later extended by
Bandara and Soga (2015) and Martinelli and Rohe
(2015). In this section the key features of the model are
briefly summarized. The reader should refer to Fern et al.
(2019) and references therein for further details.

The formulation assumes that the soil is a superposition
of two continuum media: the solid skeleton and the liquid
phase. These are represented separately by two sets of
Lagrangian MPs: solid material points (SMPs) and liquid
material points (LMPs). The computational domain in
which the material moves is discretized with a finite element
mesh. According to this framework, three possible domains
can emerge (Fig. 4 d):

� Porous medium in saturated conditions, when SMPs
and LMPs share the same grid element;

� Porous medium in dry conditions, when only SMPs are
located in the grid element;

� Free liquid, when only LMPs are located in the grid
element.

The dynamic behaviour of the continuum is described
with the solid and liquid dynamic momentum balances,
which are solved at the grid nodes. The mass balance of
the solid phase, the liquid, and the mixture are posed at
the corresponding MPs in order to update secondary vari-
ables. The same operation is performed for the constitutive
relationships. The software applies an explicit time integra-
tion scheme. The force representing the interaction between
solid and fluid, fSL, assumes the expression proposed by
Vardoulakis (2004) (Eq. (6))

F. Ceccato et al. / Soils and Foundations 60 (2020) 683–696 687



fSL ¼ fn þ fd ¼ rLrnL þ fd: ð6Þ
In this expression, fn accounts for the porosity gradient.
This term is not necessary in DEM-LBM, where the pore
space is resolved. The second term, fd, is a drag force, a
function of the relative velocity between fluid and solid
(vL � vS), which finds an equivalent on DEM-LBM in Eq.
(5). In Eq. (6), nL is the liquid volumetric fraction, which
coincides with porosity in saturated media, and rL is the
stress tensor of the liquid phase.

The drag law proposed by Forchheimer (1901) is imple-
mented in the 2P-DP formulation:

fd ¼ f1 þ f2 ¼
m

kL
n2LðvL � vSÞ þ bn3LqljvL � vSjðvL � vSÞ:

ð7Þ
It includes a linear term f1 (low-velocity regime) and a
quadratic term f2 (high velocity regime). The former is a
Stokesian drag term, employed in a similar form also in
DEM-LBM (Eq. (5)). The latter, named the non-Darcy
flow coefficient, has been estimated by many authors both
numerically and experimentally. It shows dependence on
porous media features like permeability, porosity and tor-
tuosity (Li et al., 2001; Orodu et al., 2012). The formula-
tion applied in this study determines the empirical
coefficient b using Ergun coefficients (Eq. (8)) (Ergun,
1952) A ¼ 150;B ¼ 1:75.

b ¼ B=
ffiffiffiffiffiffiffiffiffiffiffiffi

jLAn
3
L

q

: ð8Þ

The intrinsic permeability jL can evolve in time due to
the variation of porosity. This is taken into account with
a Kozeny-Karman formula (Eq. (9)):

jL ¼ D2

150
n3L=ð1� nLÞ2: ð9Þ

Granular materials can experience a transition between
solid-like behaviour to fluid-like behaviour when the
porosity and the shear rate increase. The 2P-DP formula-
tion accounts for the phase transition process by a maxi-
mum porosity criterion. Below a threshold porosity value
(nmax) solid-like behavior persists (Solid state) with positive
effective stress, updated with constitutive relations typical
of soils, like Mohr–Coulomb.

Conversely, above the maximum porosity, grains are
supposed to be detached. Thus, the stress transmission is
no more possible, the effective stress is zero and the soil
behaves like a fluid (Liquid state), with an effective viscosity
meq (Eq. (10)) (Beenakker, 1984), affected by the solid volu-
metric fraction ð1� nLÞ.

meq ¼ mm 1þ 5

2
ð1� nLÞ þ 5:2ð1� nLÞ2

� �

ð10Þ

In this formulation, the liquid phase is assumed weakly
compressible and the stress increment is computed with Eq.
(11)

_rL ¼ pLI þ _rL;dev ¼ KL _evol;LI þ 2meq _eL; ð11Þ

where KL is the liquid bulk modulus, I is the identity vec-
tor, _eL is the liquid strain increment and _evol;L is its volumet-
ric component.

In elements with SMPs in Solid state the deviatoric part
of the liquid stress tensor is assumed to be zero ( _rL;dev ¼ 0).
In Liquid state, i.e. as soon as fluidization occurs, the devi-
atoric component is computed considering Eq. (10) for the
equivalent viscosity.

4. Setup and calibration of numerical models

The methods outlined in the previous section are used to
reproduce numerically the column collapse tests described
in Section 2. The main differences are the type of descrip-
tion employed for the solid phase (discrete in DEM-
LBM, continuum in 2D-DP MPM), and the geometrical
degree of simplification (3D for DEM-LBM, 2D for 2P-
DP MPM). Preliminary 3D numerical analyses with
MPM confirmed that the results of the 2D model are not
significantly affected by geometrical effects, thus the
plane-strain model can be effectively applied to reduce
the computational cost. While the fluid material parame-
ters are relatively straightforward to determine, the solid
phase parameters are obtained through calibration.

4.1. DEM-LBM model setup

The DEM-LBM model is fully three-dimensional and
counts from 4000 to 9300 particles, depending on the col-
umn height H 0. Boundary walls have frictional properties
when interacting with the solid phase. Following Eq. (2),
particles can slip on the surface only when the friction is
overcome. Identical frictional coefficients are assumed for
the particle–particle contact and for the wall-particle con-
tact. For the fluid phase, the no-slip boundary condition
is applied at all boundaries.

The initial sample is assembled by gravity-induced depo-
sition of the particles in dry conditions inside the release
tank, and by subsequently filling the pores with liquid.
Concerning the liquid phase (LBM), pure water is consid-
ered and the molecular viscosity of water is assumed equal

to 10�3 Pa � s.
LBM is discretized using a uniform grid spacing of

D ¼ 6 � 10�4 m in each direction. This spacing results in
D=D ’ 4, which is sub-optimal with respect to the accuracy
of resolution of the pore space. This choice has two major
implications. Firstly, the particle shape is only roughly
resolved by the fluid solver. This error has limited effects
on the simulation accuracy, since the spherical shape is
only an approximation of the real particle shape. More
importantly, the permeability of the granular medium
may be different from the experimental one. This is proba-
bly compensated by the slightly looser packing obtained
using spheres (n ¼ 0:42) with respect to the real grains. In
any case, the use of a rougher grid allows to run DEM-
LBM simulations in a relatively short time (typically a

688 F. Ceccato et al. / Soils and Foundations 60 (2020) 683–696



few days), thus limiting the difference in computational
cost with respect to the pure-continuum model, which com-
pletes the simulation in a few minutes. The time step is uni-

form and equal to 8 � 10�5 s. Between two consecutive
LBM iterations, 57 DEM time steps are performed.

4.2. 2P-DP MPM model setup

For the pure-continuum strategy, a two-dimensional
MPM model is used, in plain strain conditions. Frictional
effects of the lateral boundary are neglected, and we assume
that they are small at the symmetry plane of the experi-
ment. The bottom boundary is fixed (i.e. fully rough), while
roller boundary conditions are applied at the other sur-
faces. A linear-elastic perfectly-plastic model with a
Mohr–Coulomb failure criterion is used.

The MPMmodel applies a structured mesh with element

size of 4 � 10�3 m; 12 LMPs and 12 SMPs are assigned to
each initially active element. A small value of local damp-
ing (0:02) is used to stabilize the results (Ceccato and
Simonini, 2019). This small damping coefficient does not
influence significantly the runout. The influence of element
size, MPs number, and local damping has been deeply dis-
cussed in previous works (Fern and Soga, 2016) consider-
ing dry column collapse simulated with a one-phase
approach. It was shown that mesh refinement improves
the definition of the failure surface, while having a small
effect on the runout. These considerations are confirmed
for the 2P-DP MPM model considered in this study. How-
ever, while in the dry case increasing the number of MPs
does not improve significantly the results, with the 2P-DP
approach, the use of only 3 MPs/elem sometimes leads to
numerical instabilities, and better results are obtained with
12 MPs/elem. A larger number of MPs reduces the quadra-
ture error (Steffen et al., 2010) and the occurrence of ele-
ments filled with only a small number of MPs, which
seems to be very important for the stability of 2P-DP
MPM. A further increase of the number of MPs increases
the computational cost without improving the results.

The boundary conditions for the liquid are identical to
those of the solid. A simple Newtonian model is used to
describe the material. In the 2P-DPMPMmodel, a reduced

value of the bulk modulus (2 � 107 Pa) compared to pure
water is used to speed up the calculation. A cavitation
threshold is imposed in MPM to overcome numerical diffi-
culties, thus only positive pressures are allowed.

As with LBM, the method has been extensively tested in
the classical one-phase dam-break problem, showing good
agreement with experimental results and other numerical
methods (Janßen and Krafczyk, 2011; Zhao et al., 2017).

Following the experimental configuration, a mean diam-

eter of 2:5 � 10�3 m is used to update the intrinsic perme-
ability and the drag force, with Eq. (7) and Eq. (9). The
initial porosity is set to 0.4.

In the MPM model the initial stress state is initialized
during a gravity loading step in which gravity is applied

while preventing horizontal displacement of both sides of
the column. The horizontal fixity on the left boundary is
then removed and the failure of the column is initiated.

4.3. Calibration in dry conditions

Before studying saturated conditions, a preliminary cal-
ibration of the material parameters governing the behavior
of the solid phase is carried out based on dry column col-
lapse tests. A reference height H 0 ¼ 0:06 m is considered
for calibration.

In DEM, micromechanical parameters are calibrated
following Marchelli et al. (2019). In particular, different
combinations of friction and rolling coefficients (ls in the
range [0:4; 0:8], and lr in the range [0:01; 0:15]) are tested,
while keeping a constant restitution coefficient. The final
set of parameters is selected by comparing the final deposit
shape in numerics and experiments. The particle contact
stiffness kn does not correspond to the physical value,
which would result in prohibitively small DEM time steps.
However, it is sufficiently high to keep the system within
the rigid limit, as defined by Roux and Combe (2002). In
this state, a change in stiffness does not alter significantly
the system kinematics.

In MPM, a series of parametric analyses has been per-
formed to calibrate the macroscopic friction angle showing
that / ¼ 35� gives the best results.

Table 2 lists the chosen set of parameters for both DEM
and MPM models. The simulation results that give the best
fit with the experimental data are illustrated in Fig. 5.

5. Numerical results in saturated conditions

The current section presents the numerical results
obtained in saturated conditions for the cases summarized
in Table 1. A cross-comparison between 2P-DP MPM and
DEM-LBM is performed.

5.1. Collapse dynamics

In the experiments, after gate opening, the granular
material collapses and water tends to flow out of the sam-
ple. At the same time, the top part of the column desatu-
rates. When the granular material mobilizes, the grains
closer to the free boundary accelerate and the number of
contacts decreases, with the superficial layer of material
moving towards fluidized conditions.

The evolution of the granular fabric can be well visual-
ized with the DEM. In the discrete simulations, the mean
coordination number (i.e. the mean number of contacts
per particle) is initially relatively high, and decreases during
the acceleration (see Fig. 6). This is particularly prominent
in the shallow part of the column. The mean coordination
number increases again during deposition. Fig. 7 shows
how the percentage of grains with a high coordination
number, e.g. 4, 5 or 6, decreases during motion. A sharp
rise in disconnected particles (zero coordination number)
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is observed from t=tref ¼ 0:1 to 2. At the same time, the
percentage of grains with a higher coordination number
lowers. At the beginning of the simulation, and at deposi-
tion, the column approaches static conditions; notwith-
standing the differences in the macroscopic shape of the
mass, the distribution of the coordination number is similar
in these two states.

Conversely, in the pure continuum model the granular
microstructure is not resolved, and no information on the
coordination number is available. The change of state in
the medium can nevertheless be observed. It appears as a
decrease of the mean effective stress due to the lack of con-
finement at the top and lateral boundaries of the column.
At these locations, the effective porosity increases, bringing
(eventually) the solid to the fluidized state. In this state, soil
effective stress is zero, and its presence in the fluid phase
increases the apparent viscosity, according to Eq. (10).
The boundary between fluidized and non-fluidized state is

Table 2

Material parameters used for the DEM and MPM simulations.

DEM MPM

Grain density qS [kg=m3] 2600 Grain density qS [kg=m3] 2600

Norm. cont. stiffness kn [N=m] 0:2 � 104 Initial porosity n [–] 0.4

Tan. cont. stiffness kt [N=m] 0:057 � 104 Poisson ratio [–] 0:3
Damping anðtÞ [–] 0:04 Young Modulus [Pa] 107

Restitution coef. [–] 0:88 Cohesion [Pa] 0:0

Friction coef. ls [–] 0:577 Friction angle [�] 35

Rolling coef. lr [–] 0:05

Fig. 5. Final configuration of dry column collapse: experimental vs.

numerical results.

Fig. 6. Statistical distribution of the coordination number at different time

instants.

Fig. 7. Percentage of grains with a specific coordination number at

different time instants.
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nmax, which is a model parameter. Fig. 8 shows the phase
status at SMPs at t=tref ¼ 2 for nmax ¼ 0:5 and nmax ¼ 0:8.
This parameter affects the soil profile slightly, but does
not seem to be relevant for the runout and the collapse
dynamics.

Fig. 9 compares the results obtained with the two
numerical models for the case H 0 ¼ 0:06 m. The MPM
model (panels a-c) predicts a faster collapse, with higher
front velocity and no clear separation between granular
and liquid fronts. In the DEM-LBM model (panels d-f),

the collapse develops more slowly and the formation of a
granular front is recognizable up to t=tref ¼ 5. After this
time, the water slowly flows out of the soil.

As an example, for the cases H 0 ¼ 0:03 m; 0:05 m, and
0:07 m (a ¼ 0:75; 1:25, and 1:75, respectively) the time-
evolution of the normalized solid front position is shown
in Fig. 10 comparing numerical and experimental results.
The position of the front in the numerical simulations is
defined as the horizontal coordinate X f;S overtaken by
0:5% of the total solid mass.

The evolution of the front position simulated by DEM-
LBM is slightly slower than the 2P-DP MPM and the
experimental results, especially for a ¼ 1:75.

The difference in collapse speed can be explained as due
to three simultaneous effects. Firstly, DEM-LBM is more
dissipative, because it resolves the energy losses due to
granular collisions. These are not directly considered in
the Mohr–Coulomb model applied in 2P-DP MPM

Fig. 8. Phase status of SMPs at t=tref ¼ 2 in case (a) nmax ¼ 0:5 and (b)

nmax ¼ 0:8. Black points are in fluidized state, grey points are in solid state.

The grey and black lines indicate the final deposition for nmax ¼ 0:5 and

nmax ¼ 0:8 respectively.

Fig. 9. Numerical results at three time instants t=tref ¼ 1; 2; 5. Grey circles indicate the position of the solid phase (SMPs or DEM particles) while a colour

scale is used to visualize the normalized fluid speed vL=ðgðH 0Þ0:5.

Fig. 10. Evolution of normalized front position in time for different aspect

ratios. Numerical results (hollow circles for DEM-LBM and full circles for

2P-DP MPM) and experimental results (triangles) in saturated conditions.
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(Redaelli et al., 2017b). Second, DEM-LBM can account
for negative pore pressures when the granular skeleton
dilates. Conversely, in the 2P-DP MPM formulation the
excess pore pressure can only be positive due to numerical
difficulties. Thus, in the pure-continuum model the changes
in pore pressure can promote granular mobility, but cannot
reduce it. Since granular columns in loose packing are con-
sidered here, this effect must be limited. Third, DEM-LBM
considers the confining effect of the lateral walls, but this is
minor compared to other contributes.

After the initial collapse stage, DEM-LBM exhibits a
continuous flow of fluid out of the deposit body. In the
experiment, this is not observed, due to the retaining effect
of surface tension, which is not included in our numerical
formulations. Thus, the flow front in DEM-LBM does
not reach static conditions for the fluid phase until the
totality of the fluid has filtered out of the granular deposit.
This process happens on a timescale that is much longer
than tref , but nevertheless has the effect of increasing the
measured runout for the DEM-LBM simulations.

From direct observation, the fluid front appears to be
slightly ahead of the granular front in all tests. MPM cor-
rectly reproduces this behavior, see Fig. 10. In DEM-LBM
though, the granular front is almost always faster. This
could be due to the resolution of the pore space in DEM-
LBM, as mentioned already in Section 4.1. Especially when
the grains are agitated, as is the case within the granular
front, this can cause an apparent reduction of permeability.
On the other hand, DEM-LBM is able to reproduce very
realistically the detachment of particles from the main
body, which is very difficult to reproduce in MPM due to
the continuum assumption.

5.2. Deposition

Fig. 11 shows the final shape of the deposit for different
initial column heights obtained with MPM (red-yellow
dots) and DEM-LBM (grey circles). The black line indi-
cates the experimental profile. The final shape of the solid
deposit in MPM is approximately a straight line, while in
DEM-LBM it is convex. This effect is due to the discrete
description of the granular assembly in DEM-LBM. There
is a relatively good agreement between the two numerical
models.

The discrepancies with the experimental results are
mainly due to the behavior of the top part of the column.
This is in partially saturated conditions, and not completely
dry as assumed by the numerical models. In the experiments,
some grains and fluid remain attached to the lateral walls due
to the fluid surface tension. These are recognized by the edge
detection algorithm. This effect is pronounced only within
the area covered by the initial position of the column, which
is shown in Fig. 11 with a hollow rectangle. Outside of this
area, the surface detection is fair.

The normalized runout ðLf � L0Þ=L0 as a function of the
aspect ratio is plotted in Fig. 12. The results obtained in

this study for the saturated column (sat) simulated with
DEM-LBM and 2P-DP MPM are compared with the
experimental results in dry and saturated conditions and
with literature studies by Bougouin and Lacaze (2018)
and Jing et al. (2018). Bougouin and Lacaze (2018) carried
out laboratory experiments in fully submerged conditions
(sub) with different ambient fluid and particle diameter.
Jing et al. (2018) simulated dry and submerged column col-
lapse tests with CFD-DEM. The results of the present
study consider saturated column collapse in air, thus the
differences with literature results could be due to the pres-
ence of the ambient fluid. Both numerical models slightly
overestimate the runout for a ¼ 0:75, but there is a rela-
tively good agreement in the other considered cases.

5.3. Considerations on the drag force

In multiphase continuum methods the definition of the
drag force is an essential ingredient of the model. The ratio
between the quadratic and the linear term in Eq. (7) is pro-

Fig. 11. Final configuration of the saturated column collapses for

H 0 ¼ 0:03; 0:04; 0:05; 0:06; 0:07 m (red or yellow dots stands for SMPs,

grey spheres are DEM solid grains and the black line is the experimental

profile).
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portional to a modified particle Reynolds number Rep
(Meruane et al., 2010) defined as:

f 2

f 1

� Rep ¼
DqLjjvL � vSjj

mm
ð12Þ

For low Rep, the quadratic term f 2 is negligible compared
to the linear term f 1. In the following, the reference veloc-

ity for the solid phase is assumed vS;ref ¼
ffiffiffiffiffiffiffiffiffiffi

g0H 0

p
, which is a

reasonable reference value for the solid front velocity as
shown in Jing et al. (2018). The reference velocity for the

liquid phase is assumed vL;ref ¼
ffiffiffiffiffiffiffiffiffi

gH 0

p
, which is the free fall

velocity. Note that vL;ref � vS;ref does not represent any true
relative velocity between phases during the collapse, but it
is considered as a representative parameter of the solid–
fluid interaction.

In order to explore the importance of the quadratic term
in Eq. (7) we performed parametric analyses increasing the
size of the column up to a factor of 100 while keeping
a ¼ 1:5. The liquid viscosity mm is varied between
0:001 Pa � s and 0:1 Pa � s and the grain size D between

0:0025 m and 0:25 m while keeping qL ¼ 1000 kg=m3 and

qS ¼ 2600 kg=m3. Only MPM simulations are performed
in this case due to the high computational cost requested
to perform similar DEM-LBM simulations.

Fig. 13 illustrates the results for two different values of the

particle Reynolds number Rep ¼ 4 � 103 and Rep ¼ 4 � 105,
showing the position of LMPs and SMPs at different time
instants. The results obtained using the linear and the
quadratic term in Eq. (7) are shown in panels (a-f).
Those obtained using only the linear term are shown in
panels (g-l).

In the case Rep ¼ 4 � 103, shown in Fig. 13 (a-c,g-i), there
is no clear separation between fluid and solid fronts.
Neglecting the quadratic term of the drag force does not
significantly alter the results. In contrast, for

Rep ¼ 4 � 105, Fig. 13 (d-f,j-l), the fluid can easily flow out
of the mixture, and in this case the effect of the quadratic
term is significant.

The results of the parametric analyses showed that the
importance of term f 2 in Eq. (7) becomes significant for
the relative position between fluid and solid front approx-

imately for Rep > 4 � 104. This means that an appropriate
formulation of the drag force is crucial to capture correctly
the solid–fluid interaction in these phenomena, especially
for high Reynolds numbers.

6. Conclusions

This paper discusses the numerical simulation of a satu-
rated granular column collapse in air. The benchmark case
is provided by an experimental campaign performed on a
small-scale physical model. We present and compare two
numerical methods: DEM-LBM and 2D-DPMPM, respec-
tively discrete- and continuum-based. Both are multiphase,
and can simulate solid–fluid interactions in granular materi-
als, including separations between the constituents.

DEM-LBM applies a micromechanical approach to
simulate grain-grain interactions, at the cost of requiring
a very fine discretization for the fluid phase. While the dis-
crete approach offers more insight into the microscopic
structure of the granular material, it is also computation-
ally demanding, with the algorithm cost growing with the
total number of particles and with the decrease of the mesh
size (D). This limits the simulations to relatively large
grains, or small samples. On the other hand, the efficiency
of MPM is not altered by the grain size, making it easily
applicable to real-scale problems.

The 2D-DP MPM model predicts a faster collapse with
higher velocities compared to DEM-LBM. We believe this
is mainly due to the constitutive model (Mohr–Coulomb).
Additionally, in saturated conditions DEM-LBM can
account for negative excess pore pressure, thus reducing
granular mobility, especially when significant dilating volu-
metric deformations are expected. In any case, the runout
is similar and in relatively good agreement with the exper-
imental results. This is probably due to the physical model
featuring grains arranged in a loose packing, and thus lim-
iting the effect of dilation.

The pure-continuum assumptions of 2P-DP MPM arise
questions on the modelling of the drag force, on the fluidiza-
tion process, and on the constitutive model of the con-
stituents. In particular, the drag force expressed in Eq. (6)
produces realistic results, especially in terms of runout. It
also seems to be appropriate in a wide range of cases. The
effect of the quadratic term in the formulation appears neg-
ligible for small values of the particle Reynolds number as
defined as in Section 5.3. The parametric analysis showed

Fig. 12. Normalized runout as function of the initial aspect ratio a,

dry = dry column collapse in air, sat = saturated column collapse in air,

sub = submerged column collapse.
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that the importance of this term is negligible for Rep < 104.
However, the wide variability of conditions under which sat-
urated granular material can be encountered clearly requires
these aspects to be further investigated in the future.

Currently, simple elasto-plastic models are used for the
solid and the criteria of maximum porosity is applied for
the solid–fluid transition with reasonably good results.
Recently, constitutive models incorporating Kinetic theory
and critical state soil mechanics have been proposed for dry
granular flows at different shear rates (Redaelli et al., 2015;
Redaelli et al., 2017a; Redaelli et al., 2017b), but the exten-
sion to saturated conditions is still in progress (Redaelli
et al., 2019). LBM-DEM can be effectively used to develop
and validate these types of constitutive models. Further, it
can support their implementation in MPM or other
continuum-based models, and their application to bench-
mark examples such as the one presented in this paper.
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