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Household visitation 
during the COVID‑19 pandemic
Stuart Ross1, George Breckenridge1, Mengdie Zhuang2,3 & Ed Manley1,4*

The COVID‑19 pandemic has posed novel risks related to the indoor mixing of individuals from 
different households and challenged policymakers to adequately regulate this behaviour. While in 
many cases household visits are necessary for the purpose of social care, they have been linked to 
broadening community transmission of the virus. In this study we propose a novel, privacy‑preserving 
framework for the measurement of household visitation at national and regional scales, making use 
of passively collected mobility data. We implement this approach in England from January 2020 to 
May 2021. The measures expose significant spatial and temporal variation in household visitation 
patterns, impacted by both national and regional lockdown policies, and the rollout of the vaccination 
programme. The findings point to complex social processes unfolding differently over space and time, 
likely informed by variations in policy adherence, vaccine relaxation, and regional interventions.

Human behaviour has been well established as a critical factor in the effective mitigation of virus  transmission1 
with the mixing and mobility of individuals understood clinically as paramount to causing COVID-19 to 
 spread2–4. Since early 2020 local and national governments have imposed Non-Pharmaceutical Interventions 
(‘NPIs’) to control the virus, including ‘stay-at-home’ orders and social distancing requirements. England has 
suffered successive NPI restrictions over a sustained period, punctuated by multiple ‘national lockdown’ periods 
spanning March–May 2020, November–December 2020, and January-March 2021, where health restrictions 
were the same nationally (see Supplementary Materials 1). These and intervening periods offer the opportunity 
to study the varied effects of human behaviours including ‘lockdown fatigue’5 across a large population sample, 
through the proxies of measured human mobility and its subsets over time.

Mobile phone data provide a valuable source of information for monitoring the aggregate dynamics of 
human mobility behaviour. Insights from mobile phone data have been used historically for urban planning 
and  management6,7, with research continuing to call for its use in the monitoring of changing public space use 
during the COVID-19  pandemic8–10. However, public health professionals are now also calling for the use of 
this ‘opportunistic’ mobile phone mobility data under COVID-19, arguing it could play a role in analysing the 
effectiveness of ‘lockdown’-style NPIs in their ability to reduce human  activity4,11–14.

A body of research has responded to this  call15, examining a multitude of mobile phone mobility data to 
indicate the extent to which populations are responding to the imposition and lifting of COVID-19 ‘lockdown’ 
 measures16,17. The dominant form of activity measurement has been temporally and spatially aggregated forms 
of overall mobility (e.g., Google Mobility Trends Reports), with these studies claiming these measures act as 
a suitable proxy for COVID-19 transmission opportunities. A study on UK policy ‘adherence’ during the first 
national lockdown used a combination of mobile phone data from O2 and GPS smartphone data from Facebook 
to examine mobility changes through the number and distance of ‘journeys’  identified12. It concluded that com-
pliance to the stay-at-home order in the UK was ‘high’ and ‘geographically-even’ as of late May 2020. However 
useful, these studies examining metrics for overall mobility extent may fail to capture behaviours driving the 
actual mechanisms of COVID-19 virus  transmission16, which is now known to vary significantly between, for 
instance, indoor and outdoor  environments18.

This study proposes a novel framework for the identification of visits by de-identified individuals to non-home 
households. This metric is derived through mobile phone trajectory data, and by extracting mobility behaviours 
of this type, we are able to derive an indicator of ‘household mixing’ by location and time. While the transmis-
sion of COVID-19 is a highly complex social phenomenon, we propose that this measure can yield an additional 
explanatory factor in understanding transmission, and subsequently inform policy design. The approach we 
propose uses passively collected and GDPR-compliant GPS trajectory data, collected through smartphone apps 
from opted-in anonymous users who provided informed consent to data collection for research purposes, by 
the data company, Cuebiq. Our study focuses on England prior to and during the COVID-19 pandemic in 2020 
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and 2021. Cuebiq mobility data have been used elsewhere to analyse mobility under COVID-19 amongst US 
metropolitan areas and  states19,20, and in the UK, Italy, Colombia, Mexico and  Indonesia21–25. As part of this study, 
we query Cuebiq data through a privacy-preserving platform to generate aggregate insights into household visita-
tion patterns, while also further addressing the validity of these data for estimating population level indicators.

Our period of analysis means we address issues of adherence to policy, both during harsher periods of ‘lock-
down’ (which varied in their severity in relation to household visits, see Supplementary Information 1) and the 
effect of the vaccine rollout on behaviour. On these points, to date, the issues of household mixing and policy 
adherence have been addressed only indirectly. Fierce debates continue over the causes and extent of population-
wide non-adherence in the  UK5. Although some survey data indicate that over 90% of the British people have 
consistently adhered to social distancing most of the  time26, other survey data indicate that non-adherence to 
‘stay-at-home’ orders is far higher. Hills and  Eraso27 find that ‘contrary to a perceived sense of people’s adher-
ence’ 92.8% of London residents surveyed did not adhere to all social distancing rules, with 48.6% engaged in 
‘intentional non-adherence’. Other studies have sought to identify the causes of non-adherence28–35 although 
their collective findings are highly inconsistent and often contradictory, possibly given that causal factors may 
change over  time34. We join a multitude of public health researchers in proposing that through the use of pas-
sively collected anonymous mobility data, we can overcome the degree of social desirability bias that typically 
mediates the self-reporting methods used historically to indicate policy  adherence27,28,30,36–39, meeting the call 
that “future research should focus on assessing adherence with objective measures to minimize the likelihood 
of biased reporting”39. In doing so using house visits and particular case studies, we hope that this can further 
address the “[current] lack of empirical evidence to support the fact that there is significant ‘fatigue’ around 
adherence”38 to COVID-19 restrictions in the UK, helping to accurately inform health policymakers devising 
the English response.

Results
We consider the extent of household visitation in two main ways—its evolution over the course of the COVID-19 
pandemic across the whole of England, and in response to policy and medical interventions; and its variation over 
space, reflecting regional and land-use trends and regional policy contexts. The definition of terms and methods 
for calculating household visitation rates is detailed in the Materials and Methods section.

Evolution of HEngland,t. We begin by illustrating the variation in HEngland,t at the national scale between 
March 2020 and May 2021 (Fig. 1a). The largest reduction in HEngland,t occurs shortly after the first national 

Figure 1.  Changes of (a) HEngland,t and (b) daily new COVID-19 cases in England between March 1st 2020 
to May 24th 2021. For each day, the national HEngland,t  is aggregated from the Hl,t of each local authority. 
Accounting for the day of week effect, HEngland,t is also illustrated with the rolling 7-day average. New COVID-
19 cases are the number of cases by specimen date. Time periods or time points where indoor mixing rules were 
changed were marked according.
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lockdown came into effect on 23rd March 2021 (largest daily decrease on 24th March; − 22.8%, lowest level of 
HEngland,t reached was − 56.4% on 29th March). This reduction aligns with other mobility metrics (see Supple-
mentary Information 2 highlighting the significance of the initial lockdown in restricting all forms of mobility 
behaviour. Yet, despite the continued imposition of the national lockdown policy during this period, as the first 
lockdown ends, there was a steady increase of HEngland,t. The first easing of lockdown policy has an immediate 
significant impact on house visitation ( �H l,t between 0.3 and 26.9%, p-value = 0.0439). This increasing trend 
continues through the Spring of 2020, seemingly unaffected by introduction of ‘support bubbles’ (legally ena-
bling mixing between paired households in certain circumstances) on 12th June ( p-value = 0.6846). Household 
visitations continue to increase, reaching baseline levels (i.e., HEngland,t = 0%) 8 weeks after the first lockdown 
ended on 5th July and taking another 8 weeks to a 2020 peak ( HEngland,t = 37.1% on 13th Sep). These increases 
align closely with the relaxation of the rules on indoor mixing on 4th July 2020 ( �H l,t between 0.6 and 27.3%, 
p-value = 0.0407), although appear to decrease with the operation of the ‘Eat Out to Help Out’ scheme during 
August, and had a dual purpose of supporting the hospitality industry and promoting social interactions in 
‘safer’ public settings ( �H l,t between − 25.6% and − 6%, p-value = 0.0015). The HEngland,t declines through Sep-
tember as limits on gatherings (‘Rule of Six’) and regional health regulations were introduced, in response to 
increasing case numbers (see Fig. 1b).

A second national lockdown was imposed on 5th November 2020. Despite a slowly declining trend during 
October, we observe sharp increases in HEngland,t in the days prior to the lockdown commencing (yet after its 
announcement on 31st October 2020). For LTLAs not in tier 2 or 3, �H l,t is not significant ( p-value = 0.2268). 
This pre-lockdown peak resembles other anticipatory highs in mobility activity observed elsewhere in the imme-
diate period before new COVID-19 restrictions are  introduced16,21. House visits remain consistent through-
out the second lockdown ( HEngland,NL2= − 15.28%), yet above those levels observed during the first lockdown 
( HEngland,NL1 = − 39.33%), with a quicker return to baseline activity on 2nd December, contrasting observations 
from the first lockdown.

In December a rapid rise in cases is observed in part due to the rapid transmission of the B.1.1.7 variant (the 
so-called ‘Kent variant’, or variant Alpha). In response, new stay-at-home regional restrictions on activity were 
announced on 19th December 2020, leading to stronger reductions in house visitation ( HEngland,t = − 21.5%), 
although still remaining above the levels of the first lockdown. These trends are reinforced by the imposition of 
a third national lockdown on 6th January 2021, causing HEngland,t to remain consistently low until mid-February 
2021 ( HEngland,t = − 26.22%, where t  runs over the dates between 6th January and 14th February). At this point 
a large spike increase in activity is observed 2021 ( HEngland,t = 2.1%, where t  runs over the dates between 15th 
January and 7th March), coinciding with announcements that the most vulnerable citizens had been vaccinated 
on the 14th February 2021. We observe gradual increases in HEngland,t despite household mixing remaining 
heavily restricted until 17th May 2021.

Regional variation. The progression of the virus exhibits strong spatial dependence, and as such restrictive 
policies were imposed variously at regional scales in England to counteract these regional trends. To explore 
insights into local patterns of household mixing and the effect of regional policy, we illustrate the spatial dis-
tribution of Hl,t across the entire study period and three national lockdowns (Fig. 2) which shows some clear 
geographic differences in the extent of household mixing. These cartogram maps—which show local author-
ity regions with size adjusted for population count and arranged according to approximate geographic loca-
tion—highlight consistently higher levels of Hl,t in the London and South-East regions. Outside of these regions, 
higher measures of Hl,t are observed in some urban areas—including Manchester ( HManc,t = 2.1%), Cambridge 
( HCamb,t = 10.9%), and Leicester ( HLeic,t = 3.6%). The lowest levels of Hl,t are found in rural authority areas, 
such as North-East Derbyshire ( HNEDerbys,t  = − 27.9%), West Devon ( HWDevon,t  = − 25.2%), and Mid Suffolk 
( HMidSuf ,t = − 24.5%). The variance in HEngland,t observed in Fig. 1a during the different national lockdown peri-
ods is demonstrable at the regional scale in Fig. 2b–d. While the regional variation in Hl,t remain broadly similar, 
evidence of a reduced strength of reduction is repeated.

We find statistical evidence for regional variation in these activity through calculation of spatial clustering. 
Figure 3 describes location of clusters of higher and lower rates of Hl,t as well as identifying regional outliers. 
These figures more accurately highlight areas of London and the South-East as significant (95% threshold) 
hotspots of high levels of Hl,t and areas of the South West and North West as areas of significant coldspots. The 
figures highlight outliers in regional trends too—for example, St Albans and Kingston-upon-Thames show lower 
levels of Hl,t relative to the wider trends in the South-East. When reviewed, these trends were consistent across 
each national lockdown.

While the geographic scale reveals spatial trends in Hl,t , we can gain more insight into regional variation 
through exploring regional trends over time. Figure 4a,b show variation in Hl,t for two local authorities—Leicester 
and Liverpool—that had heavy local restrictions imposed outside of periods of national lockdown (see Sup-
plementary Material 1).

In Leicester, higher than average case numbers led to imposition of a regional lockdown policy on 4th July 
2020. Up to this point, Hl,t had been tracking the national HEngland,t in gradual increases following the easing 
of restrictions after the first lockdown, yet the regional lockdown marks a point of divergence. Nevertheless, 
despite similar policies being imposed at this point, levels of Hl,t barely reach the low points of the first lockdown 
( HLeicester,NL1 = − 34.68%), suggesting reduced efficacy at least in terms of household visits. At the first easing 
of these regional restrictions on 1st August 2020 (reopening of places of worship, pubs, restaurants, cafes, and 
hairdressers) levels of Hl,t rose sharply to above the national average and regional baseline levels, despite house-
hold mixing still being banned.
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Liverpool tells a slightly different story. When regional restrictions were imposed on the 22nd September 
2020, measures of Hl,t were relatively low and reducing, and plateaued until the end of the second national lock-
down. This could suggest a stronger adherence to regional policy but may have been reinforced by increasing 
residual case numbers (which showed a more significant rise than in Leicester).

Vaccinations. The increase in household visits from mid-February 2021 appears to align with the rollout 
of vaccinations across England. Following an initial phase of vaccination of vulnerable populations, the pro-
gramme proceeded by age cohort. England has offered vaccine to the top four priority groups by 15 February 
and started inviting people aged 65–69 ( �H l,t between 1.4 and 23.3%, p-value = 0.027). Figure 5 shows how the 
vaccine programme moved from a primary focus on first dose vaccinations, to provision of second doses from 
April onwards. The figure also reinforces the notion of a broad correlation between vaccinations and the regional 

Figure 2.  Hexagon-based cartogram distribution in Hl,t during (a) the England COVID-19 period, and (b–d) 
three national lockdowns. Local authority boundaries are resized by population count to enable greater visibility 
in more highly dense regions (i.e., cities), and were prepared by the UK House of Commons Library.

Figure 3.  Spatial measures of Local Moran’s I and Local Indicators of Spatial  Association40, based on eight 
nearest neighbours for the whole study period.
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house visitation rate, that is consistent across all regions of the UK. The increases in household visits are shown 
at a time where indoor household mixing was heavily restricted, and only relaxed on 17th May 2021.

Figure 4.  Change in Hl,t in (a) Leicester and (b) Liverpool from March 2020 to December 2020, where regional 
health protections regulations were implemented.

Figure 5.  Change in Hl,t in England regions from January 2021 with number per 100 people who received 
first or second dose of COVID-19 vaccine. (a–g), data on vaccinations has been released at the scale of UK 
regions since mid-January. Significant positive correlations are observed for all regions between regional Hl,t and 
number of first dose or second dose of vaccinations.
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Discussion
The principle that human interaction in confined spaces is fundamental to the propagation of COVID-19 has 
been well established, as has the notion that aggregate mobility data can point to instances of risky behaviour 
associated with its transmission. In this paper we have addressed the potential for these data to uncover popula-
tion-scale patterns of adherence in household visitation policy. This is a type of mobility behaviour that requires 
longitudinal analysis of anonymised individuals, using data that are not widely used or available to public health 
professionals and academics; it therefore raises important issues for future public health policy and ethics.

The trends uncovered through these analyses are significant for a number of reasons. There is demonstrable 
temporal and spatial variation in household visitation during the course of the pandemic, but the nature of 
causation is less clear. Broadly we observe a strong reduction in household visitation during the first national 
lockdown in England, but over the course of mid-2020, despite strong public caution, residual cases, and policies 
in place to limit household visits, we observe a steady increase in household visit events. Pre-COVID baseline 
levels of household visits return in July 2020. The later imposition of household mixing bans at regional level 
again indicates some impact on these trends, but the extent of household visitation never again reaches the lowest 
levels observed in March 2020. This supports  speculations41 that non-adherence is driven by the novelty of the 
threat, and that multi-lockdown fatigue is a concrete phenomenon.

More concerning in terms of our observations are the significant increases in household mixing, particularly 
during the first half of 2021, that likely contravene policy restrictions. The trend of increased visitation behaviour 
is first identified following relaxations of policy at regional (e.g., Leicester) and national scales (e.g., following 
the second national lockdown). The indication of these findings is that people are effectively ‘overcompensat-
ing’ for their confinement through increased social activity. In 2021, we see significant increases in household 
visitation that aligns with the timing of the vaccine rollout in England. During this period these drivers may be 
reinforced by a new perception of safety through vaccination (and of vaccination of others), despite evidence 
and guidance to the contrary.

These patterns of household visitation show important spatial variation. In general, the London and 
South East regions demonstrate higher rates of household visitation during national lockdown periods. As we 
will note below in summarising the methodological limitations, due to the density of populations, the actual 
rates of household mixing may be higher than what we report here. The trends point to consistently higher rates 
of policy non-adherence, perhaps wrought by a perceived necessity of interaction (by virtue of lifestyles), or a 
failure of policymakers to speak to particular populations.

An important message from these analyses is that adherence to restrictions on household visitation has often 
been inconsistent over space or over time. While policy appears to have some effect on household visitation pat-
terns, the effect has weakened over time, and has always been less well adhered to in some regions. The notion 
that social policy can be simply ‘turned back on’ is severely diminished by these findings. The data also point to 
a public reversion to ‘normal’ household visitation patterns occurring at different rates—cautious (e.g., following 
first lockdown) to quick (e.g., following the second lockdown)—and prompted by different sentiment—a relief 
in response to lockdowns ending, or the perception of safety prompted by the vaccine rollout. These trends point 
to the complex and multifaceted nature of ‘behavioural fatigue’25.

The study demonstrates the benefits of engaging mobility data in different ways to uncover larger scale pat-
terns of human behaviour. These data have played an important role in the management of the pandemic, but 
their application with greater sophistication could enable even wider utility. Nevertheless, there are a range of 
important technical and ethical caveats that must be considered in relation to the wider utilisation.

A principal concern of this type of analysis relates to the representativeness of the dataset to reflect wider 
population  trends4,42. Yet recent evidence suggests smartphone data may be more representative than previously 
recognised. A leading study on UK lockdown ‘compliance’ showed high similarity between UK mobility levels 
in early- to mid-2020 when comparing Facebook GPS app data with CDRs from network operator  O212. As we 
describe in Supplementary Information 3, we did not uncover prima facie grounds for these concerns in our 
particular context and dataset.

However, given that our data are anonymised to ensure privacy, we are blinded from a comprehensive 
understanding of the demographic, socioeconomic, and contextual factors governing the observations of our 
 cohort43,44, which may be skewed relative to the wider population. Biases are potentially introduced through the 
requirement of our sample participants to own a smartphone, and within this group to also use Cuebiq partner 
apps with voluntary location-sharing permissions  granted13,20. Dependent on hardware and software settings, we 
are then also potentially filtering down to people active on the Cuebiq partner app and/or those moving around 
 physically4, which may also cause an inconsistent and/or declining user base over  time22. In our study, we observe 
a ‘rate of attrition’ in our sample that is suggested of this (see Supplementary Information 4), as people become 
inactive on the apps, as they change device, update their phone operating  system45, or change location-sharing 
permissions. Our study is also limited in using smartphone mobility data as a proxy for individual human mobil-
ity. Ultimately, we are analysing movement of the device, not people.

The ‘new mobilities’ era, characterised by ‘digital traces’ left behind from individual  mobility46, has finally 
realised its long-promised social value in the monitoring of epidemics and their management under COVID-19. 
Nevertheless, ethical and privacy concerns punctuate these COVID-19 use  cases47–49. As an unprecedented global 
health emergency in modern society, COVID-19 has asked new questions about the ‘responsible-use’ cases of 
individual-scale movement data. Although the uptake of ‘tracking’ apps has been poor amongst some national 
 geographies9, phone apps collecting personal location data to aid the epidemiological response to COVID-19 
are generally accepted by the  public49. The collection of location data by Cuebiq is premised upon consent that is 
freely given, specific, informed and unambiguous. All data are anonymised before it is accessed by researchers, 
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with strict aggregation requirements in time and space imposed to qualify datasets for export, to protect privacy 
and ensure the conditions of consent remain fulfilled.

Regarding the treatment of these data in this study, there are important limitations that raise further caveats 
around the interpretation of results. One specific issue relates to the removal of workplaces and points-of-interest 
prior to the identification of household visits, as documented in the Methods section. By introducing strict limits 
on visits proximal to these locations, we preclude household visits around mixed-use developments (e.g., where 
a shop is next to a visit location) and public transportation infrastructure (e.g., bus stops). This is an important 
step in data filtering, but has implications for certain regions, and one can expect this results in underestimation 
of household visits in denser, urban areas. Likewise, visits to neighbours within multi-story buildings will be 
missed by virtue of these points being interpreted as activity at ‘home’. Further analysis would be beneficial in 
relation to the identification and verification of workplace visitation patterns, and some collection of representa-
tive labelled work shift data would be useful in this regard. There are equally other areas where our interpreta-
tion of ‘high’ levels of household visitation requires tempering—specifically in cases where visits may have been 
to gardens, which lie within the threshold for a household visit but would not be deemed a policy breach after 
June 2020. Further refinement of the methods would require access to accurate data on household greenspaces.

The patterns presented in this proof-of-concept study, as well as the limitations we have raised, point to 
areas for further exploration. The specific focus on household visitation, and the nature of its variation over 
time and region, suggest it is a factor worth exploring within future models of policy response. Further mixed 
methods approaches are required to help attribute causation relating to higher rates of household visitation, but 
the regional and temporal variation in propensity to make household visits could provide a useful additional 
predictor of virus evolution. If a broader base of evidence linking household visitation to virus transmission is 
established, the h-index proposed here provides a useful potential indicator in the specification, communication, 
and monitoring of public health policy. The regional and temporal comparative analysis we have proposed here 
suggests that policy has had a differential effect, yet it is challenging to unpick exactly how and why. Policymak-
ers, officials, and citizens can likely provide the greatest insights here, but they require the tools on which to 
make those evaluations.

Materials and methods
Data sources. GPS data. This research used a dataset containing 1.58 billion GPS records from more than 
1 million anonymised and opted-in mobility phone users in England over 17 months, from 6th January 2020 to 
24th May 2021. The raw data contain an anonymised ID of a user, a GPS-derived location containing a latitude 
and longitude, an accuracy measures for the location in metres, and a timestamp of when the user was at the 
location. The data was provided by Cuebiq, who collect data from opted-in, de-identified users of smartphone 
apps who have provided informed consent for their anonymised data to be used for research purposes. Data col-
lection and processing is fully GDPR compliant. The data was accessed by researchers via the Cuebiq Workbench 
platform, an auditable sandbox environment that allows access for querying of data and generation of aggregate, 
privacy-preserving outputs. The sandbox enables the creation of aggregate data at regional levels, without the 
ability or need to create individual-level outputs. In this study, only GPS records with less than 100 m accuracy 
and on land are considered, leading to a final dataset of 1.06 billion records from 984,000 users.

The geographic scope was limited to England for two primary reasons. The first is to constrain our study 
to one set of national public health policies. The public health response in England is led by the UK Govern-
ment and Public Health England, with other UK nations managing their own policy programmes. The policies 
adopted in England are similar to many other countries (e.g., regional and national lockdowns, school closures). 
The second was that while the data cover the entire UK, there are clear reductions in sample size when looking 
beyond England.

Non-pharmaceutical intervention (NPI) data. We sourced England’s national and regional NPIs from the UK 
House of Commons library.

COVID-19 case and vaccination data. We use COVID-19 new cases data by specimen date and weekly number 
of vaccination numbers from the ‘Coronavirus in the UK’ dashboard and the weekly COVID-19 vaccinations 
report. To control for daily fluctuations of COVID-19 new cases data, we smooth the time series using the seven-
days rolling average approach.

Estimation of visitations. The visitation points of our cohort form the foundation of the analysis. The 
calculation of visitation points was made through a three-stage clustering methodology.

In this first stage daily candidate visitation clusters were established through spatial clustering for each user. 
These clusters made use of ‘stop point’ data, which capture device locations moving at 2 miles per hour or less. 
The clustering of these points was carried out using Density Based Spatial Clustering of Applications with Noise 
(DBSCAN), which has been well established in its use for determining a visitation point points from trajectory 
data and has the benefit of isolating visitation points from other points, classified as noise. The spatial clustering 
parameters used in this study were ǫ = 33 m and minpts = 3. The implementation of DBSCAN in the Python 
package scikit-learn was used. A centroid for each cluster was calculated.

In the second stage daily candidate visitation clusters were further assigned with number of visits by findings 
temporal gaps within a spatial cluster. For each user, a daily stopping threshold is calculated as the smaller of 
the following two values: 30 min and the standard deviation (SD) of the time increments of the user’s points 
respectively (accounting for variable interpersonal sample rates due to movement patterns, device characteristics, 
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etc.). Number of visits were calculated as one plus the number of temporal windows of greater than daily stopping 
threshold between subsequent points in a daily candidate visitation cluster.

The third step in determining daily visitations was to filter out very short visits, by setting a minimum stay 
time for each daily visit. For this stage we used a 15-min minimum period. This 15-min window helps to remove 
any remaining noise from insignificant stops such as traffic jams or picking up a package.

Estimation of ‘home and work’ locations. ‘Home and Work’ locations were established as the two most 
frequently visited locations by each individual within a 2-week baseline period, calculated on a rolling basis at 
the beginning of each month. By recalculating these locations each month, we were able to maintain a large 
sample size (by adding new users) while allowing for home moves and changes in circumstances (e.g., working 
from home).

‘Home and Work’ locations were calculated using DBCSAN ( ǫ = 33 m, minpts = 3) on a similar basis as visita-
tion points, except using the centroids of visitation clusters over a full 2-week period. The two clusters with the 
highest sum of number of visits assigned were set as home and work in order.

All daily visitation clusters intersecting within 30 m of a ‘Home and Work’ cluster centroid were removed 
from the visitation list for that user.

With ‘Home and Work’ locations in place for a set of users, a further reduction of our user subset was under-
taken to remove users observed on fewer than four different days and those with fewer than 10 destinations. Users 
with extremely high stopping frequency were classified as ‘mobile workers’ and also excluded from this analysis.

Removing POIs and greenspace. Visitation clusters were removed if they fell within a 30-m buffer of 
an established Point of Interest (POI). POIs were taken from the Ordnance Survey POI layer, that provides a 
comprehensive collection of potential visit locations throughout the UK ranging from churches to restaurants to 
sports stadiums. A limitation of this step is that potential household visitations are more likely to be removed in 
areas of mixed land use. Households that are close to or share the same building footprint (e.g., within the same 
tower at different levels) as a POI would be ignored in this study. It can be expected that this has a stronger effect 
in denser urban areas.

Ordnance Survey also provided greenspace polygon data, outlining all parks and woodland in the UK. Des-
tinations were also removed if they fell within one of these greenspaces.

Validation of household visitations. Following the removal of individual ‘home and work’ locations, 
and POI and greenspace visits, a remaining set of visits points were deemed unclassified visits locations. To 
provide a final validation of the household visit estimation, unclassified visits from the entirety of 2020 were 
extracted, and compared against the Ordnance Survey AddressBase dataset, which records the location of all 
residential addresses in the UK. This established that 89% of unclassified visits were within 50-m of a residen-
tial building. As a result, the remaining 11% of visits (i.e., those above 50-m from a residential building) were 
removed from the remaining analysis. The final dataset of visits is classified as household visitations.

It should be noted that our definition of household visitation does not preclude visits to private gardens, 
which was permitted under the policy guidance at various points during the pandemic.

Active users. To explore the spatial variation of household visitations, we further grouped the users with 
‘Home and Work’ locations into each LTLA l  by their home location. England’s LTLA geometry data is obtained 
from the open geography portal. We then calculate the number of active users for each day t  and each LTLA l  , 
N

au

l,t
 . Active users are users belonging to LTLA l  and have at least one daily visitation on day t  . A further subset 

of active users who have house visitations are extracted, and the size of this subset is referred as Nhv

l,t
 . The LTLA 

Isle of Scilly is excluded as it has less than 10 active users, failing the minimum statistical disclosure control. In 
total, 313 LTLAs in England were included in the further analysis.

Household visitation rate Hl,t. The central idea of creating this rate is to compare the varying household 
visitation rates by region with a baseline level set prior to the COVID-19 pandemic. Two steps are applied here. 
We first determine the household visitation rate,Vl,t , for each day t  and each LTLA l  , where Vl,t = N

hv

l,t
/Nau

l,t
 . 

Then, we normalise this rate by the pre-pandemic baseline, giving Hl,t = (V l,t − V
Baseline

l,d
)/VBaseline

l,d
 . The base-

line, VBaseline

l,d
 , is calculated through averaging the daily household visitation rate across the 8 weeks before the 

pandemic (from 13 January to 2nd March 2020) by day of week d for each LTLA l  , accounting for the periodic-
ity of social activities (e.g., greater visit count between Friday and Sunday) and spatial heterogeneity between 
LTLAs. For specific LTLAs, we name it directly with the LTLA name, e.g.,HLeicester,t.

To compare the spatial variation of Hl,t , we aggregate Hl,t at regional and national levels. For example, we 
refer to HEngland,t as England’s house visitation rate on day t  , yielding VEngland,t =

∑
l N

hv
l,t /

∑
l N

au
l,t  , where l  

runs over the 313 LTLAs in England, and calculate VBaseline
England,d by averaging Vengland,t in the eight pre-pandemic 

weeks by day of week d.
To compare the temporal changes of Hl,t , we further take the mean of Hl,t over a fixed period at an aggregated 

level. For example, we refer HEngland,NL1  as the mean of HEngland,t during the first national lockdown where t  
runs over the duration of the first national lockdown in England.

Estimating impact of events. To test the immediate impact of events (e.g., new NPIs or policy announce-
ments) on Hl,t we calculated �Hl,t , the differences between Hl,t 1 week before and 1 week after the event took 
place in the LTLAs through a regression discontinuity analysis. By using a 15-day window, we are able to smooth 
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the day of week effect on mobility while limiting the impact from events which occurred outside this window. A 
linear fixed-effect model is defined as,

where the variables on the right-hand side of the equality are as follows: D is the indicator variable of the post-
event period, namely, Et takes value 0 before the event and 1 afterwards. Dt is the index of the day in a 15 day 
time window centred on the event, and runs from − 7 to 7, DtEt is the product of the previous two features. We 
fit this model with ordinary least squares ( ǫl,t are independent samples from a Gaussian with fixed variance). αl 
is the individual entity effect of each LTLA, which is a priori unknown. We call β2 the Local Average Treatment 
Effect �Hl,t , and statistically test for this value being different from 0 using a standard t-test for the parameters 
of linear regression. Clustered standard errors by day and LTLA are applied. The Python package linearmodels 
was used for implementation.

Significance statement. Human behaviour and interaction in enclosed spaces has been fundamental to 
the transmission and spread of COVID-19, and many public health policy responses focused directly on reduc-
ing these interactions. Yet our understanding of the extent to which these interactions have continued to take 
place is limited. This research proposes a new indicator of COVID-19 policy adherence. Using a large mobility 
dataset, collected over the course of the pandemic, we measure how household visitation has evolved. We are 
able to assess the relative levels of variation in policy adherence over space and time. The measure provides a 
new tool in how we develop, deploy, and monitor COVID-19 policy effectiveness at regional and national scales.

Ethics declaration. This research has been approved by the University of Leeds Ethics Board.

Data availability
The data that support the findings of this study are available from Cuebiq through their Data for Good pro-
gramme, but restrictions apply to the availability of these data, which were used under licence and so are not 
publicly available. All methods were carried out in accordance with relevant guidelines and regulations.

Code availability
Code used to produce these analyses is available on GitHub at https:// github. com/ mdZ01/ Covid- House hold- 
visit ation.
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