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Supporting information 31 

 32 

Figure S1: Temperature-dependent evolution of the storage modulus (G’) obtained from dynamic temperature sweeps, on 33 

MC aqueous solutions prepared at different concentrations (0.1, 0.5, 1.0, 1.5 and 2.0% w/w). G’ dominates over G” at all 34 

concentrations and temperatures; G” was therefore omitted for clarity. 35 

36 

Figure S2: Time-dependent evolution of (A) the surface pressure (π) measured in a Langmuir trough, and (B) phase shift 37 

(ΔΔ(t) = Δ(t) - Δ0) measured by ellipsometry, upon successive injections of MC: (➖) 0.5×10-1‰ w/w, (➖) 0.25‰ w/w, (➖) 38 

0.5‰ w/w, into the aqueous subphase (at 23 ± 2°C). 39 

40 

Figure S3: Time-dependent evolution of (A) the surface pressure (π) measured in a Langmuir trough, and (B) phase shift 41 

(ΔΔ(t) = Δ(t) - Δ0) measured by ellipsometry, upon successive injections of MC: (➖) 0.5×10-2‰ w/w, (➖) 0.25×10-1‰ w/w, 42 

(➖) 0.5×10-1‰ w/w, into the aqueous subphase (at 23 ± 2°C). 43 
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 44 

Figure S4: Time-dependent evolution of the surface pressure (π) measured in a Langmuir trough, upon injection of MC into 45 

the aqueous subphase, at varying concentrations: (➖) 0.5×10-3‰ w/w, (➖) 0.5×10-2‰ w/w, (➖) 0.5×10-1‰ w/w, (➖) 46 

0.5‰ w/w (at 23 ± 2°C). Each experiment was reproduced twice, and the average measurement was selected for each BS 47 

at each concentration. 48 

49 

Figure S5: Time-dependent evolution of the surface pressure (π) measured in a Langmuir trough, upon successive injections 50 

of BS into the aqueous subphase: NaTC, NaTDC (at 23 ± 2°C). The first increase in surface pressure corresponds to the 51 

adsorption of MC at the air/water interface, which was added into water at a concentration of 0.5×10-2‰ w/w (πMC = 18 52 

± 2 mN/m). Each addition of BS is shown by an arrow, together with the corresponding BS concentration achieved in the 53 

subphase. Each experiment was reproduced twice, and a representative measurement was selected for each experiment. 54 
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55 

Figure S6: Time-dependent evolution of the surface pressure (π) measured in a Langmuir trough, upon injection of varying 56 

concentrations: 1, 5, 10 mM, of BS: NaTC, NaTDC, into the aqueous subphase (at 23 ± 2°C). The first increase in surface 57 

pressure corresponds to the adsorption of MC at the air/water interface, which was added into water at a concentration 58 

of 0.5‰ w/w (πMC = 21 ± 1 mN/m). Each experiment was reproduced at least twice, and a representative measurement 59 

was selected for each BS at each concentration. 60 
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 61 

Figure S7: Characterisation of MC-stabilised emulsion droplets microstructure by (A) optical (scale bar: 200 μm) and (B) 62 

confocal (scale bar: 20 μm) microscopy. MC-stabilised emulsion was made up of 0.5% MC and 15% sunflower oil. The 63 

confocal micrograph shows the lipid droplets (stained in red with Nile red) surrounded by MC (stained in blue with 64 

calcofluor) present as a network in the bulk (B). 65 

 66 

Figure S8: Impact of the different digestive fluid components: NaCl, CaCl2 and BS (NaTC, NaTDC) (used individually), on the 67 

microstructure of MC-stabilised emulsion droplets, 60 min after mixing (at 37°C). MC-stabilised emulsion was made up of 68 

0.5% MC and 15% sunflower oil. The scale bar is 200 μm. 69 
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 70 

Figure S9: Impact of the different digestive fluid components: NaCl, CaCl2 and BS (NaTC, NaTDC) (used in combination), on 71 

the microstructure of MC-stabilised emulsion droplets, 60 min after mixing (at 37°C). MC-stabilised emulsion was made up 72 

of 0.5% MC and 15% sunflower oil. The scale bar is 200 μm. 73 


