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Abstract

Geographically Weighted Regression (GWR) is increasingly used in spatial analyses of social and
environmental data. It allows spatial heterogeneities in processes and relationships to be
investigated through a series of local regression models rather than a global one. Standard GWR
assumes that the relationships between the response and predictor variables operate at the same
spatial scale, which is frequently not the case. To address this, several GWR variants have been
proposed. This paper describes a route map to inform the choice of whether to use a GWR model
or not, and if so which of three core variants to apply: a standard GWR, a mixed GWR or a
multiscale GWR (MS-GWR). The route map comprises primary steps: a basic linear regression,
a MS-GWR, and investigations of the results of these. The paper provides guidance for deciding
whether to use a GWR approach, and if so for determining the appropriate GWR variant. It
describes the importance of investigating a number of secondary issues at global and local scales
including collinearity, the influence of outliers, and dependent error terms. Code and data for the
case study used to illustrate the route map are provided, and further considerations are described
in an extensive Appendix.

Keywords: Spatially varying coefficient model; non-stationarity; spatial heterogeneity;
autocorrelation; regression



1. Introduction

This paper provides guidance for reliable application of Geographically Weighted Regression
(GWR). Its aim is to ensure that the increasing numbers of GWR applications in the physical and
environmental sciences are correctly formulated and appropriate to the study objective because
many are not, even in the peer reviewed literature. GWR 1is a spatially varying coefficient (SVC)
model that quantifies variations in the scales of processes and the relationships being examined.
This provides an advantage over alternatives which commonly assume data relationships are fixed
(i.e. constant across space), including those accounting for spatial autocorrelation effects. GWR
supports enhanced understanding of geographical processes through the study of relationship
heterogeneity, which can be a study aim in itself or used to guide further data collection and
analysis.

1.1 GWR in context

There is a long history of explicitly spatial analyses in a number of disciplines including crop
science (Fisher 1935), meteorology (Kolmogorov 1941), geology/mining (Matheron 1963),
forestry (Matern 1960), ecology (Clark and Evans 1954), soil science (Burgess and Webster
1980a; b) and geography (Chorley and Haggett 1967). Most developments have centred on
accounting for spatial autocorrelation effects (e.g. Cressie 1993) rather than spatial heterogeneity
effects (Fotheringham et al. 2002; LeSage and Pace 2009), the latter of which are relatively recent
when specifically considering the nature of data relationships in regression models.

GWR (Brunsdon et al. 1996; 1998a) investigates how and if relationships between response and
predictor variables vary across space. It is underpinned by the idea that whole map regressions
such as those estimated by ordinary least squares (OLS) may make unreasonable assumptions
about the stationarity of the regression coefficients under investigation (Openshaw 1996;
Fotheringham and Brunsdon 1999). As an SVC model, GWR provides measures of non-
stationarity in data relationships through the generation of mappable regression coefficients, and
inferences on stationarity through statistics and simulation tests (e.g. Nakaya 2015; da Silva and
Fotheringham 2016; Harris et al. 2017). As described in Brunsdon et al. (1996; 1998a), GWR
stems from locally weighted regression (LWR) (Cleveland 1979; Loader 2004) and thus
extensively borrows from the same non-parametric regression paradigm (Wand and Jones 1995),
including generalized additive models (GAMs) (Hastie and Tibshirani 1986). As with LWR, GWR
is a localized, non-stationary adaptation of the basic linear regression model, where for LWR
localness is in attribute-space, whilst for GWR /localness is in geographic-space (see also Paez et
al. 2011).

GWR is not a unique concept for SVC modelling. SVC models that pre-date GWR include the
expansion method (Casetti 1972) and weighted spatial adaptive filtering (Gorr and Olligschlaeger
1994). Since GWR circa 1996, alternative SVC models have been developed including a
parametric version of GWR (Péez et al. 2002a; b), Bayesian SVC models (Assungao 2003;
Gelfand et al. 2003), spatial additive models (e.g., Fahrmeir et al., 2000, 2004), and eigenvector
spatial filtering (ESF) (Griffith 2003; 2008). Theory for GWR (in its usual non-parametric form),
Bayesian SVC, spatial additive, and ESF models has continued to evolve (e.g. GWR models —
Brunsdon et al. 1998b; 1999; 2012; Fotheringham et al. 2002; Wheeler 2009; Mei et al., 2016;
Geniaux and Martinetti 2018; Yu et al. 2019; e.g. Bayesian SVC models — Waller et al. 2007,
Wheeler and Waller 2009; Finley 2011; Datta et al., 2016; e.g. spatial additive models — Kneib et
al., 2009; Xue and Liand 2010; e.g. ESF models — Griffith 2012; Murakami et al. 2017; Murakami
and Griffith 2019a; b), including many useful SVC model comparison studies using simulated
data with known and testable properties (Finley 2011; Oshan and Fotheringham 2018; Wolf et al.
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2018; Murakami et al. 2019), demonstrating both the merits and drawbacks of each method. Of
these, GWR has been extensively applied in a wide variety of scientific disciplines, such as
environment health (e.g. Yoneoka et al. 2016), landscape ecology (e.g. Zhang et al. 2004), soil
quality (e.g. Song et al. 2016), air quality (e.g. You et al. 2015), water quality (e.g. Sun et al.
2014), remote sensing (e.g. Foody 2003; 2004), disease patterns (e.g. Brunton et al. 2017), urban
studies (e.g. Huang et al. 2019) and housing markets (e.g. Yu et al. 2007).

1.2 Motivation: Why this paper is appropriate now?

The motivation for this paper at this time is because GWR is increasingly being used for different
spatial analyses but not always correctly. A search of Web of Science
(http://apps.webotknowledge.com) for the keyword Geographically Weighted Regression in July
2019 indicated 1795 records, with sharp increases in recent years, most articles from USA and
China. This proliferation has been driven by a number of factors.

First is the increasingly spatial nature of data, which are now routinely collected with location
attached, facilitated by the many GPS-enabled monitoring devices and the tagging of, for example,
administrative data with census geographies. Second, there is a broader cross-disciplinary demand
for methods to quantify spatial patterns in data, commonly through some kind of hotspot
estimation, spatial cluster analysis or spatially informed regression technique. This has been
accompanied by recognition of the need to cater for spatial dependencies in the data or the model
parameters themselves, reflecting Tobler’s first law of geography (Tobler 1970) which describes
spatial dependency and spatial autocorrelation. GWR is a method that enables this, and on first
sight it appears relatively intuitive model to understand. Third, GWR’s simplicity fuels its
popularity, which is reflected by its implementation in a number of software packages including
the ESRI ArcGIS suite of tools, five R packages (spgwr (Bivand et al. 2013), gwrr (Wheeler 2013),
GWmodel (Lu et al. 2014; Gollini et al. 2015), McSpatial (McMillen 2013) and Ictools (Kalogirou
2019)), two Python packages (PySal (Rey and Anselin 2010) and mgwr (Oshan et al. 2019)) and
standalone implementations such as GWR3 (Charlton et al. 2003), GWR4 (Nakaya 2015) and
MGWR 1.0 (Lietal. 2019). Each software package has a standard GWR option complemented by
a variety of alternative GWR forms and associated tools. No single package provides a fully
comprehensive choice to the user although the GWmodel package comes closest.

Consequently, it is increasingly easy to find applications of GWR in the literature where it is
questionable whether the authors fully understood the inputs, the model assumptions, the model
outputs and the associated limitations of different parameter and model choices. The situation is
analogous to the old joke What is a lecture?!, and the result is GWR applications that are
inappropriate (i.e. where GWR should not have been applied to the problem), poorly calibrated
(i.e. the GWR model is incorrectly parameterised), that use the incorrect form of GWR or where
the GWR analysis is partial and incomplete. With that in mind, this paper aims to provide a route
map to promote the informed use and application of GWR.

1.3 A GWR route map
The GWR route map is achieved empirically through a soil case study in the Loess Plateau of

China, that guides the reader through different modelling scenarios that are of primary importance
to a GWR analysis. These main arteries of the route map take the reader to GWR Basecamp.

! Answer: A lecture is the process by which the lecturer’s words, as presented on a blackboard, whiteboard or screen,
are transcribed to the student’s notes without going through the brain of either.



Strategies for secondary model decisions (scaling the summit) are described in the Discussion
(Section 4) that outlines a number of secondary issues and considerations. Not all secondary issues
may appear in a specific GWR analysis, and some may interact, including interactions with those
considered of primary importance. Thus, although the GWR route map is presented as a linear
workflow, it should be recognised that in practice, it is often an iterative, more complex process,
as may be the case in any regression study. The implications in this respect are that, for some
spatial processes, a GWR analysis can be relatively straight-forward, while for others, it can be
problematic with increasing complexity. Ultimately, the result of this two-stage primary-to-
secondary strategy should lead to an informed, sensible and appropriate GWR implementation,
from which reliable and robust inferences can be made.

Further, the intention of this paper is not necessarily to replace existing guides, such as high-
quality user manuals provided with many of the listed software packages above, but instead to
provide a guide that is complementary. This paper also aims to update best practise in GWR
modelling, say for example, with respect to the accessible classic GWR text of Fotheringham et
al. (2002). Although the topic of this paper sits within the general category of model selection in
regression (e.g. Fox 2016) and in spatial regression (e.g. Anselin 2006), its objectives are not to
advance the theory in the respect, but instead utilise known theory within a GWR context.

Some generic considerations and further guidance are also given in an Appendix with respect to:
(1) sample and data characteristics (Appendix section A1), (ii) influences on weighting schemes
(Appendix A2), (iii) inference in GWR (Appendix A3), (iv) GWR as a spatial predictor (Appendix
A4) and (v) GWR development through simulation experiments (Appendix A5). The Appendix is
extensive covering many important issues and should not be over-looked. In this respect, early
drafts of this paper considered many such issues within the main text but were ultimately
consigned to the Appendix for narrative purposes.

The route map is presented using only real data. This is deliberate, as the intention is to provide
‘real world’ practical guidance to a GWR analysis. A statistically rigorous evaluation of the
proposed route map through a Monte Carlo simulation experiment that generates data with known
properties would be a more involved study, best presented elsewhere and to a different audience.
That said, Appendix A5 provides guidance to the implementation of such a study.

1.4 Context and analogous extensions

This paper focuses on GWR applications in the physical and environmental sciences where data
are commonly measured on a point support. The main messages of the paper are similarly relevant
to applications using data measured on area support, for example socio-economic studies of
population demographics, inequalities, education, crime or health, as the different
implementations of GWR use the areal unit centroids, and thus default to data on point support.
Notable exceptions are highlighted.

The paper considers a Gaussian response case. However, route map considerations are directly
applicable to alternative response distributions via generalized GWR models (Fotheringham et al.
2002; Atkinson et al. 2003; Nakaya et al. 2005; Waller et al. 2007; Nakaya 2015; Dong et al. 2018;
Comber et al. 2018a), or where the response is measured through a series of quantile-based
distributions (Chen et al. 2012; 2020; Harris and Juggins 2011). They are similarly relevant to
extended GWR models that include temporal considerations (Huang et al. 2010; Fotheringham et
al. 2015; Du et al. 2018; Wu et al. 2019), contextualized GWR models dealing with hierarchical
data (Harris et al. 2013), and GWR models that downscale outputs from area to point support
(Murakami and Tsutsumi 2015; Jin et al. 2018).
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2. Models and Data
2.1 Linear regression, standard, mixed and multiscale GWR

Although, various forms of fixed coefficient regression and varying coefficient GWR models will
be referred to in this study, it is first useful to describe four models that are considered of primary
importance to a GWR study. Here, the basic linear regression model can be defined as:

m
yi= Po+ Z Brxix + €; (1)
=1

where for observations indexed by i=1...n, y; is the response variable, xi is the value of the k”
predictor variable, m is the number of predictor variables, /% is the intercept term, S is the
regression coefficient for the k" predictor variable and e; is the random error term that is
independently normally distributed with zero mean and common variance ¢ 2. OLS is commonly
used for model estimation in linear regression models.

Standard GWR is similar to linear regression but calibrates the regression model at point locations
(u, v) either from the sampled data or otherwise, using nearby sampled data falling within a moving
window or kernel at the centre of each discrete location:

yi = Bo(w,vy) + Z Br(ui, v)xix + € (2)
=1

where (u;, vi) is the spatial coordinate of the i observation and S (u;, vi) is a realization of the
continuous function f (1, v) at point i. As with the linear regression model, the set of e; obey an
independent normal distribution with zero mean and common variance o °. In contrast to the global
linear regression, GWR conducts local regression at any given location (the geographical part of
GWR), using observations weighted by their distances to the location under consideration (the
weighted part). Equations for calculating the local coefficient standard errors for GWR can be
found in Fotheringham et al. (2002) and Harris et al. (2010a).

The weightings in GWR are determined by a kernel-based distance decay function and its
bandwidth. Bandwidth can be a fixed distance or a fixed number of nearest data points (i.e. an
adaptive radius depending on the local density of points). Automated routines exist to determine
an optimal bandwidth by minimizing some measure of model fit such as the Akaike information
criterion (AIC) and its corrected version (AICc) (Fotheringham et al. 2002, following Akaike
1973; Hurvich and Tsai 1989), Bayesian Information Criterion (BIC) (Nakaya 2001, following
Schwarz 1978) or a leave-one-out cross validation score (CVS) (Brunsdon et al. 1996; 1998a,
following Bowman 1984). As the bandwidth increases, the standard GWR estimator
asymptotically converges to the OLS estimator of the whole map linear regression model.

In the standard form, a single bandwidth is used to calibrate GWR. This may be unrealistic because
it implicitly assumes that each response-to-predictor relationship operates at the same spatial scale.
Some relationships may operate at larger scales and others at smaller scales. A standard GWR will
nullify these differences and find a ‘best-on-average’ scale of relationship non-stationarity. In this
respect, mixed (or semiparametric) GWR (MX-GWR) (Brunsdon et al. 1999; Mei et al. 2004;
2006; 2016) can be implemented in which some relationships are assumed to be stationary whilst
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others are assumed non-stationary. However, MX-GWR only in part addresses the limitation of
standard GWR, as the subset of locally varying relationships is still assumed to operate at the same
spatial scale.

To fully address this, multiscale GWR (MS-GWR) (Yang 2014; Lu et 2017; 2018; Fotheringham
et al. 2017; Leong and Yue, 2017;Yu et al. 2019; Oshan et al. 2019; Li et al. 2020) can be used,
in which each relationship is specified using its own bandwidth, and the scale of relationship non-
stationarity may vary for each response-predictor relationship. Unlike the linear regression and
GWR, both MX-GWR and MS-GWR require an iterative back-fitting procedure for their
estimation and as such can be computationally demanding (Lu et al. 2018; Li and Fotheringham
2020). Descriptions moving from GWR to MX-GWR and from GWR to MS-GWR, including
calculations for coefficient standard errors and #-values, can be found in Mei et al. (2016) and Yu
et al. (2019), respectively building on the initial work outlined in Yang et al. (2011).

In this study’s implementations of GWR, MX-GWR and MS-GWR, a bi-square weighting kernel
is used (e.g. see Gollini et al. 2015) where a single bandwidth 4 is found for standard GWR and
also for the pre-specified local or non-stationary relationships in MX-GWR, while m + 1
bandwidths are found for MS-GWR. All bandwidths are optimized by minimizing the AICc.

2.2 Case study data

The case study consists of a single soil dataset of 689 observations, spaced at approximately 100
m in a small watershed in the Loess Plateau, China (110.32821°E and 38.83433°N). The data are
shown in Figure 1 and described in Wang et al. (2009) who undertook only a linear regression
analysis but complemented with a geostatistical variographic analysis. The data are also described
in Comber et al. (2018b) who used the same data to develop an extension to GWR. The data set
includes soil total nitrogen (S7N), taken as the response variable, and six predictor variables; soil
organic carbon (SOCgkg), nitrate nitrogen (NO3Ngkg), ammonium (NH4Ngkg), and percentage
clay (ClayPCQ), silt (SiltPC), sand (SandPC) content. In both Wang et al. (2009) and Comber et al.
(2018b), the data were transformed, and this operation is retained here: STN, SOCgkg, NO3Ngkg
and NH4Ngkg are transformed using natural logs and ClayPC is square root transformed. As with
any regression analysis due consideration should be given to the nature of data relationships, the
use of data transforms and associated model specification tasks prior to the main model fits — see
Appendix Al.
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Figure 1. The case study data locations.

Each analysis in the GWR route map below predicts STN using different predictor variable subsets
to illustrate specific points. At no point is the intention to conduct a nuanced regression analysis
that attempts to fully characterise and interpret the soil processes. Rather the different data set
scenarios are used only to illustrate the route map. The data set and the R code used to undertake
the analyses are available from https://github.com/lexcomber/GWRroutemap.

2.3 Case study scenarios

Four data set scenarios were chosen to illustrate the route map decisions. These are given in Table
1, each with STN as the response but with differing predictors. The compositional nature of the
clay / sand / silt data is catered for by omitting at least one from an analysis. Critically, the intention
i1s to treat each scenario as a distinct and independent data set and not as a linked model
specification exercise with respect to predictive variable selection. In this respect, ‘Analysts’ are
assigned to each data set, where Analysts B-D are entirely unaware that more predictors of STN
exist. To emphasise, this directly entails that model fit statistics such as AICc should not be
compared across all study models (i.e. those of all four scenarios) but only compared for those
models relating to each scenario, in turn.

SOCgkg ClayPC SiltPC SandPC NO3Ngkg NH4Ngkg

Analyst A yes yes yes - yes yes
Analyst B - - - yes yes -
Analyst C yes - - - - yes
Analyst D yes - - yes yes -

Table 1. Data set scenarios in terms of four different ‘Analysts’.



3. Primary model decisions

The fundamental consideration for undertaking a GWR analysis is that it should be justified in
terms of the aims of the analysis and the characteristics of the data. If spatial effects are evident in
the data (see Appendix Al for data considerations and exploratory mapping of variables) then a
GWR can be considered but this requires demonstrating that alternate models, specifically ones
with fixed coefficients, are not suitable. To achieve this, the following steps for any GWR analysis
are recommended:

1) A basic linear regression should be undertaken and the results investigated.

2) A MS-GWR should be calibrated and the estimated bandwidths interrogated.

3) Based on findings (1) and (2), one from a standard GWR, MX-GWR and MS-GWR should
be considered for further analysis provided an SVC model is considered suitable in the
first place.

The linear regression model assumes fixed data relationships and provides the baseline against
which all forms of GWR can be compared. The MS-GWR model, estimates the bandwidths for
each response-predictor relationship. Evaluating these directly quantifies any spatially varying
relationships and at what spatial scale they each operate at. This in turn informs on whether to
pursue a GWR analysis and if so, which of three different GWR forms to follow. That is, given
the MS-GWR results, can a simpler model in a linear regression, standard GWR or MX-GWR
provide a viable and pragmatic alternative? Or is MS-GWR the only viable option?

This approach to primary model choice is recommended first because the theory for the standard
linear regression is extremely well developed, whilst theoretical developments reduce
exponentially moving from standard GWR, to MX-GWR, and finally to MS-GWR, where MS-
GWR is relatively recent with some theoretical consideration still unresolved (Lu et al. 2019).
Second, other critical considerations of model complexity, sample size, sample configuration and
sample variation play key and intertwined roles, which cannot be entirely resolved through a
comparison of model parsimony-fit statistic such as AIC / AICc. Thus, choosing a simpler
regression over the relatively complex MS-GWR is advocated but where this decision is informed
by following the proposed route map.

Both the linear regression and MS-GWR analysis should also investigate for the presence of
spatially autocorrelated model residuals. Thus, further to the four model choices (of linear
regression, GWR, MX-GWR and MS-GWR), a fifth model is considered where an alternative
fixed coefficient regression is fitted but with a spatially autocorrelated error term (i.e. a spatially
autocorrelated model, SAM). For this study, the spatially autocorrelated error term is modelled by
the parameterization of its covariance using an exponential function decaying with respect to the
Euclidean distance separating sample sites. The restricted maximum likelihood (REML) method
(e.g. Lark et al. 2006) is used for the estimation. The SAM will warrant consideration depending
on the nature of spatially autocorrelated residuals from the linear regression fit and also if the MS-
GWR fit indicates that only the intercept is found to be spatially varying (Nakaya et al. 2005;
Harris et al. 2010b; Harris 2019). Again, the theory for the SAM and related models is well
developed (e.g. Schabenberger and Gotway 2004; Waller and Gotway 2004).

The kernel bandwidth identification is the critical consideration in GWR as it determines how
many data points are included in the data subset passed to each local regression and how these
data points are spatially weighted. Bandwidths dictate the degree of smoothing or variation in the
local regression coefficient estimates, and the study’s interpretations and inferences for process
heterogeneity thereafter.
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Determining the scale at which data relationships operate is not a straightforward task. In this
study, bandwidths are found objectively via AICc, but this should not discount user-specified
bandwidths when there exists some strong prior belief, theoretical justification or expert
knowledge for their use. Similar discussions can be found in related kernel weighting paradigms,
such as kernel density estimation, where automated bandwidth approaches are not necessarily
viewed as a panacea for bandwidth selection (Silverman, 1986). There are strong benefits in
conducting an extensive bandwidth investigation, as final model outputs are more assured.

For the primary analyses, only rudimentary assessments of statistical (relationship) significance
are undertaken using coefficient standard errors, #-values and p-values from standard GWR, MX-
GWR and MS-GWR models. Caveats on their use with all forms of GWR are discussed in
Appendix A3.

3.1 Step 1: Basic linear regression and autocorrelated residuals

The first step is to undertake a global linear regression. The aim for the regression analysis is to
try to understand how the predictors relate to the response variable, specifically: (a) which
relationships are statistically significant, (b) evidence for specifying an autocorrelated error term,
and (c) the fit of the linear regression itself. Table 2 summarises the linear regression coefficient
estimates and their significance from zero, for all four Analysts. The linear models from Analysts
A and C provide a mixture of significant and insignificant predictors of STN, while all predictors
are significant for the linear models from Analysts B and D.

Analyst A Analyst B Analyst C Analyst D

Estimate p-value | Estimate p-value | Estimate p-value | Estimate p-value
Intercept -2.220 0.000 | -0.723 0.000 | -2.130 0.000 | -1.437 0.000
SOCgkg 0.690 0.000 - - 0.918 0.000 0.683 0.000
ClayPC -0.011 0.843 - - - - - -
SiltPC 0.015 0.000 - - - - - -
SandPC - -1 -0.021 0.000 - -1 -0.012 0.000
NO3Ngkg 0.126 0.000 0.355 0.000 - - 0.112 0.000
NH4Ngkg -0.146 0.047 - -1 -0.011 0.884 - -

Table 2. Linear regression coefficient estimates and their significance (p-value).

To assess spatial autocorrelation of the linear regression residuals, a spatial weight matrix was
defined and unbiased estimates of Moran’s [ and their significance were determined (Table 3),
under the expectation of random and independent residual distributions. Moran’s [ for all four
models are significant, where the spatial structure in the linear regression residuals varies from
relatively weak to relatively strong (data for Analyst A has the weakest structure, while data for
Analyst C has the strongest), as reported by the magnitude of the estimates. In this case, all four
data set scenarios indicate that a fixed coefficient regression with a spatially autocorrelated error
term could be suitable (i.e. a SAM via a REML estimation). This is not surprising given the data
are spatial.

Table 3 also summaries the error statistics for the four scenarios with AICc and R? values. AICc
is an in-sample statistic reflecting model parsimony, while R? is also in-sample, reflecting model
prediction accuracy. Ideally, an out-of-sample statistic should also be reported, such as the CVS



or the PRESS statistic (Allen 1974), as this addresses a certain bias found with in-sample statistics.
However, no currently coded MS-GWR model could provide such an out-of-sample measure.

Moran’s 1 p-value AlCc R?
Analyst A 0.142 0.000 1124.0 0.609
Analyst B 0.174 0.000 1377.4 0.430
Analyst C 0.219 0.000 1223.1 0.545
Analyst D 0.144 0.000 1131.0 0.603

Table 3. Residual autocorrelation measures using Moran’s / and fit statistics (AICc and R?) from the four
linear regression fits.

Thus, for all four scenarios, there is no indication, as of yet, that a GWR analysis may be
appropriate, although the existence of autocorrelated residuals from a linear regression fit
commonly suggests that a GWR analysis may be useful, even though such outcomes do not
indicate the presence of spatially varying relationships between the response and the predictor
variables. This observation is critically important for understanding spatial regression modelling
in general and is routinely confused in GWR studies. Useful discussions on this misconception,
together with issues of identifying spatial autocorrelation effects from spatial heterogeneity in
terms of regression relationships can be found in Harris (2019) and references therein.

In general, but not a rule, measures of strong model fit (e.g. R* > 0.8), coupled with weak and
insignificant levels of spatial autocorrelation in the residuals, suggest that a linear regression
would be appropriate. This might be a fully specified model that included measures of all likely
predictors or factors driving the soil response variable, some of which are inherently spatial (e.g.
topography, soil class, etc.). If the fit is poor and exhibits significant levels of residual spatial
autocorrelation, a GWR analysis is still an option, as is a SAM.

In summary, this first step has fitted a linear regression model to identify which relationships are
globally significant and whether spatial autocorrelation effects may potentially exert an important
influence on these findings.

3.2 Step 2: Multiscale GWR (MS-GWR) and bandwidth estimation

The second (and concurrent) step of the primary route map is to undertake an MS-GWR analysis.
This informs on the different scales of relationships in the data, where some may be local and
others global. The MS-GWR bandwidths explicitly describe the degree of spatial heterogeneity
associated with each variable’s relationship to the response. For the MS-GWR analysis at this
stage, only the following need investigation: (1) the estimated bandwidths (i1) evidence for residual
autocorrelation, and (ii1) the fit of MS-GWR itself.

The estimated MS-GWR fixed distance bandwidths are shown in Table 4, with adaptive distance
bandwidths illustrated for the MS-GWR model of Analyst A only. In this study, the maximum
number of data points that can be included under an adaptive bandwidth is 689 (the total number
of observations in the data) and the maximum fixed bandwidth is 3742 m (the maximum distance
between any pair of data points). The bandwidths in Table 4 should be interpreted in light of these
values. For Analyst A, the order of bandwidth size is consistent between fixed and adaptive forms,
and this was broadly the case for the other three data set scenarios. This similarity is re-assuring
but to a certain extent reflects that the study data were sampled on a loosely regular grid. Studies
with data clearly on an irregular sample configuration may need to experiment more in this respect
(see Appendix Al).
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Intercept SOCgkg ClayPC SiltPC SandPC NO3Ngkg NH4Ngkg

Analyst A 555.9 24839 37417 1080.8 - 382.5 3741.7
Analyst A* 57 631 685 306 - 55 685
Analyst B 445.8 - - - 1232.9 731.9 -
Analyst C 424.9 3741.4 - - - - 3741.8
Analyst D 573.6 2214.6 - - 1066.5 378.4 -

Table 4. The fixed bandwidths in metres (max = 3742 m) for different models arising from an MS-GWR.
For Analyst A, * indicates an adaptive bandwidth (max = 689).

On viewing the fixed bandwidth results only, clear patterns emerge relating to each predictor
variable and the scale of its spatially varying relationship to the response, STN. For Analyst A, the
MS-GWR bandwidths for ClayPC and NH4Ngkg both strongly tend towards the maximum, global
bandwidth of 3742 m, while SOCgkg and Sil/tPC have bandwidths of about two-thirds and one-
third of the global one, respectively. The bandwidths for the intercept and NO3Ngkg for Analyst
A are both strongly local. For Analyst B, the bandwidths for the intercept, SandPC and NO3Ngkg
are all local. For Analyst C, the bandwidths for SOCgkg and NH4Ngkg are essentially global,
while the intercept is local. For Analyst D, none of the bandwidths appear global, where those for
the intercept, SOCgkg, SandPC and NO3Ngkg vary locally but appear quite different in
magnitude.

To assess residual spatial autocorrelation for the MS-GWR fits for each Analyst, estimates of
Moran’s / and their significance are given in Table 5, along with MS-GWR fit statistics. For each
Analyst only, the results need to be directly compared to the corresponding results given in Table
3 (for the linear regression model). Clearly in all data set scenarios, residual autocorrelation is now
negligible, while model fit improves over that found for the corresponding linear regression. Note
that the Moran’s / analysis for MS-GWR does not account for first- to second-order identification
bias (see Armstrong 1984), unlike the bias accounted for in the corresponding Moran’s / analysis
for the linear regressions in Table 3.

Moran’s 1 p-value AlICc R?
Analyst A -0.007 0.604 1050.4 0.713
Analyst B -0.013 0.700 1264.4 0.580
Analyst C 0.005 0.381 1106.8 0.662
Analyst D -0.009 0.636 1057.4 0.708

Table 5. MS-GWR residual autocorrelation measures using Moran’s / and error statistics.

3.3 Step 3: Choice of primary model

The results of the initial linear regression and MS-GWR analyses guide primary model choice.
First, from the linear regression analysis in Step 1, it appears that a fixed coefficient model should
only be considered if calibrated with an autocorrelated error term, for all four Analysts (i.e. all can
consider SAM fits). Second, from the MS-GWR analysis in Step 2, some form of GWR is similarly
worth considering, for all Analysts, as residual autocorrelation essentially disappears with a MS-
GWR fit, while at least one predictor bandwidth, including that for the intercept, is clearly local.
Step 2 MS-GWR models also consistently improve fit over their corresponding linear models of
Step 1. For deciding on the primary model, the following sub-sections provide guidance to how
this should be undertaken considering each of five regression possibilities (Linear regression,
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SAM, standard GWR, MX-GWR and MS-GWR) and the four data set scenarios. Critical to Step
3 are the presentation and interpretation of the estimated coefficients and associated uncertainties
from competing models.

Investigating linear regression and SAM for Analyst C

A linear regression should be considered as a potential final model when all bandwidths from MS-
GWR are large (i.e. tend towards the global situation), including the intercept. As a rule of thumb,
this is when they are broadly greater than 80% of the maximum distance between data points (or
80% of the data points in the adaptive bandwidth case). In this respect, none of the Analysts have
a data set that clearly suggests a linear regression fit to be appropriate. However, from above, it is
stated that all analysts could consider a SAM fit (as all indicated autocorrelated residuals from
their linear regression models), and in this respect, a SAM can be further endorsed if all predictor
variable bandwidths from MS-GWR tend to the global, but the intercept is local. This is clearly
the case for Analyst C’s data set (from Table 4).

Thus, in this instance, the primary route map has guided Analyst C to a SAM. It is prudent to
compare SAM outputs to the linear regression model outputs because only the intercept term is
locally varying from the MS-GWR. The coefficient summaries in Table 6 indicate only marginal
gains in process interpretation with the SAM fit. However, the AICc improves with the SAM
(1148.4 compared to 1223.1 for the linear regression). Thus, in this instance, there is only marginal
inferential value to the inclusion of second-order spatial effects via a SAM, as reflected by the
broadly similar estimates and statistical inferences of regression coefficients to the non-spatial
linear regression. Analyst C could also have considered an MX-GWR with only the intercept
locally varying, but as a rule, spatial effects via a SAM should always be preferred due to its
stronger inferential properties. Thus, in summary, Analyst C should proceed with a fixed
coefficient regression, where a linear regression suffices.

Linear regression SAM
Estimate p-value Estimate p-value
Intercept -2.130 0.000 -1.817 0.000
SOCgkg 0.918 0.000 0.816 0.000
NH4Ngkg -0.011 0.884 -0.086 0.284

Table 6. Coefficient estimates and their significance arising from linear regression and SAM fits for Analyst
C.

Investigating MX-GWR and MS-GWR for Analyst A

An MX-GWR can be experimented with when the MS-GWR analysis suggests two distinct sets
of bandwidths, with one set tending to the global and with the other set tending to a similar local
scale. This scenario appears likely for Analyst A (from Table 4), where the MS-GWR bandwidths
for SOCgkg, ClayPC and NH4Ngkg can be viewed as global, while those for the intercept, SiltPC
and NO3Ngkg can be viewed as local.

As example, an MX-GWR is fitted to Analyst A’s data set. Figure 2 shows the spatial distribution
of the local coefficient estimates with those significantly different to zero highlighted (i.e. p-values
< 0.05). The local coefficients portray the geographically varying relationships between the
intercept, SiltPC and NO3Ngkg to STN, where the NO3Ngkg relationship can change in sign. The
global coefficient estimates for SOCgkg ClayPC and NH4Ngkg from the MX-GWR fit were 0.677,
-0.016 and -0.193, respectively (where that estimated for ClayPC was the only one not
significantly different to zero). To fit the MX-GWR model, a single local bandwidth needs to be
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determined, and in this instance, it was user-specified to be 700 m. The MS-GWR coefficient
estimates should also be mapped for comparison and are given in Figure 3. Further, the AICc fit
of the MX-GWR model was estimated to be poorer at 1065.9 to that found with MS-GWR at
1050.4.

Thus, to fully interpret the nature of the relationships in Analyst’s A data set, coefficient
summaries found for linear regression (Table 2), MX-GWR (Figure 2) and MS-GWR (Figure 3)
need to be jointly considered. On balance, STN’s relationships with SOCgkg, ClayPC and
NH4Ngkg are clearly global and constant across space, where STN’s relationships with ClayPC
and NH4Ngkg are not viewed as significant, noting that the NH4Ngkg relationship to STN is
borderline significant / insignificant in all fits (linear regression, MX-GWR and MS-GWR).
Conversely, STN’s relationship with the intercept, SiltPC and NO3Ngkg are local, where the local
behaviour varies little between the MX-GWR and MS-GWR forms. Only for NO3Ngkg do
differences occur, where more distinct and significant areas of negative coefficient estimates were
generated with MS-GWR, but not seen in MX-GWR. If the differences were more pronounced,
then Analyst A should consider re-specifying the MS-GWR model with bandwidths for SOCgkg,
ClayPC, and NH4Ngkg pre-set (or fixed) as global, while those for the intercept, SiltPC and
NO3Ngkg re-estimated so that each relationship varies at its own local scale. However, given the
similarity in the coefficient distributions, Analyst A could justifiably and pragmatically proceed
with a MX-GWR fit, even with its worse AICc.

Intercept Silt % NO;N

22 -2.0 -1.8 0.010 0.012 0.014 0.016 00 01 02 03 04

Figure 2. The spatial variation of the local coefficient estimates given with p-values < 0.05 highlighted
from the MX-GWR analysis of Analyst A.
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Figure 3. The spatial variation of the local coefficient estimates given with p-values < 0.05 highlighted
from the MS-GWR analysis of Analyst A.

Investigating MS-GWR only for Analyst D

The MS-GWR fit should be retained when its bandwidths clearly suggest each data relationship
1s operating at its own unique spatial scale. Here the data set for Analyst D provides such an
instance (see Table 4), where Figure 4 maps the distribution of the local coefficient estimates.
Here, only the relationship for NO3Ngkg with STN changes in sign; and is the only relationship
that geographically varies between significant and insignificant.
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Figure 4. The spatial variation of the local coefficient estimates given with p-values < 0.05 highlighted
from the MS-GWR analysis of Analyst D.

Investigating standard GWR and MS-GWR for Analyst B

A standard GWR is generally not an adequate model. It can be chosen over an MS-GWR only on
the rare occasions when the intercept and all predictors have broadly similar MS-GWR estimated
bandwidths, potentially as that found for Analyst B (Table 4). This scenario predicts STN using
just SandPC and NO3Ngkg, for which a single local bandwidth appears reasonable. In this
instance, the single bandwidth can be optimally determined through a standard GWR calibration,
where it was found via AICc to be 597.5 m.

Where possible, the bandwidth function in standard GWR should be investigated, and can be
considered analogous to an investigation of the variogram in Geostatistics, where both
investigations aim to identify spatial structure in some way (e.g. Cressie 1989). This ensures that
the bandwidth optimisation has not settled on a local minimum and allows the degree to which the
identified bandwidth is optimal to be confirmed. Figure 5 shows the bandwidth function for an
AICc minimisation, which is well-behaved with a clear minimum. Observe that if the bandwidth
function was very shallow and plateaued, then a linear regression would likely suffice. Also, small
bandwidths (say, < 2% when using an adaptive bandwidth) are indicative of over-fitting, and that
a standard GWR is suggesting geographical patterns when none exists. In this case, the GWR
analysis should cease. The problem of over-fitting in standard GWR is well known (e.g. Jetz et al.
2005; Paez et al. 2011), but GWR also has the capacity to under-fit (Harris 2019).

1700 -

1600 -

AlC

1400 -

1000 2000 3000 4000
Bandwidth size (m)

Figure 5. The bandwidth function for standard GWR.
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Figure 6 maps the distribution of the local coefficient estimates from standard GWR. Here, the
relationships for the intercept and SandPC with STN can change in sign. Again, the MS-GWR
coefficient estimates are mapped for comparison (Figure 7), indicating clear spatial differences
between standard GWR and MS-GWR coefficients. In general, MS-GWR indicates smaller ranges
of coefficient variation, but where the regression relationships are consistently significant across
space. Thus, given these differences and that the AICc for standard GWR is poorer at 1272.3 to
that found with MS-GWR at 1264.4, it is considered prudent to retain the MS-GWR model rather
than simplifying the analysis with standard GWR.

Intercept Sand % NO;N

-2 -1 0 -0.03 -0.02 -0.01 0.00 025 050 075 1.00

Figure 6. The spatial variation of the local coefficient estimates given with p-values < 0.05 highlighted
from the standard GWR analysis of Analyst B.

Intercept Sand % NOsN

-1.6 -12 -0.8 0.4 -0.018 -0.017 -0.016 -0.015 0.2 03 04 05

Figure 7. The spatial variation of the local coefficient estimates given with p-values < 0.05 highlighted
from the MS-GWR analysis of Analyst B.
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Summary in terms of AICc

Table 7 summarises the AICc results for each Analyst, where for all data set scenarios, the MS-
GWR model provides the most parsimonious fit in terms of AICc. The chosen primary model is
always an improvement in fit over the linear regression model but does not necessarily provide an
improvement in fit over the corresponding MS-GWR model in terms of AICc. This is because the
interpretations of relationship non-stationarity (via the coefficient maps, above) can sometimes
remain broadly unaltered when a poorer fitting but relatively simple model (e.g. MX-GWR) is
specified rather than the relatively complex MS-GWR model.

Linear regression MS-GWR Primary model ‘chosen’
Analyst A 1124.0 1050.4 1065.9 (MX-GWR)
Analyst B 1377.4 1264.4 1264.4 (MS-GWR)
Analyst C 1223.1 1106.8 1223.1 (Linear regression)
Analyst D 1131.0 1057.4 1057.4 (MS-GWR)

Table 7. AICc values arising from the primary model analyses.
4. Discussion of secondary model decisions

Having arrived at GWR Basecamp through a primary analysis and where one from a standard
GWR, MX-GWR or MS-GWR form is considered suited to the observed spatially varying
relationships, the second stage of the GWR route map is the consideration of secondary GWR
model issues. As stated in the introduction, strategies for secondary model decisions (scaling the
summit) are only described and not implemented (through the case study data sets).

In order of importance, the following issues should be investigated: (a) predictor collinearity, (b)
the influence of outliers, and (c) evidence of a dependent error term. These should be examined
at both global (as indicated in Appendix A1) and local contexts, but here the focus needs to be
placed locally with the associated GWR form. As with any fixed coefficient, global regression,
these issues can be similarly detrimental to a reliable GWR analysis, giving rise to say, spurious
local changes in the sign of the coefficient estimates between positive and negative and local
changes in significance. They can also compromise bandwidth estimation, where GWR fits of a
secondary analysis will often give rise to different (optimised) bandwidths or a change in the
behaviour of the bandwidth function to that found with the primary analysis, and thus, potentially
changing the chosen GWR form (e.g. see respectively, Gollini et al. 2015; Harris et al. 2010a; Cho
et al. 2010).

Crucial to the secondary analysis is to test for the presence of each issue and if found, to determine
the impact of the issue and the potential for misinterpreting the GWR model outputs from the
primary analysis. Thus, comparisons of GWR diagnostic statistics and coefficient outputs need to
be made, although unfortunately this can become problematic when the given secondary analysis
GWR form does not exist (either in concept or in code). For example, a robust (outlier-resistant)
MS-GWR has not, as yet, been developed. A further complication arises, when multiple issues are
observed (e.g. local collinearity and local outliers), where say, a robust ridge GWR model might
be suitable but is not available.

Given these difficulties, some simple global data processing operation may sometimes resolve
multiple issues, say through a data transform to negate the use of a robust GWR model and / or to
address any heteroskedastic error effects (see Appendix Al). Furthermore, the choice of the
primary GWR model may indirectly negate a secondary issue. For example, both MX-GWR and
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MS-GWR has been empirically shown to indirectly account for local collinearity observed in
standard GWR (Geniaux and Martinetti 2018; Harris 2019).

Collinearity

For any global regression, collinearity occurs when pairs of predictors have a strong linear
relationship between each other, either positive or negative. Broadly, collinearity may be a
problem when correlation coefficients for a predictor pair are > 0.8 or < -0.8 as these can affect
model reliability and precision. Diagnostics such as matrix condition numbers (CNs), predictor
variance inflation factors (VIFs) and variance decomposition factors (VDPs) can be found where
rules of thumb can be applied (CNs > 30, VIFs > 10 and VDPs > 0.5) to indicate worrying levels
of collinearity (Belsey et al. 1980). Often a simple remedy is to remove one or more predictors.
The difficultly is in deciding which predictor(s) to remove, especially when all are considered
important to describing the study process. Here, a penalized regression can provide a sophisticated
solution, that by design includes a model specification capability (Zou and Hastie 2005; Friedman
et al. 2010; Dormann et al. 2013).

Collinearity may also be present in some local predictor data subsets of GWR even when not
observed globally (Wheeler and Tiefelsdorf 2005). Compositional, categorical and ordinal
predictors can be particularly problematic, often resulting in exact local collinearity making
bandwidth optimisation impossible. Geographically weighted collinearity diagnostics (CNs, VIFs
and VDPs) are available for GWR (Wheeler 2007; 2013; Lu et al. 2014) and provided any
observed collinearity is considered a concern (e.g. see the presentations of Paez et al. 2011;
Fotheringham and Oshan 2016; Harris 2019), a standard GWR can be replaced with a penalized
GWR form (Wheeler 2007; 2009; Brunsdon et al. 2012; Barcena et al. 2014; Gollini et al. 2015;
Wang and Li 2017; Li and Lam 2018). Mapping geographically weighted correlation coefficients
(Fotheringham et al. 2002; Harris et al. 2014) between predictor variable pairs can also be useful
to identify areas of local collinearity.

Outliers

For outliers, it is first useful to examine the linear regression and MS-GWR residuals of the
primary analysis for evidence of outliers that may influence the validity of their fits. This should
be done spatially (with maps of standardized residuals, say), to determine where any GWR
analysis may be compromised. Again, robust theory in the global case (e.g. Huber 1981; Marazzi
1993) has been transferred to the local case with robust extensions to standard forms of GWR only
(Fotheringham et al. 2002; Farber and Paez 2007; Harris et al. 2010a; Zhang and Mei 2011; Chen
etal. 2012; Leyk et al. 2012; Lu et al. 2014). These handle influential outliers arising globally, but
also locally in each individual regression, which may go undetected in any global assessment (i.e.
via the standardized residual maps, above).

Dependence in the error data

As with linear regression estimated by OLS, most forms of GWR assume that the errors, e; are
independently normally distributed with zero mean and common variance ¢®>. To examine for a
non-constant error variance (in a non-spatial, global manner), the regression’s fitted values can be
plotted against its residuals. A funnel shape indicates that a heteroskedastic regression should be
considered, such as through some consistent estimator (see Davidson and MacKinnon 1993) or a
weighted least squares (WLS) estimator. A direct extension to standard GWR is given in
Fotheringham et al. (2002), where the error variance varies geographically. This heteroskedastic
GWR form has also been developed to detect local outliers (Harris et al. 2010a) and to provide
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localised prediction variances (Harris et al. 2011, also see Appendix A4). Paez et al. (2002a; b)
also provide a spatially heteroskedastic form of GWR but within a parametric framework, while
Shen et al. (2011) extend the locally linear GWR model of Wang et al. (2008) to a heteroskedastic
form.

Although it is common for any GWR fit to reduce error spatial autocorrelation over that found
with a linear regression fit (as demonstrated in Section 3), it is likely that error autocorrelation will
also occur for each local regression in a GWR. GWR models that account for local autocorrelation
effects have been proposed including an extension to standard GWR (Brunsdon et al. 1998b; Cho
etal. 2011) and an extension to MX-GWR (Geniaux and Martinetti 2018) through autoregressive
GWR model forms.

5. Concluding remarks

Geographically Weighted Regression provides a framework to investigate spatial relationships in
data, their heterogeneities and varying scales of interaction. Its use in analyses of environmental
and socio-economic data continues to grow and is easily undertaken in a number of software
implementations. However, an increasing number of GWR analyses reported in the literature are
not appropriate to the study objectives or correctly formulated: in some cases GWR should not
have been applied to the problem, in others the GWR model is incorrectly parameterised or the
incorrect form of GWR is applied. Such situations may result in partial, incomplete or unreliable
analyses and inference.

Spatial data set
A 4 :
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8 :
=} All the bandwidths tend to be global & H
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Figure 8 Flowchart of the GWR route map.

19



This paper describes a GWR route map of primary and secondary considerations to ensure the
GWR analysis is justified in terms of the aims of the analysis and the characteristics of the data,
over alternate models, with fixed regression coefficients. As summarized in Figure 8, the route
map has the following primary steps:

1) A linear regression analysis should always be undertaken and the results investigated.

2) A MS-GWR (multi-scale GWR) should always be calibrated and the estimated bandwidths
interrogated.

3) Following the investigations of steps (1) and (2), the analysis should proceed with a
standard GWR, or a core variant in MX-GWR (mixed GWR) or MS-GWR, only if a spatially
varying coefficient model is considered appropriate. Otherwise a linear regression or a SAM
(spatially autocorrelated model) should be chosen.

The linear regression (step 1) provides global insight into how the predictors relate to the response,
which relationships are significant and measures of model fit. This step includes evidence of
spatial autocorrelation in the residuals, for example through a Moran’s [ analysis.

The MS-GWR (step 2) provides information through the MS-GWR bandwidths about the different
scales of relationships in the data, where some may be local and others global. The MS-GWR
bandwidths describe the degree of spatial heterogeneity associated with each variable’s
relationship to the response. Insignificant Moran’s / estimates of the spatial autocorrelation of the
MS-GWR residuals provide evidence that accounting for relationship spatial heterogeneity using
MS-GWR is capturing most of the structural variation in the data.

Investigations of the linear regression and MS-GWR results (step 3) guide the choice of the final
primary model (i.e. a linear regression or SAM, standard GWR, MX-GWR or MS-GWR). A linear
regression model should be retained when all bandwidths from MS-GWR tend towards the global
situation, including the intercept (i.e. are greater than ~80% of the maximum distance between
data points or 80% of the data points in the adaptive bandwidth case), and where spatial
autocorrelation in the residuals is either absent or if present, does not significantly effect process
interpretation (as the case for Analyst C, above). In many fixed coefficient cases however,
instances of significant residual spatial autocorrelation are more likely to result in choosing a SAM
over the non-spatial linear regression.

If spatial autocorrelation in the residuals is present and MS-GWR bandwidths are not all large,
then a GWR variant can be considered:

- A standard GWR should be considered in the rare situation when all of the MS-GWR
bandwidths tends to the same value;

- A MX-GWR should be considered when the MS-GWR bandwidths indicate two distinct
sets of bandwidths, with one set tending to the global and with the other set tending to a similar
local scale;

- A MS-GWR should be considered when the all of bandwidths vary, suggesting that each
data relationship operates at different spatial scales.

It is important to stress that the final model choice should not be guided by simply selecting the
model with lowest AICc value, especially as the aim of any GWR analysis is to explore
relationship spatial heterogeneity and spatial variations in process. Rather, interrogation of the
coefficient estimates and their uncertainty arising from the different models is paramount. This
point is somewhat philosophical in that the underlying assumption in model selection is the

20



existence of the ‘best model’, as measured by AICc, say. All depends on the aims of conducting a
GWR analysis in the first place, where for this study, relationship inference is the clear aim.
However, if the study aim was for spatial prediction and associated inference with GWR, a very
different route map would have been presented (see Appendix A4), together with associated bias-
variance trade-offs.

This paper’s GWR route map first provides a path through a number of primary issues and acts as
a gateway to informed applications of GWR. The primary issues were demonstrated empirically
through a soils data case study. As the next step of the route map, a number of secondary issues
should be investigated once a GWR analysis has been decided upon. These secondary
investigations focus at the local scale, including local predictor collinearity, the local influence of
outliers, and local dependent error terms. Secondary considerations may interact with each other
and with primary considerations and their investigation will further guide the decision to
undertake a GWR analysis or not and if so, ensure an informed choice of which GWR form to use.
Finally, further guidelines have been given in the Appendix, many of which can be of equal
importance to those given in the main text.
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Appendix: Generic considerations and further guidance
A.1 Characteristics and properties of the study data
Exploratory Data Analysis

As in any statistical study, before any formal analysis is undertaken an exploratory data analysis
or EDA is useful. The EDA should, at the bare minimum, consist of summary statistics,
histograms, examination of correlations and the linear regression fit, together with specific spatial
investigations described below. The EDA will confirm if worthwhile data relationships are present
through the correlation and regression analysis, at least globally. It will also determine the
presence of any problems with the data that need to be flagged or addressed. Common problems
to address include that of non-linearity and outliers, where a data transformation (say, a log or
square root) may be required, which may also provide a first step to dealing with error
heteroskedacity. Global issues of predictor variable collinearity can also be addressed at this stage.
In this respect, alternatives to the OLS-estimated linear regression fit, may be presented, such as
arobust regression to deal with outlying relationships, a WLS fit to deal with error heteroskedacity
and a ridge regression to deal with collinearity (see section 4 of the main text).

In addition to the EDA described, and in the context of GWR, the following considerations should
also be investigated: (i) predictor variable specification, (ii) the presence of spatial predictors, (ii1)
evidence of spatial pattern in the response and predictors, (iv) effects of data pre-processing, (v)
effects of sample size, and (vi) effects of sample configuration. These additional investigations
are also exploratory and should be undertaken with the aim of understanding the data and to
identify any characteristics that ultimately may affect a subsequent GWR analysis.

Predictor variable specification

The first and most important consideration is to establish that there is some kind of expected
relationship or process linking the response and predictor variables. That is, to confirm that the
data have been collected with attributes that reflect either an underpinning research understanding
of the problem, or with the aim of investigating the problem and to support the development of
new understandings. So, a key question is whether a// the required predictors are present and
whether any spatial heterogeneity observed through a GWR analysis may simply be a consequence
of missing predictors (i.e. global, linear model misspecification). This line of thought or even
objection to GWR has been present from the outset (Brunsdon et al. 1998), and the same responses
still apply: (a) the exploratory nature of GWR means its outputs can potentially guide the analyst
to improve specification; (b) missing predictors may not be easily measured (e.g. too costly), and
(c) the process is intrinsically spatial and local, where ‘global truths’ and ‘stylised facts’ are
unlikely. Observe, the greater the number of predictors, the more likely it is that a linear regression
(or a SAM) will identify some global truth and also that GWR may sometimes identify a spatial
pattern when none actually exists (Paez et al. 2011; Harris 2019).

Spatial predictor variables

A second consideration is whether spatial predictors are present? That is, predictors that are
inherently spatial in nature. Useful ones such as the coordinates or region indicators can be more
simply used in a linear regression or a SAM, as well as distance-based measures. Examples of the
latter include distance to the city centre in an accessibility study, distance to fast food outlets as a
variable in an obesity study or distance to sea in a lake acidification study. Such predictors should
be avoided in any GWR study, as GWR itself employs distance-based analyses, so introducing
distance related attributes can confound GWR results.
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Spatial pattern and autocorrelation amongst response and predictor variables

At the exploratory stage of a GWR analysis, it is not only important to assess any residual
autocorrelation from linear regression (and GWR) fits (see main text); but it is also important to
investigate for spatial autocorrelation and co-autocorrelation in the response and predictors. This
can be done simply through a series of Moran’s / (and bivariate extensions of) analyses or can be
done more thoroughly via the calculation and modelling of variograms and cross-variograms (e.g.
Goovaerts 2001). Variographic assessments are particularly pertinent in that: (1) modelled
variogram and cross-variogram ranges can help guide fixed bandwidth choice in GWR and (2)
strong spatial co-autocorrelation amongst the variables can confound identification issues when
choosing between a regression accounting for spatial heterogeneity effects (i.e. GWR) and a
regression accounting for spatial autocorrelation effects (i.e. SAM) (Murakami et al. 2017;
Geniaux and Martinetti 2018; Harris 2019).

Mapping the response and predictor variables is also key to determine if there is some spatial
pattern and complements the more formal assessments, above. If spatial patterns or spatial
dependencies are absent, then any spatial regression analysis (with a GWR or a SAM) should not
be preferred over a non-spatial analysis with linear regression. In some instances, even a linear
regression will hold no value, as all processes are purely random in nature with no linkages
between them.

Effects of data pre-processing

Care must be taken when pre-processing the response and predictors prior to a GWR analysis. An
analysis with raw data will commonly provide quite different outputs to that found using
standardized and / or transformed data. This is somewhat highlighted in that MS-GWR has a
thorny, and as of yet, unresolved calibration issue with the respect to standardizing the data or not,
as a different set of bandwidth estimates will result (Oshan et al. 2019; Lu et al. 2019). In this
study, the bandwidths for the MS-GWR models (of section 3 in the main text) were first estimated
using centred data, which also provided computational savings. These bandwidths were then pre-
specified in a second MS-GWR calibration, but now with the raw data, so that the MS-GWR
coefficient sets could be directly compared to those found from the linear regression, SAM,
standard GWR and MX-GWR.

Sample size

Ultimately, any evaluation of whether there are sufficient records for a GWR analysis depends on
the nature of the spatial process being investigated, where small data sets can suffice if the process
1s well-behaved (i.e. relationships are expected to vary smoothly, the data has no secondary issues,
there are relatively few predictors, etc.). Conversely, a GWR analysis with a large data set may
still suffer from insufficient information if the spatial process is not well-behaved requiring a
detailed and complex GWR route map. Paez et al. (2011) suggested a minimum of n = 160 records
are appropriate for a GWR analysis, although this should never be considered a rule, only a loose
guide.

For massive data sets (say, » >>10,000), computational problems can arise, particularly in respect
of any automated bandwidth selection procedure, where the computationally demanding back-
fitting calibrations for MX-GWR and MS-GWR can be prohibitive to their use in Big Data studies.
Computational burden can be alleviated through some combination of the following: (a) the
judicious use of small but spatially-representative data subsets for bandwidth selection, (b) the use
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of centred predictor data (Lu et al. 2019, see above); (c) parallelisation (Harris et al. 2010c; Tran
et al. 2016; Li et al. 2019), (d) the use of low level coding (e.g. C++ in ‘GWmodel’), and (e) the
pre-compression of GWR’s matrices and vectors in scalable GWR (Murakami et al. 2019), also
in ‘GWmodel’.

Sample configuration

Other than the recommendation to specify adaptive bandwidths when the sample configuration is
highly uneven in layout, little research has been conducted on the consequences of different
sample configurations on a GWR analysis (aside from that given in Ye et al. 2017 in the context
of prediction). For point support studies, such as those in soil science, it is likely that sample
configurations recommended in geostatistical methodology (e.g. Webster and Lark 2012) are
transferable to GWR. For example, the use of a regular or random stratified sampling grid, say.
As in geostatistical studies, if the sampling is too coarse, processes at a finer scale will go
unnoticed (i.e. small-scale spatial dependencies with kriging or highly localised spatial
relationships with GWR). In the extreme, all spatial effects can go unnoticed resulting in choosing
a linear regression fit simply due to poor sample design. Equally as important are the biasing
effects due to preferential sampling where areas of perceived interest (e.g. high levels of soil
contamination) are sampled more intensively than others. Here the preferentially sampled data
require down-weighting or declustering in some manner to avoid (potentially severe) bias in GWR
bandwidth estimation, model fit and coefficient estimation. It is likely that the geostatistical
declustering procedures outlined in Diggle et al. (2010) are broadly transferrable to a GWR
analysis.

A.2 Further influences on the geographical weights

As indicated, the weightings in GWR are determined by a kernel function, where its bandwidth
can be of a fixed or an adaptive distance form. Thus, experimentation with different kernel types
(e.g. Gollini et al. 2015) and different bandwidth forms (see Table 4 of the main text) will directly
influence GWR’s weights and potentially the interpretation of its outputs.

In this respect, experimentation with both a discontinuous (e.g. box-car, bi-square, tri-cube) and a
continuous (e.g. Gaussian, Exponential) kernel is recommended as it can provide clarity to any
spatially-varying relationships observed. A box-car kernel (i.e. GWR defaulting to a moving-
window regression) is useful in that it can return the corresponding global regression when a 100%
adaptive bandwidth is specified. Furthermore, its highly discontinuous nature can be useful in the
detection of outliers (Lloyd and Shuttleworth 2005). A continuous kernel is useful (and may be
the only viable option) when sample size is small (say, n < 100) as it ensures that all data influence
each local regression fit, yielding a certain robustness that is not possible when a discontinuous
kernel is specified, as it can only use data subsets for each local regression fit. Adaptive
bandwidths for discontinuous distance-decay kernels set at above 100% would address this, but
this option is rarely available in GWR software packages.

Other GWR specifications are possible that influence its weights and can be worthy of
investigation depending on the diversity of the sample data and the complexity of the geography.
This includes the use of: (a) non-Euclidean distance metrics in standard GWR, MX-GWR and
MS-GWR (Lu et al. 2014; 2015; 2017; 2018; 2019; Comber et al. 2018a) (e.g. for process along
some urban transportation or river network), (b) double weighting schemes in contextualized
GWR for hierarchical processes (Harris et al. 2013), (¢) double weighting schemes in robust GWR
(see Fotheringham et al. 2002; Harris et al. 2010a), (d) GWR with location-specific bandwidths
(Paez et al. 2002a; b; Comber et al. 2018b), (e) locally linear GWR, which can improve fit and
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reduce coefficient bias over standard GWR (Wang et al. 2008; Paez et al. 2011; Zhang and Mei
2011), and (f) anisotropic GWR where weights decay at different rates according to directional
relationships (Paez 2004).

A.3 Inference options in GWR

Inference in GWR is somewhat compromised by there being no-one single model, but a collection
of models re-using sample data at multiple locations. This entails that a valid probability model is
unavailable with GWR, making inference biased and problematic. In this respect, Bayesian SVC
models have a distinct advantage as they provide a valid and richer inferential framework for
testing hypotheses (Gelfand et al. 2003; 2004; Finley 2011), but relative to GWR, can suffer
analytically and computationally making them unusable in certain Big Data situations.

In section 3 of the main text, local inference directly used the local coefficients and their standard
errors in an analogous way to that routinely done with the linear regression. This rudimentary
approach has been referred to as pseudo t-tests, reflecting the caveats above (e.g. Harris et al.
2010a), but can provide cautiously reasonable results (Harris 2019). Improvements (adjustments)
to this approach are provided in da Silva and Fotheringham (2016) regarding the inherent multiple
hypothesis testing issue, which has also been extended to MS-GWR (Yu et al. 2019). Local
inference in GWR can also be improved via the use of local bootstrap tests (Harris et al. 2017).
Local inference can test whether coefficients significantly differ to zero or significantly differ to
the same coefficient estimated globally through some fixed coefficient model (Harris et al. 2017;
Harris 2019).

Local tests provide mappable outputs, but it is also possible to conduct tests for coefficient
nonstationary against a fixed coefficient null hypothesis for each relationship of the regression
model. For example, Nakaya et al. (2005) examined the variability of GWR coefficients by
comparing standard with mixed models (all in a generalized form). For example, Nakaya (2015)
added a deviance-based test for generalized GWR models. Similarly, Harris et al. (2017) proposed
a parametric bootstrap test to compare coefficient estimates from standard GWR to those from a
linear regression and SAMs, while Mei et al. (2016) proposed a non-parametric bootstrap test to
compare coefficient estimates from standard GWR with those from MX-GWR. These approaches
are generic and could be easily extended to all GWR forms.

A.4 GWR as a spatial predictor

If the aim is spatial prediction at un-sampled locations, then almost all forms of GWR can be used,
some of which have: (i) been specifically designed for this use purpose (e.g. Harris et al. 2010b;
2011), (i1) hybridised with kriging (Harris et al. 2010b; Harris and Juggins 2011; Kumar et al.
2012; Robinson et al. 2013; Zeng et al. 2016; Guo et al. 2017; Ye et al. 2017; Chen et al. 2019),
(111) designed to predict on specific supports (Lin et al. 2011; Jin et al. 2018), and (iv) re-purposed
GWR within a GAM framework and fitted using penalized splines (Nogués-Bravo 2009).
However, given a plethora of alternative prediction models exist within Geostatistical (Cressie
1993), Geographical (Haining 2003) and Machine Learning (Li et al. 2011) paradigms, results
from a GWR-based predictor should always be compared with alternatives for objective context
(Paez et al. 2008; Lloyd 2010; Harris et al. 2010b; Harris et al. 2011; Harris and Juggins 2011;
Monteys et al. 2015; Song et al. 2016).

Alternative prediction models can also have similar non-stationary relationship options. For
example, when the classic kriging with an external drift (KED) model (e.g. Chiles and Delfiner
1999) is specified with local kriging neighbourhoods rather than a single, unique one (Harris et al.
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2010b; 2011; Monteys et al. 2015). A further consideration, one that is often over-looked, is that
of prediction uncertainty. For GWR, such estimates can be found through: (a) a standard GWR
predictor (Leung et al. 2000), (b) a GWR kriging hybrid (Harris et al. 2010b), (¢) a heteroskedastic
GWR predictor (Harris et al. 2011) and (d) a GWR indicator kriging hybrid (Harris and Juggins
2011). Bayesian SVC models, but now calibrated for prediction, can provide a superior inferential
framework for prediction uncertainty to that based on GWR (Finley 2011).

A.5 GWR development through simulation experiments

Finally, many developments of GWR have utilized simulation experiments to objectively
demonstrate the value of a newly proposed GWR model or to demonstrate the value of an existing
GWR model in relation to an alternative SVC model. These simulation experiment generate
regression coefficient processes with known spatial characteristics. Different simulation designs
exist, where those worthy of following include that of Wang et al. (2008), Wheeler and Calder
(2007), Wheeler (2009), Finley (2011), Harris et al. (2017), Oshan and Fotheringham (2018), Wolf
et al. (2018), Murakami et al. (2019) and Harris (2019).

26



References

Akaike H 1973. Information Theory and an extension of the maximum likelihood principle. In: Petrov BN,
Csaki F eds. 2nd Symposium on Information Theory, Budapest: Akademiai Kiado, pp. 267-281.

Allen, D. M. 1974., The Relationship Between Variable Selection and Data Augmentation and a Method
for Prediction, Technomerics, 16, 125127

Anselin, L. 2005. Exploring Spatial Data with GeoDa: A Workbook
https://s3.amazonaws.com/geoda/software/docs/geodaworkbook.pdf.

Armstrong, M. 1984. Problems with Universal Kriging. Mathematieal Geology 16, 101-108.

Assuncdo R.M. 2003. Space varying coefficient models for small area data. Environmetrics 14, 453-473.

Atkinson PM, German SE, Sear DA, Clark MJ 2003. Exploring the relations between riverbank erosion
and geomorphological controls using geographically weighted logistic regression. Geographical
Analysis 35:58-82

Barcena, M.J., Menéndez, P., Palacios, M.B. and Tusell, F., 2014. Alleviating the effect of collinearity in
geographically weighted regression. Journal of Geographical Systems, 16(4), pp.441-466.

Belsley DA, Kuh E, Welsch RE 1980. Regression diagnostics.: identifying influential data and sources of
collinearity. Wiley, Nw York

Bivand R, Yu D, Nakaya T, Garcia-Lopez MA 2013. spgwr: Functions for Computing Geographically
Weighted Regressions. R package version 0.6-22, URL http://CRAN. R-project.org/package=spgwr

Bowman, A. W. 1984. An Alternative Method of Cross-Validation for the Smoothing of Density Estimates
Siometrika 71, 353-0

Brunsdon C, Charlton M, Harris P 2012. Living with collinearity in Local Regression Models. Spatial
Accuracy 2012, Brazil

Brunsdon, C., A.S. Fotheringham, and M. Charlton 1996. Geographically Weighted Regression: A Method
for Exploring Spatial Nonstationarity. Geographical Analysis, 28, 281-298.

Brunsdon, C., A.S. Fotheringham, and M. Charlton 1999. Some Notes on Parametric Significance Tests
for Geographically Weighted Regression. Journal of Regional Science, 39, 497-524.

Brunsdon, C., A.S. Fotheringham, and M. Charlton. 1998b. Spatial nonstationarity and autoregressive
models. Environment and Planning A4, 306., 957-993.

Brunsdon, C., Fotheringham, S., and Charlton, M. 1998a. Geographically Weighted Regression. Journal
of the Royal Statistical Society: Series D, 47 3., 431-443.

Brunton, L.A., Alexander, N., Wint, W., Ashton, A. and Broughan, J.M., 2017. Using geographically
weighted regression to explore the spatially heterogeneous spread of bovine tuberculosis in England
and Wales. Stochastic Environmental Research and Risk Assessment, 31(2), pp.339-352.

Burgess, T.M. & Webster, R. 1980a. Optimal interpolation and isarithmic mapping of soil properties. I.
The semi-variogram and punctual kriging. Journal of Soil Science, 31, 315-331.

Burgess, T.M. & Webster, R. 1980b. Optimal interpolation and isarithmic mapping of soil properties. I1.
Block kriging. Journal of Soil Science, 31, 333-341.

Casetti, E. 1972. Generating models by the expansion method: applications to geographical research.
Geographical Analysis, 4 1., 81-91.

Charlton M, Fotheringham AS, Brunsdon C 2003. GWR 3: Software for Geographically Weighted
Regression. NCG, National University of Ireland Maynooth.

Chen Y., Deng W., Mathews S. 2020. Exploring Heterogeneities with Geographically Weighted quantile
regression: An enhancement Based on the Bootstrap Approach. Geographical Analysis
doi.org/10.1111/gean.12229.

Chen Y., Deng W., Yang T., Mathews S. 2012. Geographically weighted quantile regression GWQR: An
application to U.S. Mortality. Geographical Analysis 44:134-150

Chen, L.; Ren, C.; Li, L.; Wang, Y.; Zhang, B.; Wang, Z.; Li, L. (2019). A Comparative Assessment of
Geostatistical, Machine Learning, and Hybrid Approaches for Mapping Topsoil Organic Carbon
Content. ISPRS International Journal of Geo-Information. 8, 174.

Chilgs, J.P. and Delfiner, P., (1999) Geostatistics: modelling spatial uncertainty. New York: Wiley.

Cho, S.-H., D. M. Lambert, and Z. Chen. 2010. Geographically weighted regression bandwidth selection
and spatial autocorrelation: An empirical example using Chinese agriculture data. Applied Economics
Letters 17:767-72.

Chorley and Haggett 1967 eds. Models in Geography, London Methuen

27



Clark, P.J. and Evans, F.J. 1954. Distance to nearest neighbour as a measure of spatial relationships in
populations. Ecology, 35, 445-453. do0i:10.2307/1931034

Cleveland WS 1979. Robust Locally Weighted Regression and Smoothing Scatterplot. Journal of the
American Statistical Association, 74 368:829-836

Comber, A., Chi, K., Huy, M.Q., Nguyen, Q., Lu, B., Phe, H.H. and Harris, P., 2020. Distance metric
choice can both reduce and induce collinearity in geographically weighted regression. Environment and
Planning B: Urban Analytics and City Science, 47(3), pp.489-507.

Comber A, Wang Y, Li Y, Zhang X and Paul Harris (2018b). Hyper-local geographically weighted
regression: extending GWR through local model selection and local bandwidth optimization. Journal
of Spatial Information Science, 17:63-84, https://doi.org/10.5311/JOSIS.2018.17.422

Cressie N 1989. The Many Faces of Spatial Prediction. In M Armstrong ed., Geostatistics, volume 1, pp.
163—176. Dordrecht, Kluwer

Cressie, N., 1993. Statistics for Spatial Data. New York: John Wiley & Sons, Inc.

da Silva, A.R. & Fotheringham A.S. 2016. The multiple hypothesis testing issue in geographically

weighted regression. Geographical Analysis 483., 233-247.

Datta, A., Banerjee, S., Finley, A.O., Gelfand, A.E. 2016. Hierarchical nearest-neighbour Gaussian process
models for large geostatistical datasets. Journal of the American Statistical Association, 111 514., 800-
812.

Davidson, R. and MacKinnon, J. 1993. Estimation and Inference in Econometrics. Oxford University
Press, New York: 531 pp.

Diggle, P. J., Menezes, R. and Su, T. (2010), Geostatistical inference under preferential sampling. Journal
of the Royal Statistical Society: Series C, 59: 191-232

Dong, G., Nakaya, T., and Brunsdon, C. 2018. Geographically weighted regression models for ordinal
categorical response variables: An application to geo-referenced life satisfaction data. Computers,
Environment and Urban Systems, 70, 35-42.

Dormann, C.F., J. Elith, S. Bacher, et al. 2013. Collinearity: a review of methods to deal with it and a
simulation study evaluating their performance. Ecography 36: 27-46.

Du Zhenhong, Sensen Wu, Feng Zhang, Renyi Liu, Yan Zhou, 2018. Extending geographically and
temporally weighted regression to account for both spatiotemporal heterogeneity and seasonal
variations in coastal seas, Ecological Informatics, 43, 185-199,

Fahrmeir, L., Kneib, T., & Lang, S. 2004. Penalized structured additive regression for space-time data: a
Bayesian perspective. Statistica Sinica, 731-761.

Fahrmeir, L., Lang, S., Wolff, J., Bender, S. 2000. Semiparametric Bayesian time-space analysis of
unemployment duration. Collaborative Research Center, Discussion Paper 211.

Farber S, Paez A 2007. A systematic investigation of cross-validation in GWR model estimation: empirical
analysis and Monte Carlo simulations. Journal of Geographical Systems 9:371-396

Finley, A.O. 2011. Comparing Spatially-Varying Coefficient Models for Analysis of Ecological Data with
Non-Stationary and Anisotropic Residual Dependence. Ecology and Evolution, 2, 143—154.

Fisher, Ronald A. 1971. [1935]. The Design of Experiments 9th ed.. Macmillan.

Foody, G. M. 2003. Geographical weighting as a further refinement to regression modelling: an example
focused on the NDVI-rainfall relationship. Remote Sensing of Environment. 88: 283-293.

Foody, G. M. 2004. Spatial non-stationary and scale-dependency in the relationships between species
richness and environmental determinants for the sub-Saharan endemic avifauna. Global Ecology and
Biogeography 13: 315-320.

Fotheringham AS, Brunsdon C 1999. Local forms of spatial analysis. Geographical Analysis 314: 340-358

Fotheringham, A. S., Brunsdon, C., and Charlton, M. 2002. Geographically Weighted Regression: The
Analysis of Spatially Varying Relationships. Wiley, New Y ork.

Fotheringham, A. S., Crespo, R., & Yao, J. 2015. Geographical and Temporal Weighted Regression
GTWR. Geographical Analysis, 47, 431-452

Fotheringham, A. S., Yang, W., and Kang, W. 2017. Multiscale geographically weighted regression mgwr.
Annals of the American Association of Geographers, 107 6., 1247-1265.

Fotheringham, A.S. and Oshan, T.M. 2016. Geographically weighted regression and multicollinearity:
dispelling the myth. Journal of Geographical Systems, 18, 303-329.

Fox, J., 2016. Applied Regression Analysis and Generalized Linear Models (Third Edition). SAGE
Publications Inc., California.

28



Friedman J, Hastie T, Tibshirani R 2010. Regularization paths for generalized linear models via coordinate
descent. Journal of Statistical Software 331:1-22

Gelfand, A.E., H-J. Kim, C.F. Sirmans, and S. Banerjee. 2003. Spatial Modeling with Spatially Varying
Coefficient Processes Journal of the American Statistical Association, 98, 387-396.

Geniaux, G. and Martinetti, D. 2018. A new method for dealing simultaneously with spatial autocorrelation
and spatial heterogeneity in regression models. Regional Science and Urban Economics, 72, 74-85.
Gollini, I., B. Lu, M. Charlton, C. Brunsdon & P. Harris 2015. GWmodel: an R Package for Exploring
Spatial Heterogeneity using Geographically Weighted Models. Journal of Statistical Software, 63, 1-

50.

Goovaerts, P. (2001). Geostatistical modelling of uncertainty in soil science. Geoderma, 103, 3-26.

Gorr, W. L., and A. M. Olligschlaeger 1994. Weighted Spatial Adaptive Filtering: Monte Carlo Studies
and Application to Illicit Drug Market Modeling. Geographical Analysis 26, 67-87.

Griffith DA 2012. Space, time, and space-time eigenvector filter specifications that account for
autocorrelation. Estadistica Espariola 54177: 7-34.

Griffith, D.A. 2003. Spatial Autocorrelation and Spatial Filtering: Gaining Understnding through Teory
and Scientific Visualization. Berlin: Springer.

Griffith, D.A. 2008. Spatial-filtering-based contributions to a critique of geographically weighted
regression GWR. Environment and Planning A, 40, 2751-27609.

Guo, L., Zhao, C., Zhang, H., Chen, Y., Linderman, M., Zhang, Q., & Liu, Y. (2017). Comparisons of
spatial and non-spatial models for predicting soil carbon content based on visible and near-infrared
spectral technology. Geoderma, 285, 280-292

Haining, R. P. 2003. Spatial Data Analysis: Theory and Practice. Cambridge, UK: Cambridge University
Press.

Harris P, Brunsdon C, Fotheringham AS 2011. Links, comparisons and extensions of the geographically
weighted regression model when used as a spatial predictor. Stochastic Environmental Research and
Risk Assessment 25:123-138

Harris P, Brunsdon C, Lu B, Nakaya T, Charlton M 2017. Introducing bootstrap methods to investigate

coefficient non-stationarity in spatial regression models. Spatial Statistics 21: 241-261.

Harris P, Juggins S 2011. Estimating freshwater critical load exceedance data for Great Britain using space-
varying relationship models. Mathematical Geosciences 43:265-292

Harris, P. 2019. A simulation study on specifying a regression model for spatial data: Choosing between
autocorrelation and heterogeneity effects. Geographical Analysis, 51 2., 151-181.

Harris, P., A.S. Fotheringham, and S. Juggins. 2010a. Robust Geographically Weighted Regression: A
Technique for Quantifying Spatial Relationships Between Freshwater Acidification Critical Loads and
Catchment Attributes. Annals of the Association of American Geographers, 100, 286-306.

Harris, P., A.S. Fotheringham, R. Crespo, and M. Charlton. 2010b. The use of geographically weighted
regression for spatial prediction: an evaluation of models using simulated data sets. Mathematical
Geosciences 42:657-680.

Harris, P., Clarke, A., Juggins, S., Brunsdon, C., Charlton, M. 2014. Geographically weighted methods and
their use in network re-designs for environmental monitoring. Stochastic Environmental Research and
Risk Assessment 28: 1869-1887.

Harris, R., G. Dong, and W. Zhang. 2013. Using Contextualized Geographically Weighted Regression to
Model the Spatial Heterogeneity of Land Prices in Beijing, China. Transactions in GIS 176:901-919.

Harris, R., Singleton, A., Grose, D., Brunsdon, C., and Longley, P. 2010c. Grid-enabling geographically
weighted regression: a case study of participation in higher education in England. Transactions in GIS,
14 (1), 43-61.

Hastie T, Tibshirani 1986. Generalized Additive Models. Statistical Science 13:297-310

Huang B, Wu B, Barry M 2010. Geographically and temporally weighted regression for modelling
spatiotemporal variation in house prices. International Journal of Geographical Information Science
243:383-401

Huang, Y., Yuan, M., & Lu, Y. 2019. Spatially varying relationships between surface urban heat islands
and driving factors across cities in China. Environment and Planning B:, 462., 377-394.

Huber, P. J. 1981. Robust Statistics. New York: John Wiley and Sons.

Hurvich CM, Tsai C-L. 1989. Regression and time series model selection in small samples. Biometrika
76:297-307.

29



Jetz, W., Rahbk, C. and Lichstein, J.W. 2005. Local and global approaches to spatial data analysis in
ecology. Global Ecology and Biogeography, 14, 97-98.

Jin, Y. Ge, Y. Wang, J. Heuvelink, G.B.M. Wang, L. 2018. Geographically Weighted Area-to-Point
Regression Kriging for Spatial Downscaling in Remote Sensing. Remote Sensing, 10, 579.

Kalogirou S 2019. Ictools: Local Correlation, Spatial Inequalities, Geographically Weighted Regression
and Other Tools. R package version 0.2-7. https://CRAN.R-project.org/package=Ictools

Kneib, T., Hothorn, T., Tutz, G. 2009. Variable selection and model choice in geoadditive regression
models. Biometrics, 65 2., 626-634.

Kolmogorov, A.N., 1941. The local structure of turbulence in incompressible viscous fluid for very large
Reynolds numbers. Cr Acad. Sci. URSS, 30, pp.301-305.

Kumar, S.; Lal, R.; Liu, D. 2012. A geographically weighted regression kriging approach for mapping soil
organic carbon stock. Geoderma, 189, 627-634

Lark, R.M., Cullis, B.R., and Welham, S.J. 2006. On spatial prediction of soil properties in the presence of
a spatial trend: the empirical best linear unbiased predictor E-BLUP. with REML. European Journal of
Soil Science, 57, 787-799.

Leong, Y.Y., and J.C. Yue. 2017. A modification to geographically weighted regression. International
Journal of Health Geographics, 16 1., 11.

LeSage, J. and K. Pace. 2009. Introduction to Spatial Econometrics. CRC Press, Boca Raton.

Leung, Y., Mei, C.L. and Zhang, W.X., (2000) Statistical tests for spatial nonstationarity based on the
geographically weighted regression model. Environment and Planning A, 32(1), pp.9-32.

Leyk S, Norlund PU, Nuckols JR. 2012. Robust Assessment of Spatial Non-Stationarity in Model
Associations Related to Pediatric Mortality due to Diarrheal Disease in Brazil. Spatial and Spatio-
temporal Epidemiology. 3:95-105.

Li J, Heap AD, Potter A and Daniell JJ. (2011) Application of Machine Learning Methods to Spatial
Interpolation of Environmental Variables. Environmental Modelling and Software. 26: 1647-1656.

Li, K., and Lam, N. S. 2018. Geographically weighted elastic net: Avariable-selectionand modeling method
under the spatially nonstationry condition. Annals of the American Association of Geographers 1-19.

Li, Z., Fotheringham, A. S., 2020. Computational improvements to Multiscale Geographically Weighted
Regression.  International  Jouwrnal  of  Geographical  Information  Science.  doi:
10.1080/13658816.2020.1720692.

Li, Z., Fotheringham, A. S., Li, W., and Oshan, T. 2019. Fast Geographically Weighted Regression
FastGWR: a scalable algorithm to investigate spatial process heterogeneity in millions of observations.
International Journal of Geographical Information Science, 33 1., 155-175.

Li, Z., Fotheringham, A. S., Oshan, T., and Wolf L.J. 2020. Measuring Bandwidth Uncertainty in
Multiscale Geographically Weighted Regression using Akaike Weights. Annals of the American
Association of Geographers. doi: 10.1080/24694452.2019.1704680

Lin, C.H. and Wen, T.H., (2011) Using geographically weighted regression (GWR) to explore spatial
varying relationships of immature mosquitoes and human densities with the incidence of
dengue. International Journal of Environmental Research and Public Health, 8(7), pp.2798-2815.

Lloyd CD, Shuttleworth I (2005) Analysing commuting using local regression techniques: scale,
sensitivity, and geographical patterning. Environment and Planning A 37:81-103

Lloyd, C.D. 2010. Nonstationary models for exploring and mapping monthly precipitation in the United
Kingdom. International Journal of Climatology: A Journal of the Royal Meteorological Society, 30(3),
pp-390-405.

Loader, C. 2004. Smoothing: Local Regression Techniques. Berlin: Center for Applied Statistics and
Economics CASE., Humboldt-Universit.

Lu, B., Brunsdon, C., Charlton, M., and Harris, P. 2017. Geographically weighted regression with
parameter-specific distance metrics. International Journal of Geographical Information Science, 31 5.,
982-998.

Lu, B., C. Brunsdon, M. Charlton & P. Harris 2019. A response to A comment on geographically weighted
regression with parameter-specific distance metrics. International Journal of Geographical Information
Science, 1-13.

Lu, B., P. Harris, M. Charlton & C. Brunsdon 2014. The GWmodel R package: further topics for exploring
spatial heterogeneity using geographically weighted models. Geo-spatial Information Science, 17, 85-
101.

30



Lu, B., Yang, W., Ge, Y., and Harris, P. 2018. Improvements to the calibration of a geographically
weighted regression with parameter-specific distance metrics and bandwidths. Computers, Environment
and Urban Systems, 71, 41-57.

Marazzi, A. 1993. Algorithms, Routines and S Functions for Robust Statistics. Pacific Grove, CA:
Wadsworth and Brooks/Cole.

Matern, B. 1960. Spatial variation — stochastic models and their applications to some problems in forest
survey sampling investigations. Report of the Forest Research Institute of Sweden 49, 1-144. In English,
Swedish summary.

Matheron G 1963. Principles of Geostatistics. Economic Geology 58:1246—-1266

McMillen D 2013. McSpatial: Nonparametric Spatial DataAnalysis. R package version 2.0,
http://CRAN.R-project.org/package=McSpatial.

Mei L-M, He S-Y, Fang K-T 2004. A note on the mixed geographically weighted regression model. Journal
of Regional Science 44:143-157

Mei L-M, Wang N, Zhang W-X 2006. Testing the importance of the explanatory variables in a mixed
geographically weighted regression model. Environment and Planning A 38:587-598

Mei, C.-L., Xu, M., and Wang, N., 2016. A bootstrap test for constant coefficients in geographically
weighted regression models. International Journal of Geographical Information Science, 30 8., 1622—
1643.

Monteys, X., Harris, P., Caloca, S., Cahalane, C., 2015. Spatial prediction of coastal bathymetry based on
multispectral satellite imagery and multibeam data. Remote Sensing, 7: 13782-13806.

Murakami, D., and Griffith, D. A. 2019a. Spatially varying coefficient modelling for large datasets:
Eliminating N from spatial regressions. Spatial Statistics, 30, 39-64.

Murakami, D., and M. Tsutsumi. 2015. Area-to-point parameter estimation with geographically weighted
regression. Journal of Geographical Systems, 17 3., 207-225.

Murakami, D., Griffith, D.A. 2019b. A memory-free spatial additive mixed modelling for big spatial data.
ArXiv 1907.113609.

Murakami, D., Lu, B., Harris, P., Brunsdon, C., Charlton, M., Nakaya, T., and Griffith, D. A. 2019. The
importance of scale in spatially varying coefficient modelling. Annals of the American Association of
Geographers, 109, 1-21.

Murakami, D., T. Yoshida, H. Seya, D.A. Griffith, and Y. Yamagata. 2017. A Moran coefficient-based
mixed effects approach to investigate spatially varying relationships. Spatial Statistics, 19, 68-89.

Nakaya T, Fotheringham AS, Brunsdon C, Charlton M 2005. Geographically Weighted Poisson Regression
for Disease Association Mapping, Statistics in Medicine 24:2695-2717

Nakaya, T. 2015. Geographically weighted generalised linear modelling. In Brunsdon, C. and Singleton,
A. eds. Geocomputation: A Practical Primer, Sage Publication, 201-220.

Nakaya, T. 2001: Local spatial interaction modelling based on the geographically weighted regression
approach, GeoJournal 53, 347-358.

Nogués-Bravo D (2009) Comparing regression methods to predict species richness patterns Web Ecology,
9: 58-67

Openshaw, S. Developing GIS-relevantzone-basedspatialanalysismethods. Spatial analysis: modelling in a
GIS environment 1996., 55-73.

Oshan TM and Fotheringham AS 2018. A comparison of spatially varying regression coefficient estimates
using geographically weighted and spatial-filter-based techniques. Geographical Analysis 501. 53-75

Oshan, T. M., Li, Z., Kang, W., Wolf, L. J., & Fotheringham, A. S. 2019. mgwr: A Python implementation
of multiscale geographically weighted regression for investigating process spatial heterogeneity and
scale. ISPRS International Journal of Geo-Information, 86., 269.

Oshan, T., Wolf, L.J., Fotheringham, A.S., Kang, W., Li, Z. and Yu, H., 2019. A comment on
geographically weighted regression with parameter-specific distance metrics. International Journal of
Geographical Information Science, 33(7), pp.1289-1299.

Paez A 2004. Anisotropic variance functions in geographically weighted regression models. Geographical
Analysis 36:299-314

Paez A, Uchida T, Miyamoto K 2002a. A general framework for estimation and inference of geographically
weighted regression models: 1. Location-specific kernel bandwidths and a test for locational
heterogeneity. Environment and Planning A 34:733-754

31



Paez A, Uchida T, Miyamoto K 2002b. A general framework for estimation and inference of geographically
weighted regression models: 2. Spatial association and model specification tests. Environment and
Planning A 34:883-904

Paez, A., S. Farber, and D. Wheeler. 2011. A simulation-based study of geographically weighted regression
as a method for investigating spatially varying relationships. Environment and Planning A 43, 2992-
3010.

Paz A, Long F, Farber S 2008. Moving window approaches for hedonic price estimation: an empirical
comparison of modelling techniques. Urban Studies 45:1565—-1581

Rey S.J., Anselin L. 2010. PySAL: A Python Library of Spatial Analytical Methods. In: Fischer M.,
Getis A. eds. Handbook of Applied Spatial Analysis. Springer, Berlin, Heidelberg

Robinson, DP Lloyd CD, McKinley JM 2013. Increasing the accuracy of nitrogen dioxide (NO2) pollution
mapping using geographically weighted regression (GWR) and Geostatistics. International Journal of
Applied Earth Observation and Geoinformation, 21, 374-383

Schabenberger, O. and Gotway, C., 2005. Statistical methods for spatial data analysis. London: Chapman
& Hall

Schwarz G., 1978: Estimating the dimension of a model. The Annals of Statistics 6: 461-464

Silverman, B. W. 1986. Density Etimafion for Sfafisfics and Dufa Analysis. London: Chapman and Hall.

Song D, Brus D J, Liu F, Li D C, Zhao Y G, Yang J L, Zhang G L. 2016. Mapping soil organic carbon
content by geographically weighted regression: A case study in the Heihe River Basin, China.
Geoderma, 261, 11-22

Sun, Y.W., Guo, Q.H., Liu, J., Wang, R., 2014. Scale effects on spatially varying relationships between
urban landscape patterns and water quality. Environmental Management 54 2., 272-287

Tobler W., 1970. A computer movie simulating urban growth in the Detroit region. Economic Geography,
46 Supplement: 234-240.

Tran, H. T., Nguyen, H. T., and Tran, V. T. 2016. Large-scale geographically weighted regression on Spark.
Proceedings of the 2016 Eighth International Conference on Knowledge and Systems Engineering, pp.
127-132. IEEE.

Waller LA, Gotway CA, 2004. Applied Spatial Statistics for Public Health Data. Wiley & Sons.

Waller LA, Zhu L, Gotway CA, Gorman DM, Grunewald PJ 2007. Quantifying Geographic Variations in
Associations Between Alcohol Distribution and Violence: A Comparison of Geographically Weighted
Regression and Spatially Varying Coefficient Models. Stochastic Environmental Research and Risk
Assessment, 21, 573-588.

Wand MP & Jones MC 1995. Kernel Smoothing Monographs on Statistics and Applied Probability.
Chapman & Hall.

Wang W & LiD 2017. Structure identification and variable selection in geographically weighted
regression models, Journal of Statistical Computation and Simulation, 87:10, 2050-2068

Wang, N., C.L. Me, and X.D. Yan. 2008. Local linear estimation of spatially varying coefficient models:
an improvement on the geographically weighted regression technique. Environment and Planning A,
40, 986-1005.

Wang, Y., Zhang, X., and Huang, C. 2009. Spatial variability of soil total nitrogen and soil otal phosphorus
under different land uses in a small watershed on the Loess Plateau, China. Geoderma 150, 1-2, 141—
149.

Webster R and Lark M 2012 Field sampling for environmental science and management. Routledge,
London

Wheeler D 2009. Simultaneous coefficient penalization and model selection in geographically weighted
regression: the geographically weighted lasso. Environment and Planning A 41:722-742

Wheeler D, Calder C, 2007. An assessment of coefficient accuracy in linear regression models with
spatially varying coefficients. Journal of Geographical Systems 9: 145-166

Wheeler D, Waller LA 2009. Comparing Spatially Varying Coefficient Models: A Case Study Examining
Violent Crime Rates and Their Relationships to Alcohol Outlets and Illegal Drug Arrests. Journal of
Geographical Systems, 11, 1-22.

Wheeler D. 2013. Geographically weighted regression. In Handbook of Regional Science, Eds. M. Fischer
and P. Nijkamp, Springer

Wheeler, D. and Tiefelsdorf, M. 2005. Multicollinearity and correlation among local regression coefficients
in geographically weighted regression. Journal of Geographical Systems, 7 2., 161-187.

32



Wheeler, D.C. 2007. Diagnostic tools and a remedial method for collinearity in geographically weighted
regression. Environment and Planning A, 39, 2464-2481.

Wolf, L. J., Oshan, T. M., and Fotheringham, A. S. 2018. Single and multiscale models of process spatial
heterogeneity. Geographical Analysis, 50 3., 223-246.

Wu C., Ren F., Hu W., Du Q., 2019. Multiscale geographically and temporally weighted regression:
exploring the spatiotemporal determinants of housing prices. International Journal of Geographical
Information Science 33:3 489-511.

Xue, L., Liang, H. 2010. Polynomial spline estimation for a generalized additive coefficient model.
Scandinavian Journal of Statistics, 37 1., 26-46.

Yang, W. 2014. An extension of geographically weighted regression with flexible bandwidths. Doctoral
dissertation, University of St Andrews.

Yang, W., Fotheringham, A.S., and Harris, P., 2011. Model selection in GWR: the development of a
flexible bandwidth GWR. Proceedings of the 11th International Conference on GeoComputation.
London, UK, 1-7.

Ye, H.C.; Huang, W.J.; Huang, S.Y.; Huang, Y.F.; Zhang, S.W.; Dong, Y.Y.; Chen, P.F. 2017. Effects of
different sampling densities on geographically weighted regression kriging for predicting soil organic
carbon. Spatial Statistics, 20, 76-91.

Yoneoka D, Saito E, Nakaoka S 2016. New algorithm for constructing area-based index with geographical
heterogeneities and variable selection: an application to gastric cancer screening. Scientific Reports
6:26582

You, W.; Zang, Z.; Zhang, L.; Li, Z.; Chen, D.; Zhang, G. 2015. Estimating ground-level PM10
concentration in north western China using geographically weighted regression based on satellite AOD
combined with Calipso and MODIS fire count. Remote Sensing of Environment,168, 276285

Yu, D., Wei, Y., Wu, C. 2007. Modelling spatial dimensions of housing prices in Milwaukee, WI,
Environment and Planning B, 34,pp. 1085-1102.

Yu, H., Fotheringham, A.S., Li, Z., Oshan, T., Kang, W. and Wolf, L.J., (2019) Inference in multiscale
geographically weighted regression. Geographical Analysis. doi:10.1111/gean.12189

Zeng, C.Y.; Yang, L.; Zhu, A.X.; Rossiter, D.G.; Liu, J.; Liu, J.Z.; Qin, C.Z.; Wang, D.S. 2016. Mapping
soil organic matter concentration at different scales using a mixed geographically weighted regression
method. Geoderma, 281, 69-82

Zhang H, Mei C 2011. Local least absolute deviation estimation of spatially varying coefficient models:
robust geographically weighted regression approaches. International Journal of Geographical
Information Science 25:1467-1489

Zhang, L., H. Bi, P. Cheng, and C. J. Davis. 2004. Modeling spatial variation in tree diameter-height
relationships. Forest Ecology and Management 189:317-29.

Zou, H. and Hastie, T. 2005. Regularization and variable selection via the elastic net. Journal of the Royal
Statistical Society: Series B, 672., pp.301-320.

33



34



