

This is a repository copy of Adsorption coupled photocatalytic degradation of dichlorvos using LaNiMnO6 perovskite nanoparticles supported on polypropylene filter cloth and carboxymethyl cellulose microspheres.

White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/180883/

Version: Accepted Version

Article:

K, S, Das, D and Das, N (2017) Adsorption coupled photocatalytic degradation of dichlorvos using LaNiMnO6 perovskite nanoparticles supported on polypropylene filter cloth and carboxymethyl cellulose microspheres. Environmental Progress & Sustainable Energy, 36 (1). pp. 180-191. ISSN 1944-7442

https://doi.org/10.1002/ep.12494

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Catalyst	Adsorption (%)
Prv	32.6
PP	21.8
PPPrv	46.1
CMC	37.2
CMCPrv	62.7

 Table 1. Adsorption of DCV on catalysts.

Adsorption time: 30 min.

Models	Parameters	Prv	PPPrv	CMCPrv
Langmuir	$q_{m} (mg g^{-1})$	50.0	100.0	111.1
	$K_L (L mg^{-1})$	0.04	0.03	0.05
	R ²	0.99	0.99	0.99
	APE (%)	1.80	2.10	28.6
Freundlich	n	1.11	1.3	1.11
	$K_F (mg g^{-1})$	2.52	5.7	5.60
	\mathbb{R}^2	0.99	1.00	0.99
	APE (%)	2.69	3.40	7.56
D-R	$q_{m} (mg g^{-1})$	60.0	90.0	134.2
	E (KJ mol ⁻¹)	0.11	0.15	0.12
	$\beta (mol^2 J^{-2})$	4*10 ⁻⁵	2*10 ⁻⁵	3*10 ⁻⁵
	R ²	0.95	0.98	0.98
	APE (%)	20.1	28.6	6.95
Kinetic models				
Pseudo first	q _e	50.0	79.4	99.7
order	K_1 (min ⁻¹)	0.07	0.09	0.06
	R ²	1.00	1.00	1.00
	APE (%)	0.43	1.60	4.55
Pseudo second	q _e	50.0	83.3	100
order	K_2 (g mg ⁻¹ min ⁻¹)	0.01	0.01	0.01
	\mathbb{R}^2	0.98	0.99	0.97
	APE (%)	40.8	19.3	20.6
Intra-particle	V	10.7	13.4	19.3
diffusion	С	5.34	4.80	7.05
	R ²	0.99	0.99	0.99
	APE (%)	1.26	16.08	2.04

Table 2. Equilibrium isotherm and kinetic model parameters for DCV adsorption.

Adsorbent	Temperature (K)	$\Delta H^{\circ} (KJ mol^{-1})$	$\Delta S^{\circ} (KJ \text{ mol}^{-1} \text{ K}^{-1})$	$\Delta G^{\circ} (KJ mol^{-1})$
Prv	283	+4.42	+0.02	-1.2
	293			-1.4
	303			-1.6
PPPrv	283	+5.10	+0.02	-0.5
	293			-0.7
	303			-0.9
CMCPrv	283	+6.33	+0.03	-2.1
	293			-2.4
	303			-2.7

Table 3. Thermodynamic parameters of DCV adsorption.

Initial	Photocatalyst	Rate constants of degradation		
concentration		\mathbb{R}^2	K_1 (min ⁻¹)	T _{1/2} (min)
20	Prv	0.98	0.001	693.3
	PPPrv	0.98	0.001	693.1
	CMCPrv	0.94	0.004	173.2
40	Prv	0.98	0.002	346.5
	PPPrv	0.96	0.002	346.5
	CMCPrv	0.98	0.005	138.6
60	Prv	0.99	0.003	231.0
	PPPrv	0.95	0.002	346.5
	CMCPrv	0.95	0.008	86.69
80	Prv	0.97	0.002	346.5
	PPPrv	0.99	0.005	138.6
	CMCPrv	0.97	0.013	53.32
100	Prv	0.98	0.002	346.5
	PPPrv	0.97	0.004	173.2
	CMCPrv	0.98	0.018	38.55
120	Prv	0.94	0.001	693.1
	PPPrv	0.98	0.002	346.5
	CMCPrv	0.99	0.025	27.72
140	Prv	0.96	0.001	693.3
	PPPrv	0.94	0.002	346.5
	CMCPrv	0.93	0.012	57.79

Table 4. The kinetic parameters for the degradation of DCV at various initial concentrations.

 Table 5. GC-MS retention times of the DCV identified intermediates.

Compound	R_t (min)	Characteristic ions (m/z)
Dichlorvos	14.78	220
Desmethyl dichlorvos	14.29	207, 95, 79
O,O-dimethyl phosphoric ester	10.83	109, 80, 79