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Zilber’s Exponential Algebraic Closedness conjecture (also known as Zilber’s Nullstel-

lensatz) gives conditions under which a complex algebraic variety should intersect the

graph of the exponential map of a semiabelian variety. We prove the special case of the

conjecture where the variety has dominant projection to the domain of the exponential

map, for abelian varieties and for algebraic tori. Furthermore, in the situation where the

intersection is 0-dimensional, we exhibit structure in the intersection by parametrizing

the sufficiently large points as the images of the period lattice under a (multivalued)

analytic map. Our approach is complex geometric, in contrast to a real analytic proof

given by Brownawell and Masser just for the case of algebraic tori.

1 Introduction

In his model-theoretic study of the complex exponential function, Zilber [20] asked

what systems of equations built from polynomials and the exponential function have

solutions in the complex field. The analogous question just for polynomials is solved by

the fundamental theorem of algebra and the Hilbert Nullstellensatz.

The fact that the exponential map is a homomorphism of algebraic groups places

some restrictions. For example, the following system of equations does not have a
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Geometric Approach to Exponential Equations 4047

solution in C:

⎧⎨
⎩

2z1 = z2 + 1,

(ez1)2 = ez2 ,

because (ez1)2 = e2z1 and so having a solution would imply e1 = 1.

Further strong restrictions are predicted by Schanuel’s conjecture of transcen-

dental number theory [15, p. 30], which asserts tr. deg.Q(z1, . . . , zn, ez1 , . . . , ezn) � n for

any complex numbers z1, . . . , zn that are linearly independent over Q. For example, a

simple application of the conjecture gives the algebraic independence of e and π (an

open question), so it would follow that for any non-zero rational polynomial p(z, w),

there is no solution to the system of equations

ez = −1, p(z, e1) = 0.

Zilber formulated a precise conjecture that captures the idea that every system

of equations should have a solution unless that would contradict Schanuel’s conjecture,

which we call his Exponential Algebraic Closedness conjecture or EAC conjecture

(sometimes also called Zilber’s Nullstellensatz [8]).

The EAC conjecture is expressed in geometric terms. Let Gn
m be the algebraic

torus of dimension n. Since we are exclusively working over C, we shall identify Gm

with its complex points, so Gm = Gm(C) = C×.

Conjecture 1.1 (EAC [20]). Let V ⊆ Cn × Gn
m be a free and rotund variety. Then there is

a point z ∈ Cn such that (z, exp(z)) ∈ V.

Here z = (z1, . . . , zn) and exp(z) means the tuple (ez1 , . . . , ezn). The freeness

property in Conjecture 1.1 is related to the constraints from the exponential map being

a group homomorphism, and rotundity is related to the constraints from Schanuel’s

conjecture. We shall omit the precise definitions of these properties, as they are slightly

technical and we will not need them.

If both the Schanuel and the EAC conjectures are true, they would give a

complete characterisation of the systems which have solutions. Zilber also showed in

[20] (see also [3]) that, together, Schanuel’s conjecture and a stronger form of EAC imply

strong consequences for the model-theoretic structure (C, +, ×, exp), in particular that

it is quasiminimal, a previous conjecture by Zilber [19] that is still open to this day.
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4048 V. Aslanyan et al.

The number-theoretic part of Schanuel’s conjecture seems out of reach. However,

the functional part of Schanuel’s conjecture was proved by Ax [2] and that implies that

it is generically true [13, Theorem 1.4]. In particular, a positive solution to Zilber’s

EAC conjecture would characterize the systems for which the existence of solutions

is essentially a number-theoretic transcendence problem, rather than a functional

transcendence or geometric problem. Moreover, we now know that EAC directly implies

the quasiminimality of (C, +, ×, exp) [4, Theorem 1.5].

Apart from the classical exponential function, one can consider other periodic

functions such as the Weierstrass ℘-functions and their derivatives. For example, in

Section 2 of the paper, we will describe solutions to the following equation.

Example 1.2. Let ℘ be any Weierstrass ℘-function. Then there are z ∈ C such that

℘′(℘ (z)2) = z, and indeed we can find 12 infinite families of solutions parametrized by

the pairs (ω1, ω2) ∈ �2, for |ω1|, |ω2| sufficiently large, where � is the period lattice of ℘.

The ℘-functions are essentially the exponential maps of elliptic curves. Our

method for ℘ also applies to a wide range of systems of equations, dealing with the

exponential maps of abelian or semiabelian varieties.

In this generality, the EAC conjecture becomes the following.

Conjecture 1.3 (EAC for semiabelian varieties). Let S be a complex semiabelian variety

of dimension n, and write expS : Cn → S for its exponential map. Let V ⊆ Cn × S be a

free and rotund subvariety. Then there is z ∈ Cn such that (z, expS(z)) ∈ V.

Again, the notions of freeness and rotundity relate to expS being a homomor-

phism and to the semiabelian version of Schanuel’s conjecture. We will not need them

in this paper. We refer the interested reader to [12, Definition 2.26] or [4, Definition 7.1]

for more details. At least when S is simple, EAC for S also implies that the structure

(C, +, ×, expS) is quasiminimal [4, Theorem 1.9].

As a notational convention, since all the algebraic varieties we will consider

will be defined over C, we will identify them with their sets of C-points. For example,

above we write S and V rather than S(C) and V(C). We will also write Pn for complex

projective n-space rather than Pn(C). We denote points in affine and projective spaces

by boldface letters such as z and their coordinates by standard letters with subscripts

such as z1. We say that a point in V of the form (z, expS(z)) is an exponential point

of V.
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Geometric Approach to Exponential Equations 4049

In this paper, we establish the following family of instances of Conjecture 1.3 in

the case of abelian varieties.

Theorem 1.4. Let A be a complex abelian variety of dimension n. Let V ⊆ Cn × A be

an algebraic subvariety with dominant projection to Cn, that is, its projection to Cn has

dimension n. Then there is z ∈ Cn such that (z, expA(z)) ∈ V.

It will follow easily from our proof that the set {z ∈ Cn : (z, expA(z)) ∈ V} is in

fact Zariski dense in Cn and actually that the points (z, expA(z)) are Zariski dense in V.

Moreover, we show that almost all of the large solutions are parametrized in terms of

the period lattice � of expA. (See Theorem 4.1 for the details.)

A subvariety with dominant projection as in this statement is automatically

rotund and can be easily reduced to a free and rotund subvariety. Hence, Theorem 1.4 is

indeed a special case of Conjecture 1.3.

The analogous theorem for algebraic tori was proven by Brownawell and Masser.

Theorem 1.5 ([6, Prop. 2]). Let V ⊆ Cn × Gn
m be an algebraic subvariety with dominant

projection to Cn. Then there is a point z ∈ Cn such that (z, exp(z)) ∈ V.

They used Newton’s iterative method to approximate solutions, and in partic-

ular Kantorovich’s theorem that gives criteria for these approximations to converge to

an actual solution. Another account of the same proof is given in [7]. A similar theorem

for the modular j-function was established in [9] using Rouché’s theorem of complex

analysis in place of Kantorovich’s theorem. Using our methods, we also give a new proof

of Theorem 1.5.

Unlike [6] and [7], in our proofs of Theorems 1.4 and 1.5, we exploit the geometry

and topology of the system as much as possible; we do not use Kantorovich’s theorem

or Rouché’s theorem.

To explain our approach, it is easiest to go back to the idea of the proof of

Brownawell and Masser. If (z, w) ∈ V with z ∈ Cn and w ∈ Gn
m, then the dominant

projection assumption means that generically we can regard w as α(z), where α is an

algebraic map. The problem reduces to finding a zero of

F(z) := exp(z) − α(z).

They consider z → ∞ in a small complex neighborhood of a real straight line and prove

(after some rescaling) that when z = λ + Log(α(λ)) with λ ∈ (2π iZ)n then F(z) is small

enough that Newton’s method will converge to a zero of F near it. They then observe
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4050 V. Aslanyan et al.

that the solutions they find are indexed by “sufficiently many” lattice points to give a

Zariski dense set of solutions.

In the general abelian case, we face two technical challenges. The exponential

and logarithmic maps of Gm are very well understood and are easy to differen-

tiate explicitly to perform the necessary computations. This is less practical for

abelian varieties. Moreover, whereas in the Gm setting both exp(z) and α(z) lie in

Gn
m ⊆ Cn, in the abelian setting both quantities lie in A, which is a projective

variety.

We choose a convenient affine chart by taking the logarithm, so we work in the

covering space Cn, and we define a new map F (at least locally) as

F(z) := z − LogA(α(z)).

Instead of looking for zeros of F, we now want to find z ∈ Cn such that expA(F(z)) = 0A,

or equivalently, F(z) ∈ �, the period lattice of expA. Essentially from the compactness

of A, we show that the 2nd term LogA(α(z)) is convergent as z → ∞ along most real

lines, and so F is asymptotically a translation and hence is locally invertible. Writing S

for the local inverse, the (sufficiently large) points z such that α(z) = expA(z) are then

S(λ) for λ ∈ �. So as well as finding solutions, we give an analytic parametrization of

them by lattice points.

The algebraic map α, the logarithm LogA, and the maps F and S are multivalued

maps, so the above argument will be done locally around points at infinity, after

embedding Cn into Pn in the usual way. By considering all the branches of α and

LogA, we can then parametrize the points (z, expA(z)) ∈ V locally via the corresponding

branches of S.

To summarize how S parametrizes the solutions globally, we shall ultimately

describe S as a sheaf of analytic functions (in the sense of Remark 3.3) on an open subset

�∗ of Pn, which is “large” in the sense that it contains a Zariski open dense subset of the

hyperplane at infinity. We shall verify that every z ∈ �∗ ∩ Cn such that (z, expA(z)) ∈ V

is of the form z = S(λ) for some λ ∈ �.

Our method also works in the algebraic torus case. Since Gm is not compact,

a little more analysis of growth rates is needed, although still less than in the

Brownawell–Masser proof. In some final remarks at the end of the paper, we discuss

how far this method might be pushed.

The strong EAC conjecture of Zilber, alluded to above, incorporates a transcen-

dence condition: given any finitely generated subfield K of C, one asks for (z, expS(z)),

which is generic in V over K. It seems likely that one could deduce transcendence
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Geometric Approach to Exponential Equations 4051

results of this type for V with dominant projection to Cn, assuming the appropriate

form of Schanuel’s conjecture, in the style of [7]. In fact, for S = Gm, if one assumes both

Schanuel’s conjecture and the Zilber–Pink conjecture, then the strong EAC is equivalent

to EAC ([14, Thm. 1.5]).

Overview of the paper Before developing the general theory, we outline the method of

proof for Example 1.2 in Section 2. The multivalued nature of the maps becomes clear

as we only have to take square roots and cube roots to describe the corresponding

algebraic map α.

In Section 3, we explain how we extract the algebraic map α from the algebraic

variety V. As we are interested in the behavior as we approach infinity, we take care

in explaining how α can be extended continuously to these points at infinity (in the

projective space Pn) where it may fail to be analytic. The content of this section is

folklore, but we give a self-contained account.

We state and prove Theorem 4.1 explaining the solution map S and its properties

in Section 4. Theorem 1.4 follows, and this also covers Example 1.2. In Section 5, we

indicate how to adapt this work for the algebraic torus setting, to give a new proof of

Theorem 1.5. We close with some final remarks.

2 An Example

Consider the equation

℘′(℘ (z)2) = z, (1)

from Example 1.2, where ℘ is a Weierstrass ℘-function. Our analysis will work

uniformly for any ℘-function, but to be definite, let ℘ be the Weierstrass ℘-function

associated to the lattice � := Z + iZ.

We want to determine whether (1) has any solutions in C and, if so, where those

solutions are.

It is well known that

℘′(z)2 = 4℘(z)3 − g2℘(z) − g3,

for certain g2, g3 ∈ C, and that the map

z 	→ [1 : ℘(z) : ℘′(z)]
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4052 V. Aslanyan et al.

gives an embedding of C/� into the projective space P2. The image of C/� is an elliptic

curve E⊆P2, and the above map is its exponential map expE : C → E.

To exploit the geometry of elliptic curves, we consider ℘ and ℘′ in (1) as

components of the exponential map. However, for simplicity, we will write equations

and maps in affine coordinates. In particular, if O := [0 : 0 : 1] is the point at infinity of

E (which is also the identity element of the group structure of E), then the affine part of

E is E \ {O} ⊆ C2.

Consider the following system of equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

xk = ℘(zk), yk = ℘′(zk) for k = 1, 2,

y2
k = 4x3

k − g2xk − g3 for k = 1, 2,

z2 = x2
1,

z1 = y2.

(2)

The equations on the 2nd line of (2) state that (x1, y1) and (x2, y2) lie on E. When

combined with the last two equations, they define a subvariety V of C2 × E2. The

solutions of (2) are the points (z, expE2(z)) ∈ V. One can easily verify that the coordinate

z1 of such a point is a solution of (1) and that all solutions of (1) arise in this way.

We think of V as expressing a point w ∈ E2 as an algebraic function α = (α1, α2)

of z, that is, we have

α1(z) =
(√

z2,
√

4z3/2
2 − g2z1/2

2 − g3

)
,

α2(z) = (
β(z1), z1

)
,

where

β(z1) := 3

√√√√g3 − z2
1

8
+

√
(g3 − z2

1)2

64
− g3

2

1728
+ 3

√√√√g3 − z2
1

8
−

√
(g3 − z2

1)2

64
− g3

2

1728

is obtained by solving the cubic equation 4v3 − g2v − g3 = z2
1 with respect to v.

To be more precise, we have to choose single-valued branches of the square and

cube roots, which we can do by restricting α to a suitable simply connected domain

D⊆C2. Since α1 and α2 depend only on z2 and z1, respectively, we can define them

separately. For k = 1, 2, let Nk⊆C be a closed disc around the origin containing the

zeroes of the expressions appearing in the square and cube roots involved in αk. Also,
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Geometric Approach to Exponential Equations 4053

consider the line (a branch cut) B := R<0⊆C. Now set Dk := C \ (Nk ∪ B). Then D1, D2 are

simply connected, and we find 4 branches of α1 and 3 branches of α2, respectively, on

D1 and D2. Altogether, we get 12 branches of α on D := D1 ×D2, and we pick one of those.

We take a fundamental domain

M := {x + iy : −1/2 < x, y � 1/2}

for expE . Let LogE2 : E2 → M2 be the logarithmic map for this domain.

Now pick z ∈ D with |z1|, |z2| sufficiently large. Thus, given some metric inducing

the complex topology on P2, we can say that α(z) is close to the point at infinity (O, O).

So LogE2α(z) ≈ (0, 0) ∈ C2.

Define a map

F : D → C2 : z 	→ z − LogE2α(z).

Asymptotically, we have F(z) = z + o(1) as |z1|, |z2| → ∞. So F is locally invertible

and indeed, shrinking D if necessary and staying away from the boundary, we find a

connected open set D̃, which is in fact the image of D under F, and a map S : D̃ → D

which is the inverse of F. Moreover, we also have

S(z) = z + LogE2α(z) + o(1) = z + o(1) (3)

for |z1|, |z2| → ∞ with z ∈ D̃.

Now for a lattice point λ ∈ �2 ∩ D̃ we have

λ = F(S(λ)) = S(λ) − LogE2α(S(λ)), (4)

hence α(S(λ)) = expE2(S(λ)). Therefore, the point S(λ) is a solution to the equation

α(z) = expE2(z), and in fact {S(λ) : λ ∈ �2 ∩ D̃} is the set of all solutions of (4) in D.

Finally, one observes that since F is asymptotically the identity, the set D̃ almost

contains D, in the sense that every point of D sufficiently far from the boundary of D

must be in D̃. It follows that D̃ ∩ �2 is not empty and in fact contains most points of

D ∩ �2. This proves that (2) has solutions. In particular, (1) does too: if S = (S1, S2) with

S1, S2 : D̃ → C, then for each λ ∈ �2 the element S1(λ) is a solution to (1).

By repeating the argument for all the possible branches of S, and by rotating the

branch cuts of D1, D2, one can verify that all the solutions of (2) with z1, z2 sufficiently
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4054 V. Aslanyan et al.

large arise in this way. Since D is a large subset of C2, these actually give almost all the

solutions of (1) such that z and ℘(z) are both sufficiently large.

Furthermore, we can use the parametrization of the large solutions of (2) by S to

understand their geometric distribution. From (4), we have

λ1 = S1(λ) − ℘−1
(√

S2(λ)
)

,

λ2 = S2(λ) − (℘′)−1(S1(λ)).

Therefore,

S1(λ) = λ1 + ℘−1
(√

λ2 + (℘′)−1(S1(λ))

)
.

From this and from (3), we may conclude that

S1(λ) = λ1 + ℘−1
(√

λ2 + (℘′)−1(λ1 + o(1))

)

= λ1 + ℘−1
(√

λ2 + (℘′)−1(λ1)

)
+ o

(
℘−1

(√
λ2 + (℘′)−1(λ1)

))

as |λ1|, |λ2| → ∞ with λ ∈ �2 ∩ D̃.

Since ℘ and ℘′ are two to one and three to one, respectively, on the fundamental

domain M, and z 	→ z2 is two to one, one can easily verify that S1 takes 12 distinct values

on each (λ1, λ2) according to the choice of the branches.

3 Algebraic Maps

The proof of Theorem 1.5 in [6] and in particular the account of [7] make use of algebraic

functions. In [7], those are defined as analytic functions α : D → C over some domain

D ⊆ Cn satisfying a non-trivial polynomial equation P(z, α(z)) = 0. In both papers, the

authors restrict the choice of the domains D in order to have the appropriate asymptotic

behavior at infinity.

We shall reduce our reliance on detailed asymptotic estimates at infinity in

favor of topological and geometric considerations. In Theorems 1.4 and 1.5, we may

assume that dim V = n after taking some intersections with generic hyperplanes. We

then consider the Zariski closure V of V inside Pn×A, where A is either the given abelian

variety or a suitable completion of Gn
m and Cn is embedded into Pn is the usual way.
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Geometric Approach to Exponential Equations 4055

In this setting, the projection π : V → Pn is surjective, and by dimension

considerations, all of its fibers are finite outside of a proper Zariski closed subset

of Pn.

We then work with continuous maps α : D∗ ⊆ Pn → V → A such that (z, α(z)) ∈ V

for all z ∈ D∗, where D∗ is some set to be specified later. We can create such a map by

composing a continuous section of π : V → Pn with the projection V → A. We wish to

understand the behavior of such an α at infinity, namely at the points of Pn \ Cn.

It is well known that the analytic local sections D ⊆ Pn → V, where D are

suitable open domains, form a sheaf of complex analytic maps. The domains, however,

only cover a Zariski open dense subset of Pn, which may well omit all of the points at

infinity. We remedy this by taking continuous extensions to some D∗ ⊇ D containing

points on the boundary of D.

We thus obtain maps α : D∗ → A, which are continuous, but possibly not

analytic, at the points at infinity. The continuity at infinity will encode the asymptotic

information needed for the proof of Theorem 1.4. One could perhaps perform some local

resolution of singularities in the style of Bierstone and Milman [5] to make the maps

analytic everywhere, but it is not necessary.

The use of continuous extensions of analytic maps is classical, but for the sake

of clarity, we state Proposition 3.2 below to pin down which maps we use, and we

provide a self contained proof referring to elementary algebraic geometry and algebraic

topology. We also make some definite choices of neighborhoods and sets to ensure we

always deal with clearly defined single-valued functions.

Before going further into the technical details, let us work with an elementary

example. Identify P1 with the Riemann sphere C ∪ {∞}. Let ρ : P1 → P1 be the map

z 	→ z2 + 1. The fibers of ρ have cardinality 2, except over the branching points 1 and

∞, which have fibers {0} and {∞} respectively. The restriction of ρ to P1 \ {0, ∞} = C \ {0}
is a covering map: for each w ∈ C \ {1}, there is an open neighborhood D of w in the

complex topology such that ρ−1(D) splits into a disjoint union of open sets Di where ρ�Di

is a homeomorphism between Di and D.

If we remove a branch cut, for instance by taking D = C \ R�0 ⊆ P1 \ {0, ∞}, we

obtain a simply connected domain, hence by standard topological arguments there are

two analytic sections ι1, ι2 : D → P1 of ρ, and ρ−1(D) = ι1(D)∪ ι2(D). On the other hand, it

is clear that each section can be extended to a continuous section ι∗ : D∗ = D ∪ {0, ∞} →
P1 by setting ι∗(0) = 1 and ι∗(∞) = ∞. Such an extension is unique, but it is not analytic

at 0 and ∞.

We shall use a higher-dimensional version of the above construction.
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4056 V. Aslanyan et al.

Notation 3.1. For � = 0, . . . , n, let U� be the usual affine chart defined by

U� := {[z0 : · · · : zn] ∈ Pn : z� = 1}.

We identify Cn with U0 via the embedding

Cn � (z1, . . . , zn) 	→ [1 : z1 : · · · : zn] ∈ U0 ⊆ Pn. (5)

Now fix a chart U� with � � 1. Given a point c = [0 : c1 : · · · : cn] ∈ U� ⊆ Pn

(written with c� = 1), a polydisc centered at c in the chart U� of radius ε > 0 takes the

form

D∗ = {[
x0 : x1 : · · · : xn

] ∈ Pn : |x0| < ε, |xi − ci| < ε for i = 1, . . . , n and x� = 1
}

. (6)

The intersection of D∗ with Cn = U0 is then

D =
{
(z1, . . . , zn) ∈ Cn : |z�| > ε−1,

∣∣∣∣ zi

z�

− ci

∣∣∣∣ < ε for i = 1, . . . , n
}

. (7)

So the variable z� is going to infinity in the annulus given by |z�| > ε−1, and each other

coordinate zi lies in a disc around ciz� of radius ε|z�|.
We shall work with sectors of the annulus in order to have simply connected

domains for our maps. So, for θ ∈ R and η ∈ (θ , θ + 2π ], we define

D(θ ,η) = {
(z1, . . . , zn) ∈ D : θ < arg(z�) < η for some choice of arg(z�)

}
(8)

and we extend to the points at infinity with

D∗
(θ ,η) = D(θ ,η) ∪ (

D∗ \ D
)

. (9)

We will call both D(θ ,η) and D∗
(θ ,η) sector domains.

Note that indeed D(θ ,η) and D∗
(θ ,η) are simply connected, and in fact contractible,

as they are homeomorphic to, respectively,
(
ε−1, ∞) × (θ , η) × {z ∈ C : |z| < ε}n−1 and

{z ∈ C : |z| < ε, −η < arg(z) < −θ or z = 0} × {z ∈ C : |z| < ε}n−1.

We can now state the key result of this section, which will be used in the proofs

of Theorems 1.4 and 1.5. In the following, recall that given a morphism ρ : X → Y of
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Geometric Approach to Exponential Equations 4057

algebraic varieties, the degree of ρ, denoted deg(ρ), is the cardinality of the generic

fibers, when it is finite.

Proposition 3.2. Let A be a complete variety and V ⊆ Pn × A be an irreducible variety

of dimension n with surjective projection to Pn of degree d. Let H := Pn \ Cn be the

hyperplane at infinity (with Cn embedded as in (5)).

Then there is a Zariski open dense subset C of H with the following property: for

all � � 1, c = [0 : c1 : · · · : cn] ∈ C ∩ U�, θ ∈ R, η ∈ (θ , θ + 2π ], and all sufficiently small

polydiscs D∗ at c in the chart U�, there are distinct continuous maps α1, . . . , αd : D∗
(θ ,η) →

A such that

1. for all z ∈ D∗
(θ ,η) we have (z, αi(z)) ∈ V;

2. for all (z, w) ∈ V with z ∈ D∗
(θ ,η) there is a k such that αk(z) = w;

3. each restriction αi�D(θ ,η)
is complex analytic.

Note that the algebraic functions of [6, 7] are simply the coordinates of the

maps αi when restricted to Cn → Gn
m; our sector domains are definite instances of

the “cones” mentioned in those papers. The additional precision is to avoid potential

ambiguities. For instance, in [7, p. 1397], the authors claim that every algebraic function

is asymptotically homogeneous, which however may be false if the cones include real

lines pointing outside of C.

Remark 3.3. While Proposition 3.2 is fairly detailed in the use of specific polydiscs

and sector domains, one may also read it as the construction of a particular sheaf.

Recall that the local analytic sections of the projection V → Pn with open

domains form a sheaf of functions over Pn. One can think of the sheaf as the collection of

all continuations of any one local section and so as a multivalued analytic function. The

collection of the maps αi from Proposition 3.2, as θ , η vary, is essentially the composition

of this multivalued function with the projection V → A.

First consider the map α1 on the domain D(0,2π), which we now write as α1
(0,2π)

and all the d maps αk on D(π ,3π). For each k, the set
{
z ∈ D(π ,2π) : α1

(0,2π)(z) = αk(z)
}

is

clopen by the uniqueness of analytic continuation, so exactly one of these αk must agree

with α1
(0,2π) on D(π ,2π), and we write it as α1

(π ,3π).

Similarly, analytic continuation determines a unique branch of α on D(jπ ,(j+2)π)

for each j ∈ Z, which we write as α1
(jπ ,(j+2)π)

. Continuity of each branch of α on D∗
(θ ,η)

ensures that α1 extends uniquely to D∗ \ D and is single valued there. Since there are

only d branches of α at each point, for some integer e with 0 < e < d we must have
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4058 V. Aslanyan et al.

α1
(2eπ ,(2e+2)π) = α1

(0,2π). So α1 is a multivalued map D∗ → A that is e-valued on D and

single-valued on D∗ \ D. This ramification is exactly analogous to the function z 	→ z1/e

about the point at infinity in P1.

If e < d then we can continue with the other branches of αk to get connected

multivalued maps α1, . . . , αd′
: D∗ → A, corresponding to the (at most) d′ different values

of α(c). We can then consider these maps together as a single d-valued map α : D∗ → A.

We can also patch together the maps defined on sector domains around different

points c ∈ C. Overall, the sector domains cover an open subset �∗ of Pn with �∗ \Cn = C,

and the maps α : D(θ ,η) → A generate a sheaf α representing a d-valued analytic map on

� = �∗ ∩ Cn. The additional information in Proposition 3.2 encodes how each branch

extends continuously to C.

Ahlfors [1, pp. 284–308] explains the construction of algebraic functions in

detail, although only in a single variable.

Later we will do something similar with other analytic maps.

The rest of this section offers a fairly detailed proof of Proposition 3.2, but

we stress that the construction is folklore and that the techniques used here will

not be relevant for the rest of the paper, and so the reader may well skip to the

next section.

3.1 Covering maps

First, we recall how generically finite maps between irreducible varieties restrict

to topological covering maps. These are classical facts, and we refer the reader to

[11, Section IV.2] and [18, Section II.6] for more details. In the following, let X, Y be

complete irreducible algebraic varieties of the same dimension, and ρ : X → Y be a

surjective morphism.

Proposition 3.4. Let Yf = {y ∈ Y : |ρ−1(y)| < ∞}. Then Yf is Zariski open dense in Y

and Y \ Yf has codimension at least 2 in Y.

Proof. Since X, Y are complete, f is a closed morphism. Therefore, the conclusion is

an immediate consequence of Chevalley’s semi-continuity theorem [10, Cor. 13.1.5] (or

[18, Thm. 1.25], after correcting the statement by adding the word “closed”): the set

of points y ∈ Y such that ρ−1(y) has dimension at least 1 is a proper and Zariski-

closed subset of Y. By the same theorem, since ρ−1(Y \ Yf ) has dimension at most
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Geometric Approach to Exponential Equations 4059

dim(Y) − 1, and all the fiberss over Y \ Yf have dimension at least 1, we must have

dim(Y \ Yf ) < dim(Y) − 1. �

Proposition 3.5. Let Yc = {y ∈ Yf : y is non-singular, |ρ−1(y)| = deg(ρ)}. Then Yc is

Zariski open dense in Yf and the restriction ρ�ρ−1(Yc) is a covering map with respect to

the complex topology.

Proof. Since X, Y are complete, ρ is proper, and so is ρ �ρ−1(Yf ) as Yf is open.

The latter map is quasi-finite (i.e., it has finite fibers); hence, it is finite in the

sense of algebraic geometry [10, Thm. 8.11.1]. We also know that the non-singular

points of Y form a Zariski open dense subset of Y, and they are normal. By [18,

Theorem 2.29], the normal points of Yf such that |ρ−1(y)| = deg(ρ) form a Zariski

open dense subset of Yf , and in particular do so the non-singular ones. One can

then verify that ρ �ρ−1(Yc) is a covering map via the implicit function theorem (see

[18, p. 143]). �

Note in particular that ρ �ρ−1(Yc) is an open map in both complex and Zariski

topologies.

Corollary 3.6. Let D ⊆ Yc be simply connected. Let d = deg(ρ). Then there are exactly

d complex analytic sections ι1, . . . , ιd : D → X of ρ, and ρ−1(D) = ⋃d
i=1 ιi(D).

Proof. This is a standard algebraic topology result. Fixed y ∈ D and x ∈ ρ−1(y), there

is an analytic homeomorphism from a neighborhood of y to a neighborhood of x. Since

D is simply connected, such a homeomorphism has a continuation to all of D. Any two

sections ι, ι′ such that ι(y) = ι′(y) = x have the property that {y′ ∈ D : ι(y′) = ι′(y′)} is

both open (by analytic continuation) and closed (by continuity of the map ι× ι′ : D×D →
X × X and the fact that the diagonal of X × X is closed, since X is Hausdorff); thus, they

coincide. In turn, there is exactly one section for every point in the fibers ρ−1(y). By

repeating the argument on all y ∈ D, one sees that images of these sections cover all of

ρ−1(D). �

3.2 Extending sections of covering maps

We now wish to extend continuously the sections ιi from a simply connected � ⊆ Yc to

some larger domain �∗, which may fall outside of Yc. In Proposition 3.2, these will be

the points at infinity in D∗
(θ ,η) \ D(θ ,η).
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4060 V. Aslanyan et al.

Whether this can be done depends on the topological properties of �∗, rather

than the algebraic properties, so we will work in an abstract topological setting.

Lemma 3.7. Let X, Y be compact Hausdorff topological spaces, ρ : X → Y be a

continuous function, and ι : � → X be a continuous section of ρ on some � ⊆ Y. Let

�∗ ⊆ Y be such that � ⊆ �∗ ⊆ �.

Suppose that for all y ∈ �∗ \ �:

• ρ−1(y) is finite;

• there are arbitrarily small neighborhoods N of y such that N∩� is connected.

Then ι extends (uniquely) to a continuous section ι∗ : �∗ → X of ρ.

Proof. Fix some y ∈ �∗ \ �. Since X is Hausdorff, we may find an open neighbor-

hood B = By of ρ−1(y) where each connected component contains exactly one point

of ρ−1(y).

Claim. For every neighborhood N′ of y, there is a neighborhood N ⊆ N′ of y such that

ρ−1(N) ⊆ B and N ∩ � is connected.

Proof. Since Y is compact Hausdorff, N′ contains closed neighborhoods N′′ ⊆ N′ of y.

Suppose by contradiction that ρ−1(N′′) � B for all such N′′’s. By compactness of X,

the intersection of the (closed) sets ρ−1(N′′) \ B contains some x /∈ B ⊇ ρ−1(y); since Y is

Hausdorff, we may pick a closed neighborhood of y not containing ρ(x), a contradiction.

By assumption, there is a neighborhood N ⊆ N′′ of y such that N ∩ � is connected, and

of course ρ−1(N) ⊆ ρ−1(N′′) ⊆ B. �

Let N be any neighborhood of y given by the claim. Since �∗ ⊆ � and N is

a neighborhood of y, N ∩ � is non-empty. Thus, ι(N ∩ �) is contained in exactly one

connected component B0 of B. By construction of B, we have B0 ∩ (B \ B0) = ∅, thus

ι(N ∩ �) ∩ ρ−1(y) ⊆ B0 ∩ ρ−1(y) = {xy} for some xy ∈ ρ−1(y).

If ι∗ is a continuous extension of ι, since y ∈ N ∩ � ⊆ N ∩ �, we must have

ι∗(y) ∈ ι(N ∩ �). In turn, if ι∗ is a also section of ρ, we must have ι∗(y) ∈ ι(N ∩ �)∩ρ−1(y),

hence ι∗(y) = xy.

Therefore, if continuous sections extending ι exist, they are unique. As for their

existence, define the section ι∗ ⊇ ι by letting ι∗(y) = xy for y ∈ �∗ \�. It remains to check

that ι∗ is continuous.
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Geometric Approach to Exponential Equations 4061

Let N′ be an open neighborhood of a y ∈ �∗ \ �. By the claim and the above

argument, there is a neighborhood N ⊆ N′ such that ι∗(y) ∈ ι(N ∩ �) ⊆ ι(N′ ∩ �). By

repeating this for every y′ ∈ N′ ∩ (�∗ \ �), we get ι∗(N′ ∩ �∗) ⊆ ι(N′ ∩ �).

Now fix y ∈ �∗ \ � and let B be a neighborhood of ι∗(y). Since X is compact

Hausdorff, there is a closed neighborhood B′ ⊆ B of ι∗(y). By continuity of ι, we can find

a neighborhood N′ of y such that ι(N′ ∩ �) ⊆ B′. In turn, ι∗(N′ ∩ �∗) ⊆ ι(N′ ∩ �) ⊆ B′ ⊆ B.

By definition, this means that ι∗ is continuous at y. �
The above can now be applied in the setting of maps between algebraic varieties.

The following statement establishes a natural condition on pairs of domains � ⊆ �∗

guaranteeing the existence (and uniqueness) of such extensions.

Proposition 3.8. Let X be a complete irreducible algebraic variety and ρ : X → Pn be a

morphism of degree d. Let � ⊆ �∗ ⊆ Pn be sets with � simply connected, �∗ ⊆ � (where

� is the topological closure of �), such that for all y ∈ �∗:

• ρ−1(y) is finite, and of cardinality d when y ∈ �;

• there are arbitrarily small neighborhoods N of y such that N ∩ �

is connected.

Then there are exactly d continuous sections ι1, . . . , ιd : �∗ → X of ρ; moreover, they are

complex analytic on � and ρ−1(�∗) = ⋃d
i=1 ιi(�

∗).

Proof. Since Pn is non-singular, on setting Y = Pn we have that � ⊆ Yc. By Corollary

3.6, there are sections ι′1, . . . , ι′d : � → X satisfying the conclusion with � in place of �∗.

Since X and Pn are complete complex varieties, they are compact Hausdorff

spaces, so by Lemma 3.7, such sections can be extended uniquely to continuous sections

�∗ → X.

It remains to verify that for every y ∈ �∗, ρ−1(y) = {ι1(y), . . . , ιd(y)}. Suppose by

contradiction that there is x such that ρ(x) = y ∈ �∗, but ρ(x) �= ιi(y) for all i = 1, . . . , d.

By assumption, �∗ ⊆ Yf , and Yf is open by Proposition 3.4. By Remmert’s open mapping

theorem [16, Section V.6, Theorem 2], ρ�ρ−1(Yf ) is an open map. If B ⊆ ρ−1(Yf ) is an open

neighborhood of x not containing any ιi(y), then ρ(B) is an open neighborhood of y

disjoint from �, a contradiction since �∗ ⊆ �. �

3.3 The algebraic maps

We return to the setting of Proposition 3.2, with the sets D∗, D, D(θ ,η), and D∗
(θ ,η) as given

in (6), (7), (8), and (9).
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4062 V. Aslanyan et al.

Proof of Proposition 3.2. Let π be the projection V → Pn. Let Yc ⊆ Pn be the set of the

points y such that π−1(y) is finite of cardinality d = deg(π) (this coincides with the set

Yc of Proposition 3.5 on letting Y = Pn and ρ = π ). We let

C := H \
(
{y ∈ H : π−1(y) is infinite} ∪ Cn \ Yc

Zar
)

(10)

where (·)Zar
denotes the Zariski closure in Pn.

By construction, Yc ∪ C is a Zariski open subset of Pn. Moreover, C is non-empty:

Cn \ Yc has dimension at most n − 1 by Proposition 3.5, thus Cn \ Yc
Zar ∩ H ⊆ Cn \ Yc

Zar \
(Cn \ Yc) has dimension at most n − 2, and likewise the set of points y such that θ−1(y)

is infinite has dimension at most n − 2 by Proposition 3.4.

Let c ∈ C, U� be a chart such that c ∈ U�, and let D∗ be a polydisc centered at c

in U�. When D∗ is sufficiently small, D∗ ⊆ Yc ∪ C, since Yc ∪ C is open. We shall assume

this to be the case.

We now wish to apply Corollary 3.6. Recall that the sector domains D(θ ,η), D∗
(θ ,η)

are simply connected. Moreover, for any z ∈ D∗ \ D, and any polydisc D′ centered at z in

U� and such that D′ ⊆ D∗, we clearly have D′
(θ ,η) = D′ ∩ D(θ ,η), and that is connected. Since

D(θ ,η) is open and locally connected, this shows that any z ∈ D∗
(θ ,η) has arbitrarily small

neighborhoods N such that N ∩ D(θ ,η) is connected, as desired.

Thus, we can apply Proposition 3.8 and obtain sections ι1, . . . , ιd of π with

domain D∗
(θ ,η). Their composition with the projection from V to A are the desired maps

α1, . . . , αd: since ιi(z) = (z, αi(z)), conclusion (1) follows at once from ιi being a section

of π ; (2) holds by π−1(D) = ⋃d
i=1 ιi(D); (3) follows from Corollary 3.6 after noticing that

D(θ ,η) ⊆ Yc. �

For comparison with Section 2, note that the sector domain D∗
(θ ,θ+2π) is effec-

tively the polydisc D∗ with a branch cut in the variable z� removed. A single branch

cut is sufficient: since each coordinate zi is close to a fixed multiple of z�, the branch

cut in z� guarantees that the other coordinates also cannot make a loop around c . One

can easily verify that the 2nd branch cut in Section 2 becomes redundant if we add a

restriction of the form |z1 − z2| < ε, as we do here with the polydiscs.

4 The Abelian Case

Recall that a complex abelian variety is an irreducible projective complex algebraic

variety A with a commutative algebraic group structure, which makes it also a complex

Lie group. Let n := dim A. The exponential map expA : Cn → A is a surjective complex
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Geometric Approach to Exponential Equations 4063

analytic homomorphism. Its kernel �, the period lattice, is isomorphic (as a topological

group) to Z2n, with the discrete topology. We write LogA for the local inverse of expA.

In this section, we prove Theorem 1.4 stating that a variety V⊆Cn × A with a

dominant projection to Cn contains an exponential point. In fact, we prove a stronger

result, not only showing the existence of exponential points on V but also locally

describing the set of almost all sufficiently large such points.

Theorem 4.1. Let A be a complex abelian variety of dimension n. Let V⊆Cn × A be

an irreducible subvariety of dimension n with dominant projection π : V → Cn. Let

d := deg π . We embed Cn in projective space Pn in the usual way (5), identifying it with

the chart U0.

Then there is a subset �∗ ⊆ Pn, which is open in the complex topology, such that

C := �∗ \ Cn is Zariski open dense in Pn \ Cn, and there is a sheaf S of analytic maps on

� := �∗ ∩ Cn taking values in Cn with the following properties:

1. The image S(�) contains � except possibly for a bounded strip along the

boundary ∂�.

2. For λ ∈ �∩�, each value of S(λ) satisfies (S(λ), expA(S(λ))) ∈ V. Furthermore,

these are the only exponential points (z, expA(z)) of V with z in � (except

possibly near the boundary).

3. These exponential points are locally in d-to-1 correspondence with the

points of �∩�: S has d branches, possibly up to translation of the argument

by elements of �.

4. The solutions S(λ) are asymptotically translates of the lattice: for each c ∈ C

and branch S of S, there is a γ ∈ Cn such that S(z) = z + γ + o(1) for z → c .

5. In particular, the set S(�∩�) is Zariski dense in Cn, and the set of exponential

points {(z, expA(z)) ∈ V} is Zariski dense in V.

Further properties of the individual maps S : D(θ ,η) → Pn making up the sheaf,

and their extensions to D∗
(θ ,η), are given in Proposition 4.8.

Theorem 1.4 can easily be deduced from Theorem 4.1.

Proof of Theorem 1.4. Let V⊆Cn × A be an algebraic subvariety with dominant

projection to Cn. If dim(V) = n, we are done by Theorem 4.1.

In general, let W be a proper subvariety of V. We can choose a subvariety

H ⊆ A of codimension dim(V) − n, such that V ′ := V ∩ (Cn × H) is irreducible

and not contained in W. (For example, H can be taken to be an intersection of
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4064 V. Aslanyan et al.

sufficiently generic hyperplanes.) In particular, V ′ ∩ W is not Zariski dense in V ′. Then

dim V ′ = n, and V ′ has dominant projection to Cn, so by Theorem 4.1, V ′ contains an

exponential point outside of W. Therefore, the exponential points are Zariski dense in V,

as desired. �

The proof of Theorem 4.1 will run through the rest of this section. We give a

brief summary of the key steps first.

Proof outline. The proof proceeds in five steps.

1. We use Proposition 3.2 to find the set C and extract a algebraic maps

α : D∗
(θ ,η) → A from V, where D∗

(θ ,η) ranges over sector domains around points

c ∈ C. For simplicity, in this summary, we will work with the restrictions of

α to D(θ ,η), the affine part of D∗
(θ ,η).

2. We show that a bounded holomorphic branch of LogA(α(z)) can be defined

on D(θ ,η), which we denote by G : D(θ ,η) → Cn. Then we consider the map

F(z) := z − G(z) : D(θ ,η) → Cn. A point z ∈ D(θ ,η) satisfies expA(z) = α(z) if

and only if F(z) ∈ �.

3. We prove, possibly after shrinking D(θ ,η), that F is injective on D(θ ,η) and its

Jacobian matrix of 1st partial derivatives is non-singular. This implies that

F has a holomorphic inverse S.

4. We show that each sector domain D(t,s) is covered by the images F(D(θ ,η)) as

(θ , η) varies. In particular, the image of F contains all the lattice points in a

neighborhood of c , and so the solutions we want are the images under S of

the lattice points. We also describe the asymptotic behavior of S.

5. Finally, we explain how the local maps S : D(θ ,η) → Cn are patched together

and complete the proof of the theorem.

We remark that Steps 1–4 are already sufficient to prove Theorem 1.4, namely

the existence of the exponential points. Step 5 yields the additional distribution of the

exponential points toward infinity as described in Theorem 4.1.

Step 1: the algebraic maps. We begin by applying Proposition 3.2 and extracting

algebraic maps from V, the projective closure of V in Pn × A. Let us fix the following

data:

• c an arbitrary point of C, where C is as in Proposition 3.2;

• 1 � � � n such that c� �= 0;

• D∗ a small polydisc at c in the chart U� as defined in (6).
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Geometric Approach to Exponential Equations 4065

Then for each θ ∈ R and each η ∈ (θ , θ + 2π ] we have the sector domains

D(θ ,η) ⊆ Cn and their extensions D∗
(θ ,η) to Pn as given in (8) and (9). By Proposition 3.2,

there are (unique) algebraic maps

α1, . . . , αd : D∗
(θ ,η) → A (11)

whose graphs cover the points of V over D∗
(θ ,η).

Through the proof, we may shrink the ε used to define D∗ in (6) to ensure certain

properties hold for certain maps. When a statement begins with “For small enough D∗”,

the following statements will implicitly assume that ε is sufficiently small to make that

statement true.

For the sake of readability, we will drop the subscript and just write

α : D∗
(θ ,η) → A for the algebraic map.

Step 2: mapping the solutions to the lattice. The goal of this step is to define a map F,

which maps the solutions of the equation expA(z) = α(z) to lattice points.

Since D∗
(θ ,η) is simply connected, we can choose a continuous branch on D∗

(θ ,η) of

the (multivalued) composite LogA ◦ α. We pick one such branch and call it G. Then we

have the following:

G : D∗
(θ ,η) → Cn continuous on D∗

(θ ,η) and holomorphic on D(θ ,η),

such that expA(G(z)) = α(z) for all z ∈ D∗
(θ ,η). (12)

As with α, we can patch together the maps G as (θ , η) varies, and this patching is

uniquely determined by analytic continuation on D(θ ,η) and then by continuity on D∗
(θ ,η).

The union of their graphs yields a multivalued map G : D∗ → Cn, of which the maps

G are single-valued branches; the restrictions of the maps to D and their continuations

yield a sheaf of analytic maps as in Remark 3.3.

Let μ be some fixed positive real number.

Proposition 4.2. For small enough D∗, the image G(D∗) is bounded in Cn.

Moreover, for small enough D∗, every branch G of G on every sector domain has

image contained in an open ball centered at G(c) of radius at most μ.

Proof. By continuity, G(z) → G(c) as z → c , so for each (θ , η), by shrinking D∗ we

may assume that the image G(D∗
(θ ,η)) falls into an open ball around G(c), with radius at
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most μ. We can shrink D∗ sufficiently so that this bound holds simultaneously for G on

all d branches of α and all sector domains D∗
(θ ,η). �

We now use G to define a new map F, which will take the solutions to lattice

points. Define F : D∗
(θ ,η) → Pn by

F(z) :=
⎧⎨
⎩

z − G(z), when z ∈ D(θ ,η),

z, when z ∈ D∗
(θ ,η) \ D(θ ,η).

(13)

Proposition 4.3. The map F has the following properties.

• F is continuous on D∗
(θ ,η) and holomorphic on D(θ ,η);

• F(D(θ ,η)) ⊆ Cn;

• A point z ∈ D(θ ,η) is a solution to the equation expA(z) = α(z) if and only if

F(z) ∈ �.

Proof. Since G is holomorphic on D(θ ,η), it follows that F is also holomorphic there. To

prove continuity of F at a point a ∈ D∗
(θ ,η) \ D(θ ,η), it suffices to observe that G is bounded

in Cn, that is, in the chart U0, and so in the natural metric of the chart U� around a , we

have F(z) − z → 0 as z → a .

The 2nd statement is evident and the 3rd statement follows immediately from

(12) and (13). �

Just as for G, the union of the maps F yields a multivalued function F : D∗ → Pn,

which we may suggestively write as F(z) = z − G(z).

Step 3: local injectivity of F. In this step, we show that F is injective when D∗
(θ ,η) is small

enough, both in terms of shrinking the polydisc D∗ and of moving η closer to θ . Hence,

as a multivalued function, F is locally invertible on D.

First, we recall Cauchy’s estimate from the theory of complex functions. See, for

example, [17, Chapter 1, Section 2.6, Theorem 4].

Fact 4.4. (Cauchy estimate). Let f : � → C be a holomorphic function on an open

domain �⊆Cn containing a closed polydisc T of radius r centered at a point w ∈ �.

Then for any k we have ∣∣∣∣ ∂f

∂zk
(w)

∣∣∣∣ � maxz∈T |f (z)|
r

.
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Geometric Approach to Exponential Equations 4067

Proposition 4.5. For all ν > 0, there is D∗ small enough such that for all intervals (θ , η),

for all z ∈ D(θ ,η), the norm of the Jacobian matrix of the 1st partial derivatives dG(z) is

less than ν.

In particular, for small enough D∗, for all branches F, G of, respectively, F, G on

every sector domain D∗
(θ ,η), for all z ∈ D(θ ,η) we have

• ‖dG(z)‖ < 1/2,

• det(dF(z)) �= 0.

To be more precise, here we use the �∞-norm on Cn2
as the matrix norm and

denote it by ‖ · ‖.

Proof. By continuity, we may shrink D∗ so that for all z ∈ D and for all branches G of

G at z, we have |G(z) − G(c)| < ν. Here | · | denotes the �2-norm on Cn.

Furthermore, we may shrink D∗ further and assume that for every z ∈ D, every

polydisc T of radius 1 around z, and every z ′ ∈ T, we have |G(z ′)−G(c)| < ν. Now choose

z ∈ D and a branch of G defined on D(arg(z�)−π ,arg(z�)+π). Then the polydisc T of radius 1

around z is entirely contained in D(arg(z�)−π ,arg(z�)+π).

Then we apply the Cauchy estimate (Fact 4.4) to the coordinate functions of

G(z) − G(c) and deduce that their partial derivatives at z, which are equal to those

of G(z), are bounded by ν.

Since dF(z) = I − dG(z), when ‖dG(z)‖ is sufficiently small, dF(z) is close to the

identity matrix; hence, it is non-singular. �

We can summarize the above statements with ‖dG(z)‖ < 1
2 , det(F(z)) �= 0 for all

z ∈ D, where the inequalities implicitly apply to all values of G and F.

We now show that F is injective when its domain D∗
(θ ,η) is sufficiently small, in

the sense that η is sufficiently close to θ . Recall that by Proposition 4.2 the set G(D∗
(θ ,η))

is bounded. Indeed, given any x, y ∈ D∗
(θ ,η), and any branch G of G with that domain, we

have |G(x) − G(y)| < 2μ.

Proposition 4.6. For small enough D∗, there is a small δ > 0 such that for all θ ∈ R, the

map F is injective on D∗
(θ ,θ+2π−δ).

Proof. Write η for θ + 2π − δ, with δ to be determined later. Since F is the identity

on D∗
(θ ,η) \ D(θ ,η), it is injective there. Also, F maps D(θ ,η) to Cn which is disjoint from

D∗
(θ ,η) \ D(θ ,η), so it suffices to show that F is injective on D(θ ,η). Suppose x, y ∈ D(θ ,η) are
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4068 V. Aslanyan et al.

Fig. 1. Some distances between points in the sector domain D(θ ,η).

such that F(x) = F(y). Recall that G(z) = z − F(z). So we have

|x − y| = |G(x) − G(y)| < 2μ.

If the line segment [x, y] is entirely contained in D(θ ,η) then, by the mean value inequality,

|x − y| = |G(x) − G(y)| � max
z∈[x,y]

‖dG(z)‖ · |x − y|.

Then by Proposition 4.5 we have maxz∈[x,y] ‖dG(z)‖ < 1/2, so x = y.

Now assume that [x, y] � D(θ ,η). First, suppose that the segment is contained in

D and crosses the region D \ D(θ ,η). In particular, it will contain (at least) two points z ′,
z ′′ on the boundary of D(θ ,η) with arg(z′

�) = θ and arg(z′′
�) = η; moreover, we must have

δ < π . Therefore, |z ′ − z ′′| � |z′
� − z′′

� | � ε−1 · 2 sin( δ
2 ). See the 1st image in Figure 1.

By choosing δ large enough, and possibly shrinking ε, we get |z ′−z ′′| � |z′
�−z′′

� | >

2μ, a contradiction.

If the above does not happen, we observe that [x, y] is contained in D, and thus in

D(θ ,η), as soon as x, y lie in a polydisc at c of slightly smaller radius; to be precise, as

soon as |x|, |y| �
√

ε−2 + μ2. It then suffices to shrink D∗ a little further to reach the

desired conclusion. See the 2nd image in Figure 1, where εold represents the starting

value of ε, and εnew the new one. �

Step 4: mapping the lattice to the solutions. In this step, we describe the inverse of F,

which maps lattice points to solutions of the equation expA(z) = α(z).
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Geometric Approach to Exponential Equations 4069

We fix a sector domain D∗
(θ ,η) with η = θ +2π − δ as given by the previous step, so

that F is injective on that domain, and hence has an inverse. Now we show that the image

of F differs from its domain by at most a strip of bounded width around the boundary.

Let B⊆Cn be a closed ball centered at 0 containing G(D∗
(θ ,η)). Then by the definition of F,

for all z ∈ D(θ ,η) we have F(z) − z ∈ B.

Proposition 4.7. The image E := F(D(θ ,η)) is open and contains

E′ := {z ∈ D(θ ,η) : z + B ⊆ D(θ ,η)}.

Fig. 2. A pictorial representation of how D(θ ,η), E and ∂E might look.

Proof. Since dF(z) is non-singular on D(θ ,η), by the inverse function theorem, F is a

local homeomorphism, hence an open map. So the image E is open and connected in Cn.

(See Figure 2.)

Clearly, E∩E′ is a non-empty open subset of E′. Hence, if E′\E �= ∅ then ∂E∩E′ �= ∅
where ∂ denotes the boundary. Take a point x ∈ ∂E ∩E′ and a small closed neighborhood

x ∈ N⊆E′. Then we have

F−1(N)⊆N + B = N + B⊆D(θ ,η).

Now pick a sequence xk ∈ N ∩ E with xk → x as k → ∞. Since F−1(N) is a non-empty

bounded subset of D(θ ,η), if we set zk := F−1(xk), then a subsequence of zk has a limit

point z ∈ F−1(N)⊆D(θ ,η). Then by continuity of F we conclude that x = F(z) ∈ E, which is

a contradiction. �

Proposition 4.8. For small enough D∗, there is a small δ′ > 0 such that for all θ ∈ R

and η = θ + 2π − δ′, there is a map S : D∗
(θ ,η) → Pn with the following properties:
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4070 V. Aslanyan et al.

1. For all z ∈ D∗
(θ ,η), we have F(S(z)) = z, where we take the branch F of F defined

on D∗
(θ ,η) or its analytic continuation to a slightly larger domain containing

the image of S.

2. In particular, for z ∈ D∗ \ D, we have S(z) = z and for z ∈ D(θ ,η) we have

S(z) − z ∈ B, the bounded ball defined above.

3. For z ∈ D(θ ,η), we have expA(S(z)) = α(S(z)) if and only if z ∈ �.

4. S is continuous on D∗
(θ ,η) and holomorphic on D(θ ,η).

5. The restriction of S to the finite part of the domain D(θ ,η) is asymptotically a

translation. More precisely,

S(z) − z → G(c) as z → c with z ∈ D(θ ,η).

Proof. For a suitable small δ′, the set E′ from the previous proposition contains the

sector domain D(θ+δ′/2,η−δ′/2), except for a strip of bounded width near the part of the

boundary given by |z�| = ε−1. We shrink ε to remove this bounded strip, and then the

image of F (analytically continued from the new D∗
(θ ,η) back to the original domain with

larger ε) contains D∗
(θ+δ′/2,η−δ′/2)

. Since F is injective on that domain, we can define S

to be its set-theoretic inverse map with domain D∗
(θ+δ′/2,η−δ′/2)

. Relabeling θ + δ′/2 as θ

and θ + 2π − δ′ as η, we get the S of the statement of the proposition satisfying point 1.

Points 2 and 3 follow from the properties of F. It follows from the inverse function

theorem that S is holomorphic on D(θ ,η). Continuity of S on D∗
(θ ,η) follows the same way

as continuity of F using the fact that S(z) − z is bounded.

For point 5, observe that z = F(S(z)) = S(z)−G(S(z)), and so S(z)−z = G(S(z)). By

continuity of S, we get that S(z) → S(c) = c for z → c , hence S(z) − z = G(S(z)) → G(c)

for z → c by continuity of G. �

Step 5: analytic continuation of the solution map S. In this final step, we finish the

proof of Theorem 4.1 by considering the maps S from the domains D∗
(θ ,η) as a sheaf

giving a multivalued map. Just as we did for F and G, the union of the maps S yields

a multivalued map D∗ → Pn. We now push this further by allowing c to vary along the

set C ⊆ Pn \ Cn of Proposition 3.2. We shall also restrict the domains from D∗ ⊆ Pn to

D ⊆ Cn, in order to get analytic maps, without the potential singularities at infinity,

which become irrelevant in our final conclusion.

For each c ∈ C, we have an open polydisc D∗ around c . Since C is open in

H = Pn \ Cn, we may always assume, after shrinking D∗, that D∗ ∩ H is a subset of C.

We now write this D∗ as D∗
c and define �∗ = ⋃

c∈C D∗
c , an open subset of Pn. Then �∗ \Cn

is indeed C since obviously c ∈ D∗
c , so by construction C ⊆ �∗ ∩ H ⊆ C.
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Geometric Approach to Exponential Equations 4071

For each c and for each interval (θ , η) ⊆ R with η ≤ θ + 2π − δ′ we have a map

S : D∗
c ,(θ ,η) → Pn. It is clear that such maps, when restricted to Dc ,(θ ,η) so to become

analytic, are continuations of each other, in the following sense: for any two maps S,

S̃ as above, the set {S(z) = S̃(z)} is both closed and open in the intersection of their

domains. Thus, as in Remark 3.3, their restrictions to � = �∗ ∩Cn generate a sheaf S of

analytic maps, the union of which is an analytic multivalued map � → Cn.

This gives us the data of Theorem 4.1. We can now prove that S has the required

properties.

1 Note that S is a local homeomorphism because its local inverses are by

Proposition 4.5. Thus, its image S(�) is open.

Fix a fundamental domain of C/�, and let ν be its diameter. We claim that

for every a ∈ �, there is a branch S of S such that |S(a)−a| < μ+ν. Indeed, if

we pick c and a sector domain of Dc containing a , we can choose a branch G

of G on that sector domain with |G(c)| < ν, and find |S(a) − a| = |G(S(a))| �
|G(S(a))−G(c)|+|G(c)| < μ+ν by Proposition 4.2. Moreover, we may assume

that |S(z) − z| < μ + ν for every z in a neighborhood of a .

Given this, it suffices to reason as in Proposition 4.7. Suppose that �′ =
{z ∈ � : z + B ⊆ �} is not contained in �, where B is the closed ball at 0

of radius μ + ν. Then there exists a ∈ �′ on the boundary of S(�). Pick a

local branch S on a small neighborhood of a , all contained in �′, satisfying

|S(z)−z| < μ+ν, and a sequence xk in the image of S such that xk → a . Now

observe that the preimages S−1(xk) must converge to some x ∈ � such that

S(x) = a , a contradiction.

It follows that every point of � not in S(�) has distance at most μ + ν from

the boundary ∂� in Cn.

2 This follows from the 3rd condition of Proposition 4.8, together with the fact

that the branches of α cover V (which is point 2 of Proposition 3.2), with the

same proviso as above about the strip of bounded width at the boundary.

3 For each sector domain D(θ ,η) of �, there are d distinct branches G1, . . . , Gd

of G on D(θ ,η), corresponding to the d distinct branches of α, such that every

other branch is of the form Gi + λ for some λ ∈ �. Thus, the same is true for

F for some branches F1, . . . , Fd.

Let S1, . . . , Sd be the corresponding branches obtained in Proposition 4.8.

Then every branch of S is of the form Si(z + λ) for some 1 � i � d and

λ ∈ �.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2023/5/4046/6503959 by guest on 15 M
ay 2023



4072 V. Aslanyan et al.

To conclude, we observe that such branches are all distinct. Suppose that

Si(z + λ) ≡ Si′(z + λ′) on D(θ ,η). Then also Fi − λ ≡ Fi′ − λ′ on D(θ ,η), as the

branches of F are local inverses of the branches of S. In turn, i = i′ and

λ = λ′, as desired.

4 This is the asymptotic condition from Proposition 4.8, with the points γ

being the values of G(c).

5 It is now clear that the set S(� ∩ �) is Zariski dense in Cn and, since

dim V = n, it follows at once that {(z, expA(z)) ∈ V} is Zariski dense in V.

That completes the proof of Theorem 4.1. �

Remark 4.9. For each c , the polydisc D∗
c is given with a radius ε = εc , but we do not

have any uniformity in ε as c varies. Indeed, as c approaches the boundary of C, we may

have εc → 0. Furthermore, the index � could vary as well. For points a ∈ Pn \ (Cn ∪C), the

algebraic map α may have worse singularities than the ramification points we have dealt

with. For these reasons, we do not have a complete description of all the exponential

points (z, expA(z)) ∈ V, which are large, that is, such that |z| is larger than some given

ε−1. However, each exponential point is known to be isolated, so they cannot accumulate

anywhere in Cn, so the points we have found should be a large proportion of the total

in any meaningful sense.

Remark 4.10. Our method can be used to prove the existence of solutions of any

exponential equations of the form expA(z) = β(z), where β : D∗
(θ ,η) → Cn is holomorphic

on D(θ ,η) and continuous on D∗
(θ ,η), and θ , η are given. In steps 2–4, one can simply omit

all references to the uniformity in θ , η, and also replace θ , η with suitable values θ ′, η′

satisfying θ < θ ′ < η′ < η when necessary.

If one has a sufficiently rich understanding of the analytic continuations of β

around the points at infinity, the arguments of step 5 could be used to give a global

description of the solutions in the style of Theorem 4.1.

5 The Case of Algebraic Tori

Let exp : C → Gm be the usual exponential map. We will also let exp : Cn → Gn
m denote

the exponential map of Gn
m for any n, given by coordinate-wise action of the former map.

The lattice of periods of exp is � := (2π iZ)n. We will write Log for the logarithmic map

corresponding to exp, and log : R>0 → R for the real logarithm.
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Geometric Approach to Exponential Equations 4073

In this section, we adapt the ideas of the previous section to prove a theorem for

algebraic tori, analogous to Theorem 4.1. The only difference is the asymptotic behavior

of the solutions, which are no longer asymptotically translations of lattice points.

Theorem 5.1. Let V⊆Cn×Gn
m be a subvariety of dimension n with dominant projection

π : V → Cn. Let d := deg π . We embed Cn in projective space Pn in the usual way (5).

Then there is a subset �∗ ⊆ Pn, which is open in the complex topology, such that

C := �∗ \ Cn is Zariski open dense in Pn \ Cn, and there is a sheaf S of analytic maps on

� := �∗ ∩ Cn taking values in Cn with the following properties:

1. The image S(�) contains � except possibly for a narrow strip along the

boundary ∂�.

2. For λ ∈ � ∩ �, each value of S(λ) satisfies (S(λ), exp(S(λ))) ∈ V. Furthermore,

these are the only exponential points (z, exp(z)) of V with z ∈ � (except

possibly near the boundary).

3. These exponential points are locally in d-to-1 correspondence with the

points of �∩�: S has d branches, possibly up to translation of the argument

by elements of �.

4. The solutions S(λ) are asymptotically close to lattice points: for each c ∈ C

and each branch S of S we have S(z) = z + O(log |z|) for z → c .

5. In particular, the set S(�∩�) is Zariski dense in Cn, and the set of exponential

points {(z, exp(z)) ∈ V} is Zariski dense in V.

The proof follows that of Theorem 4.1 closely, so we will focus on the differ-

ences. The two essential differences are that abelian varieties are compact whereas

algebraic tori are not and (relatedly) that the lattice (2π iZ)n does not accumulate to every

point at infinity in the complex topology (although it does in the Zariski topology). In the

case of algebraic tori, we have to deal with two extra points 0 and ∞ (in dimension 1).

Furthermore, any branch of the logarithmic map of an abelian variety is bounded, which

is not true for algebraic tori but we are able to make do with logarithmic growth instead.

As in the abelian case, we split the proof into several steps.

Step 1: the algebraic maps. We embed Gm into P1 identified with C ∪ {∞} and consider

the Zariski closure V of V in Pn×Pn
1 . We shall apply Proposition 3.2 and extract algebraic

maps from the V, but we want the images of those maps to be contained in Gn
m. To this

end, let Z := {z ∈ Cn : (z, 0) ∈ V or (z, ∞) ∈ V}. Then Z has codimension � 1 in Cn, and

the set Z∗ of its limit points in H := Pn \Cn is a lower dimensional Zariski closed subset
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4074 V. Aslanyan et al.

of H. So we shrink the set C given by Proposition 3.2 by removing Z∗. To get our growth

estimates later, we shrink C further and assume that for any point [0 : t1 : . . . : tn] ∈ C

none of the ti is 0. One consequence is that we can work with the fixed chart U1 rather

than a varying chart U�.

Thus, we end up with the following data:

• C, a Zariski open dense subset of H such that for any point [0 : t1 : . . . : tn] ∈ C

none of the ti is 0;

• c := [0 : 1 : c2 : . . . : cn] an arbitrary point of C;

• D∗ a small polydisc at c in the chart U1 as defined in (6), chosen small enough

that it does not meet the set Z given above.

As in the abelian case, we will shrink D∗ (by reducing ε) to ensure certain

properties of certain maps hold, which will be explicitly stated every time. In particular,

we choose the ε defining D∗ to be at most min
{ |ci|

2 , 1
2|ci| : i = 1, . . . , n

}
so that for any

z = (z1, . . . , zn) ∈ D we have |z1| > 2, all other |zi| > 1, and the coordinates of z are

roughly proportional to each other:

1

2
<

|zi|
|ciz1| <

3

2
. (14)

Of course, this assumption cannot be made uniformly as c varies, since we can have |ci|
arbitrarily small.

For each θ ∈ R and each η ∈ (θ , θ + 2π ], we have the sector domains D(θ ,η) ⊆ Cn

and their extensions D∗
(θ ,η) to Pn as given in (8) and (9), and the algebraic maps

α1, . . . , αd : D∗
(θ ,η) → (P1)n. (15)

As before, we drop the indices and write α to denote one of these maps.

Step 2: mapping the solutions to the lattice. Since D ∩ Z = ∅, the restriction of α to

D(θ ,η) takes values in Gn
m. So, as in Section 4, we can choose a holomorphic branch G of

Log ◦ α on D(θ ,η):

G : D(θ ,η) → Cn holomorphic on D(θ ,η),

exp(G(z)) = α(z) for all z ∈ D(θ ,η). (16)
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Geometric Approach to Exponential Equations 4075

In this case, we cannot necessarily continue G to a map D∗
(θ ,η) → Cn, since as z → c ∈ C

we may have some coordinate αi(z) → 0 or ∞, where the logarithm is not defined.

We also remark that, as in the abelian case, the different choices of maps G

together yield a multivalued map G : D → Cn with associated sheaf of analytic maps as

in Remark 3.3.

By our choice of ε, all coordinates are roughly proportional on D and are larger

than 1 in absolute value. Since α is an algebraic map, for each coordinate function αi,

there is a positive integer qi ∈ N such that for all z ∈ D we have

|z|−qi < |αi(z)| < |z|qi . (17)

Let q := max{qi : 1 � i � n}. Then for each coordinate-function Gi of G, we have

∣∣Re(Gi(z))
∣∣ = ∣∣log |αi(z)|∣∣ � q log |z|.

Similarly, the argument of αi(z) is bounded on the sector domain D(θ ,η), hence so

is the imaginary part of Gi(z). So the ratio

Gi(z)

log |z|

is bounded. Thus, |G(z)| = O(log |z|) for z ∈ D(θ ,η), that is, G has logarithmic growth as

|z| → ∞.

Now define a map F : D∗
(θ ,η) → Cn by

F(z) :=
⎧⎨
⎩

z − G(z), for z ∈ D(θ ,η),

z, for z ∈ D∗
(θ ,η) \ D(θ ,η).

(18)

Proposition 5.2. The map F enjoys the following properties.

• F is continuous on D∗
(θ ,η) and holomorphic on D(θ ,η);

• F(D(θ ,η))⊆Cn;

• A point z ∈ D(θ ,η) is a solution to the equation exp(z) = α(z) if and only if

F(z) ∈ �.

Proof. As in Proposition 4.3, this is almost immediate except for showing that F is

continuous at any point a ∈ D∗
(θ ,η) \ D(θ ,η). In the abelian case, this followed since G(z)
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4076 V. Aslanyan et al.

was bounded. Here we have |G(z)| growing logarithmically in |z|, so again as we take

the limit going to infinity in projective space, it becomes negligible compared to |z|. �

As for G, the maps F and their continuations yield a sheaf of analytic maps from

D to Cn, which we write as F(z) = z − G(z).

Step 3: local injectivity of F. Now we want to show that F is injective on suitable

domains D(θ ,η). As in the abelian case, we need to estimate the partial derivatives of G.

Lemma 5.3. There is K > 0 such that, for any w ∈ D(θ ,η) and any r > 0 such that the

closed polydisc T of radius r at w is contained in D(θ ,η), we have

‖dG(w)‖ � K
log |w|

r
. (19)

Proof. It suffices to establish such estimates for all partial derivatives of all

coordinates of G. Let g be a coordinate function of G. Then g has logarithmic growth

in z, so applying the Cauchy estimate (Fact 4.4) yields

∂g(w)

∂zk
= O

(
maxz∈T log |z|

r

)
. (20)

If T⊆D(θ ,η) is a polydisc of radius r, since |zm| � 1 on D(θ ,η) for every m, we must

have r < |wm| for every m, hence r < |w|. Therefore, if z ∈ T then |z| � |w| + |z − w| �
|w| + r < 2|w|. This then implies that log |z| = O(log |w|) for z ∈ T. So the desired bound

follows from (20). �

We can now prove the analogue of Proposition 4.5, with a similar proof.

Proposition 5.4. For all ν > 0, there is D∗ small enough such that for all intervals (θ , η),

for all z ∈ D(θ ,η), the norm of the Jacobian matrix of the 1st partial derivatives dG(z) is

less than ν.

In particular, for small enough D∗, for all branches F, G of F, G, respectively, on

every sector domain D∗
(θ ,η), for all z ∈ D(θ ,η) we have

• ‖dG(z)‖ < 1/2,

• det(dF(z)) �= 0.
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Proof. Let K be as in Lemma 5.3, and let z ∈ D. If the polydisc of radius r > ν−1K log |z|
around z is entirely contained in D then it is contained in D(arg(z1)−π ,arg(z1)+π), and then

by Lemma 5.3 we get ‖dG(z)‖ < ν. Otherwise, |z| is small, and we can shrink D∗ to

remove this case. The rest follows easily. �

Proposition 5.5. For small enough D∗, there is a small δ > 0 such that the map F with

domain D∗
(θ ,θ+2π−δ) is injective.

Proof. The argument of Proposition 4.6 goes through, except that we need to show

that if D∗ is sufficiently small and x, y ∈ D with arg(x1) − arg(y1) = δ then |x − y| >

|G(x) − G(y)|. This can easily be deduced from the observation that |x − y| is bounded

below linearly in |x1| as x and y approach c , while |G(x) − G(y)| grows logarithmically

in |x1|. �

Step 4: mapping the lattice to the solutions. We fix a small δ as in Proposition 5.5.

Proposition 5.6. For small enough D∗, there is a small δ′ such that for any θ ∈ R,

writing η = θ + 2π − δ, the image F(D∗
(θ ,η)) contains D∗

(θ+δ′/2,η−δ′/2)
, except for a strip of

bounded width near the part of the boundary given by |z1| = ε−1.

Proof. The proof is as in Proposition 4.7, except we use the logarithmic growth of G

in place of boundedness. More precisely, one should use E′ = {z ∈ D(θ ,η) : Bz ⊆ D(θ ,η)},
where Bz is the closed ball centered at z of radius μ

∣∣log |z|∣∣, and μ is chosen such that

|S(z)− z| < μ
∣∣log |z|∣∣ on D(θ ,η). Then the argument of Proposition 4.7 shows that F(D∗

(θ ,η))

contains E′. It is then clear that D∗
(θ+δ′/2,η−δ′/2)

is contained in E′, except for a strip of

bounded width near the part of the boundary given by |z1| = ε−1. �

As before, we find a sheaf of maps S, which are local inverses to F.

Proposition 5.7. For small enough D∗, for all θ ∈ R and η = θ + 2π − δ − δ′, there is a

map S : D∗
(θ ,η) → Pn with the following properties:

1. For all z ∈ D∗
(θ ,η), we have F(S(z)) = z, where we take the branch of F defined

on D∗
(θ ,η) or its analytic continuation to a slightly larger domain.

2. In particular, for z ∈ D∗ \ D, we have S(z) = z.

3. For z ∈ D(θ ,η), we have exp(S(z)) = α(S(z)) if and only if z ∈ �.

4. S is continuous on D∗
(θ ,η) and holomorphic on D(θ ,η).
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5. The restriction of S to the finite part of the domain D(θ ,η) is approximately

given by S(z) ≈ z + G(z). More precisely,

S(z) − z − G(z) → 0 as z → c with z ∈ D(θ ,η).

Proof. The proof of points 1–4 is the same as in the abelian case. For point 5 observe,

as in the abelian case, that S(z) − z = G(S(z)) and

|(S(z) − z) − G(z)| = |G(S(z)) − G(z)| � max
w∈[z,S(z)]

‖dG(w)‖ · |S(z) − z|.

Since ‖dG(w)‖ → 0 by Proposition 5.4, we have |G(S(z)) − G(z)| = o(|G(S(z))|) as z → c .

By the triangle inequality ||G(S(z))|−|G(z)|| = o(|G(S(z))|), which implies that |G(S(z))|
|G(z)| →1

and so |S(z) − z| ∼ |G(z)| = O(log |z|).
Further, there is a constant γ > 0 such that for all sufficiently large z ∈ D(θ ,η)

there are θ ′, η′ such that the polydisc of radius γ |z|, centered at z, is contained in D(θ ′,η′).

Then by Lemma 5.3 we have ‖dG(z)‖ � γ −1K log |z|
|z| . When z is sufficiently large, so is

w ∈ [z, S(z)], hence

max
w∈[z,S(z)]

‖dG(w)‖ = O
(

log |z|
|z|

)

and so

max
w∈[z,S(z)]

‖dG(w)‖ · |S(z) − z| = O
(

(log |z|)2

|z|
)

so it tends to 0. Thus, |(S(z) − z) − G(z)| → 0 as z → c . �

Step 5: analytic continuation of S. The patching together of the maps S on the domains

D∗
(θ ,η), yielding the desired sheaf S, is done exactly as in the abelian case.

Point 1 of Theorem 5.1 can also be proven as in the abelian case, with the

following changes. One observes that for every point a ∈ �, there is a branch S of S

around a satisfying the inequality |S(z) − z| < μ
∣∣log |z|∣∣ for some μ, by the estimates of

Step 2. Furthermore, one can choose the branches S so that the imaginary part of S(a)

is bounded uniformly in a . We can then assume that μ is chosen uniformly in a . It now

suffices to take {z ∈ � : Bz ⊆ �} as the set �′, where Bz is the closed ball centered at z

of radius μ
∣∣log |z|∣∣ as in Proposition 5.6, and continue the proof as in the abelian case.
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One finds that the image S(�) covers � except possibly for points z of distance at most

μ
∣∣log |z|∣∣ from the boundary.

Point 2 follows from point 3 of Proposition 5.7.

Point 3 can be proven as in the abelian case by working with d branches of F

and G.

Point 4 follows from Proposition 5.7 (5).

For point 5, observe that � ∩ � �= ∅ when all the ratios ck
cj

are rational. Moreover,

even though the lattice � has rank n (as opposed to 2n in the abelian case), the set �∩�

is Zariski dense in Cn, and so is S(� ∩ �). That completes the proof of Theorem 5.1, and

Theorem 1.5 follows. �

Remark 5.8. As in the abelian case (Remark 4.10), our method yields solutions of

exp(z) = β(z) for any holomorphic map β : D(θ ,η) → Cn, provided we have control on its

growth rate as in (17). In particular, this gives an alternative proof of [7, Rem. 2.8].

6 Final Remarks

Our methods can be adapted to solve more general systems of exponential equations,

for example those combining exponential and ℘-functions. We indicate below that the

analogue of Theorem 1.4 holds for split semiabelian varieties, that is, complex algebraic

groups that are isomorphic to a product of an abelian variety and an algebraic torus.

Theorem 6.1. Let S = A × Gq
m be a complex split semiabelian variety of dimension n.

Let V ⊆ Cn × S be an algebraic subvariety with dominant projection to Cn. Then there is

z ∈ Cn such that (z, expS(z)) ∈ V.

The proof is simply a combination of the proofs of Theorems 4.1 and 5.1, so we

just present a brief outline.

Proof sketch. Let p = dim A so that p + q = n. The exponential map of S then can be

written as expS = (expA, exp
G

q
m
). If �⊆Cp is the lattice of periods of expA then �×(2π iZ)q

is the lattice of periods of expS.

We extract a multivalued algebraic map α : D∗ → S from V as before, and we can

write α(z) as (β(z), γ (z)) where β : D∗ → A, γ : D∗ → Gq
m.

Then locally on sector domains we can define

F(z) := z − LogSα(z) = z − (LogAβ(z), Log
G

q
m
γ (z)).
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The previous arguments now show that the total derivative of F tends to the

identity as |z| → ∞, and the rest of the proof follows as before. �

It seems likely that this method can be adapted to work for any semiabelian

variety, without the split assumption. The issue in the semiabelian case is that we have

neither the compactness of abelian varieties nor the explicit formulas for logarithmic

maps as in the case of tori. So a better geometric or analytic understanding of the

logarithmic maps would be needed. For instance, one needs an appropriate estimate

on the growth of the semiabelian logarithm, so as to ensure that the total derivative of

F tends to the identity.

Relaxing the assumption on V that the projection to Cn is dominant seems more

difficult. Our proof ultimately depends on the same good asymptotic behavior of a

suitable function F as |z| → ∞ in Cn as was used in [6] to apply Newton’s method.

When V does not project dominantly to Cn, any analogous function F we define can

oscillate or grow too fast. Nonetheless, we hope that our approach using geometric and

topological methods to show that the image of F contains lattice points will be more

robust to such issues than Newton’s method is.
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[9] Eterović, S. and S. Herrero. “Solutions of equations involving the modular j function.” Trans.

Amer. Math. Soc. 374, no. 6 (2021): 3971–98.

[10] Grothendieck, A. and J. Dieudonné. “Éléments de géométrie algébrique. IV. Étude locale des

schémas et des morphismes de schémas. III.” Inst. Hautes Études Sci. Publ. Math. 28 (1966):

255.

[11] Hartshorne, R. Algebraic Geometry. Grad. Texts in Math. 52. New York, NY: Springer, 1977.

[12] Kirby, J. “The theory of the exponential differential equations of semiabelian varieties.”

Selecta Math. (N. S.) 15, no. 3 (2009): 445–86.

[13] Kirby, J. “Exponential algebraicity in exponential fields.” Bull. Lond. Math. Soc. 42, no. 5

(2010): 879–90.

[14] Kirby, J. and B. Zilber. “Exponentially closed fields and the conjecture on intersections with

tori.” Ann. Pure Appl. Logic 165, no. 11 (2014): 1680–706.

[15] Lang, S. Introduction to Transcendental Numbers. Reading, Mass.–London–Don Mills, Ont.:

Addison-Wesley Publishing Co., 1966.

[16] Łojasiewicz, S. Introduction to Complex Analytic Geometry. Basel: Birkhäuser, 1991.

Translated from the Polish by Maciej Klimek.

[17] Shabat, B. V. Introduction to Complex Analysis. Part II. Functions of Several Variables.

Transl. Math. Monogr. 110. Providence, RI: American Mathematical Society, 1992. Translated

from the Third (1985) Russian edition by J. S. Joel.

[18] Shafarevich, I. R. Basic Algebraic Geometry 1: Varieties in Projective Space, 3rd ed. Berlin,

Heidelberg: Springer, 2013.

[19] Zilber, B. “Generalized analytic sets.” Algebra Logika 36, no. 4 (1997): 387–406, 478.

[20] Zilber, B. “Pseudo-exponentiation on algebraically closed fields of characteristic zero.” Ann.

Pure Appl. Logic 132, no. 1 (2005): 67–95.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2023/5/4046/6503959 by guest on 15 M
ay 2023


	A Geometric Approach to Some Systems of Exponential Equations
	1 Introduction
	2 An Example
	3 Algebraic Maps
	4 The Abelian Case
	5 The Case of Algebraic Tori
	6 Final Remarks


