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Abstract 
 
Geographically Weighted Regression (GWR) is increasingly used in spatial analyses of social and 
environmental data. It allows spatial heterogeneities in processes and relationships to be 
investigated through a series of local regression models rather than a global one. Standard GWR 
assumes that the relationships between the response and predictor variables operate at the same 
spatial scale, which is frequently not the case. To address this, several GWR variants have been 
proposed. This paper describes a route map to inform the choice of whether to use a GWR model 
or not, and if so which of three core variants to apply: a standard GWR, a mixed GWR or a 
multiscale GWR (MS-GWR). The route map comprises primary steps: a basic linear regression, 
a MS-GWR, and investigations of the results of these. The paper provides guidance for deciding 
whether to use a GWR approach, and if so for determining the appropriate GWR variant. It 
describes the importance of investigating a number of secondary issues at global and local scales 
including collinearity, the influence of outliers, and dependent error terms. Code and data for the 
case study used to illustrate the route map are provided, and further considerations are described 
in an extensive Appendix. 
 
Keywords: Spatially varying coefficient model; non-stationarity; spatial heterogeneity; 
autocorrelation; regression 
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1. Introduction 
 
This paper provides guidance for reliable application of Geographically Weighted Regression 
(GWR). Its aim is to ensure that the increasing numbers of GWR applications in the physical and 
environmental sciences are correctly formulated and appropriate to the study objective because 
many are not, even in the peer reviewed literature. GWR is a spatially varying coefficient (SVC) 
model that quantifies variations in the scales of processes and the relationships being examined. 
This provides an advantage over alternatives which commonly assume data relationships are fixed 
(i.e. constant across space), including those accounting for spatial autocorrelation effects. GWR 
supports enhanced understanding of geographical processes through the study of relationship 
heterogeneity, which can be a study aim in itself or used to guide further data collection and 
analysis. 
 
1.1 GWR in context 
 
There is a long history of explicitly spatial analyses in a number of disciplines including crop 
science (Fisher 1935), meteorology (Kolmogorov 1941), geology/mining (Matheron 1963), 
forestry (Matern 1960), ecology (Clark and Evans 1954), soil science (Burgess and Webster 
1980a; b) and geography (Chorley and Haggett 1967). Most developments have centred on 
accounting for spatial autocorrelation effects (e.g. Cressie 1993) rather than spatial heterogeneity 
effects (Fotheringham et al. 2002; LeSage and Pace 2009), the latter of which are relatively recent 
when specifically considering the nature of data relationships in regression models. 
 
GWR (Brunsdon et al. 1996; 1998a) investigates how and if relationships between response and 
predictor variables vary across space. It is underpinned by the idea that whole map regressions 
such as those estimated by ordinary least squares (OLS) may make unreasonable assumptions 
about the stationarity of the regression coefficients under investigation (Openshaw 1996; 
Fotheringham and Brunsdon 1999). As an SVC model, GWR provides measures of non-
stationarity in data relationships through the generation of mappable regression coefficients, and 
inferences on stationarity through statistics and simulation tests (e.g. Nakaya 2015; da Silva and 
Fotheringham 2016; Harris et al. 2017). As described in Brunsdon et al. (1996; 1998a), GWR 
stems from locally weighted regression (LWR) (Cleveland 1979; Loader 2004) and thus 
extensively borrows from the same non-parametric regression paradigm (Wand and Jones 1995), 
including generalized additive models (GAMs) (Hastie and Tibshirani 1986). As with LWR, GWR 
is a localized, non-stationary adaptation of the basic linear regression model, where for LWR 
localness is in attribute-space, whilst for GWR localness is in geographic-space (see also Páez et 
al. 2011). 
 
GWR is not a unique concept for SVC modelling. SVC models that pre-date GWR include the 
expansion method (Casetti 1972) and weighted spatial adaptive filtering (Gorr and Olligschlaeger 
1994). Since GWR circa 1996, alternative SVC models have been developed including a 
parametric version of GWR (Páez et al. 2002a; b), Bayesian SVC models (Assunção 2003; 
Gelfand et al. 2003), spatial additive models (e.g., Fahrmeir et al., 2000, 2004), and eigenvector 
spatial filtering (ESF) (Griffith 2003; 2008). Theory for GWR (in its usual non-parametric form), 
Bayesian SVC, spatial additive, and ESF models has continued to evolve (e.g. GWR models – 
Brunsdon et al. 1998b; 1999; 2012; Fotheringham et al. 2002; Wheeler 2009; Mei et al., 2016; 
Geniaux and Martinetti 2018; Yu et al. 2019; e.g. Bayesian SVC models – Waller et al. 2007; 
Wheeler and Waller 2009; Finley 2011; Datta et al., 2016; e.g. spatial additive models – Kneib et 
al., 2009; Xue and Liand 2010; e.g. ESF models – Griffith 2012; Murakami et al. 2017; Murakami 
and Griffith 2019a; b), including many useful SVC model comparison studies using simulated 
data with known and testable properties (Finley 2011; Oshan and Fotheringham 2018; Wolf et al. 
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2018; Murakami et al. 2019), demonstrating both the merits and drawbacks of each method. Of 
these, GWR has been extensively applied in a wide variety of scientific disciplines, such as 
environment health (e.g. Yoneoka et al. 2016), landscape ecology (e.g. Zhang et al. 2004), soil 
quality (e.g. Song et al. 2016), air quality (e.g. You et al. 2015), water quality (e.g. Sun et al. 
2014), remote sensing (e.g. Foody 2003; 2004), disease patterns (e.g. Brunton et al. 2017), urban 
studies (e.g. Huang et al. 2019) and housing markets (e.g. Yu et al. 2007). 
 
1.2 Motivation: Why this paper is appropriate now? 
 
The motivation for this paper at this time is because GWR is increasingly being used for different 
spatial analyses but not always correctly. A search of Web of Science 
(http://apps.webofknowledge.com) for the keyword Geographically Weighted Regression in July 
2019 indicated 1795 records, with sharp increases in recent years, most articles from USA and 
China. This proliferation has been driven by a number of factors. 
 
First is the increasingly spatial nature of data, which are now routinely collected with location 
attached, facilitated by the many GPS-enabled monitoring devices and the tagging of, for example, 
administrative data with census geographies. Second, there is a broader cross-disciplinary demand 
for methods to quantify spatial patterns in data, commonly through some kind of hotspot 
estimation, spatial cluster analysis or spatially informed regression technique. This has been 
accompanied by recognition of the need to cater for spatial dependencies in the data or the model 
parameters themselves, reflecting Tobler’s first law of geography (Tobler 1970) which describes 
spatial dependency and spatial autocorrelation. GWR is a method that enables this, and on first 
sight it appears relatively intuitive model to understand. Third, GWR’s simplicity fuels its 
popularity, which is reflected by its implementation in a number of software packages including 
the ESRI ArcGIS suite of tools, five R packages (spgwr (Bivand et al. 2013), gwrr (Wheeler 2013), 
GWmodel (Lu et al. 2014; Gollini et al. 2015), McSpatial (McMillen 2013) and lctools (Kalogirou 
2019)), two Python packages (PySal (Rey and Anselin 2010) and mgwr (Oshan et al. 2019)) and 
standalone implementations such as GWR3 (Charlton et al. 2003), GWR4 (Nakaya 2015) and 
MGWR 1.0 (Li et al. 2019). Each software package has a standard GWR option complemented by 
a variety of alternative GWR forms and associated tools. No single package provides a fully 
comprehensive choice to the user although the GWmodel package comes closest. 
 
Consequently, it is increasingly easy to find applications of GWR in the literature where it is 
questionable whether the authors fully understood the inputs, the model assumptions, the model 
outputs and the associated limitations of different parameter and model choices. The situation is 
analogous to the old joke What is a lecture?1 , and the result is GWR applications that are 
inappropriate (i.e. where GWR should not have been applied to the problem), poorly calibrated 
(i.e. the GWR model is incorrectly parameterised), that use the incorrect form of GWR or where 
the GWR analysis is partial and incomplete. With that in mind, this paper aims to provide a route 
map to promote the informed use and application of GWR. 
 
1.3 A GWR route map 
 
The GWR route map is achieved empirically through a soil case study in the Loess Plateau of 
China, that guides the reader through different modelling scenarios that are of primary importance 
to a GWR analysis. These main arteries of the route map take the reader to GWR Basecamp. 

 
1 Answer: A lecture is the process by which the lecturer’s words, as presented on a blackboard, whiteboard or screen, 
are transcribed to the student’s notes without going through the brain of either.  
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Strategies for secondary model decisions (scaling the summit) are described in the Discussion 
(Section 4) that outlines a number of secondary issues and considerations. Not all secondary issues 
may appear in a specific GWR analysis, and some may interact, including interactions with those 
considered of primary importance. Thus, although the GWR route map is presented as a linear 
workflow, it should be recognised that in practice, it is often an iterative, more complex process, 
as may be the case in any regression study. The implications in this respect are that, for some 
spatial processes, a GWR analysis can be relatively straight-forward, while for others, it can be 
problematic with increasing complexity. Ultimately, the result of this two-stage primary-to-
secondary strategy should lead to an informed, sensible and appropriate GWR implementation, 
from which reliable and robust inferences can be made. 
 
Further, the intention of this paper is not necessarily to replace existing guides, such as high-
quality user manuals provided with many of the listed software packages above, but instead to 
provide a guide that is complementary. This paper also aims to update best practise in GWR 
modelling, say for example, with respect to the accessible classic GWR text of Fotheringham et 
al. (2002). Although the topic of this paper sits within the general category of model selection in 
regression (e.g. Fox 2016) and in spatial regression (e.g. Anselin 2006), its objectives are not to 
advance the theory in the respect, but instead utilise known theory within a GWR context. 
 
Some generic considerations and further guidance are also given in an Appendix with respect to: 
(i) sample and data characteristics (Appendix section A1), (ii) influences on weighting schemes 
(Appendix A2), (iii) inference in GWR (Appendix A3), (iv) GWR as a spatial predictor (Appendix 
A4) and (v) GWR development through simulation experiments (Appendix A5). The Appendix is 
extensive covering many important issues and should not be over-looked. In this respect, early 
drafts of this paper considered many such issues within the main text but were ultimately 
consigned to the Appendix for narrative purposes. 
 
The route map is presented using only real data. This is deliberate, as the intention is to provide 
‘real world’ practical guidance to a GWR analysis. A statistically rigorous evaluation of the 
proposed route map through a Monte Carlo simulation experiment that generates data with known 
properties would be a more involved study, best presented elsewhere and to a different audience. 
That said, Appendix A5 provides guidance to the implementation of such a study. 
 
1.4 Context and analogous extensions 
 
This paper focuses on GWR applications in the physical and environmental sciences where data 
are commonly measured on a point support. The main messages of the paper are similarly relevant 
to applications using data measured on area support, for example socio-economic studies of 
population demographics, inequalities, education, crime or health, as the different 
implementations of GWR use the areal unit centroids, and thus default to data on point support. 
Notable exceptions are highlighted. 
 
The paper considers a Gaussian response case. However, route map considerations are directly 
applicable to alternative response distributions via generalized GWR models (Fotheringham et al. 
2002; Atkinson et al. 2003; Nakaya et al. 2005; Waller et al. 2007; Nakaya 2015; Dong et al. 2018; 
Comber et al. 2018a), or where the response is measured through a series of quantile-based 
distributions (Chen et al. 2012; 2020; Harris and Juggins 2011). They are similarly relevant to 
extended GWR models that include temporal considerations (Huang et al. 2010; Fotheringham et 
al. 2015; Du et al. 2018; Wu et al. 2019), contextualized GWR models dealing with hierarchical 
data (Harris et al. 2013), and GWR models that downscale outputs from area to point support 
(Murakami and Tsutsumi 2015; Jin et al. 2018). 
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2. Models and Data 
 
2.1 Linear regression, standard, mixed and multiscale GWR 
 
Although, various forms of fixed coefficient regression and varying coefficient GWR models will 
be referred to in this study, it is first useful to describe four models that are considered of primary 
importance to a GWR study. Here, the basic linear regression model can be defined as: 
 

𝑦" = 	𝛽& +	(𝛽)𝑥") + 𝑒"	
,

)-.

 (1) 

 
where for observations indexed by i=1…n, yi is the response variable, xik is the value of the kth 
predictor variable, m is the number of predictor variables, b0 is the intercept term, bk is the 
regression coefficient for the kth predictor variable and ei is the random error term that is 
independently normally distributed with zero mean and common variance σ 2. OLS is commonly 
used for model estimation in linear regression models. 
 
Standard GWR is similar to linear regression but calibrates the regression model at point locations 
(u, v) either from the sampled data or otherwise, using nearby sampled data falling within a moving 
window or kernel at the centre of each discrete location: 
 

𝑦" = 	𝛽&(𝑢", 𝑣") +	(𝛽)(𝑢", 𝑣")𝑥")

,

)-.

+ 𝑒" (2) 

 
where (ui, vi) is the spatial coordinate of the ith observation and bk (ui, vi) is a realization of the 
continuous function bk (u, v) at point i. As with the linear regression model, the set of ei obey an 
independent normal distribution with zero mean and common variance σ 2. In contrast to the global 
linear regression, GWR conducts local regression at any given location (the geographical part of 
GWR), using observations weighted by their distances to the location under consideration (the 
weighted part). Equations for calculating the local coefficient standard errors for GWR can be 
found in Fotheringham et al. (2002) and Harris et al. (2010a). 
 
The weightings in GWR are determined by a kernel-based distance decay function and its 
bandwidth. Bandwidth can be a fixed distance or a fixed number of nearest data points (i.e. an 
adaptive radius depending on the local density of points). Automated routines exist to determine 
an optimal bandwidth by minimizing some measure of model fit such as the Akaike information 
criterion (AIC) and its corrected version (AICc) (Fotheringham et al. 2002, following Akaike 
1973; Hurvich and Tsai 1989), Bayesian Information Criterion (BIC) (Nakaya 2001, following 
Schwarz 1978) or a leave-one-out cross validation score (CVS) (Brunsdon et al. 1996; 1998a, 
following Bowman 1984). As the bandwidth increases, the standard GWR estimator 
asymptotically converges to the OLS estimator of the whole map linear regression model. 
 
In the standard form, a single bandwidth is used to calibrate GWR. This may be unrealistic because 
it implicitly assumes that each response-to-predictor relationship operates at the same spatial scale. 
Some relationships may operate at larger scales and others at smaller scales. A standard GWR will 
nullify these differences and find a ‘best-on-average’ scale of relationship non-stationarity. In this 
respect, mixed (or semiparametric) GWR (MX-GWR) (Brunsdon et al. 1999; Mei et al. 2004; 
2006; 2016) can be implemented in which some relationships are assumed to be stationary whilst 



6 
 

others are assumed non-stationary. However, MX-GWR only in part addresses the limitation of 
standard GWR, as the subset of locally varying relationships is still assumed to operate at the same 
spatial scale. 
 
To fully address this, multiscale GWR (MS-GWR) (Yang 2014; Lu et 2017; 2018; Fotheringham 
et al. 2017; Leong and Yue, 2017;Yu et al. 2019; Oshan et al. 2019; Li et al. 2020) can be used, 
in which each relationship is specified using its own bandwidth, and the scale of relationship non-
stationarity may vary for each response-predictor relationship. Unlike the linear regression and 
GWR, both MX-GWR and MS-GWR require an iterative back-fitting procedure for their 
estimation and as such can be computationally demanding (Lu et al. 2018; Li and Fotheringham 
2020). Descriptions moving from GWR to MX-GWR and from GWR to MS-GWR, including 
calculations for coefficient standard errors and t-values, can be found in Mei et al. (2016) and Yu 
et al. (2019), respectively building on the initial work outlined in Yang et al. (2011). 
 
In this study’s implementations of GWR, MX-GWR and MS-GWR, a bi-square weighting kernel 
is used (e.g. see Gollini et al. 2015) where a single bandwidth b is found for standard GWR and 
also for the pre-specified local or non-stationary relationships in MX-GWR, while m + 1 
bandwidths are found for MS-GWR. All bandwidths are optimized by minimizing the AICc. 
 
2.2 Case study data 
 
The case study consists of a single soil dataset of 689 observations, spaced at approximately 100 
m in a small watershed in the Loess Plateau, China (110.32821°E and 38.83433°N). The data are 
shown in Figure 1 and described in Wang et al. (2009) who undertook only a linear regression 
analysis but complemented with a geostatistical variographic analysis. The data are also described 
in Comber et al. (2018b) who used the same data to develop an extension to GWR. The data set 
includes soil total nitrogen (STN), taken as the response variable, and six predictor variables; soil 
organic carbon (SOCgkg), nitrate nitrogen (NO3Ngkg), ammonium (NH4Ngkg), and percentage 
clay (ClayPC), silt (SiltPC), sand (SandPC) content. In both Wang et al. (2009) and Comber et al. 
(2018b), the data were transformed, and this operation is retained here: STN, SOCgkg, NO3Ngkg 
and NH4Ngkg are transformed using natural logs and ClayPC is square root transformed. As with 
any regression analysis due consideration should be given to the nature of data relationships, the 
use of data transforms and associated model specification tasks prior to the main model fits – see 
Appendix A1. 
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Figure 1. The case study data locations. 

 
Each analysis in the GWR route map below predicts STN using different predictor variable subsets 
to illustrate specific points. At no point is the intention to conduct a nuanced regression analysis 
that attempts to fully characterise and interpret the soil processes. Rather the different data set 
scenarios are used only to illustrate the route map. The data set and the R code used to undertake 
the analyses are available from https://github.com/lexcomber/GWRroutemap. 
 
2.3 Case study scenarios 
 
Four data set scenarios were chosen to illustrate the route map decisions. These are given in Table 
1, each with STN as the response but with differing predictors. The compositional nature of the 
clay / sand / silt data is catered for by omitting at least one from an analysis. Critically, the intention 
is to treat each scenario as a distinct and independent data set and not as a linked model 
specification exercise with respect to predictive variable selection. In this respect, ‘Analysts’ are 
assigned to each data set, where Analysts B-D are entirely unaware that more predictors of STN 
exist. To emphasise, this directly entails that model fit statistics such as AICc should not be 
compared across all study models (i.e. those of all four scenarios) but only compared for those 
models relating to each scenario, in turn. 
 

 SOCgkg ClayPC SiltPC SandPC NO3Ngkg NH4Ngkg 
Analyst A yes yes yes - yes yes 
Analyst B - - - yes yes - 
Analyst C yes - - - - yes 
Analyst D yes - - yes yes - 

Table 1. Data set scenarios in terms of four different ‘Analysts’. 
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3. Primary model decisions 
 
The fundamental consideration for undertaking a GWR analysis is that it should be justified in 
terms of the aims of the analysis and the characteristics of the data. If spatial effects are evident in 
the data (see Appendix A1 for data considerations and exploratory mapping of variables) then a 
GWR can be considered but this requires demonstrating that alternate models, specifically ones 
with fixed coefficients, are not suitable. To achieve this, the following steps for any GWR analysis 
are recommended: 
 

1) A basic linear regression should be undertaken and the results investigated. 
2) A MS-GWR should be calibrated and the estimated bandwidths interrogated. 
3) Based on findings (1) and (2), one from a standard GWR, MX-GWR and MS-GWR should 

be considered for further analysis provided an SVC model is considered suitable in the 
first place. 

 
The linear regression model assumes fixed data relationships and provides the baseline against 
which all forms of GWR can be compared. The MS-GWR model, estimates the bandwidths for 
each response-predictor relationship. Evaluating these directly quantifies any spatially varying 
relationships and at what spatial scale they each operate at. This in turn informs on whether to 
pursue a GWR analysis and if so, which of three different GWR forms to follow. That is, given 
the MS-GWR results, can a simpler model in a linear regression, standard GWR or MX-GWR 
provide a viable and pragmatic alternative? Or is MS-GWR the only viable option? 
 
This approach to primary model choice is recommended first because the theory for the standard 
linear regression is extremely well developed, whilst theoretical developments reduce 
exponentially moving from standard GWR, to MX-GWR, and finally to MS-GWR, where MS-
GWR is relatively recent with some theoretical consideration still unresolved (Lu et al. 2019). 
Second, other critical considerations of model complexity, sample size, sample configuration and 
sample variation play key and intertwined roles, which cannot be entirely resolved through a 
comparison of model parsimony-fit statistic such as AIC / AICc. Thus, choosing a simpler 
regression over the relatively complex MS-GWR is advocated but where this decision is informed 
by following the proposed route map. 
 
Both the linear regression and MS-GWR analysis should also investigate for the presence of 
spatially autocorrelated model residuals. Thus, further to the four model choices (of linear 
regression, GWR, MX-GWR and MS-GWR), a fifth model is considered where an alternative 
fixed coefficient regression is fitted but with a spatially autocorrelated error term (i.e. a spatially 
autocorrelated model, SAM). For this study, the spatially autocorrelated error term is modelled by 
the parameterization of its covariance using an exponential function decaying with respect to the 
Euclidean distance separating sample sites. The restricted maximum likelihood (REML) method 
(e.g. Lark et al. 2006) is used for the estimation. The SAM will warrant consideration depending 
on the nature of spatially autocorrelated residuals from the linear regression fit and also if the MS-
GWR fit indicates that only the intercept is found to be spatially varying (Nakaya et al. 2005; 
Harris et al. 2010b; Harris 2019). Again, the theory for the SAM and related models is well 
developed (e.g. Schabenberger and Gotway 2004; Waller and Gotway 2004). 
 
The kernel bandwidth identification is the critical consideration in GWR as it determines how 
many data points are included in the data subset passed to each local regression and how these 
data points are spatially weighted. Bandwidths dictate the degree of smoothing or variation in the 
local regression coefficient estimates, and the study’s interpretations and inferences for process 
heterogeneity thereafter. 
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Determining the scale at which data relationships operate is not a straightforward task. In this 
study, bandwidths are found objectively via AICc, but this should not discount user-specified 
bandwidths when there exists some strong prior belief, theoretical justification or expert 
knowledge for their use. Similar discussions can be found in related kernel weighting paradigms, 
such as kernel density estimation, where automated bandwidth approaches are not necessarily 
viewed as a panacea for bandwidth selection (Silverman, 1986). There are strong benefits in 
conducting an extensive bandwidth investigation, as final model outputs are more assured. 
 
For the primary analyses, only rudimentary assessments of statistical (relationship) significance 
are undertaken using coefficient standard errors, t-values and p-values from standard GWR, MX-
GWR and MS-GWR models. Caveats on their use with all forms of GWR are discussed in 
Appendix A3. 
 
3.1 Step 1: Basic linear regression and autocorrelated residuals 
 
The first step is to undertake a global linear regression. The aim for the regression analysis is to 
try to understand how the predictors relate to the response variable, specifically: (a) which 
relationships are statistically significant, (b) evidence for specifying an autocorrelated error term, 
and (c) the fit of the linear regression itself. Table 2 summarises the linear regression coefficient 
estimates and their significance from zero, for all four Analysts. The linear models from Analysts 
A and C provide a mixture of significant and insignificant predictors of STN, while all predictors 
are significant for the linear models from Analysts B and D. 
 
 Analyst A Analyst B Analyst C Analyst D 
 Estimate p-value Estimate p-value Estimate p-value Estimate p-value 
Intercept -2.220 0.000 -0.723 0.000 -2.130 0.000 -1.437 0.000 
SOCgkg 0.690 0.000 - - 0.918 0.000 0.683 0.000 
ClayPC -0.011 0.843 - - - - - - 
SiltPC 0.015 0.000 - - - - - - 
SandPC - - -0.021 0.000 - - -0.012 0.000 
NO3Ngkg 0.126 0.000 0.355 0.000 - - 0.112 0.000 
NH4Ngkg -0.146 0.047 - - -0.011 0.884 - - 
Table 2. Linear regression coefficient estimates and their significance (p-value). 
 
To assess spatial autocorrelation of the linear regression residuals, a spatial weight matrix was 
defined and unbiased estimates of Moran’s I and their significance were determined (Table 3), 
under the expectation of random and independent residual distributions. Moran’s I for all four 
models are significant, where the spatial structure in the linear regression residuals varies from 
relatively weak to relatively strong (data for Analyst A has the weakest structure, while data for 
Analyst C has the strongest), as reported by the magnitude of the estimates. In this case, all four 
data set scenarios indicate that a fixed coefficient regression with a spatially autocorrelated error 
term could be suitable (i.e. a SAM via a REML estimation). This is not surprising given the data 
are spatial. 
 
Table 3 also summaries the error statistics for the four scenarios with AICc and R2 values. AICc 
is an in-sample statistic reflecting model parsimony, while R2 is also in-sample, reflecting model 
prediction accuracy. Ideally, an out-of-sample statistic should also be reported, such as the CVS 
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or the PRESS statistic (Allen 1974), as this addresses a certain bias found with in-sample statistics. 
However, no currently coded MS-GWR model could provide such an out-of-sample measure. 
 

 Moran’s I p-value AICc R2 
Analyst A 0.142 0.000 1124.0 0.609 
Analyst B 0.174 0.000 1377.4 0.430 
Analyst C 0.219 0.000 1223.1 0.545 
Analyst D 0.144 0.000 1131.0 0.603 

Table 3. Residual autocorrelation measures using Moran’s I and fit statistics (AICc and R2) from the four 
linear regression fits. 
 
Thus, for all four scenarios, there is no indication, as of yet, that a GWR analysis may be 
appropriate, although the existence of autocorrelated residuals from a linear regression fit 
commonly suggests that a GWR analysis may be useful, even though such outcomes do not 
indicate the presence of spatially varying relationships between the response and the predictor 
variables. This observation is critically important for understanding spatial regression modelling 
in general and is routinely confused in GWR studies. Useful discussions on this misconception, 
together with issues of identifying spatial autocorrelation effects from spatial heterogeneity in 
terms of regression relationships can be found in Harris (2019) and references therein. 
 
In general, but not a rule, measures of strong model fit (e.g. R2 > 0.8), coupled with weak and 
insignificant levels of spatial autocorrelation in the residuals, suggest that a linear regression 
would be appropriate. This might be a fully specified model that included measures of all likely 
predictors or factors driving the soil response variable, some of which are inherently spatial (e.g. 
topography, soil class, etc.). If the fit is poor and exhibits significant levels of residual spatial 
autocorrelation, a GWR analysis is still an option, as is a SAM. 
 
In summary, this first step has fitted a linear regression model to identify which relationships are 
globally significant and whether spatial autocorrelation effects may potentially exert an important 
influence on these findings. 
 
3.2 Step 2: Multiscale GWR (MS-GWR) and bandwidth estimation 
 
The second (and concurrent) step of the primary route map is to undertake an MS-GWR analysis. 
This informs on the different scales of relationships in the data, where some may be local and 
others global. The MS-GWR bandwidths explicitly describe the degree of spatial heterogeneity 
associated with each variable’s relationship to the response. For the MS-GWR analysis at this 
stage, only the following need investigation: (i) the estimated bandwidths (ii) evidence for residual 
autocorrelation, and (iii) the fit of MS-GWR itself. 
 
The estimated MS-GWR fixed distance bandwidths are shown in Table 4, with adaptive distance 
bandwidths illustrated for the MS-GWR model of Analyst A only. In this study, the maximum 
number of data points that can be included under an adaptive bandwidth is 689 (the total number 
of observations in the data) and the maximum fixed bandwidth is 3742 m (the maximum distance 
between any pair of data points). The bandwidths in Table 4 should be interpreted in light of these 
values. For Analyst A, the order of bandwidth size is consistent between fixed and adaptive forms, 
and this was broadly the case for the other three data set scenarios. This similarity is re-assuring 
but to a certain extent reflects that the study data were sampled on a loosely regular grid. Studies 
with data clearly on an irregular sample configuration may need to experiment more in this respect 
(see Appendix A1). 
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 Intercept SOCgkg ClayPC SiltPC SandPC NO3Ngkg NH4Ngkg 
Analyst A 555.9 2483.9 3741.7 1080.8 - 382.5 3741.7 
Analyst A* 57 631 685 306 - 55 685 
Analyst B 445.8 - - - 1232.9 731.9 - 
Analyst C 424.9 3741.4 - - - - 3741.8 
Analyst D 573.6 2214.6 - - 1066.5 378.4 - 

Table 4. The fixed bandwidths in metres (max = 3742 m) for different models arising from an MS-GWR. 
For Analyst A, * indicates an adaptive bandwidth (max = 689). 
 
On viewing the fixed bandwidth results only, clear patterns emerge relating to each predictor 
variable and the scale of its spatially varying relationship to the response, STN. For Analyst A, the 
MS-GWR bandwidths for ClayPC and NH4Ngkg both strongly tend towards the maximum, global 
bandwidth of 3742 m, while SOCgkg and SiltPC have bandwidths of about two-thirds and one-
third of the global one, respectively. The bandwidths for the intercept and NO3Ngkg for Analyst 
A are both strongly local. For Analyst B, the bandwidths for the intercept, SandPC and NO3Ngkg 
are all local. For Analyst C, the bandwidths for SOCgkg and NH4Ngkg are essentially global, 
while the intercept is local. For Analyst D, none of the bandwidths appear global, where those for 
the intercept, SOCgkg, SandPC and NO3Ngkg vary locally but appear quite different in 
magnitude. 
 
To assess residual spatial autocorrelation for the MS-GWR fits for each Analyst, estimates of 
Moran’s I and their significance are given in Table 5, along with MS-GWR fit statistics. For each 
Analyst only, the results need to be directly compared to the corresponding results given in Table 
3 (for the linear regression model). Clearly in all data set scenarios, residual autocorrelation is now 
negligible, while model fit improves over that found for the corresponding linear regression. Note 
that the Moran’s I analysis for MS-GWR does not account for first- to second-order identification 
bias (see Armstrong 1984), unlike the bias accounted for in the corresponding Moran’s I analysis 
for the linear regressions in Table 3. 
 

 Moran’s I p-value AICc R2 
Analyst A -0.007 0.604 1050.4 0.713 
Analyst B -0.013 0.700 1264.4 0.580 
Analyst C 0.005 0.381 1106.8 0.662 
Analyst D -0.009 0.636 1057.4 0.708 

Table 5. MS-GWR residual autocorrelation measures using Moran’s I and error statistics. 
 
 
3.3 Step 3: Choice of primary model 
 
The results of the initial linear regression and MS-GWR analyses guide primary model choice. 
First, from the linear regression analysis in Step 1, it appears that a fixed coefficient model should 
only be considered if calibrated with an autocorrelated error term, for all four Analysts (i.e. all can 
consider SAM fits). Second, from the MS-GWR analysis in Step 2, some form of GWR is similarly 
worth considering, for all Analysts, as residual autocorrelation essentially disappears with a MS-
GWR fit, while at least one predictor bandwidth, including that for the intercept, is clearly local. 
Step 2 MS-GWR models also consistently improve fit over their corresponding linear models of 
Step 1. For deciding on the primary model, the following sub-sections provide guidance to how 
this should be undertaken considering each of five regression possibilities (Linear regression, 
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SAM, standard GWR, MX-GWR and MS-GWR) and the four data set scenarios. Critical to Step 
3 are the presentation and interpretation of the estimated coefficients and associated uncertainties 
from competing models. 
 
Investigating linear regression and SAM for Analyst C 
 
A linear regression should be considered as a potential final model when all bandwidths from MS-
GWR are large (i.e. tend towards the global situation), including the intercept. As a rule of thumb, 
this is when they are broadly greater than 80% of the maximum distance between data points (or 
80% of the data points in the adaptive bandwidth case). In this respect, none of the Analysts have 
a data set that clearly suggests a linear regression fit to be appropriate. However, from above, it is 
stated that all analysts could consider a SAM fit (as all indicated autocorrelated residuals from 
their linear regression models), and in this respect, a SAM can be further endorsed if all predictor 
variable bandwidths from MS-GWR tend to the global, but the intercept is local. This is clearly 
the case for Analyst C’s data set (from Table 4). 
 
Thus, in this instance, the primary route map has guided Analyst C to a SAM. It is prudent to 
compare SAM outputs to the linear regression model outputs because only the intercept term is 
locally varying from the MS-GWR. The coefficient summaries in Table 6 indicate only marginal 
gains in process interpretation with the SAM fit. However, the AICc improves with the SAM 
(1148.4 compared to 1223.1 for the linear regression). Thus, in this instance, there is only marginal 
inferential value to the inclusion of second-order spatial effects via a SAM, as reflected by the 
broadly similar estimates and statistical inferences of regression coefficients to the non-spatial 
linear regression. Analyst C could also have considered an MX-GWR with only the intercept 
locally varying, but as a rule, spatial effects via a SAM should always be preferred due to its 
stronger inferential properties. Thus, in summary, Analyst C should proceed with a fixed 
coefficient regression, where a linear regression suffices. 
 
 Linear regression SAM 
 Estimate p-value Estimate p-value 
Intercept -2.130 0.000 -1.817 0.000 
SOCgkg 0.918 0.000 0.816 0.000 
NH4Ngkg -0.011 0.884 -0.086 0.284 

Table 6. Coefficient estimates and their significance arising from linear regression and SAM fits for Analyst 
C. 
 
Investigating MX-GWR and MS-GWR for Analyst A 
 
An MX-GWR can be experimented with when the MS-GWR analysis suggests two distinct sets 
of bandwidths, with one set tending to the global and with the other set tending to a similar local 
scale. This scenario appears likely for Analyst A (from Table 4), where the MS-GWR bandwidths 
for SOCgkg, ClayPC and NH4Ngkg can be viewed as global, while those for the intercept, SiltPC 
and NO3Ngkg can be viewed as local. 
 
As example, an MX-GWR is fitted to Analyst A’s data set. Figure 2 shows the spatial distribution 
of the local coefficient estimates with those significantly different to zero highlighted (i.e. p-values 
< 0.05). The local coefficients portray the geographically varying relationships between the 
intercept, SiltPC and NO3Ngkg to STN, where the NO3Ngkg relationship can change in sign. The 
global coefficient estimates for SOCgkg ClayPC and NH4Ngkg from the MX-GWR fit were 0.677, 
-0.016 and -0.193, respectively (where that estimated for ClayPC was the only one not 
significantly different to zero). To fit the MX-GWR model, a single local bandwidth needs to be 
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determined, and in this instance, it was user-specified to be 700 m. The MS-GWR coefficient 
estimates should also be mapped for comparison and are given in Figure 3. Further, the AICc fit 
of the MX-GWR model was estimated to be poorer at 1065.9 to that found with MS-GWR at 
1050.4. 
 
Thus, to fully interpret the nature of the relationships in Analyst’s A data set, coefficient 
summaries found for linear regression (Table 2), MX-GWR (Figure 2) and MS-GWR (Figure 3) 
need to be jointly considered. On balance, STN’s relationships with SOCgkg, ClayPC and 
NH4Ngkg are clearly global and constant across space, where STN’s relationships with ClayPC 
and NH4Ngkg are not viewed as significant, noting that the NH4Ngkg relationship to STN is 
borderline significant / insignificant in all fits (linear regression, MX-GWR and MS-GWR). 
Conversely, STN’s relationship with the intercept, SiltPC and NO3Ngkg are local, where the local 
behaviour varies little between the MX-GWR and MS-GWR forms. Only for NO3Ngkg do 
differences occur, where more distinct and significant areas of negative coefficient estimates were 
generated with MS-GWR, but not seen in MX-GWR. If the differences were more pronounced, 
then Analyst A should consider re-specifying the MS-GWR model with bandwidths for SOCgkg, 
ClayPC, and NH4Ngkg pre-set (or fixed) as global, while those for the intercept, SiltPC and 
NO3Ngkg re-estimated so that each relationship varies at its own local scale. However, given the 
similarity in the coefficient distributions, Analyst A could justifiably and pragmatically proceed 
with a MX-GWR fit, even with its worse AICc. 
 
 

 
Figure 2. The spatial variation of the local coefficient estimates given with p-values < 0.05 highlighted 
from the MX-GWR analysis of Analyst A. 
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Figure 3. The spatial variation of the local coefficient estimates given with p-values < 0.05 highlighted 
from the MS-GWR analysis of Analyst A. 
 
 
Investigating MS-GWR only for Analyst D 
 
The MS-GWR fit should be retained when its bandwidths clearly suggest each data relationship 
is operating at its own unique spatial scale. Here the data set for Analyst D provides such an 
instance (see Table 4), where Figure 4 maps the distribution of the local coefficient estimates. 
Here, only the relationship for NO3Ngkg with STN changes in sign; and is the only relationship 
that geographically varies between significant and insignificant. 
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Figure 4. The spatial variation of the local coefficient estimates given with p-values < 0.05 highlighted 
from the MS-GWR analysis of Analyst D. 
 
Investigating standard GWR and MS-GWR for Analyst B 
 
A standard GWR is generally not an adequate model. It can be chosen over an MS-GWR only on 
the rare occasions when the intercept and all predictors have broadly similar MS-GWR estimated 
bandwidths, potentially as that found for Analyst B (Table 4). This scenario predicts STN using 
just SandPC and NO3Ngkg, for which a single local bandwidth appears reasonable. In this 
instance, the single bandwidth can be optimally determined through a standard GWR calibration, 
where it was found via AICc to be 597.5 m. 
 
Where possible, the bandwidth function in standard GWR should be investigated, and can be 
considered analogous to an investigation of the variogram in Geostatistics, where both 
investigations aim to identify spatial structure in some way (e.g. Cressie 1989). This ensures that 
the bandwidth optimisation has not settled on a local minimum and allows the degree to which the 
identified bandwidth is optimal to be confirmed. Figure 5 shows the bandwidth function for an 
AICc minimisation, which is well-behaved with a clear minimum. Observe that if the bandwidth 
function was very shallow and plateaued, then a linear regression would likely suffice. Also, small 
bandwidths (say, < 2% when using an adaptive bandwidth) are indicative of over-fitting, and that 
a standard GWR is suggesting geographical patterns when none exists. In this case, the GWR 
analysis should cease. The problem of over-fitting in standard GWR is well known (e.g. Jetz et al. 
2005; Páez et al. 2011), but GWR also has the capacity to under-fit (Harris 2019). 
 

 
Figure 5. The bandwidth function for standard GWR. 
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Figure 6 maps the distribution of the local coefficient estimates from standard GWR. Here, the 
relationships for the intercept and SandPC with STN can change in sign. Again, the MS-GWR 
coefficient estimates are mapped for comparison (Figure 7), indicating clear spatial differences 
between standard GWR and MS-GWR coefficients. In general, MS-GWR indicates smaller ranges 
of coefficient variation, but where the regression relationships are consistently significant across 
space. Thus, given these differences and that the AICc for standard GWR is poorer at 1272.3 to 
that found with MS-GWR at 1264.4, it is considered prudent to retain the MS-GWR model rather 
than simplifying the analysis with standard GWR. 
 
 

 
Figure 6. The spatial variation of the local coefficient estimates given with p-values < 0.05 highlighted 
from the standard GWR analysis of Analyst B. 
 

 
Figure 7. The spatial variation of the local coefficient estimates given with p-values < 0.05 highlighted 
from the MS-GWR analysis of Analyst B. 
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Summary in terms of AICc 
 
Table 7 summarises the AICc results for each Analyst, where for all data set scenarios, the MS-
GWR model provides the most parsimonious fit in terms of AICc. The chosen primary model is 
always an improvement in fit over the linear regression model but does not necessarily provide an 
improvement in fit over the corresponding MS-GWR model in terms of AICc. This is because the 
interpretations of relationship non-stationarity (via the coefficient maps, above) can sometimes 
remain broadly unaltered when a poorer fitting but relatively simple model (e.g. MX-GWR) is 
specified rather than the relatively complex MS-GWR model. 
 

 Linear regression MS-GWR Primary model ‘chosen’ 
Analyst A 1124.0 1050.4 1065.9 (MX-GWR) 
Analyst B 1377.4 1264.4 1264.4 (MS-GWR) 
Analyst C 1223.1 1106.8 1223.1 (Linear regression) 
Analyst D 1131.0 1057.4 1057.4 (MS-GWR) 

Table 7. AICc values arising from the primary model analyses. 
 
4. Discussion of secondary model decisions 
 
Having arrived at GWR Basecamp through a primary analysis and where one from a standard 
GWR, MX-GWR or MS-GWR form is considered suited to the observed spatially varying 
relationships, the second stage of the GWR route map is the consideration of secondary GWR 
model issues. As stated in the introduction, strategies for secondary model decisions (scaling the 
summit) are only described and not implemented (through the case study data sets). 
 
In order of importance, the following issues should be investigated: (a) predictor collinearity, (b) 
the influence of outliers, and (c) evidence of a dependent error term. These should be examined 
at both global (as indicated in Appendix A1) and local contexts, but here the focus needs to be 
placed locally with the associated GWR form. As with any fixed coefficient, global regression, 
these issues can be similarly detrimental to a reliable GWR analysis, giving rise to say, spurious 
local changes in the sign of the coefficient estimates between positive and negative and local 
changes in significance. They can also compromise bandwidth estimation, where GWR fits of a 
secondary analysis will often give rise to different (optimised) bandwidths or a change in the 
behaviour of the bandwidth function to that found with the primary analysis, and thus, potentially 
changing the chosen GWR form (e.g. see respectively, Gollini et al. 2015; Harris et al. 2010a; Cho 
et al. 2010). 
 
Crucial to the secondary analysis is to test for the presence of each issue and if found, to determine 
the impact of the issue and the potential for misinterpreting the GWR model outputs from the 
primary analysis. Thus, comparisons of GWR diagnostic statistics and coefficient outputs need to 
be made, although unfortunately this can become problematic when the given secondary analysis 
GWR form does not exist (either in concept or in code). For example, a robust (outlier-resistant) 
MS-GWR has not, as yet, been developed. A further complication arises, when multiple issues are 
observed (e.g. local collinearity and local outliers), where say, a robust ridge GWR model might 
be suitable but is not available. 
 
Given these difficulties, some simple global data processing operation may sometimes resolve 
multiple issues, say through a data transform to negate the use of a robust GWR model and / or to 
address any heteroskedastic error effects (see Appendix A1). Furthermore, the choice of the 
primary GWR model may indirectly negate a secondary issue. For example, both MX-GWR and 
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MS-GWR has been empirically shown to indirectly account for local collinearity observed in 
standard GWR (Geniaux and Martinetti 2018; Harris 2019). 
 
Collinearity 
 
For any global regression, collinearity occurs when pairs of predictors have a strong linear 
relationship between each other, either positive or negative. Broadly, collinearity may be a 
problem when correlation coefficients for a predictor pair are > 0.8 or < -0.8 as these can affect 
model reliability and precision. Diagnostics such as matrix condition numbers (CNs), predictor 
variance inflation factors (VIFs) and variance decomposition factors (VDPs) can be found where 
rules of thumb can be applied (CNs > 30, VIFs > 10 and VDPs > 0.5) to indicate worrying levels 
of collinearity (Belsey et al. 1980). Often a simple remedy is to remove one or more predictors. 
The difficultly is in deciding which predictor(s) to remove, especially when all are considered 
important to describing the study process. Here, a penalized regression can provide a sophisticated 
solution, that by design includes a model specification capability (Zou and Hastie 2005; Friedman 
et al. 2010; Dormann et al. 2013). 
 
Collinearity may also be present in some local predictor data subsets of GWR even when not 
observed globally (Wheeler and Tiefelsdorf 2005). Compositional, categorical and ordinal 
predictors can be particularly problematic, often resulting in exact local collinearity making 
bandwidth optimisation impossible. Geographically weighted collinearity diagnostics (CNs, VIFs 
and VDPs) are available for GWR (Wheeler 2007; 2013; Lu et al. 2014) and provided any 
observed collinearity is considered a concern (e.g. see the presentations of Páez et al. 2011; 
Fotheringham and Oshan 2016; Harris 2019), a standard GWR can be replaced with a penalized 
GWR form (Wheeler 2007; 2009; Brunsdon et al. 2012; Barcena et al. 2014; Gollini et al. 2015; 
Wang and Li 2017; Li and Lam 2018). Mapping geographically weighted correlation coefficients 
(Fotheringham et al. 2002; Harris et al. 2014) between predictor variable pairs can also be useful 
to identify areas of local collinearity. 
 
Outliers 
 
For outliers, it is first useful to examine the linear regression and MS-GWR residuals of the 
primary analysis for evidence of outliers that may influence the validity of their fits. This should 
be done spatially (with maps of standardized residuals, say), to determine where any GWR 
analysis may be compromised. Again, robust theory in the global case (e.g. Huber 1981; Marazzi 
1993) has been transferred to the local case with robust extensions to standard forms of GWR only 
(Fotheringham et al. 2002; Farber and Paez 2007; Harris et al. 2010a; Zhang and Mei 2011; Chen 
et al. 2012; Leyk et al. 2012; Lu et al. 2014). These handle influential outliers arising globally, but 
also locally in each individual regression, which may go undetected in any global assessment (i.e. 
via the standardized residual maps, above). 
 
Dependence in the error data 
 
As with linear regression estimated by OLS, most forms of GWR assume that the errors, ei are 
independently normally distributed with zero mean and common variance σ2.  To examine for a 
non-constant error variance (in a non-spatial, global manner), the regression’s fitted values can be 
plotted against its residuals. A funnel shape indicates that a heteroskedastic regression should be 
considered, such as through some consistent estimator (see Davidson and MacKinnon 1993) or a 
weighted least squares (WLS) estimator. A direct extension to standard GWR is given in 
Fotheringham et al. (2002), where the error variance varies geographically. This heteroskedastic 
GWR form has also been developed to detect local outliers (Harris et al. 2010a) and to provide 
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localised prediction variances (Harris et al. 2011, also see Appendix A4). Páez et al. (2002a; b) 
also provide a spatially heteroskedastic form of GWR but within a parametric framework, while 
Shen et al. (2011) extend the locally linear GWR model of Wang et al. (2008) to a heteroskedastic 
form. 
 
Although it is common for any GWR fit to reduce error spatial autocorrelation over that found 
with a linear regression fit (as demonstrated in Section 3), it is likely that error autocorrelation will 
also occur for each local regression in a GWR. GWR models that account for local autocorrelation 
effects have been proposed including an extension to standard GWR (Brunsdon et al. 1998b; Cho 
et al. 2011) and an extension to MX-GWR (Geniaux and Martinetti 2018) through autoregressive 
GWR model forms. 
 
5. Concluding remarks 
 
Geographically Weighted Regression provides a framework to investigate spatial relationships in 
data, their heterogeneities and varying scales of interaction. Its use in analyses of environmental 
and socio-economic data continues to grow and is easily undertaken in a number of software 
implementations. However, an increasing number of GWR analyses reported in the literature are 
not appropriate to the study objectives or correctly formulated: in some cases GWR should not 
have been applied to the problem, in others the GWR model is incorrectly parameterised or the 
incorrect form of GWR is applied. Such situations may result in partial, incomplete or unreliable 
analyses and inference. 
 

  
Figure 8 Flowchart of the GWR route map. 
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This paper describes a GWR route map of primary and secondary considerations to ensure the 
GWR analysis is justified in terms of the aims of the analysis and the characteristics of the data, 
over alternate models, with fixed regression coefficients. As summarized in Figure 8, the route 
map has the following primary steps: 
 
1) A linear regression analysis should always be undertaken and the results investigated. 
2) A MS-GWR (multi-scale GWR) should always be calibrated and the estimated bandwidths 
interrogated. 
3) Following the investigations of steps (1) and (2), the analysis should proceed with a 
standard GWR, or a core variant in MX-GWR (mixed GWR) or MS-GWR, only if a spatially 
varying coefficient model is considered appropriate. Otherwise a linear regression or a SAM 
(spatially autocorrelated model) should be chosen. 
 
The linear regression (step 1) provides global insight into how the predictors relate to the response, 
which relationships are significant and measures of model fit. This step includes evidence of 
spatial autocorrelation in the residuals, for example through a Moran’s I analysis. 
 
The MS-GWR (step 2) provides information through the MS-GWR bandwidths about the different 
scales of relationships in the data, where some may be local and others global. The MS-GWR 
bandwidths describe the degree of spatial heterogeneity associated with each variable’s 
relationship to the response. Insignificant Moran’s I estimates of the spatial autocorrelation of the 
MS-GWR residuals provide evidence that accounting for relationship spatial heterogeneity using 
MS-GWR is capturing most of the structural variation in the data. 
 
Investigations of the linear regression and MS-GWR results (step 3) guide the choice of the final 
primary model (i.e. a linear regression or SAM, standard GWR, MX-GWR or MS-GWR). A linear 
regression model should be retained when all bandwidths from MS-GWR tend towards the global 
situation, including the intercept (i.e. are greater than ~80% of the maximum distance between 
data points or 80% of the data points in the adaptive bandwidth case), and where spatial 
autocorrelation in the residuals is either absent or if present, does not significantly effect process 
interpretation (as the case for Analyst C, above). In many fixed coefficient cases however, 
instances of significant residual spatial autocorrelation are more likely to result in choosing a SAM 
over the non-spatial linear regression. 
 
If spatial autocorrelation in the residuals is present and MS-GWR bandwidths are not all large, 
then a GWR variant can be considered: 
- A standard GWR should be considered in the rare situation when all of the MS-GWR 
bandwidths tends to the same value; 
- A MX-GWR should be considered when the MS-GWR bandwidths indicate two distinct 
sets of bandwidths, with one set tending to the global and with the other set tending to a similar 
local scale; 
- A MS-GWR should be considered when the all of bandwidths vary, suggesting that each 
data relationship operates at different spatial scales. 
 
It is important to stress that the final model choice should not be guided by simply selecting the 
model with lowest AICc value, especially as the aim of any GWR analysis is to explore 
relationship spatial heterogeneity and spatial variations in process. Rather, interrogation of the 
coefficient estimates and their uncertainty arising from the different models is paramount. This 
point is somewhat philosophical in that the underlying assumption in model selection is the 
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existence of the ‘best model’, as measured by AICc, say. All depends on the aims of conducting a 
GWR analysis in the first place, where for this study, relationship inference is the clear aim. 
However, if the study aim was for spatial prediction and associated inference with GWR, a very 
different route map would have been presented (see Appendix A4), together with associated bias-
variance trade-offs. 
 
This paper’s GWR route map first provides a path through a number of primary issues and acts as 
a gateway to informed applications of GWR. The primary issues were demonstrated empirically 
through a soils data case study. As the next step of the route map, a number of secondary issues 
should be investigated once a GWR analysis has been decided upon. These secondary 
investigations focus at the local scale, including local predictor collinearity, the local influence of 
outliers, and local dependent error terms. Secondary considerations may interact with each other 
and with primary considerations and their investigation will further guide the decision to 
undertake a GWR analysis or not and if so, ensure an informed choice of which GWR form to use.  
Finally, further guidelines have been given in the Appendix, many of which can be of equal 
importance to those given in the main text. 
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Appendix: Generic considerations and further guidance 
 
A.1 Characteristics and properties of the study data 
 
Exploratory Data Analysis 
 
As in any statistical study, before any formal analysis is undertaken an exploratory data analysis 
or EDA is useful. The EDA should, at the bare minimum, consist of summary statistics, 
histograms, examination of correlations and the linear regression fit, together with specific spatial 
investigations described below. The EDA will confirm if worthwhile data relationships are present 
through the correlation and regression analysis, at least globally. It will also determine the 
presence of any problems with the data that need to be flagged or addressed. Common problems 
to address include that of non-linearity and outliers, where a data transformation (say, a log or 
square root) may be required, which may also provide a first step to dealing with error 
heteroskedacity. Global issues of predictor variable collinearity can also be addressed at this stage. 
In this respect, alternatives to the OLS-estimated linear regression fit, may be presented, such as 
a robust regression to deal with outlying relationships, a WLS fit to deal with error heteroskedacity 
and a ridge regression to deal with collinearity (see section 4 of the main text). 
 
In addition to the EDA described, and in the context of GWR, the following considerations should 
also be investigated: (i) predictor variable specification, (ii) the presence of spatial predictors, (iii) 
evidence of spatial pattern in the response and predictors, (iv) effects of data pre-processing, (v) 
effects of sample size, and (vi) effects of sample configuration. These additional investigations 
are also exploratory and should be undertaken with the aim of understanding the data and to 
identify any characteristics that ultimately may affect a subsequent GWR analysis. 
Predictor variable specification 
 
The first and most important consideration is to establish that there is some kind of expected 
relationship or process linking the response and predictor variables. That is, to confirm that the 
data have been collected with attributes that reflect either an underpinning research understanding 
of the problem, or with the aim of investigating the problem and to support the development of 
new understandings. So, a key question is whether all the required predictors are present and 
whether any spatial heterogeneity observed through a GWR analysis may simply be a consequence 
of missing predictors (i.e. global, linear model misspecification). This line of thought or even 
objection to GWR has been present from the outset (Brunsdon et al. 1998), and the same responses 
still apply: (a) the exploratory nature of GWR means its outputs can potentially guide the analyst 
to improve specification; (b) missing predictors may not be easily measured (e.g. too costly), and 
(c) the process is intrinsically spatial and local, where ‘global truths’ and ‘stylised facts’ are 
unlikely. Observe, the greater the number of predictors, the more likely it is that a linear regression 
(or a SAM) will identify some global truth and also that GWR may sometimes identify a spatial 
pattern when none actually exists (Paez et al. 2011; Harris 2019). 
 
Spatial predictor variables 
 
A second consideration is whether spatial predictors are present? That is, predictors that are 
inherently spatial in nature. Useful ones such as the coordinates or region indicators can be more 
simply used in a linear regression or a SAM, as well as distance-based measures. Examples of the 
latter include distance to the city centre in an accessibility study, distance to fast food outlets as a 
variable in an obesity study or distance to sea in a lake acidification study. Such predictors should 
be avoided in any GWR study, as GWR itself employs distance-based analyses, so introducing 
distance related attributes can confound GWR results. 
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Spatial pattern and autocorrelation amongst response and predictor variables 
 
At the exploratory stage of a GWR analysis, it is not only important to assess any residual 
autocorrelation from linear regression (and GWR) fits (see main text); but it is also important to 
investigate for spatial autocorrelation and co-autocorrelation in the response and predictors. This 
can be done simply through a series of Moran’s I (and bivariate extensions of) analyses or can be 
done more thoroughly via the calculation and modelling of variograms and cross-variograms (e.g. 
Goovaerts 2001). Variographic assessments are particularly pertinent in that: (1) modelled 
variogram and cross-variogram ranges can help guide fixed bandwidth choice in GWR and (2) 
strong spatial co-autocorrelation amongst the variables can confound identification issues when 
choosing between a regression accounting for spatial heterogeneity effects (i.e. GWR) and a 
regression accounting for spatial autocorrelation effects (i.e. SAM) (Murakami et al. 2017; 
Geniaux and Martinetti 2018; Harris 2019). 
 
Mapping the response and predictor variables is also key to determine if there is some spatial 
pattern and complements the more formal assessments, above. If spatial patterns or spatial 
dependencies are absent, then any spatial regression analysis (with a GWR or a SAM) should not 
be preferred over a non-spatial analysis with linear regression.  In some instances, even a linear 
regression will hold no value, as all processes are purely random in nature with no linkages 
between them. 
 
Effects of data pre-processing 
 
Care must be taken when pre-processing the response and predictors prior to a GWR analysis. An 
analysis with raw data will commonly provide quite different outputs to that found using 
standardized and / or transformed data. This is somewhat highlighted in that MS-GWR has a 
thorny, and as of yet, unresolved calibration issue with the respect to standardizing the data or not, 
as a different set of bandwidth estimates will result (Oshan et al. 2019; Lu et al. 2019). In this 
study, the bandwidths for the MS-GWR models (of section 3 in the main text) were first estimated 
using centred data, which also provided computational savings. These bandwidths were then pre-
specified in a second MS-GWR calibration, but now with the raw data, so that the MS-GWR 
coefficient sets could be directly compared to those found from the linear regression, SAM, 
standard GWR and MX-GWR. 
 
Sample size 
 
Ultimately, any evaluation of whether there are sufficient records for a GWR analysis depends on 
the nature of the spatial process being investigated, where small data sets can suffice if the process 
is well-behaved (i.e. relationships are expected to vary smoothly, the data has no secondary issues, 
there are relatively few predictors, etc.). Conversely, a GWR analysis with a large data set may 
still suffer from insufficient information if the spatial process is not well-behaved requiring a 
detailed and complex GWR route map. Páez et al. (2011) suggested a minimum of n = 160 records 
are appropriate for a GWR analysis, although this should never be considered a rule, only a loose 
guide. 
 
For massive data sets (say, n >>10,000), computational problems can arise, particularly in respect 
of any automated bandwidth selection procedure, where the computationally demanding back-
fitting calibrations for MX-GWR and MS-GWR can be prohibitive to their use in Big Data studies. 
Computational burden can be alleviated through some combination of the following: (a) the 
judicious use of small but spatially-representative data subsets for bandwidth selection, (b) the use 
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of centred predictor data (Lu et al. 2019, see above); (c) parallelisation (Harris et al. 2010c; Tran 
et al. 2016; Li et al. 2019), (d) the use of low level coding (e.g. C++ in ‘GWmodel’), and (e) the 
pre-compression of GWR’s matrices and vectors in scalable GWR (Murakami et al. 2019), also 
in ‘GWmodel’. 
 
Sample configuration 
 
Other than the recommendation to specify adaptive bandwidths when the sample configuration is 
highly uneven in layout, little research has been conducted on the consequences of different 
sample configurations on a GWR analysis (aside from that given in Ye et al. 2017 in the context 
of prediction). For point support studies, such as those in soil science, it is likely that sample 
configurations recommended in geostatistical methodology (e.g. Webster and Lark 2012) are 
transferable to GWR. For example, the use of a regular or random stratified sampling grid, say. 
As in geostatistical studies, if the sampling is too coarse, processes at a finer scale will go 
unnoticed (i.e. small-scale spatial dependencies with kriging or highly localised spatial 
relationships with GWR). In the extreme, all spatial effects can go unnoticed resulting in choosing 
a linear regression fit simply due to poor sample design. Equally as important are the biasing 
effects due to preferential sampling where areas of perceived interest (e.g. high levels of soil 
contamination) are sampled more intensively than others. Here the preferentially sampled data 
require down-weighting or declustering in some manner to avoid (potentially severe) bias in GWR 
bandwidth estimation, model fit and coefficient estimation. It is likely that the geostatistical 
declustering procedures outlined in Diggle et al. (2010) are broadly transferrable to a GWR 
analysis. 
 
A.2 Further influences on the geographical weights 
 
As indicated, the weightings in GWR are determined by a kernel function, where its bandwidth 
can be of a fixed or an adaptive distance form. Thus, experimentation with different kernel types 
(e.g. Gollini et al. 2015) and different bandwidth forms (see Table 4 of the main text) will directly 
influence GWR’s weights and potentially the interpretation of its outputs. 
 
In this respect, experimentation with both a discontinuous (e.g. box-car, bi-square, tri-cube) and a 
continuous (e.g. Gaussian, Exponential) kernel is recommended as it can provide clarity to any 
spatially-varying relationships observed. A box-car kernel (i.e. GWR defaulting to a moving-
window regression) is useful in that it can return the corresponding global regression when a 100% 
adaptive bandwidth is specified. Furthermore, its highly discontinuous nature can be useful in the 
detection of outliers (Lloyd and Shuttleworth 2005). A continuous kernel is useful (and may be 
the only viable option) when sample size is small (say, n < 100) as it ensures that all data influence 
each local regression fit, yielding a certain robustness that is not possible when a discontinuous 
kernel is specified, as it can only use data subsets for each local regression fit. Adaptive 
bandwidths for discontinuous distance-decay kernels set at above 100% would address this, but 
this option is rarely available in GWR software packages. 
 
Other GWR specifications are possible that influence its weights and can be worthy of 
investigation depending on the diversity of the sample data and the complexity of the geography. 
This includes the use of: (a) non-Euclidean distance metrics in standard GWR, MX-GWR and 
MS-GWR (Lu et al. 2014; 2015; 2017; 2018; 2019; Comber et al. 2018a) (e.g. for process along 
some urban transportation or river network), (b) double weighting schemes in contextualized 
GWR for hierarchical processes (Harris et al. 2013), (c) double weighting schemes in robust GWR 
(see Fotheringham et al. 2002; Harris et al. 2010a), (d) GWR with location-specific bandwidths 
(Páez et al. 2002a; b; Comber et al. 2018b), (e) locally linear GWR, which can improve fit and 
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reduce coefficient bias over standard GWR (Wang et al. 2008; Páez et al. 2011; Zhang and Mei 
2011), and (f) anisotropic GWR where weights decay at different rates according to directional 
relationships (Páez 2004). 
 
A.3 Inference options in GWR 
 
Inference in GWR is somewhat compromised by there being no-one single model, but a collection 
of models re-using sample data at multiple locations. This entails that a valid probability model is 
unavailable with GWR, making inference biased and problematic. In this respect, Bayesian SVC 
models have a distinct advantage as they provide a valid and richer inferential framework for 
testing hypotheses (Gelfand et al. 2003; 2004; Finley 2011), but relative to GWR, can suffer 
analytically and computationally making them unusable in certain Big Data situations. 
 
In section 3 of the main text, local inference directly used the local coefficients and their standard 
errors in an analogous way to that routinely done with the linear regression. This rudimentary 
approach has been referred to as pseudo t-tests, reflecting the caveats above (e.g. Harris et al. 
2010a), but can provide cautiously reasonable results (Harris 2019). Improvements (adjustments) 
to this approach are provided in da Silva and Fotheringham (2016) regarding the inherent multiple 
hypothesis testing issue, which has also been extended to MS-GWR (Yu et al. 2019). Local 
inference in GWR can also be improved via the use of local bootstrap tests (Harris et al. 2017). 
Local inference can test whether coefficients significantly differ to zero or significantly differ to 
the same coefficient estimated globally through some fixed coefficient model (Harris et al. 2017; 
Harris 2019). 
 
Local tests provide mappable outputs, but it is also possible to conduct tests for coefficient 
nonstationary against a fixed coefficient null hypothesis for each relationship of the regression 
model. For example, Nakaya et al. (2005) examined the variability of GWR coefficients by 
comparing standard with mixed models (all in a generalized form). For example, Nakaya (2015) 
added a deviance-based test for generalized GWR models. Similarly, Harris et al. (2017) proposed 
a parametric bootstrap test to compare coefficient estimates from standard GWR to those from a 
linear regression and SAMs, while Mei et al. (2016) proposed a non-parametric bootstrap test to 
compare coefficient estimates from standard GWR with those from MX-GWR. These approaches 
are generic and could be easily extended to all GWR forms. 
 
A.4 GWR as a spatial predictor 
 
If the aim is spatial prediction at un-sampled locations, then almost all forms of GWR can be used, 
some of which have: (i) been specifically designed for this use purpose (e.g. Harris et al. 2010b; 
2011), (ii) hybridised with kriging (Harris et al. 2010b; Harris and Juggins 2011; Kumar et al. 
2012; Robinson et al. 2013; Zeng et al. 2016; Guo et al. 2017; Ye et al. 2017; Chen et al. 2019), 
(iii) designed to predict on specific supports (Lin et al. 2011; Jin et al. 2018), and (iv) re-purposed 
GWR within a GAM framework and fitted using penalized splines (Nogués-Bravo 2009). 
However, given a plethora of alternative prediction models exist within Geostatistical (Cressie 
1993), Geographical (Haining 2003) and Machine Learning (Li et al. 2011) paradigms, results 
from a GWR-based predictor should always be compared with alternatives for objective context 
(Páez et al. 2008; Lloyd 2010; Harris et al. 2010b; Harris et al. 2011; Harris and Juggins 2011; 
Monteys et al. 2015; Song et al. 2016). 
 
Alternative prediction models can also have similar non-stationary relationship options. For 
example, when the classic kriging with an external drift (KED) model (e.g. Chiles and Delfiner 
1999) is specified with local kriging neighbourhoods rather than a single, unique one (Harris et al. 
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2010b; 2011; Monteys et al. 2015). A further consideration, one that is often over-looked, is that 
of prediction uncertainty. For GWR, such estimates can be found through: (a) a standard GWR 
predictor (Leung et al. 2000), (b) a GWR kriging hybrid (Harris et al. 2010b), (c) a heteroskedastic 
GWR predictor (Harris et al. 2011) and (d) a GWR indicator kriging hybrid (Harris and Juggins 
2011). Bayesian SVC models, but now calibrated for prediction, can provide a superior inferential 
framework for prediction uncertainty to that based on GWR (Finley 2011). 
 
A.5 GWR development through simulation experiments 
 
Finally, many developments of GWR have utilized simulation experiments to objectively 
demonstrate the value of a newly proposed GWR model or to demonstrate the value of an existing 
GWR model in relation to an alternative SVC model. These simulation experiment generate 
regression coefficient processes with known spatial characteristics. Different simulation designs 
exist, where those worthy of following include that of Wang et al. (2008), Wheeler and Calder 
(2007), Wheeler (2009), Finley (2011), Harris et al. (2017), Oshan and Fotheringham (2018), Wolf 
et al. (2018), Murakami et al. (2019) and Harris (2019). 
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