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Abstract. Let k be an algebraically closed field of characteristic p > 0. We compute the
Weyl filtration multiplicities in indecomposable tilting modules and the decomposition
numbers for the general linear group over k in terms of cap diagrams under the assumption
that p is bigger than the greatest hook length in the partitions involved. Then we
introduce and study the rational Schur functor from a category of GLn-modules to
the category of modules for the walled Brauer algebra. As a corollary, we obtain the
decomposition numbers for the walled Brauer algebra when p is bigger than the greatest
hook length in the partitions involved. This is a sequel to an earlier paper on the
symplectic group and the Brauer algebra.

1. Introduction

The present paper concerns the general linear group and the walled Brauer
algebra; it is a sequel to the paper [18] where the analogous results for the symp-
lectic group and the Brauer algebra are obtained. For more background, we refer
to the introduction of [18].

The walled Brauer algebra, introduced by Turaev [24] and Koike [17] and later
in [2], is a cellular algebra (see [7, Thm. 2.7]) and an interesting problem is to
determine its decomposition numbers. In characteristic 0 this was first done in [5]
in terms of certain cap diagrams.

Let GLn be the general linear group over an algebraically closed field k of
characteristic p > 0, and let V be the natural module. In characteristic 0 there is
a well-known relation between certain representations of GLn and the representa-
tions of the walled Brauer algebra Br,s(n), given by the double centraliser theorem
for their actions on V ⊗r ⊗ (V ∗)⊗s. In characteristic p such a connection doesn’t
follow from the double centraliser theorem and requires more work. This is done
in Section 8 of the present paper by means of the rational Schur functor.

We determine the Weyl filtration multiplicities in the indecomposable tilting
modules T (λ) and the decomposition numbers for the induced modules ∇(λ) of
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GLn when the two partitions that form λ have greatest hook length less than
p. We then introduce the rational Schur functor and use it to obtain from the
first multiplicities the decomposition numbers of the walled Brauer algebra under
the assumption that p is bigger than the greatest hook length in the partitions
involved. Our main tools are the “reduced” Jantzen Sum Formula, truncation,
and translation functors. Our approach is based on the same ideas as [18].

The paper is organised as follows. In Section 2 we introduce the necessary
notation. In Section 3 we show that certain terms in the Jantzen Sum Formula
may be omitted. This leads to a “strong linkage principle” in terms of a partial
order �, and the existence of nonzero homomorphisms between certain pairs of
induced modules; see Proposition 3.1. Although we do not need our strong linkage
principle for the translation functors, we do need it for the truncation. In Section 4
we prove two basic results about translation that we will use: Propositions 4.1 and
4.2. They are analogues of the two corresponding results in [18, Sect. 4] and the
proofs are straightforward simplifications of the ones in [18].

In Section 5 we introduce arrow diagrams to represent the weights that satisfy
our condition, and we show that the nonzero terms in the reduced Jantzen Sum
Formula and the pairs of weights for which we proved the existence of nonzero
homomorphisms between the induced modules have a simple description in terms
of arrow diagrams; see Lemma 5.1. The arrow diagrams in the present paper
are rather different from the ones in [18]; they should be thought of as circular
rather than as a line segment. As in the case of the symplectic group, the order
� and conjugacy under the dot action also have a simple description in terms
of the arrow diagram; see Remark 5.1.1. In Section 6 we prove our first main
result, Theorem 6.1, which describes the Weyl filtration multiplicities in certain
indecomposable tilting modules in terms of cap diagrams.

In Section 7 we prove our second main result, Theorem 7.1, which describes the
decomposition numbers for certain induced modules in terms of cap codiagrams.
In Section 8 we introduce the rational Schur functor and determine its basic
properties. The main results in this section are Theorem 8.1 and Proposition 8.3.
As a corollary to Theorem 6.1 and Proposition 8.3, we obtain the decomposition
numbers of the walled Brauer algebra under the assumption that p is bigger than
the greatest hook length in the partitions involved.

2. Preliminaries

First we recall some general notation from [18]. Throughout this paper, G is a
reductive group over an algebraically closed field k of characteristic p > 0, T is a
maximal torus of G, and B+ is a Borel subgroup of G containing T . We denote the
group of weights relative to T : i.e., the group of characters of T , byX. For λ, µ ∈ X
we write µ ≤ λ if λ−µ is a sum of positive roots (relative to B+). The Weyl group
of G relative to T is denoted by W and the set of dominant weights relative to B+

is denoted by X+. In the category of (rational) G-modules, i.e., k[G]-comodules,
there are several special families of modules. For λ ∈ X+ we have the irreducible
L(λ) of highest weight λ, and the induced module ∇(λ) = indGBkλ, where B is the
opposite Borel subgroup to B+ and kλ is the 1-dimensional B-module afforded
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by λ. The Weyl module and indecomposable tilting module associated to λ are
denoted by ∆(λ) and T (λ). To each G-module M we can associate its formal
character chM =

∑
λ∈X dimMλe(λ) ∈ (ZX)W , where Mλ is the weight space

associated to λ and e(λ) is the basis element corresponding to λ of the group
algebra ZX of X over Z. Composition and good or Weyl filtration multiplicities
are denoted by [M : L(λ)] and (M : ∇(λ)) or (M : ∆(λ)). For a weight λ, the
character χ(λ) is given by Weyl’s character formula [16, II.5.10]. If λ is dominant,
then ch∇(λ) = ch ∆(λ) = χ(λ). The χ(λ), λ ∈ X+, form a Z-basis of (ZX)W .
For α a root and l ∈ Z, let sα,l be the affine reflection of R ⊗Z X defined by
sα,l(x) = x − aα, where a = 〈x, α∨〉 − lp. Mostly we replace 〈−,−〉 by a W -
invariant inner product and then the cocharacter group of T is identified with a
lattice in R⊗ZX and α∨ = (2/〈α, α〉)α. We have s−α,l = sα,−l and the affine Weyl
group Wp is generated by the sα,l. Choose ρ ∈ Q⊗Z X with 〈ρ, α∨〉 = 1 for all α
simple and define the dot action of Wp on R ⊗Z X by w · x = w(λ + ρ) − ρ. The
lattice X is stable under the dot action. The linkage principle [16, II.6.17,7.2] says
that if L(λ) and L(µ) belong to the same G-block, then λ and µ are Wp-conjugate
under the dot action. We refer to [16] part II for more details.

Unless stated otherwise, G will be the general linear group GLn. The natural
G-module kn is denoted by V . We let T be the group of diagonal matrices in GLn.
Then X is naturally identified with Zn such that the i-th diagonal coordinate
function corresponds to the i-th standard basis element εi of Zn. We let B+ be
the Borel subgroup of invertible upper triangular matrices corresponding to the
set of positive roots εi − εj , 1 ≤ i < j ≤ n. Then a weight in Zn is dominant if
and only if it is weakly decreasing. Such a weight λ can uniquely be written as

[λ1, λ2]
def
= (λ1

1, λ
1
2, . . . , 0, . . . , 0, . . . ,−λ2

2,−λ2
1)

where λ1 = (λ1
1, λ

1
2, . . .) and λ2 = (λ2

1, λ
2
2, . . .) are partitions with l(λ1)+ l(λ2) ≤ n.

Here l(ξ) denotes the length of a partition ξ. So X+ can be identified with pairs
of partitions (λ1, λ2) with l(λ1) + l(λ2) ≤ n. We will also identify partitions
with the corresponding Young diagrams. In explicit examples we will only work
with partitions with parts at most 10 and these may be written in “exponential
form”: (10, 7, 7, 4, 2, 2, 1) is denoted by 10724221. For s1, s2 ∈ {1, . . . , n} with
s1 + s2 ≤ n we denote the subgroup of Wp generated by the sα,l, α = εi − εj ,
i, j ∈ {1, . . . , s1, n − s2 + 1, . . . , n} by W s1,s2

p . This is the affine Weyl group of
a root system of type As1+s2−1. The group W acts on Zn by permutations, and
Wp
∼= W n pX0, where X0 = {λ ∈ Zn | |λ| = 0} is the type An−1 root lattice

and |λ| =
∑n
i=1 λi. Note that W s1,s2

p
∼= W s1,s2 n pXs1,s2

0 , where Xs1,s2
0 consists

of the vectors in X0 which are 0 at the positions in {s1 + 1, . . . , n − s2}, and
W s1,s2 = Sym({1, . . . , s1, n− s2 + 1, . . . , n}). We will work with

ρ = (n, n− 1, . . . , 1).

It is easy to see that if λ, µ ∈ X are Wp-conjugate and equal at the positions in
{s1 + 1, . . . , n− s2}, then they are W s1,s2

p -conjugate. The same applies for the dot
action.
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To obtain our results, we will have to make use of quasihereditary algebras. We
refer to [11, Appendix] and [16, Chap. A] for the general theory. For a subset Λ
of X+ and a G-module M we say that M belongs to Λ if all composition factors
have highest weight in Λ and we denote by OΛ(M) the largest submodule of
M which belongs to Λ. For a quasihereditary algebra one can make completely
analogous definitions. We denote the category of G-modules which belong to Λ
by CΛ. Any quasihereditary algebra A that we consider will be determined by its
labelling set Λ ⊆ X+ for the irreducibles, endowed with a suitable partial order.
The irreducible, standard/costandard, and tilting modules are the irreducible,
Weyl/induced and tilting modules for G with the same label: the module category
of A is equivalent to CΛ.

3. The reduced Jantzen Sum Formula

In this section, we study the Jantzen Sum Formula for the general linear group
GLn. This is analogous to the results in [18, Sect. 3] for the symplectic group.
Assume for the moment that G is any reductive group. Jantzen has defined for
every Weyl module ∆(λ) of G a descending filtration ∆(λ) = ∆(λ)0 ⊇ ∆(λ)1 ⊇ · · ·
such that ∆(λ)/∆(λ)1 ∼= L(λ) and ∆(λ)i = 0 for i big enough. The Jantzen sum
formula [16, II.8.19] relates the formal characters of the ∆(λ)i with the Weyl
characters χ(µ), µ ∈ X+:∑

i>0

ch ∆(λ)i =
∑

νp(lp)χ(sα,l · λ), (1)

where the sum on the right is over all pairs (α, l), with l an integer ≥ 1 and α a
positive root such that 〈λ + ρ, α∨〉 − lp > 0, and νp is the p-adic valuation. Here
χ(µ) = 0 if and only if 〈µ + ρ, α∨〉 = 0 for some α > 0, and if χ(µ) 6= 0, then
χ(µ) = det(w)χ(w · µ), where w · µ is dominant for a unique w ∈ W . See [16,
II.5.9(1)]. We denote the RHS of (1) by JSF (λ).

Now return to our standard assumption G = GLn. For λ ∈ X we have that
χ(λ) 6= 0 if and only if

(λ+ ρ)i 6= (λ+ ρ)j for all i, j ∈ {1, . . . , n} with i 6= j.

We will consider any partition of length ≤ n as an n-tuple, by extending it with
zeros, and for ξ ∈ Zn we denote the reversed tuple by ξ̆. So [λ1, λ2] = λ1− λ̆2. For

i ∈ {1, . . . , n} we put i′ = n+ 1− i. So for ξ ∈ Zn we have ξi = ξ̆i′ .

For the remainder of this section λ = [λ1, λ2] ∈ X+ and λ1 and λ2 are p-cores,
unless stated otherwise.

We will use the following characterisation of p-cores. Let θ ∈ Zm with θi−1 =
θi + 1 for all i ∈ {2, . . . ,m}. Then a partition ξ with l(ξ) ≤ m is a p-core if and
only if for all i ∈ {1, . . . ,m} and all integers l ≥ 1, (ξ + θ)i − lp occurs in ξ + θ,
provided it is ≥ θm. This is equivalent to the definition in [19, Ex I.1.8].

Lemma 3.1. Assume α = εi − εj, 1 ≤ i < j ≤ n, 〈λ + ρ, α∨〉 = a + lp, a, l > 0,
and χ(sα,l ·λ) 6= 0. Then i ≤ l(λ1) and j > n− l(λ2). Furthermore, (λ+ ρ)i−a >
n− l(λ1) and (λ+ ρ)j + a ≤ l(λ2).
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Proof. We have (λ+ ρ)i − (λ+ ρ)j = 〈λ+ ρ, α∨〉 = a+ lp. Note that (λ+ ρ)h =
(λ1 + ρ)h for all h ≤ n − l(λ2) and −(λ + ρ)h̆ = (λ2 − ρ̆)h for all h ≤ n − l(λ1).
First assume j ≤ n − l(λ2). Then (λ + ρ)j = (λ1 + ρ)j and (λ + ρ)i = (λ1 + ρ)i.
Now (λ+ρ)i− lp = (λ+ρ)j +a = sα,l(λ+ρ)j must occur in λ1 +ρ, clearly strictly
between the i-th and j-th position. So it also occurs in λ+ρ strictly between these
positions. So sα,l(λ+ ρ) contains a repeat, contradicting χ(sα,l · λ) 6= 0.

Next assume i > l(λ1). Then j′ < i′ ≤ n − l(λ1). So −(λ + ρ)̆j′ − lp =
−(λ + ρ)̆i′ + a > −ρ̆i′ must occur in λ2 − ρ̆ strictly between the j′-th and i′-th
position. So it also must occur in −(λ + ρ)̆ strictly between the j′-th and i′-th
position, and this means that sα,l(λ + ρ)i = (λ + ρ)i − a = (λ + ρ)j + lp must
occur in λ+ ρ strictly between the i-th and j-th position. So sα,l(λ+ ρ) contains
a repeat, contradicting χ(sα,l · λ) 6= 0.

Now assume (λ+ ρ)i − a ≤ n− l(λ1). Then (λ2 − ρ̆)j′ − lp = −(λ+ ρ)j − lp =
−((λ+ ρ)i − a) ≥ l(λ1)− n = −ρ̆n−l(λ1) must occur in λ2 − ρ̆ strictly between the
j′-th and l(λ1)′-th position. As before this means that sα,l(λ+ρ)i = (λ+ρ)i−a =
(λ+ ρ)j + lp must occur in λ+ ρ strictly between the l(λ1)-th and j-th position.
Since i ≤ l(λ1), sα,l(λ+ ρ) contains a repeat, contradicting χ(sα,l · λ) 6= 0.

Finally assume (λ + ρ)j + a > l(λ2). Then (λ1 + ρ)i − lp = (λ + ρ)i − lp =
(λ + ρ)j + a > l(λ2) = ρl(λ2)′ must occur in λ1 + ρ strictly between the i-th and
l(λ2)′-th position. As before this means that it also occurs in λ+ρ strictly between
these positions. Since j ≥ l(λ2)′, sα,l(λ + ρ) contains a repeat, contradicting
χ(sα,l · λ) 6= 0. �

By the previous lemma we may, when λ1 and λ2 are p-cores, restrict the sum
on the RHS of (1) to the positive roots α = εi − εj with 1 ≤ i ≤ l(λ1) and
n − l(λ2) < j ≤ n (and χ(sα,l · λ) 6= 0). We will refer to this sum as the reduced
sum and to the whole equality as the reduced Jantzen Sum Formula. For µ, ν ∈ Zn
we write µ ⊆ ν when µi ≤ νi for all i ∈ {1, . . . , n}, and we denote the weakly
decreasing permutation of µ by sort(µ). The next lemma shows that, when working
with Weyl characters, the nonzero terms in the reduced sum have distinct Weyl
characters.

Lemma 3.2. Let α = εi − εj, 1 ≤ i ≤ l(λ1), n− l(λ2) < j ≤ n, be a positive root
with 〈λ+ ρ, α∨〉 − lp > 0 and χ(sα,l · λ) 6= 0 for some integer l ≥ 1. Then the first
l(λ1) entries of sα,l(λ+ ρ) are distinct and > n− l(λ1) and the last l(λ2) entries
are distinct and ≤ l(λ2). Now put µ = [µ1, µ2] = sort(sα,l(λ + ρ)) − ρ. Then, µh

is a partition with µh $ λh for all h ∈ {1, 2}, and µ is W
l(λ1),l(λ2)
p -conjugate to λ

under the dot action. Furthermore, the map (α, l) 7→ µ is injective.

Proof. The first assertion follows from the last assertion of Lemma 3.1 and the fact
that χ(sα,l · λ) 6= 0. Furthermore, it is also clear that we can sort sα,l(λ + ρ) by
only permuting the first l(λ1) and the last l(λ2) entries. Since sα,l(λ+ ρ) ⊆ λ+ ρ
and λ + ρ is (strictly) decreasing, we will also have sort(sα,l(λ + ρ)) ⊆ λ + ρ and
therefore µh is a partition with µh $ λh for all h ∈ {1, 2}. The set of values in
sα,l(λ + ρ) is obtained by choosing two values in λ + ρ and lowering the greatest
and increasing the smallest to two new values. So it is clear how to recover i, j, a
and l from the value set of sα,l(λ+ ρ): i and j are the positions of the two “old”
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values of λ+ ρ that do not occur in sα,l(λ+ ρ), and a follows from comparing the
greatest of the two old values with the greatest of the two new values. �

Example 3.1. If λ1 and λ2 are p-cores, ∆(λ) may have composition factors L(µ)
with µh * λh for some h ∈ {1, 2}. For example, take p = 3, n = 4 and λ =
[31, 1]. Let [ξ] denote [ξ,∅]. Then λ1 = 31 and λ2 = 1 are p-cores and we have
JSF ([13]) = 0, JSF ([21]) = χ([13]), JSF ([3]) = −χ([13]) + χ([21]) = chL([21]),
JSF (λ) = χ([21]) + χ([3]) = chL([13]) + 2chL([21]) + chL([3]). So L([13]) is a
composition factor of ∆(λ) and 13 * λ1.

Note that any partition ξ with ξ1 + l(ξ) ≤ p is a p-core, since ξ1 + l(ξ) − 1 is
the greatest hook length. Eventually, we will need that both λ1 and λ2 satisfy this
stronger assumption. Define the partial order � on X+ as follows:

µ � λ if and only if there is a sequence of dominant weights λ = λ1, . . . , λt = µ,
t ≥ 1, such that for all r ∈ {1, . . . , t− 1}, λr+1 = wsα,l · λr for some w ∈Wλ1

r,λ
2
r ,

α = εi− εj, 1 ≤ i ≤ l(λ1
r), n− l(λ2

r) < j ≤ n, and l ≥ 1 with 〈λr + ρ, α∨〉− lp ≥ 1,
and χ(sα,l · λr) 6= 0.

Note that when λh1 + l(λh) ≤ p for all h ∈ {1, 2}, µ � λ implies that µh ⊆ λh

for all h ∈ {1, 2} and µ is W
l(λ1),l(λ2)
p -conjugate to λ under the dot action. This,

in turn, implies that µ ≤ λ and |λ1| − |λ2| = |µ1| − |µ2|. Put

Λp = {µ ∈ X+ |µh1 + l(µh) ≤ p for all h ∈ {1, 2}}.

Assertion (i) below says that, when λh1 + l(λh) ≤ p for some h ∈ {1, 2}, nonzero
contributions of roots α = εi − εj , 1 ≤ i ≤ l(λ1), n− l(λ2) < j ≤ n, have a unique
l-value.

Proposition 3.1. Let λ ∈ X+.

(i) Assume λh1 + l(λh) ≤ p for some h ∈ {1, 2}. If α = εi − εj, 1 ≤ i ≤ l(λ1),
n− l(λ2) < j ≤ n, and l, a are integers ≥ 1 such that 〈λ+ ρ, α∨〉 = a+ lp
and χ(sα,l · λ) 6= 0, then a < p.

(ii) If Λ ⊆ Λp is �-saturated, then the algebra OΛ(k[G])∗ is quasihereditary with
partially ordered labelling set (Λ,�) and the Weyl and induced modules
as standard and costandard modules. In particular, if [∆(λ) : L(µ)] or
(T (λ) : ∇(µ)) is nonzero, then µ � λ.

(iii) If µ is maximal with respect to � amongst the dominant weights ν for which
χ(ν) occurs in the RHS of the reduced Jantzen Sum Formula associated to λ
or amongst the dominant weights ≺λ, then we have dim HomG(∇(λ),∇(µ))
= [∆(λ) : L(µ)] 6= 0.

Proof. (i) Let α, i, j, l be as stated and assume λ1
1 + l(λ1) ≤ p. If a ≥ p, then

(λ+ ρ)i− a ≤ (λ+ ρ)i− p ≤ λ1
i +n− p ≤ n− l(λ1), which contradicts Lemma 3.1.

If λ2
1 + l(λ2) ≤ p and a ≥ p, then (λ + ρ)j + a ≥ (λ + ρ)j + p > p − λ2

j′ ≥ l(λ2),
which contradicts Lemma 3.1.

(ii) and (iii) are proved as in the proof of [18, Prop. 3.1], where in (ii) we do the
induction on |λ1|+ |λ2|. �
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4. Translation functors

The results in this section are analogues of [5, Thm. 3.2,3.3, Prop. 3.4], [16,
II.7.9, 7.14–16] and [18, Sect. 4]. Our results don’t follow from the ones in [16];
see Remark 4.1. As in [18, Sect. 4], we will not try to reformulate/generalise
these results in terms of W s1,s2

p and a type As1+s2−1 alcove geometry analogous
to [6, Sect. 5-7] in the Brauer algebra case, but we will choose a “combinatorial”
approach similar to [5], using the notion of the “support” of a dominant weight.
This suffices for our applications in Sections 6 and 7. As in [18, Sect. 4], the notion
of the support of a dominant weight arises from an application of Brauer’s formula
[16, II.5.8] and the role of the induction and restriction functors in [5] is in our
setting played by the translation functors.

Recall that the tensor product of two modules with a good/Weyl filtration
has a good/Weyl filtration; see [16, II.4.21, 2.13]. Let λ ∈ X+. Then, by
Brauer’s formula, χ(λ)

∑n
i=1 e(εi) =

∑
µ∈Supp1(λ) χ(µ) and χ(λ)

∑n
i=1 e(−εi) =∑

µ∈Supp2(λ) χ(µ), where Supp1(λ) consists of all µ = [µ1, µ2] ∈ X+ which can be

obtained by adding a box to λ1 or removing a box from λ2, but not both, and
Supp2(λ) consists of all µ = [µ1, µ2] ∈ X+ which can be obtained by removing a
box from λ1 or adding a box to λ2, but not both. Here we used the rules for χ(λ)
to be nonzero from Section 3. Note that µ ∈ Supp1(λ) if and only if λ ∈ Supp2(µ).
Since chV =

∑n
i=1 e(εi), it follows that ∇(λ) ⊗ V resp. ∇(λ) ⊗ V ∗ has a good

filtration with sections ∇(µ), µ ∈ Supp1(λ) resp. µ ∈ Supp2(λ). Similarly, since
chV ∗ =

∑n
i=1 e(−εi), it follows that ∆(λ)⊗V resp. ∆(λ)⊗V ∗ has a Weyl filtration

with sections ∆(µ), µ ∈ Supp1(λ) resp. µ ∈ Supp2(λ).

We recall the definition and basic properties of the translation functors. For
λ ∈ X+ the projection functor prλ : {G-modules} → {G-modules} is defined by
prλM = OWp·λ∩X+(M). Then M =

⊕
λ prλM where the sum is over a set of

representatives of the linkage classes in X+; see [16, II.7.3]. Now let λ, λ′ ∈ X+

with λ′ ∈ Supph(λ), h ∈ {1, 2}. Then λ′ − λ = εi for some i when h = 1
and λ′ − λ = −εi for some i when h = 2. We define the translation functor
Tλ
′

λ : {G-modules} → {G-modules} by Tλ
′

λ M = prλ′((prλM) ⊗ V ) when h = 1

and by Tλ
′

λ M = prλ′((prλM) ⊗ V ∗) when h = 2. So this is just a special case
of the translation functors from [16, II.7.6], since the dominant W -conjugate of
λ′ − λ is ε1 (h = 1) or −εn (h = 2), and V = ∇(ε1) = L(ε1) and V ∗ = ∇(−εn) =
L(−εn). In particular, Tλ

′

λ is exact and left and right adjoint to Tλλ′ . Note that,

for λ′ ∈ Supph(λ), h ∈ {1, 2}, and µ ∈ X+ ∩Wp · λ, Tλ
′

λ ∇(µ) has a good filtration
with sections ∇(ν), ν ∈ Supph(µ) ∩Wp · λ′, and the analogue for Weyl modules
and Weyl filtrations also holds.

Recall the definition of the set Λp from Section 3.

Proposition 4.1 (Translation equivalence). Let h, h ∈ {1, 2} be distinct, let
λ, λ′ ∈ Λp with λ′ ∈ Supph(λ) and let Λ ⊆ Wp · λ ∩ Λp,Λ

′ ⊆ Wp · λ′ ∩ Λp be
�-saturated sets. Assume

(1) Supph(ν) ∩Wp · λ′ ⊆ Λp for all ν ∈ Λ, and Supph(ν′) ∩Wp · λ ⊆ Λp for all
ν′ ∈ Λ′.

(2) |Supph(ν) ∩Wp · λ′| = 1 = |Supph(ν′) ∩Wp · λ| for all ν ∈ Λ and ν′ ∈ Λ′.
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(3) The map ν 7→ ν′ : Λ → Λp given by Supph(ν) ∩Wp · λ′ = {ν′} has image
Λ′, and together with its inverse Λ′ → Λ it preserves the order �.

Then Tλ
′

λ restricts to an equivalence of categories CΛ → CΛ′ with inverse

Tλλ′ : CΛ′ → CΛ. Furthermore, with ν and ν′ as in (3), we have Tλ
′

λ ∇(ν) = ∇(ν′),

Tλ
′

λ ∆(ν) = ∆(ν′), Tλ
′

λ L(ν) = L(ν′), Tλ
′

λ T (ν) = T (ν′) and Tλ
′

λ IΛ(ν) = IΛ′(ν
′).

Proof. The proof is a straightforward simplification of the proof of [18, Prop. 4.1].
We can work with ordinary instead of refined translation functors. We give it here
for convenience of the reader. The first assertion and the identities involving the
induced and Weyl modules are obvious. We have an exact sequence

0→M → ∆(ν)→ L(ν)→ 0 , (2)

where all composition factors L(η) of M satisfy η ≺ ν. Applying Tλ
′

λ gives the
exact sequence

0→ Tλ
′

λ M → ∆(ν′)→ Tλ
′

λ L(ν)→ 0. (3)

Using the order preserving properties of ν 7→ ν′ we see that for any θ ∈ Λ all
composition factors L(η′) of Tλ

′

λ L(θ) satisfy η′ � θ′. So all composition factors

L(η′) of Tλ
′

λ M satisfy η′ ≺ ν′. Therefore Tλ
′

λ L(ν) must have simple head L(ν′)

and all other composition factors L(η′) satisfy η′ ≺ ν′. If Tλ
′

λ L(ν) 6= L(ν′), then

HomG(∆(η), L(ν)) = HomG(Tλλ′∆(η′), L(ν)) = HomG(∆(η′), Tλ
′

λ L(ν)) 6= 0

for some η 6= ν. This is clearly impossible, so Tλ
′

λ L(ν) = L(ν′). We can prove the

same for Tλλ′ , and then we can deduce as in the proof [16, II.7.9] that Tλλ′T
λ′

λ
∼= idCΛ

and Tλ
′

λ T
λ
λ′
∼= idCΛ′ . This implies the remaining assertions. �

Proposition 4.2 (Translation projection). Let h, h ∈ {1, 2} be distinct, let
λ, λ′ ∈ Λp with λ′ ∈ Supph(λ) and let Λ ⊆ Wp · λ ∩ Λp,Λ

′ ⊆ Wp · λ′ ∩ Λp be

�-saturated sets. Put Λ̃ = {ν ∈ Λ | Supph(ν) ∩Wp · λ′ 6= ∅}. Assume

(1) Supph(ν) ∩Wp · λ′ ⊆ Λp for all ν ∈ Λ, and Supph(ν′) ∩Wp · λ ⊆ Λp for all
ν′ ∈ Λ′.

(2) |Supph(ν) ∩Wp · λ′| = 1 for all ν ∈ Λ̃, and |Supph(ν′) ∩Wp · λ| = 2 for all
ν′ ∈ Λ′.

(3) The map ν 7→ ν′ : Λ̃ → Λp given by Supph(ν) ∩ Wp · λ′ = {ν′} is a 2-
to-1 map which has image Λ′ and preserves the order �. For ν′ ∈ Λ′ we
can write Supph(ν′) ∩Wp · λ = {ν+, ν−} with ν− ≺ ν+ and then we have
HomG(∇(ν+),∇(ν−)) 6= 0 and η′ � ν′ ⇒ η+ � ν+ and η− � ν−.

Then Tλ
′

λ restricts to a functor CΛ → CΛ′ and Tλλ′ restricts to a functor CΛ′ → CΛ.

Now let ν ∈ Λ. If ν /∈ Λ̃, then Tλ
′

λ ∇(ν) = Tλ
′

λ ∆(ν) = Tλ
′

λ L(ν) = 0. For ν′ ∈ Λ′

with ν± as in (3), we have Tλ
′

λ ∇(ν±) = ∇(ν′), Tλ
′

λ ∆(ν±) = ∆(ν′), Tλ
′

λ L(ν−) =

L(ν′), Tλ
′

λ L(ν+) = 0, Tλλ′T (ν′) = T (ν+) and Tλλ′IΛ′(ν
′) = IΛ(ν−).
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Proof. Again, the proof is a straightforward simplification of the proof of [18,
Prop. 4.2]. We give it here for convenience of the reader. The identities involving the
induced and Weyl modules are obvious. Moreover, it is also clear that Tλ

′

λ L(ν) = 0

when ν /∈ Λ̃, since Tλ
′

λ ∆(ν) surjects onto Tλ
′

λ L(ν) and is 0. If η ≺ ν−, then η′ ≺ ν′,
so we obtain Tλ

′

λ L(ν−) = L(ν′) as in the proof of Proposition 4.1. Now consider
(2) and (3) for ν = ν+. Since [∆(ν+) : L(ν−)] = [∇(ν+) : L(ν−)] 6= 0, we know
that L(ν−) occurs in M . So Tλ

′

λ L(ν−) = L(ν′) occurs in Tλ
′

λ M and therefore not

in Tλ
′

λ L(ν+). If Tλ
′

λ L(ν+) 6= 0, then it would have simple head L(ν′) by (3). So

Tλ
′

λ L(ν+) = 0. Note that chTλ
′

λ T
λ
λ′M = 2chM for any M ∈ CΛ′ which has a good

or Weyl filtration. Now the equality Tλλ′T (ν′) = T (ν+) is proved as in [16, E.11],

replacing ↑, w · λ,ws · λ,w · µ, Tµλ and Tλµ by �, ν+, ν−, µ, Tλ
′

λ and Tλλ′ . Finally,

HomCΛ(−, Tλλ′IΛ′(ν′)) = HomCΛ′ (−, IΛ′(ν
′)) ◦ Tλ

′

λ (4)

is exact, so Tλλ′IΛ′(ν
′) is injective in CΛ. Applying both sides of (4) to L(η), for

η /∈ Λ̃, for η = η+ and for η = η−, shows that Tλλ′IΛ′(ν
′) has simple socle L(ν−)

and therefore equals IΛ(ν−). �

Remark 4.1. The translated weight λ′ need not be in the facet closure of λ.
For example, when p = 5, n = 5, s1 = s2 = 1 and (λ, λ′) = ([4, 4], [3, 4]) or
([3, 4], [2, 4]), then it is easy to find affine reflection hyperplanes which contain λ,
but not λ′. However, we can, for Λ = {[4, 4], [2, 2]} and Λ′ = {[3, 4], [2, 3]}, apply
Proposition 4.1 in the first case, and, for Λ = {[3, 4], [2, 3]} and Λ′ = {[2, 4]}, apply
Proposition 4.2 in the second case. We refer to Section 5 for how to express this
in terms of arrow diagrams.

5. Arrow diagrams

This section is based on the approaches of [5] and [21]. We use “characteristic p
walls” as in [21]. Recall the definition of ρ from Section 2 and recall from Section 3
that i′ = n + 1 − i. An arrow diagram has p nodes on a (horizontal) line with p
labels : 0, . . . , p − 1. The i-th node from the left has label i − 1. Although 0 and
p − 1 are not connected, we consider them as neighbours and we will identify a
diagram with any of its cyclic shifts. So when we are going to the left through
the nodes we get p− 1 after 0, and when we are going to the right we get 0 after
p− 1. Next we choose s1, s2 ∈ {1, . . . ,min(n, p)} with s1 + s2 ≤ n and put a wall
below the line between ρs1 and ρs1 − 1 mod p, and a wall above the line between
ρs′2 = s2 and s2 + 1 mod p. Then we can also put in a top and bottom value for
each label. A value and its corresponding label are always equal mod p. Below the
line, we start with ρs1 immediately to the right of the wall, and then increasing in
steps of 1 going to the right: ρs1 , ρs1 + 1, . . . , ρs1 + p− 1. Above the line, we start
with ρs′2 = s2 immediately to the left of the wall, and then decreasing in steps of
1 going to the left: s2, s2 − 1, . . . , s2 − p+ 1. For example, when p = 5, n = 5 and
s1 = s2 = 1, then ρs1 = s′1 = 5, ρs′2 = s2 = 1 and we have labels

•
0

•
1

•
2

•
3

•
4
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and values

•
0

5

•
1

6

•
−3

7

•
−2

8

•
−1

9

.

For a dominant weight λ = [λ1, λ2] with l(λh) ≤ sh ≤ p− λh1 for all h ∈ {1, 2}, we
now form the ((s1, s2)-)arrow diagram by putting in s1 arrows below the line (∧)
that point from the values (ρ+λ)1, . . . , (ρ+λ)s1 , or from the corresponding labels,
and s2 arrows above the line (∨) that point from the values (ρ+λ)1′ , . . . , (ρ+λ)s′2 ,
or to the corresponding labels. So in the above example, the arrow diagram of
λ = [4, 4] is

•
0

•
1

•
2

∨ •
3

•
4
∧

.

In such a diagram, we frequently omit the nodes and/or the labels. When it has
already been made clear what the labels are and where the walls are, we can
simply represent the arrow diagram by a string of single arrows (∧, ∨), opposite
pairs of arrows (×) and symbols o to indicate the absence of an arrow. In the above
example, λ = [4, 4] is then represented by oo∨o∧ and λ = [2, 4] is represented by
oo×oo.

We can form the arrow diagram of λ as follows. First line up s1 arrows immedia-
tely to the right of the wall below the line and then move them to the right to
the correct positions. The arrow furthest from the wall corresponds to λ1

1, and the
arrow closest to the wall corresponds to λ1

s1 . Then line up s2 arrows immediately
to the left of the wall above the line and then move them to the left to the correct
positions. The arrow furthest from the wall corresponds to λ2

1, and the arrow
closest to the wall corresponds to λ2

s2 .

The part of λ1 corresponding to an arrow below the line equals the number of
nodes without a ∧ from that arrow to the wall going to the left. From the diagram
you can see what you can do with the wall below the line, changing s1 but not λ.
If there is an arrow immediately to the right of the wall, i.e. l(λ1) < s1, then you
can move that wall one step to the right, removing the arrow that you move it
past. If there is no arrow immediately to the left of the wall, i.e. λ1

1 < p− s1, then
you can move the wall one step to the left, putting a ∧ at the node that you move
it past, provided s1 < n− s2. The analogous assertions for the wall above the line
are obtained by replacing “right”, “left”, λ1, ∧, s1 and s2 by “left”, “right”, λ2,
∨, s2 and s1.

More generally, we can for any s1, s2 ∈ {1, . . . , n} with s1 + s2 ≤ n and µ ∈ X+

with l(µh) ≤ sh for all h ∈ {1, 2}, put s1 arrows below the line in the diagram
pointing from the labels equal to (ρ+µ)1, . . . , (ρ+µ)s1 mod p, and s2 arrows above
the line in the diagram pointing to the labels equal to (ρ+µ)1′ , . . . , (ρ+µ)s′2 mod

p, allowing repeated ∨’s or ∧’s at a node. Then µ and ν with l(µh), l(νh) ≤ sh for
all h ∈ {1, 2} are Wp-conjugate under the dot action if and only if |µ| = |ν| and
the arrow diagrams of µ and ν have the same number of arrows at each node, if
and only if |µ| = |ν| and the arrow diagram of ν can be obtained from that of µ
by choosing a certain number of ∧’s and an equal number of ∨’s and replacing all
these arrows by their opposites.

R. TANGE1696



From now on s1, s2 ∈ {1, . . . ,min(n, p)} with s1 + s2 ≤ n, unless stated other-
wise. We put

Λ(s1, s2) = {λ ∈ X+ | l(λh) ≤ sh ≤ p− λh1 for all h ∈ {1, 2}}.

Unless stated otherwise, we assume λ ∈ Λ(s1, s2).
When we speak of “arrow pairs” it is understood that both arrows are single:

i.e., neither of the two arrows is part of an ×. So, for example, at the node of the
first arrow in an arrow pair ∨∧ there should not also be a ∧. The arrows need not
be consecutive in the diagram.

We now define the cap diagram cλ of the arrow diagram associated to λ as
follows. We assume that the arrow diagram is cyclically shifted such that at least
one of the walls is between the first and last node. We select one such wall and
when we speak of “the wall” it will be the other wall. All caps are anti-clockwise,
starting from the rightmost node. We start on the left side of the wall. We form
the caps recursively. Find an arrow pair ∨∧ that are neighbours in the sense that
the only arrows in between are already connected with a cap or are part of an
×, and connect them with a cap. Repeat this until there are no more such arrow
pairs. Now the unconnected arrows that are not part of an × form a sequence
∧ · · · ∧ ∨ · · · ∨. Note that none of these arrows occur inside a cap. The caps on
the right side of the wall are formed in the same way. For example, when p = 17,
n = 20, s1 = 8, s2 = 7 and λ = [965422, 824322], then cλ is

∧
13
∧ ∨

16
∧
0

∨ ∨ ∧ ∧∨ ∧ ∨ ∧ ∨ ∨ ∧
12

.

Note that the nodes with labels 5, 9, 15 have no arrow.

Lemma 5.1. Let λ ∈ Λ(s1, s2). Assume that the arrow diagram of λ is cyclically
shifted such that at least one of the walls is between the first and last node.

(i) The nonzero terms in the reduced Jantzen Sum Formula associated to λ
correspond in the arrow diagram of λ to the arrow pairs ∨∧ to the left or
to the right of the wall.

(ii) ∆(λ) is irreducible (equivalently, T (λ) = ∆(λ) or ∇(λ)) if and only if there
are no caps in cλ.

(iii) If µ is obtained from λ by reversing the arrows in a pair as in (i) with con-
secutive arrows (no single arrows in between), then dim HomG(∇(λ),∇(µ))
= [∆(λ) : L(µ)] 6= 0.

Proof. We will work with the “unshifted” diagram, so the leftmost node has label
0. When s2 = p, then there are no single ∧’s and λ2 = 0, so the reduced sum
is empty and the assertion is trivially true. So we assume ρs′2 = s2 < p. Write
ρs1 = x1 + up with 0 ≤ x1 < p, u ≥ 0. The general form of a value above the
line is x x−p and below the line it is x+(u+1)p x+up . Here x always satisfies
0 ≤ x < p. Note that the “opposite” value on the other side of the line has the
same x in its general form. Put differently, the label corresponding to the value is
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x. Now let α = εi − εj , 1 ≤ i ≤ l(λ1), n − l(λ2) < j ≤ n, and l, a ≥ 1 such that
〈λ+ ρ, α∨〉 = a+ lp and χ(sα,l · λ) 6= 0. Put c = (λ+ ρ)i and d = (λ+ ρ)j . Note
that c 6= d mod p, because otherwise we would have a = 0. Assume that the wall
above the line is to the left of or above the wall below the line (x1 > s2). Then
the 12 candidate configurations of c and d in the arrow diagram of λ are

d

c
, d

c
, d

c
, d

c
, d

c
, d

c
, d

c
, d

c
,

d

c
, d

c
, d

c
, d

c
.

Here it is understood that the opposite values of c and d are not present in the
diagram of λ+ ρ, since otherwise sα,l(λ+ ρ) would contain a repeat and χ(sα,l ·λ)
would be 0. Now it is easy to see that the only possible configurations are 1,6,9 and

11: d

c
, d

c
, d

c
, d

c
, which correspond precisely to the arrow pairs

from the assertion. For example, for configuration 1 we have c = x+(u+1)p, d = y
with 0 ≤ y < x < p. So a = x− y, l = u + 1, and sα,l(λ + ρ) equals y + (u + 1)p
in position i and x in position j. Since these are the available values for the
labels y, x, this configuration is possible. Next, for configuration 2 we have c =
x+ (u+ 1)p, d = y with 0 ≤ x < y < p. So a = p− (y − x), l = u, and sα,l(λ+ ρ)
equals y + up in position i and x + p in position j. However, the available values
for the labels y, x are y + (u + 1)p and x. So this configuration is not possible.
As a final example, for configuration 9 we have c = x + (u + 1)p, d = y − p with
0 ≤ y < x < p. So a = p − (y − x), l = u + 1, and sα,l(λ + ρ) equals y + up in
position i and x in position j. Since these are the available values for the labels
y, x, this configuration is possible. The case that the wall above the line is to the
right of or above the wall below the line (x1 ≤ s2 + 1) is completely analogous.

Conversely, it is clear that if (α, l) corresponds to one of the stated arrow pairs,
then the first l(λ1) entries of sα,l(λ+ ρ) are distinct and > n− l(λ1) and the last
l(λ2) entries are distinct and ≤ l(λ2), so χ(sα,l · λ) 6= 0.

(ii) This follows easily from (i): there is an arrow pair ∨∧ to the left of the wall
if and only if there is a cap to the left of the wall in cλ (although there will in
general be more such pairs than such caps).

(iii) Such a µ is maximal amongst the weights ν for which (a nonzero multiple
of) χ(ν) occurs on the RHS of the reduced Jantzen Sum Formula, so this follows
from Proposition 3.1(iii). �

Remarks 5.1.
1. Let s1, s2 ∈ {1, . . . ,min(n, p)} with s1 + s2 ≤ n and let λ ∈ Λ(s1, s2) and

µ ∈ X+. Assume that the nodes are cyclically shifted such that at least one of the
walls determined by s1 and s2 is between the first and last node. Then it follows
from the above lemma that µ � λ if and only if µ ∈ Λ(s1, s2) and the arrow
diagram of µ can be obtained from that of λ by repeatedly replacing an arrow pair
∨∧ to the left or to the right of the wall, by the opposite arrow pair.

Furthermore, λ, µ ∈ Λ(s1, s2) are conjugate under the dot action of Wp if and
only if the arrow diagram of µ is obtained from that of λ by choosing a certain
number of (single) ∧’s and an equal number of ∨’s to the left of the wall and
choosing a certain number of ∧’s and an equal number of ∨’s to the right of
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the wall and then replacing all these arrows by their opposites. This follows by
combining our earlier characterisation of Wp-conjugacy under the dot action with
a computation of the change in coordinate sum in terms of the number of arrows
of each general form from the proof of the above lemma.

2. The l-values corresponding to the configurations 1,6,9 and 11 from the proof
are u+ 1, u+ 2, u+ 1, u+ 1. The possible configurations when the wall above the

line is to the right of or above the wall below the line are d

c
, d

c
, d

c
,

d

c
, with l-values u+ 1, u, u+ 1, u+ 1. So in the reduced Jantzen Sum Formula

associated to λ we only have two possible l-values.

6. Weyl filtration multiplicities in tilting modules

Let s1, s2 ∈ {1, . . . ,min(n, p)} with s1 + s2 ≤ n. Recall the definition of the set
Λ(s1, s2) from Section 5. Assume that the nodes are cyclically shifted such that at
least one of the walls determined by s1 and s2 is between the first and last node.
Recall that we fix one such wall and that “the wall” will always refer to the other
wall. Let λ ∈ Λ(s1, s2), and let µ ∈ X+ with µ � λ. Then the arrow diagram of µ
has its single arrows and its ×’s at the same nodes as the arrow diagram of λ. We
know by Remark 5.1.1 that the arrow diagram of µ can be obtained from that of
λ by repeatedly replacing an arrow pair ∨∧ to the left or to the right of the wall
by the opposite arrow pair.

Recall the definition of the cap diagram cλ from the previous section. We now
define the cap diagram cλµ associated to λ and µ by replacing each arrow in cλ by
the arrow from the arrow diagram of µ at the same node. Put differently, we put
the caps from cλ on top of the arrow diagram of µ. We say that cλµ is oriented
if all caps in cλµ are oriented (clockwise or anti-clockwise). It is not hard to show
that when cλµ is oriented, the arrow diagrams of λ and µ are the same at the nodes
which are not endpoints of a cap in cλ. For example, when p = 5, n = 7, s1 = 2,
s2 = 3 and λ = [32, 212], then ρs1 = s′1 = 6, and cλ (shifted) is

∨
1

∨
2
∧
3

∨
4
∧
0

.

The µ ∈ X+ with µ ≺ λ are [22, 13], [31, 21], [21, 12], [3, 2], [2, 1], with (shifted)
arrow diagrams ∨ ∨ ∧ ∧ ∨,∨ ∧ ∨ ∨ ∧,∨ ∧ ∨ ∧ ∨,∧ ∨ ∨ ∨ ∧,∧ ∨ ∨ ∧ ∨. Only for the
first three cλµ is oriented. For the first two of these cλµ has one clockwise cap and
for the third both caps are clockwise.

Theorem 6.1. Let s1, s2 ∈ {1, . . . ,min(n, p)} with s1 + s2 ≤ n, λ ∈ Λ(s1, s2) and
µ ∈ X+. Then

(T (λ) : ∇(µ)) = (T (λ) : ∆(µ)) =

{
1 if µ � λ and cλµ is oriented,

0 otherwise.

Proof. By Proposition 3.1(ii) we may assume µ � λ. The proof is similar to the
proof of [18, Thm. 6.1], but it is easier, since we only work with caps. The proof
is by induction on the number of caps in cλ. If there are no caps in cλ, then cλµ is
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oriented if and only if λ = µ, so the result follows from Lemma 5.1(ii). Otherwise,
we choose a cap which has no cap inside it. We will transform this cap to a cap with
consecutive end nodes via a sequence of moves which preserve the orientedness of
cλµ and the multiplicity (T (λ) : ∆(µ)). We will always move the right end node
of the cap one step towards the other end node. In the proof below, we will make
use of two basic facts. Let t1, t2 ∈ {1, . . . , n} with t1 + t2 ≤ n. Firstly, if ν ∈ X+

and ν′ ∈ Supph(ν), h ∈ {1, 2}, with l(νi), l(ν′i) ≤ ti for all i ∈ {1, 2}, then the
(t1, t2)-arrow diagram of ν′ is obtained from that of ν by moving one arrow in the
(t1, t2)-arrow diagram of ν one step: to the right if h = 1 and to the left if h = 2.
Secondly, if ν ∈ X+ and ν′ ∈ X+ ∩Wp · ν with l(νi), l(ν′i) ≤ ti for all i ∈ {1, 2},
then the (t1, t2)-arrow diagrams of ν and ν′ have the same number of arrows at
each node.

First we prove a general property of the moves we will make. Let λ ∈ Λ(s1, s2)
and λ′ ∈ Supph(λ) ∩ Λ(s1, s2), h ∈ {1, 2}, such that the move λ 7→ λ′ does not
cross or pass a wall. Now let ν ∈ Λ(s1, s2) ∩Wp · λ and ν′ ∈ Supph(ν) ∩Wp · λ′.
We show that ν′ ∈ Λ(s1, s2). The move from the arrow diagram of ν to that of
ν′ goes between the same nodes as the move λ 7→ λ′. Assume l(ν′1) = s1 + 1.
Then l(ν1) = s1 < n − s2 and there is no ∧ immediately to the right of the wall
below the line. We temporarily move this wall one step to the left creating a new
∧ immediately to the right of the new wall.1 The move from the arrow diagram
of ν to that of ν′ would move this new arrow one step to the right and therefore
cross the original wall. But then the move λ 7→ λ′ would also cross or pass the
original wall. This is impossible, so l(ν′) ≤ s. If ν′11 = p− s1 + 1, then ν1 = p− s1

and the move ν 7→ ν′ would pass or cross the wall. This would then also hold for
the move λ 7→ λ′ which is impossible. So l(ν′1) ≤ s1 ≤ p − ν′11. The proof that
l(ν′2) ≤ s2 ≤ p− ν′21 is completely analogous. We conclude that ν′ ∈ Λ(s1, s2).

From now on we assume that the nodes are cyclically shifted such that at least
one of the walls determined by s1 and s2 is between the first and last node. When,
for a label a, we write a − 1, this is understood to be p − 1 when a = 0. If

λ = · · · ∨ · · · • ∧
a
· · ·, we choose λ′ = · · · ∨ · · · ∧ •

a
· · · ∈ Supp2(λ), and we

put Λ = Λ(s1, s2) ∩ Wp · λ and Λ′ = Λ(s1, s2) ∩ Wp · λ′. Let ν ∈ Λ. Assume
ν′ ∈ Supp2(ν) ∩ Wp · λ′. Then we have seen that ν′ ∈ Λ(s1, s2). Moreover,
the move ν 7→ ν′ moves the arrow at the a-node to the (a − 1)-node. So the
property ν′ ∈ Supp2(ν) ∩ Wp · λ′ determines a map ν 7→ ν′ : Λ → Λ(s1, s2)

given by
··· o ∧ ··· 7→ ··· ∧ o ···
··· o ∨ ··· 7→ ··· ∨ o ···

a a
. This map clearly preserves the order � and Wp-

conjugacy (under the dot action), so it has its image in Λ′. Similarly, the property
ν ∈ Supp1(ν′)∩Wp · λ determines a map ν′ 7→ ν : Λ′ → Λ(s1, s2) given by reading
the above rule in the opposite direction, and this map preserves � and Wp-con-
jugacy. So these maps are each others’ inverse and Proposition 4.1 gives that
(T (λ) : ∆(µ)) = (T (λ′) : ∆(µ′)). Furthermore, since ×’s and empty nodes don’t

1At the node of the new ∧ there may be one other ∧ and there may be a cap of cλ
passing or crossing the new wall.
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really play a role in the cap diagram, it is obvious that cλ′µ′ is oriented if and only if

cλµ is oriented. When λ= · · · ∨ · · · ∨∧ ∧
a
· · · , we choose λ′= · · · ∨ · · · ∧ ∨∧

a
· · ·∈

Supp1(λ). We define Λ and Λ′ as before and similar arguments as above give

a bijection Λ → Λ′ given by
··· × ∧ ··· 7→ ··· ∧ × ···
··· × ∨ ··· 7→ ··· ∨ × ···

a a
with the same properties as

before. In this case, we move a unique arrow from the (a − 1)-node to the a-
node to go from ν to ν′, although we think of the move as the arrow at the
(a − 1)-node moving past the ×. So in this case Proposition 4.1 again gives that
(T (λ) : ∆(µ)) = (T (λ′) : ∆(µ′)). Furthermore, we again have that cλ′µ′ is oriented
if and only if cλµ is oriented.

Now we are reduced to the case that the cap has consecutive end nodes. So

λ = · · · ∨ ∧
a
· · · . Now we choose λ′ = · · · ∨∧ •

a
· · · ∈ Supp2(λ). Define Λ and

Λ′ as before. Let ν ∈ Λ and ν′ ∈ Supp2(ν) ∩Wp · λ′. Then ν′ ∈ Λ(s1, s2) as we
have seen, and ν′ is obtained from ν by moving the arrow at the a-node to the
(a − 1)-node. Furthermore, this move can only be done when the arrows at the
(a − 1)-node and a-node are not both ∨ or both ∧: i.e., when a cap connecting
the two nodes is oriented. Let us denote the set of ν ∈ Λ with this property by

Λ̃. Then we obtain a map ν 7→ ν′ : Λ̃→ Λ(s1, s2) given by ··· ∧ ∨ ······ ∨ ∧ ··· 7→ ··· × o ···

and it’s not hard to see that this map preserves � and Wp-conjugacy and therefore
has its image in Λ′.2

Now let ν′ ∈ Λ′ and ν ∈ Supp1(ν′) ∩ Wp · λ. Then ν ∈ Λ(s1, s2) by the

general fact at the start of the proof, and we see that ν = ν± ∈ Λ̃, where ν+

resp. ν− is obtained from ν′ by moving the ∧ resp. ∨ at the (a − 1)-node to
the a-node. So the above map has image equal to Λ′. Furthermore, it is easy to
see that η � ν implies η− � ν− and η+ � ν+. By Lemma 5.1(iii) we have that
HomG(∇(ν+),∇(ν−)) 6= 0. Since λ = λ+, we have by Proposition 4.2 that

(T (λ) : ∆(µ)) = (Tλλ′T (λ′) : ∆(µ)) = (T (λ′) : Tλ
′

λ ∆(µ)) = (T (λ′) : ∆(µ′)) ,

when µ = µ± for some µ′ ∈ Λ′: i.e., µ ∈ Λ̃, and 0 otherwise. Here we used
that for any finite dimensional G-module M with a Weyl filtration (M : ∆(µ)) =
dim HomG(M,∇(µ)). Finally, cλµ is oriented if and only if our cap is oriented
in cλµ and cλ′µ′ is oriented. So we can now finish by applying the induction
hypothesis, since cλ′ has one cap less than the original cλ. �

7. Decomposition numbers

Let µ ∈ Λp. Choose s1, s2 ∈ {1, . . . ,min(n, p)} with s1 + s2 ≤ n and µ ∈
Λ(s1, s2). First we define the cap codiagram coµ of the arrow diagram associated

2For the preservation of � one can use functions like the li(λ, µ) in [5, Sect. 8] and [4,
Sect. 5].
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to µ ∈ X+ as follows. We assume that the arrow diagram of µ is cyclically shifted
such that at least one of the walls is between the first and last node. All caps are
clockwise, starting from the leftmost node. We start on the left side of the wall.
We form the caps recursively. Find an arrow pair ∧∨ that are neighbours in the
sense that the only arrows in between are already connected with a cap or are
part of an ×, and connect them with a cap. Repeat this until there are no more
such arrow pairs. Now the unconnected arrows that are not part of an × form a
sequence ∨ · · · ∨ ∧ · · · ∧. Note that none of these arrows occur inside a cap. The
caps on the right side of the wall are formed in the same way. For example, when
p = 17, n = 20, s1 = 8, s2 = 7 and µ = [82643221, 10724221], then coµ is

∨
13
∧ ∧

16

∨
0
∧ ∧ ∨ ∨∧ ∨ ∧ ∨ ∧ ∧ ∨

12
.

Let λ ∈ Λp with µ � λ. If necessary, we change s1, s2 (and the arrow diagram of
µ, and coµ) to make sure that λ ∈ Λ(s1, s2). Then the arrow diagram of λ has its
single arrows and its ×’s at the same nodes as the arrow diagram of µ. We assume
that the nodes are cyclically shifted such that at least one of the walls determined
by s1 and s2 is between the first and last node. Then we know, by Remark 5.1.1,
that the arrow diagram of λ can be obtained from that of µ by repeatedly replacing
an arrow pair ∧∨ to the left or to the right of the wall by the opposite arrow pair.
Now we define the cap codiagram coµλ associated to µ and λ by replacing each
arrow in coµ by the arrow from the arrow diagram of λ at the same node. Put
differently, we put the caps from coµ on top of the arrow diagram of λ. We say
that coµλ is oriented if all caps in coµλ are oriented (clockwise or anti-clockwise).
It is not hard to show that when coµλ is oriented, the arrow diagrams of µ and λ
are the same at the nodes which are not endpoints of a cap in coµ. For example,
when p = 5, n = 7, s1 = 2, s2 = 3 and µ = [2, 1], then ρs1 = s′1 = 6, and coµ
(shifted) is

∧
1

∨
2

∨
3
∧
4

∨
0

.

Consider two dominant weights λ with µ � λ: [31, 21] and [32, 212] with (shifted)
arrow diagrams ∨ ∧ ∨ ∨ ∧ and ∨ ∨ ∧ ∨ ∧. Only for the first coµλ is oriented.

Theorem 7.1. Let s1, s2 ∈ {1, . . . ,min(n, p)} with s1 + s2 ≤ n, λ ∈ Λ(s1, s2) and
µ ∈ X+. Then

[∇(λ) : L(µ)] = [∆(λ) : L(µ)] =

{
1 if µ � λ and coµλ is oriented,

0 otherwise.

Proof. The proof is by induction on the number of caps in coµ and is completely
analogous to the proof of Theorem 6.1. The role of λ is now played by µ. We leave
the details to the reader. The final argument involving the projection is as in the
proof of [18, Thm. 7.1]. �

R. TANGE1702



For s ∈ {1, . . . ,min(n, p)} with 2s ≤ n define the involution † on Λ(s, s) by
letting λ† be the dominant weight whose arrow diagram is obtained from that of
λ by replacing all single arrows by their opposite. Note that † reverses the order
�.

Corollary. Let s ∈ {1, . . . ,min(n, p)} with 2s ≤ n and let λ, µ ∈ Λ(s, s). Then
[∆(λ) : L(µ)] = (T (µ†) : ∇(λ†)).

Proof. This follows from Theorems 6.1 and 7.1, since coµλ is obtained form cµ†λ†
by replacing all single arrows by their opposite. �

Remark 7.1. In view of [11, Lem. A4.6] and the above corollary it is natural to
conjecture that, for Λ the intersection of Λ(s, s) with a Wp-orbit under the dot
action, the algebra (OΛ†(k[G])∗,�) is the Ringel dual of (OΛ(k[G])∗,�).

8. The walled Brauer algebra and the rational Schur functor

We want to relate our results for the general linear group to the walled Brauer
algebra Br,s(n). This is natural since GLn and Br,s(n) are each others centraliser
on mixed tensor space V ⊗r⊗ (V ∗)⊗s; see [23, Sect. 4] for the characteristic p case.
For this we will need to introduce the rational Schur functor frat from a certain
category of G-modules to the category of finite dimensional modules for the walled
Brauer algebra. In Section 8.1 we briefly discuss the rational Schur algebra and
the walled Brauer algebra. In Section 8.2 we introduce Specht, permutation and
Young modules for the walled Brauer algebra and certain twisted analogues. In
Section 8.3 we introduce the rational Schur functor and derive its main properties.
The main results are Theorem 8.1 and Proposition 8.3. Combining Proposition 8.3
with Theorem 6.1 we obtain as a corollary the decomposition numbers of the walled
Brauer algebra when p is bigger than the greatest hook length in the partitions
involved. In Section 8.4 we prove some results for the inverse rational Schur functor
and for Young modules. In the case of the symplectic group and the Brauer algebra,
all this was done in [13, Sect. 1,2]. We follow the treatment there closely.

8.1. The rational Schur algebra and the walled Brauer algebra

Let r, s be integers≥ 0. For any δ ∈ k one has the walled Brauer algebra Br,s(δ);
see, e.g., [7] or [23] for a definition. Recall that it is defined as a subalgebra of
the Brauer algebra Br+s(δ). In each Brauer diagram, one draws a wall that goes
between the first r nodes and the last s nodes in the top row and between the first
r nodes and the last s nodes in the bottom row. Then Br,s(δ) is spanned by the
walled Brauer diagrams which are the Brauer diagrams in which each horizontal
edge (i.e. an edge joining two vertices in the same row) crosses the wall and each
vertical edge (i.e. an edge joining a vertex in the top row to one in the bottom
row) is on one side of the wall. This also makes sense for δ an integer, since we
can replace that integer by its natural image in k. The walled Brauer algebra is a
cellular algebra; see, e.g., [7, Thm. 2.7]. Put V r,s = V ⊗r ⊗ (V ∗)⊗s. Then we have
natural homomorphisms kSymr → EndG(V ⊗r) and Br,s(n) → EndG(V r,s). The
action of the symmetric group Symr is by permutation of the factors, the action of
Br,s(n) is explained in [2, p. 564, 565] and [23, p. 1220]. Using classical invariant
theory one can then show that these homomorphisms are surjective and that they
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are injective in case n ≥ r and n ≥ r + s, respectively; see [8] and [23, Thm. 4.1].
Let S(n, r) and S(n; r, s) be the spans of the representing automorphisms of
G in End(V ⊗r) and End(V r,s) respectively. Then these are algebras and the
natural embeddings S(n, r)→ EndkSymr

(V ⊗r) and S(n; r, s)→ EndBr,s(n)(V
r,s)

are isomorphisms; see [14, (2.6c)] and [23, Thm. 4.1]. The algebra S(n, r) is the
Schur algebra; see [14], and S(n; r, s) is the rational Schur algebra introduced in
[9]; see also [12]. Both algebras are generalised Schur algebras; see [16, Chap. A].
For S(n, r) the corresponding set of dominant weights is the set of partitions of r
of length ≤ n and for S(n; r, s) it is

Λr,s :=
{
λ = [λ1, λ2] ∈ X+

∣∣ |λ1| = r − t and |λ2| = s− t for some t ∈ N
}
.

The following lemma is well known; it will be used in Section 8.3.

Lemma 8.1.

(i) Let M be a finite dimensional vector space over k. The kGL(M)-module
M is a direct summand of M ⊗M∗ ⊗M and if dimM 6= 0 in k, then the
trivial kGL(M)-module k is a direct summand of M ⊗M∗.

(ii) Let H be a group and let M be a finite dimensional kH-module. Let r, s, t
be integers with r, s ≥ t ≥ 1. Then M⊗r−t⊗(M∗)⊗s−t is a direct summand
of M⊗r ⊗ (M∗)⊗s if r − t and s− t are not both 0 or if dimM 6= 0 in k.

Proof. (i) is [13, Lem. 1.1(i)] and (ii) follows from (i) by induction. �

8.2. Modules for the walled Brauer algebra

Notation. Put Symr,s = Symr × Syms. In what follows, r, s, t are integers with
r, s ≥ t ≥ 0 and we put r′ = r − t and s′ = s− t.

Let δ ∈ k. For any integer i ≥ 0, let It,i be the left ideal of the walled Brauer
algebra Br,s = Br,s(δ) spanned by the diagrams of which the bottom row has at
least t+ i horizontal edges, t of which join, for 1 ≤ j ≤ t, the j-th node from the
right before the wall to the j-th node from the right after the wall. Put It := Is,0,
Zt,i := It,i/It,i+1 and Zt = Zt,0. Note that It,i = Zt,i = 0 if t+ i > min(r, s). The
group Symr′,s′ acts on It from the right by permuting the first r′ nodes before
the wall and the first s′ nodes after the wall of the bottom row of a diagram.
Thus It and Zt are (Br,s(δ), kSymr′,s′)-bimodules. Furthermore Zt is a free right
kSymr′,s′ -module which has as a basis the canonical images of the diagrams in
which the vertical edges do not cross and of which the bottom row has precisely
t horizontal edges which join, for 1 ≤ j ≤ t, the j-th node from the right before
the wall to the j-th node from the right after the wall. One easily checks that
there are (

r

r′

)(
s

s′

)
t! =

(
r

t

)(
s

t

)
t!

such diagrams.
For µ a partition of r let S(µ), M(µ) and Y (µ) be the Specht module, permuta-

tion module and Young module of kSymr associated to µ. If char k = 0, then
S(µ) is irreducible and we also denote it by D(µ). If char k = p > 0 and µ is
p-regular, then S(µ) has a simple head and we denote it by D(µ). Denote the sign
representation of kSymr by ksg.
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If A and B are k-algebras, M is an A-module and N is a B-module, then M�N
denotes M ⊗N endowed with its natural structure of A⊗B-module. Let λ1 and
λ2 be partitions of r and s, respectively. When it is clear that we are dealing with
a kSymr,s-module, we denote ksg � ksg simply by ksg. Following [7, Sect. 3], we
define the Specht (or cell) module S(λ1, λ2) and twisted Specht (or cell) module

S̃(λ1, λ2) for the walled Brauer algebra by

S(λ1, λ2) :=Zt ⊗kSymr′,s′ (S(λ1) � S(λ2)) and

S̃(λ1, λ2) :=Zt ⊗kSymr′,s′

(
ksg ⊗ (S(λ1) � S(λ2))

)
.

By the above, dimS(λ1, λ2) = dim S̃(λ1, λ2) =
(
r
t

)(
s
t

)
t! dimS(λ1) dimS(λ2). By

[14, Rem. 6.4] we have ksg ⊗ S(µ) ∼= S(µT )∗, where µT denotes the transpose of
µ. If char k = 0 or λ1, λ2 are p-cores, then S(λh)∗ ∼= S(λh) for all h ∈ {1, 2}
and S̃(λ1, λ2) ∼= S(λ1T , λ2T ). If λ1, λ2 are p-regular and 6= ∅ in case r = s ≥ 1

and δ = 0, then S(λ1, λ2) and S̃(λ1, λ2) have a simple head which we denote

by D(λ1, λ2) and D̃(λ1, λ2); see [7, Thm. 2.7]. Whenever we write D(λ1, λ2) or

D̃(λ1, λ2) for some p-regular λ1, λ2, we assume that λ1, λ2 6= ∅ in case r = s ≥ 1
and δ = 0.

As Hartmann and Paget [15, Sect. 6] did for the Brauer algebra, we define the

permutation module M(λ1, λ2) and the twisted permutation module M̃(λ1, λ2) for
the walled Brauer algebra by

M(λ1, λ2) := Ind
Br,s

kSymr′,s′
(M(λ1) �M(λ2)) and

M̃(λ1, λ2) := Ind
Br,s

kSymr′,s′

(
ksg ⊗

(
M(λ1) �M(λ2)

))
.

Here Ind
Br,s

kSymr′,s′
is defined by Ind

Br,s

kSymr′,s′
M = It ⊗kSymr′,s′ M for any kSymr′,s′ -

module M . Note that M(1r, 1s) ∼= Br,s and M̃(1r, 1s) ∼= Br,s, since M(1r, 1s) =
kSymr,s, ksg ⊗ kSymr,s

∼= kSymr,s as kSymr,s-modules and I0 = Br,s.

Finally, we define the Young module Y(λ1, λ2) and the twisted Young module

Ỹ(λ1, λ2) for the walled Brauer algebra as the unique indecomposable summand

of M(λ1, λ2) resp. M̃(λ1, λ2) which surjects onto Zt ⊗kSymr′,s′ (Y (λ1) � Y (λ2))

resp. Zt ⊗kSymr′,s′

(
ksg ⊗ (Y (λ1) � Y (λ2))

)
; compare [15, Def. 15].

Let i be an integer ≥ 0. We denote the diagonal copy of Symi in Symi,i by
Di. We consider Symi,i and Di as embedded in Symr′,s′ via the embedding
Symr′−i,s′−i × Symi,i ⊆ Symr′,s′ . From the proof of [15, Prop. 23] in the Brauer
algebra case we have the following porposition.

Proposition 8.1 (cf. [13, Prop. 1.1]). Let M be a kSymr′,s′-module.

(i) P := Ind
Br,s

kSymr′,s′
M has a descending filtration P = P0 ⊇ P1 ⊇ · · · such

that Pi = 0 for i > t and Pi/Pi+1
∼= Zt,i ⊗kSymr′,s′ M for i ≥ 0.

(ii) Zt,i ⊗kSymr′,s′ M
∼= Zt+i ⊗kSymr′−i,s′−i

MDi
for i ≤ t, where MDi

is the
largest trivial Di-module quotient of M .
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The filtration of Ind
Br,s

kSymr′,s′
M = It ⊗kSymr′,s′ M is constructed as follows.

Let It(i) be the subspace of It spanned by the diagrams of which the bottom
row has exactly t + i horizontal edges, t of which join, for 1 ≤ j ≤ t, the j-th
node from the right before the wall to the j-th node from the right after the
wall. Then, It,i =

⊕
j≥i It(j). Since each It(i) is stable under the right action

of Symr′,s′ on It, we have Ind
Br,s

kSymr′,s′
M =

⊕
i≥0(It(i) ⊗kSymr′,s′ M). Now we

put Pi =
⊕

j≥i(It(j) ⊗kSymr′,s′ M) ∼= It,i ⊗kSymr′,s′ M and observe that Pi is a
Br,s-submodule of P .

The following result shows that we can restrict to the case that δ lies in the
prime field. It is the analogue of [13, Prop. 1.2]. It can be proved in the same way
where the role of [6, Prop. 6.1] is now played by [7, Cor. 4.3].

Proposition 8.2 (cf. [7, Cor. 4.3]). Assume that δ does not lie in the prime field.
Put ni =

(
r
i

)(
s
i

)
i!. Then we have an algebra isomorphism

Br,s(δ) ∼=
min(r,s)⊕
i=0

Matni(kSymr−i,s−i).

In the remainder of this subsection we assume that δ = n and that n ≥ r+s. The
contravariant dual M◦ of a finite dimensional G-module M is defined as the dual
vector space of M with action (g ·f)(x) = f(gTx). As is well known, L(λ)◦ ∼= L(λ),
∇(λ)◦ ∼= ∆(λ) and ∆(λ)◦ ∼= ∇(λ) for all λ ∈ X+. So V ◦ ∼= V , (V ∗)◦ ∼= V ∗ and
therefore (V r,s)◦ ∼= V r,s. Put differently, the standard inner products on V and
V ∗ induce a nondegenerate bilinear form (−,−) on V r,s which is contravariant:
(gu, v) = (u, gT v) for all u, v ∈ V r,s and all g ∈ G. This implies that S(n; r, s)
is stable under the transpose map of Endk(V r,s) given by this form. We can use
this transpose map to define the dual of any S(n; r, s) module M which of course
identifies with M◦. Recall that Br,s has a standard anti-automorphism ι that flips
a diagram over the horizontal axis. One easily checks that (bu, v) = (u, ι(b)v) for
all u, v ∈ V r,s and all b ∈ Br,s. This means that the Br,s-module V r,s is self-dual.

Using the description of the invariants of vectors and covectors for GLn we
see that HomG(V r2,s2 , V r1,s1) has a basis indexed by ((r1, s1), (r2, s2))-diagrams.
These are diagrams which are graphs whose vertices are arranged in two rows,
r1 + s1 in the top row and r2 + s2 in the bottom row with a wall which goes
between the first r1 nodes and the last s1 nodes at the top, and between the first
r2 nodes and the last s2 nodes at the bottom. The edges form a matching of
the vertices in pairs such that the horizontal edges cross the wall and the vertical
edges don’t. See the proof of [23, Thm. 4.1] and the preceding paragraph for
examples. The horizontal edges in the bottom row correspond to contractions
by means of the canonical bilinear form and the horizontal edges in the top row
correspond to “multiplications” by the invariant

∑n
i=1 ei ⊗ e∗i , where the ei and

e∗i are the elements of the standard basis of V and its dual basis. In the proofs of
Lemmas 8.4 and 8.5 below we will use these diagram bases.

The diagrams that form a basis of It are in 1-1 correspondence with the
((r, s), (r′, s′))-diagrams: just omit in the bottom row the last t nodes before the
wall and the last t nodes after the wall, and the edges which have these nodes as

R. TANGE1706



endpoints. So the canonical isomorphism Br,s
∼→ EndG(V r,s) induces a canonical

isomorphism
It
∼→ HomG(V r

′,s′ , V r,s)

of (Br,s, kSymr′,s′)-bimodules. The vector space HomG(V r,s, V r
′,s′) has a nat-

ural (kSymr′,s′ , Br,s)-bimodule structure and therefore, by means of the stan-
dard anti-automorphisms of Symr′,s′ and Br,s, also a natural (Br,s, kSymr′,s′)-
bimodule structure. Composing the above isomorphism with the transpose map
HomG(V r

′,s′ , V r,s) → HomG(V r,s, V r
′,s′), using contravariant duals, we obtain a

canonical isomorphism
ϕ : It

∼→ HomG(V r,s, V r
′,s′) (5)

of (Br,s, kSymr′,s′)-bimodules, which induces an isomorphism

Zt
∼→ HomG(V r,s, V r

′,s′)/ϕ(It,1) (6)
of (Br,s, kSymr′,s′)-bimodules.

8.3. The rational Schur functor

For a finite dimensional algebra A over k, we denote the category of finite dimen-
sional A-modules by mod(A). Assume that n ≥ r, s ≥ 0. The Schur functor
f : mod(S(n, r))→ mod(kSymr) can be defined by

f(M) = HomS(n,r)(V
⊗r,M) = HomG(V ⊗r,M).

Here the action of the symmetric group comes from the action on V ⊗r and we
use the inversion to turn right modules into left modules. An equivalent definition
is: f(M) = M$r

, the weight space corresponding to the weight $r = 1r =
(1, 1, . . . , 1) ∈ Zr ⊆ Zn; see [14]. An isomorphism

HomG(V ⊗r,M)
∼→M$r

(7)

is given by u 7→ u(e1 ⊗ e2 ⊗ · · · ⊗ er). This can be deduced from [14, 6.2g
Rem. 1 and 6.4f]. We have embeddings Symr ⊆ Symn ⊆ NG(T ), where the second
embedding is by permutation matrices. Then $r is fixed by Symr, so there is
an action of Symr on M$r

for every S(n, r)-module M . With this action (7) is
Symr-equivariant. The inverse Schur functor g : mod(kSymr)→ mod(S(n, r)) can
be defined by g(M) = V ⊗r ⊗kSymr

M .

Recall that ξ̆ denotes the reversed tuple of ξ ∈ Zn. We can also define f(M) =
M$̆r and then we have an isomorphism

HomG(V ⊗r,M)
∼→M$̆r

given by u 7→ u(en−r+1 ⊗ e2 ⊗ · · · ⊗ en). In this case Symr is embedded in Symn

as Sym({n− r + 1, . . . , n}).
If we combine the above two versions of the Schur functor, then we can form

another Schur functor f (2) : mod(S(n, r)⊗S(n, s))→ mod(kSymr,s) by f (2)(M) =
HomG×G(V ⊗r � V ⊗s,M) and then we have an isomorphism

HomG×G(V ⊗r � V ⊗s,M)
∼→M($r,$̆s) (8)
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given by u 7→ u((e1 ⊗ · · · ⊗ er)⊗ (en−s+1 ⊗ · · · ⊗ en)). This isomorphism is Symr,s

equivariant if we embed Symr,s in Symn,n by combining the above two types of
embeddings. It is elementary to verify that for M an S(n, r)-module and N an
S(n, s)-module we have f (2)(M �N) = f(M) � f(N).

We now retain the notation and assumptions of Section 8.2. In particular,
n ≥ r + s and Br,s = Br,s(n). We define the rational Schur functor

frat : mod(S(n; r, s))→ mod(Br,s)

by

frat(M) = HomS(n;r,s)(V
r,s,M) = HomG(V r,s,M).

Here the action of the Br,s comes from the action on V r,s and we use the standard
anti-automorphism of Br,s to turn right modules into left modules. Since V =
∇(ε1) = ∆(ε1) and V ∗ = ∇(−εn) = ∆(−εn) are tilting modules, the same holds
for V r,s; see, e.g., [16, Prop. E.7]. This implies that frat maps short exact sequences
of modules with a good filtration to exact sequences.

We define the inverse rational Schur functor

grat : mod(Br,s)→ mod(S(n; r, s))

by

grat(M) = V r,s ⊗Br,s
M.

By [20, Thm. 2.11] we have for N ∈ mod(Br,s) and M ∈ mod(S(n; r, s))

HomG(grat(N),M) ∼= HomBr,s
(N, frat(M)). (9)

There is an alternative for frat and grat:

f̃rat(M) = V r,s ⊗S(n;r,s) M and g̃rat(N) = HomBr,s
(V r,s, N),

where we consider V r,s as right S(n;r,s)-module via the transpose map of S(n;r,s).
But, by [20, Lem. 3.60], we have f̃rat(M

◦) ∼= frat(M)∗ and g̃rat(N
∗) ∼= grat(N)◦.

So the results obtained using f̃rat and g̃rat can also be obtained by dualizing the
results obtained using frat and grat.

The following lemma is the analogue of [13, Lem. 2.1] for our situation.

Lemma 8.2. For λ = [λ1, λ2] ∈ Λr,s we have dim HomG(∆(λ), V r,s) is equal to

dim HomG(V r,s,∇(λ)) =

(
r

t

)(
s

t

)
t! dimS(λ1) dimS(λ2).
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Proof. Since V r,s has a good filtration, the dimension of HomG(∆(λ), V r,s) is equal
to the multiplicity of ∇(λ) in a good filtration of V r,s. This multiplicity is equal
to the coefficient of χ(λ) in an expression of ch V r,s as a Z-linear combination of
Weyl characters. Similar remarks apply to the dimension of HomG(V r,s,∇(λ)).
For a partition µ denote dimS(µ) by dµ. For r, s ≥ 0 with r + s ≤ n put

ψrs =
∑
λ1,λ2

dλ1dλ2χ([λ1, λ2]) ,

where the sum is over all partitions λ1 of r and λ2 of s. Then we have to show
that for r, s ≥ 0 with r + s ≤ n we have

chV r,s =

min(r,s)∑
t=0

(
r

t

)(
s

t

)
t!ψr−t,s−t. (∗)

Since chV r,0 = ψr,0 and chV 0,s = ψ0,s, by classical Schur–Weyl duality, (*) holds
when s = 0 or r = 0. From the rules for induction and restriction for the pair
Symr−1 ≤ Symr we obtain that, for µ a partition of r − 1, rdµ =

∑
ν dν , where

the sum is over the partitions ν of r obtained by adding a box to µ and, for µ a
partition of r, dµ =

∑
ν dν , where the sum is over the partitions ν of r−1 obtained

by removing a box from µ. From this and Brauer’s formula [16, II.5.8] we obtain
for r ≥ 1, s ≥ 0 with r + s < n that

ch (V ∗)ψr,s = χ(−εn)ψr,s = ψr,s+1 + rψr−1,s.

From this (*) follows easily by induction on s. �

Recall that induced modules for a reductive group can be realized in the algebra
of regular functions of the group. We embed G into G×G via

A 7→ (A, (A−1)T ).

Let λ = [λ1, λ2] ∈ X+ with |λ1| = r, |λ2| = s. From the fact that ∇(λ) has a bide-
terminant basis labelled by standard rational bitableaux (see [23, Thm. 2.2(iii)]) it
is clear that restriction of functions induces an epimorphism ∇(λ1)�∇(λ2)→ ∇(λ)
of G-modules.3 Now we can form a commutative diagram as below where the
vertical maps are induced by the restriction of functions ∇(λ1) �∇(λ2) → ∇(λ)
and the horizontal maps are evaluation at (e1⊗ · · ·⊗ er)⊗ (en−s+1⊗ · · ·⊗ en) and
(e1 ⊗ · · · ⊗ er)⊗ (e∗n−s+1 ⊗ · · · ⊗ e∗n).

HomG×G(V ⊗r � V ⊗s,∇(λ1) �∇(λ2)) //

��

∇(λ1)$r
⊗∇(λ2)$̆s

��
HomG(V r,s,∇(λ)) // ∇(λ)[$r,$s]

(10)

Here ∇(λ)µ denotes the µ-weight space of ∇(λ) with respect to T .

3We have ∇(λ1) � ∇(λ2) = ∇(λ1) ⊗ ∇(−λ̆2) as G-modules, since twisting with the
inverse transpose turns ∇(λ) into ∇(−λ̆) and ∆(λ) into ∆(−λ̆).
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Lemma 8.3.

(i) Let M be a homogeneous polynomial T × T -module of bidegree (r, s) and
let µ1, µ2 ∈ Nn with |µ1| = r and |µ2| = s, such that for some u we have
µ1
i = 0 for all i > u and µ2

i = 0 for all i ≤ u. Then the (µ1, µ2)-weight
space of M with respect to T ×T is the same as the (µ1−µ2)-weight space
with respect to T , embedded in T × T via t 7→ (t, t−1).

(ii) Let λ = [λ1, λ2] ∈ X+ with |λ1| = r, |λ2| = s and let µ1, µ2 ∈ Nn with
|µ1| = r and |µ2| = s, such that for some u we have µ1

i = 0 for all i > u
and µ2

i = 0 for all i ≤ u. Then the restriction of functions induces an
isomorphism (∇(λ1) �∇(λ2))µ1−µ2 → ∇(λ)µ1−µ2 on the (µ1 − µ2)-weight
spaces for T .

(iii) All maps in (10) are isomorphisms.

Proof. (i) A weight (µ1, µ2) of T ×T vanishes on T if and only if µ1 = µ2. So if µh

and νh, h ∈ {1, 2}, are weights of T such that the νh are polynomial, for some u
we have µ1

i = 0 for all i > u and µ2
i = 0 for all i ≤ u, |νh| = |µh| for all h ∈ {1, 2},

and (ν1, ν2)|T = (µ1, µ2)|T , then (ν1, ν2) = (µ1, µ2).
(ii) Clearly ∇(λ1) � ∇(λ2) induces a surjection on the weight spaces for T .

So it suffices to show that (∇(λ1) � ∇(λ2))µ1−µ2 and ∇(λ)µ1−µ2 have the same
dimension. Note that, by (i), (∇(λ1) � ∇(λ2))µ1−µ2 is also the (µ1, µ2)-weight
space with respect to T × T . By [14, 4.5a] dim∇(λ1)µ1 �∇(λ2)µ2 is the number
of standard λ1-tableaux of content µ1 times the number of standard λ2-tableaux
of content µ2. By [23, Thm. 3.2(iii)] and the definitions on p1215/1216 in [23]
dim∇(λ)µ1−µ2 is the number of standard rational tableaux of shape (λ1, λ2) and
weight µ1− µ2. By the proof of (i) any rational tableau (T 1, T 2) of shape (λ1, λ2)
and weight ν1 − ν2 = µ1 − µ2, νh the weight of Th, h ∈ {1, 2}, must satisfy
(ν1, ν2) = (µ1, µ2). Because of our condition on µ1 and µ2, T 1 and T 2 have no
numbers in common. So (T 1, T 2) is rational standard if and only if T 1 and T 2 are
standard. So the two dimensions are the same.

(iii) That the horizontal map in the top row of (10) is an isomorphism was
pointed out before; see (8). The vertical map on the right is an isomorphism by
(ii). It follows that the horizontal map in the bottom row is surjective. But then
it must be an isomorphism by Lemma 8.2. Now the vertical map on the left must
also be an isomorphism, since it is a composite of isomorphisms. �

For µ ∈ Nl we put SµV = Sµ1V ⊗ · · · ⊗ SµlV and ∧µV = ∧µ1V ⊗ · · · ⊗∧µlV .

Lemma 8.4. Recall that r′ = r − t and s′ = s− t. The following holds.

(i) Let λ = [λ1, λ2] ∈ X+ with |λ1| = r′, |λ2| = s′. Then the canonical
homomorphism

HomG(V r,s, V r
′,s′)⊗kSymr′,s′ HomG(V r

′,s′ ,∇(λ))→ HomG(V r,s,∇(λ)),

given by composition, is surjective.
(ii) Let M be an S(n, r′)⊗ S(n, s′)-module. The canonical homomorphism

HomG(V r,s, V r
′,s′)⊗kSymr′,s′HomG×G(V ⊗r

′
�V ⊗s

′
,M)→HomG(V r,s,M),

given by composition, is an isomorphism if M is a direct sum of direct
summands of V ⊗r

′
� V ⊗s

′
and it is surjective if M is injective.
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Proof. (i) By Lemma 8.2 it suffices to give a family of
(
r
t

)(
s
t

)
t! dimS(λ1) dimS(λ2)

elements of HomG(V r,s, V r
′,s′)⊗kSymr′,s′ HomG(V r

′,s′ ,∇(λ)) which is mapped to

an independent family in HomG(V r,s,∇(λ)). As we saw, HomG(V r,s, V r
′,s′) has

a basis indexed by ((r′, s′), (r, s))-diagrams. Let D be the set of ((r′, s′), (r, s))-
diagrams that have no horizontal edges in the top row and whose vertical edges
do not cross, and let (pd)d∈D be the corresponding family of basis elements in
HomG(V r,s, V r

′,s′). Let (ui)∈I be a basis of HomG(V r
′,s′ ,∇(λ)). We have

HomG(V r
′,s′ ,∇(λ)) ∼= S(λ1) � S(λ2) by Lemma 8.3(iii) (with (r, s) = (r′, s′)),

|D| =
(
r
t

)(
s
t

)
t! and pd⊗ ui is mapped to ui ◦ pd. So it suffices to show that the ele-

ments ui◦pd, d ∈ D, i ∈ I, are linearly independent. So assume
∑
i,d aid ui◦pd = 0

for certain aid ∈ k. Consider the following diagram d0 ∈ D:

d0 = • · · · • • · · · • • · · · • • · · · •
• · · · • • · · · •

︸ ︷︷ ︸
r′ vertices

︸ ︷︷ ︸
t vertices

︸ ︷︷ ︸
s′ vertices

︸ ︷︷ ︸
t vertices

.

Put

v0 = e1 ⊗ · · · ⊗ er′ ⊗ er′+1 ⊗ · · · ⊗ er ⊗ e∗n−s′+1 ⊗ · · · ⊗ e∗n ⊗ e∗r′+1 ⊗ · · · ⊗ e∗r

and v1 = e1⊗· · ·⊗er′⊗e∗n−s′+1⊗· · ·⊗e∗n. Then we have for d ∈ D that pd(v0) = v1

if d = d0 and 0 otherwise. It follows that
∑
i aid0ui(v1) = 0. By Lemma 8.3(iii),

evaluation at v1 is injective on HomG(V r
′,s′ ,∇(λ)), so aid0

= 0 for all i ∈ I. Since
we can construct a similar vector for any other d ∈ D it follows that aid = 0 for
all i ∈ I and d ∈ D.

(ii) The class of S(n, r′)⊗S(n, s′)-modulesM for which this homomorphism is an
isomorphism, is closed under taking direct summands and direct sums. The same
holds for the class of S(n, r′)⊗ S(n, s′)-modules M for which this homomorphism
is surjective. By [10, Lem. 3.4(i)] every injective S(n, r′) ⊗ S(n, s′)-module is a

direct sum of direct summands of some Sλ
1

V � Sλ
2

V , λ1 and λ2 partitions of
r′ and s′, respectively. Furthermore, EndG×G(V ⊗r

′
� V ⊗s

′
) ∼= kSymr′,s′ . So it

suffices now to show that the homomorphism is surjective if M = Sλ
1

V � Sλ
2

V ,
λ1, λ2 as above.

Put H = HomG(V r,s, V r
′,s′) and let f (2) = HomG×G(V ⊗r

′
� V ⊗s

′
,−) be the

Schur functor. Let 0 → M → N → P → 0 be a short exact sequence of
S(n, r′) ⊗ S(n, s′)-modules with a good filtration. Then we have the following
diagram

H⊗kSymr′,s′ f
(2)(M) //

��

H⊗kSymr′,s′ f
(2)(N) //

��

H⊗kSymr′,s′ f
(2)(P ) //

��

0

frat(M) // frat(N) // frat(P ) // 0
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with rows exact, because f (2) is exact and frat is exact on modules with a good
filtration. Here we have used that a G×G-module with a good G×G-filtration, also
has a good G-filtration; see [16, II.4.21]. We deduce that if the homomorphism in
(ii) is surjective for N , then it is surjective for P . Since the kernel of the canonical

epimorphism V ⊗r
′
� V ⊗s

′ → Sλ
1

V � Sλ
2

V has a good G-filtration by [11, 2.1.14]
applied to G×G, and [11, 2.1.15(ii)(b)], we are done. �

In the theorem below, f (2) is the Schur functor from mod(S(n, r′)⊗S(n, s′)) to
mod(kSymr′,s′). Note that (ii) says that, under the stated condition, the homomor-
phism in Lemma 8.4(ii) is an isomorphism.

Theorem 8.1. Recall that n ≥ r + s. The following holds.

(i) For λ = [λ1, λ2] ∈ Λr,s we have

frat(∇(λ)) ∼= S(λ1, λ2),

frat(S
λ1

V ⊗ Sλ
2

V ∗) ∼=M(λ1, λ2), and

frat(∧λ
1

V ⊗ ∧λ
2

V ∗) ∼= M̃(λ1, λ2) if char k = 0 or > max(|λ1|, |λ2|).

(ii) Let M be an S(n, r′) ⊗ S(n, s′)-module. If M is a direct sum of direct
summands of V ⊗r

′
� V ⊗s

′
or if M is injective, then

frat(M) ∼= Ind
Br,s

kSymr′,s′
f (2)(M).

Proof. Whenever λ = [λ1, λ2] ∈ Λr,s we assume |λ1| = r′ and |λ2| = s′. If we

give HomG(V r
′,s′ ,∇(λ)) the kSymr′,s′ -module structure coming from the action

of Symr′,s′ on V r
′,s′ by place permutations, then the isomorphisms in (10) are

Symr′,s′ -equivariant. Now Lemma 8.4(i) and the isomorphism (5) give us an epi-
morphism It ⊗kSymr′,s′ (S(λ1) � S(λ2)) → frat(∇(λ)). The image of a nonzero
homomorphism from V r,s to ∇(λ) must contain L(λ) and therefore have λ as a
weight. The image of a homomorphism in ϕ(It,1) does not have λ as a weight,
since ϕ(It,1) has a basis of homomorphisms whose image lies is a submodule of

V r
′,s′ which is isomorphic to V r

′−1,s′−1. So, by (6) and the definition of S(λ1, λ2),
we obtain an epimorphism S(λ1, λ2) → frat(∇(λ)). By Lemma 8.2 this must be
an isomorphism.

Let M be an S(n, r′)⊗ S(n, s′)-module. Lemma 8.4(ii) and the isomorphism ϕ
give us a homomorphism

Ind
Br,s

kSymr′,s′
f (2)(M)→ frat(M), (∗)

which is an isomorphism if M is a direct sum of direct summands of V ⊗r
′
�V ⊗s

′
and

surjective for M injective. Note that Sλ
1

V �Sλ
2

V = Sλ
1

V ⊗Sλ2

V ∗ as G-modules
and similar for exterior powers. So we obtain an epimorphism M(λ1, λ2) →
frat(S

λ1

V ⊗Sλ2

V ∗) and a homomorphism M̃(λ1, λ2)→ frat(
∧
λ1

V ⊗
∧
λ2

V ∗), since
f(SµV ) = M(µ) and f(

∧
µV ) = ksg ⊗M(µ) by [10, Lem. 3.5]. If char k = 0 or
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> max(r′, s′), then S(n, r′) ⊗ S(n, s′) is semisimple, so every S(n, r′) ⊗ S(n, s′)-
module is a direct sum of direct summands of V ⊗r

′
� V ⊗s

′
and (*) is an isomor-

phism for every S(n, r′) ⊗ S(n, s′)-module M . In particular, we have the third
isomorphism in (i).

It remains to show that the epimorphism M(λ1, λ2) → frat(S
λ1

V ⊗ Sλ2

V ∗) is
an isomorphism. Since (*) is an isomorphism if char k = 0, it suffices to show

that the dimensions of frat(S
λ1

V ⊗ Sλ
2

V ∗) and M(λ1, λ2) are independent of

the characteristic. The dimension of frat(S
λ1

V ⊗ Sλ2

V ∗) is independent of the
characteristic, since by [11, Prop. A.2.2(ii)] it only depends on the formal charac-

ters of the G-modules V r,s and Sλ
1

V ⊗ Sλ2

V ∗ (and these are independent of the
characteristic). That M(λ1, λ2) has dimension independent of the characteristic
follows from Proposition 8.1, the fact that M(λ1) �M(λ2) is self-dual and the
following well-known fact.

Let H be a finite group, let N be a permutation module for H over k with H-
stable basis S. Then the dimension of NH is equal to the number of H-orbits
in S.

We have now proved the second isomorphism in (i) and we have also proved (ii),
since every injective S(n, r′)⊗S(n, s′)-module is a direct sum of direct summands

of some Sλ
1

V � Sλ
2

V , λ1, λ2 partitions of r′ resp. s′. �

For λ ∈ Λr,s with λ1, λ2 p-regular and λ1, λ2 6= ∅ in case r = s ≥ 1 and
δ = 0, we denote the projective cover of the irreducible Br,s-module D(λ1, λ2) by
P(λ1, λ2).

Proposition 8.3. Let λ = [λ1, λ2], µ = [µ1, µ2] ∈ Λr,s. Then T (λ) is a direct
summand of the G-module V r,s if and only if λ1, λ2 are p-regular and λ1, λ2 6= ∅
in case r = s ≥ 1 and δ = 0. Now assume that λ satisfies these conditions. Then,

(i) frat(T (λ)) = P(λ1, λ2).
(ii) The multiplicity of T (λ) in V r,s is dimD(λ1, λ2).

(iii) The decomposition number [S(µ1, µ2) : D(λ1, λ2)] equals the ∆-filtration
multiplicity (T (λ) : ∆(µ)) and the ∇-filtration multiplicity (T (λ) : ∇(µ)).

Proof. Let Ω be the set of all partitions satisfying the stated conditions. The
rational Schur functor frat induces a category equivalence between the direct sums
of direct summands of the G-module V r,s and the projective Br,s-modules; see, e.g.,
[1, Prop. 2.1(c)]. Clearly, the number of isomorphism classes of indecomposable
Br,s-projectives is equal to |Ω|. So, to prove the first assertion, it suffices to show
that for each λ ∈ Ω, T (λ) is a direct summand of V r,s. By Lemma 8.1 we may
assume that |λ1| = r and |λ2| = s. The indecomposable tilting module T (λ1) is a
direct summand of V ⊗r, for example by [11, Sect.. 4.3, (1) and (4)]. Twisting with

the inverse transpose, the same argument gives that T (− λ̆2) is a direct summand

of (V ∗)⊗s. So the tilting module T (λ1) ⊗ T (− λ̆2) is a direct summand of V r,s.

Since T (λ1)⊗ T (− λ̆2) has highest weight λ, it has T (λ) as a direct summand. It
follows that T (λ) occurs as a component of V r,s.

Let λ ∈ Ω. By Theorem 8.1(i) frat(T (λ)) surjects onto frat(∇(λ)) = S(λ1, λ2).
But S(λ1, λ2) surjects onto D(λ1, λ2). This proves (i), and (ii) is now also clear,
since this multiplicity (as an indecomposable direct summand) is equal to the
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multiplicity of P(λ1, λ2) in Br,s. We have grat(frat(M)) ∼= M canonically for
M = V r,s and therefore also for M = T (λ). By (9) we have

HomG(T (λ),M) ∼= HomBr,s
(P(λ1, λ2), frat(M))

for every S(n; r, s)-module M . It follows that

[S(µ1, µ2) : D(λ1, λ2)] = dim HomBr,s
(P(λ1, λ2),S(µ1, µ2))

= dim HomG(T (λ),∇(µ)) = (T (λ) : ∆(µ))

= (T (λ) : ∇(µ)). �

From Theorem 6.1 and Proposition 8.3, we now obtain the following corollary.

Corollary. Let λ1, λ2, µ1, µ2 be partitions with r−|λ1| = s−|λ2| ≥ 0 and r−|µ1| =
s− |µ2| ≥ 0 and assume that λ1, λ2 6= ∅ if r = s ≥ 1 and δ = 0. Assume also that
λh1 + l(λh) ≤ p for all h ∈ {1, 2}. Choose n ≥ r + s such that n = δ mod p. Put
λ = [λ1, λ2], µ = [µ1, µ2] and choose s1, s2 ∈ {1, . . . ,min(n, p)} with s1 + s2 ≤ n
and λ ∈ Λ(s1, s2). Then

[S(µ1, µ2) : D(λ1, λ2)] =

{
1 if µ � λ and cλµ is oriented,

0 otherwise.

Remarks 8.1.
1. From Proposition 8.3 it is clear that when p > max(r, s) and, in case r = s,

n 6= 0 in k, then V r,s is a full tilting module for S(n; r, s) and the walled Brauer
algebra Br,s(n) is the Ringel dual (see, e.g., [11, Appendix A4]) of the rational
Schur algebra S(n; r, s).

2. Let fr
′,s′

rat be the rational Schur functor from mod(S(n; r′, s′)) to mod(Br′,s′)
and let M be a G-module, which has a filtration with sections isomorphic to some
∇(λ) with |λ1| = r′ and |λ2| = s′. Then

frat(M) ∼= Zt ⊗kSymr′,s′ f
r′,s′

rat (M).

This is shown as in the case of the symplectic group; see [13, Rem 2.1.1].
3. Put πr,s={λ=[λ1, λ2]∈Λr,s | |λ1|<r, |λ2|<s}. Let M be an S(n, r)⊗S(n, s)-

module and put N=Oπr,s
(M). By [11, Prop. A2.2(v), Lem. A3.1] N has a filtration

with sections ∇(λ), λ ∈ πr,s, and M/N has a filtration with sections ∇(λ), λ ∈ Λr,s
with |λ1| = r (and |λ2| = s). Note that M/N = ∇(λ) if M = ∇(λ1)�∇(λ2). Now
we can form the diagram

f (2)(M) //

��

M($r,−$̆s)

��
frat(M/N) // (M/N)[$r,$s]

in the same way as (10) and by a proof very similar to that of Lemma 8.3(iii) we
show that all maps are isomorphisms.
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8.4. Further results on the rational Schur functor

Lemma 8.5. Let M be an G-module. Then the canonical homomorphism

V r,s ⊗Br,s HomG(V r,s,M)→M

given by function application is an isomorphism if M is a direct sum of direct
summands of V r,s or if r = s ≥ 2 and M = k.

Proof. That the canonical homomorphism is an isomorphism under the first con-
dition is obvious, since EndG(V r,s) ∼= Br,s. So assume r = s ≥ 2 and M = k.
Since the homomorphism is always surjective and, as vector spaces,

V r,r ⊗Br,r HomG(V r,r, k) ∼= HomBr,r (HomG(V r,r, k), V r,r)∗

by [20, Lem. 3.60] and the self-duality of V r,r as Br,r-module, it suffices to show
that HomBr,r

(HomG(V r,r, k), V r,r) is one-dimensional. Recall that HomG(V r,r, k)
is a left Br,r-module by means of the standard anti-automorphism ι of Br,r. It has
a basis indexed by ((0, 0), (r, r))-diagrams and is generated as a kSymr,r-module
by the homomorphism P corresponding to the ((0, 0), (r, r))-diagram

• · · · • • · · · •
∅ ∅

︸ ︷︷ ︸
r vertices

︸ ︷︷ ︸
r vertices

.

It follows that any Br,r-homomorphism from HomG(V r,r, k) to V r,r is deter-
mined by its image of P . One easily checks that P ◦ ι(d) = P , where d ∈ Br,r is
given by

d = • • • · · · • • • • · · · •
• • • · · · • • • • · · · •

︸ ︷︷ ︸
r vertices

︸ ︷︷ ︸
r vertices

.

Therefore the image of P under such a homomorphism must lie in d · V r,r ={∑n
i=1 ei ⊗ u⊗ e∗i ⊗ v |u ∈ V ⊗(r−1), v ∈ (V ∗)⊗(r−1)

}
. But then it must lie in the

π-conjugate of this subspace for any π in the diagonal copy of Symr in Symr,r, since
such a π fixes P . We conclude that the image of P under any Br,r-homomorphism
from HomG(V r,r, k) to V r,r must be a scalar multiple of

n∑
i1,...,ir=1

ei1 ⊗ · · · ⊗ eir ⊗ e∗i1 ⊗ · · · ⊗ e
∗
ir . �

In the proposition below, g(2) is the inverse Schur functor from mod(kSymr′,s′)

to mod(S(n, r′)⊗ S(n, s′)) given by g(2)(M) = (V ⊗r
′
� V ⊗s

′
)⊗kSymr′,s′ M .

A COMBINATORIAL TRANSLATION PRINCIPLE FOR GLn 1715



Proposition 8.4.

(i) If n = 0 in k and r′ = s′ = 0, assume r ≥ 2. Then we have

grat

(
Ind

Br,s

kSymr′,s′
N
)
∼= g(2)(N)

as G-modules for every kSymr′,s′-module N .
(ii) Let λ = [λ1, λ2] ∈ Λr,s. If λ1 = λ2 = ∅ and n = 0 in k, then assume

r = s ≥ 2. Then grat(M(λ1, λ2)) ∼= Sλ
1

V ⊗ Sλ2

V ∗ and if char k 6= 2, then

grat

(
M̃(λ1, λ2)

) ∼= ∧λ1

V ⊗∧λ2

V ∗.

(iii) Let λ = [λ1, λ2] ∈ Λr,s. The G-module Sλ
1

V ⊗ Sλ
2

V ∗ has a unique
indecomposable summand J(λ) in which ∇(λ) has filtration multiplicity
> 0 and this multiplicity is equal to 1. Every summand of M(λ1, λ2) has
a Specht filtration and frat(J(λ)) ∼= Y(λ1, λ2).

Proof. (i) Since Ind
Br,s

kSymr′,s′
N ∼= HomG(V r,s, V r

′,s′)⊗kSymr′,s′ N , this follows from

Lemmas 8.1 and 8.5 applied to V r
′,s′ .

(ii) If we take (r′, s′) = (|λ1|, |λ2|) in (i), then we get grat(M(λ1, λ2)) ∼=
g(2)(M(λ1) � M(λ2)) and grat(M(λ1, λ2)) ∼= g(2)(ksg ⊗ M(λ1) � M(λ2)). One

easily verifies that g(2)(M(λ1) �M(λ2)) ∼= Sλ
1

V � Sλ
2

V and, in case char k 6= 2,

g(2)(ksg ⊗M(λ1) �M(λ2)) ∼=
∧
λ1

V �
∧
λ2

V .
(iii) Put (r′, s′) = (|λ1|, |λ2|). The filtration multiplicity of ∇(λ1) � ∇(λ2) in

Sλ
1

V ⊗ Sλ2

V is 1 and if, for µ = [µ1, µ2] ∈ Λr,s, ∇(ν) has filtration multiplicity
> 0 in ∇(µ1) �∇(µ2), then either ν = µ and the multiplicity is 1 or |νh| < |µh|
for all h ∈ {1, 2} as one can easily deduce from Lemma 8.3(ii). We conclude that

the filtration multiplicity of ∇(λ) in Sλ
1

V ⊗ Sλ2

V ∗ is 1. A direct summand of
a module with a good filtration has a good filtration. So, by the Krull-Schmidt
theorem, there is a unique indecomposable summand J(λ) in which ∇(λ) has
filtration multiplicity > 0. This proves the first assertion. If λ1 = λ2 = ∅, then
Sλ

1

V ⊗ Sλ2

V ∗ = k, t = r = s, Zr = Ir. An argument very similar to that of the
proof of Lemma 8.5 shows that EndBr,s

(Ir) = k: i.e., Ir is indecomposable. So
S(λ1, λ2) =M(λ1, λ2) = Y(λ1, λ2) = Ir and the second assertion is obvious. Now
assume (λ1, λ2) 6= (∅,∅). By (ii) and Theorem 8.1(i) we have grat(frat(M)) ∼= M

canonically for every direct summand of Sλ
1

V ⊗ Sλ2

V ∗ and frat(grat(N)) ∼= N
canonically for every direct summand N of M(λ1, λ2). In particular, every direct
summand of M(λ1, λ2) has a Specht filtration.

Now let I(λh) ⊆ Sλ
h

V , h = 1, 2, be the S(n, r′) resp S(n, s′)-injective hull

of ∇(λh), h = 1, 2. Then I(λ1, λ2) = I(λ1) ⊗ I(λ2) ⊆ Sλ
1

V � Sλ
2

V is the
S(n, r′)⊗ S(n, s′)-injective hull of ∇(λ1) �∇(λ2). By [10, 3.6] we have f(I(ν)) =
Y (ν). Put π = πr′,s′ = {µ = [µ1, µ2] ∈ Λr,s | |µ1| < r′, |µ2| < s′}. By Remarks 8.1,
2 and 3, we have frat(I(λ1, λ2)/Oπ(I(λ1, λ2))) ∼= Zt⊗kSymr′,s′ (Y (λ1)�Y (λ2)). As

in [15, Prop. 3], the G-module Zt ⊗kSymr′,s′ (Y (λ1) � Y (λ2)) is indecomposable.

Since I(λ1, λ2)/Oπ(I(λ1, λ2)) has a good filtration, it must also be indecomposable.

Write I(λ1, λ2) =
⊕l

i=1 Ji with each Ji an indecomposable G-module. Then

I(λ1, λ2)/Oπ(I(λ1, λ2)) ∼=
⊕l

i=1 Ji/Oπ(Ji). So there is a unique j ∈ {1, · · · , l}
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such that Jj/Oπ(Jj) ∼= I(λ1, λ2)/Oπ(I(λ1, λ2)) and Ji ⊆ Oπ(I(λ1, λ2)) for all
i 6= j. Clearly we must have Jj ∼= J(λ). Furthermore, since the kernel of J(λ) →
J(λ)/Oπ(J(λ)) has a good filtration, we have that frat(J(λ)) surjects onto the
G-module Zt ⊗kSymr′,s′ Y (λ1, λ2). So frat(J(λ)) ∼= Y(λ1, λ2). �

Remarks 8.2.

1. The rational Schur coalgebra is A(n; r, s) = OΛr,s
(k[G]), where the action of

G on k[G] comes from right multiplication in G; see [16, A.14] for the generalities.
We can also let G act on k[G] using left multiplication and the transpose map. For
this action we also have A(n; r, s) = OΛr,s

(k[G]). Now the two actions on k[G] are
isomorphic via the comorphism of the transpose map. This isomorphism restricts
to an isomorphism of the two actions on A(n; r, s). With the left multiplication
action (via the transpose map), A(n; r, s) is S(n; r, s)◦ where S(n; r, s) has the
left multiplication action of G which corresponds to the left regular action of
S(n; r, s). Now give A(n; r, s) the right multiplication action and S(n; r, s) the left
multiplication action. Recall also that V r,s is self-dual as a Br,s-module. Then

frat(A(n; r, s)) = HomG(V r,s, S(n; r, s)◦) ∼= HomG(S(n; r, s), V r,s) ∼= V r,s and

grat(V
r,s) = g̃rat(V

r,s)◦ = EndBr,s(V r,s)◦ = S(n; r, s)◦ ∼= A(n; r, s).

The class of S(n; r, s)-modules M for which grat(frat(M)) ∼= M canonically is
closed under taking direct summands and direct sums. In particular it contains
the injective S(n; r, s)-modules, since by the above, it contains A(n; r, s). For the
same reason, the class of Br,s-modules N for which frat(grat(N)) ∼= N canonically,
contains the projective Br,s-modules.

2. The results for the rational Schur functor look more like the results in [13]
for the orthogonal Schur functor (Sect 2) than like those for the symplectic Schur
functor (Sect 4). This is because we work with Br,s(δ) as a subalgebra of Br+s(δ).

There is also a “symplectic Brauer algebra” B̃r+s(δ); see, e.g., [3, p. 871], [25]

or [22, Sect. 3]. Furthermore, there is an isomorphism Br+s(−δ)
∼→ B̃r+s(δ) (*)

which sends each of the r + s standard generators of Br+s(−δ) to the negative of

the corresponding standard generator of B̃r+s(δ); see the proof of [25, Cor. 3.5].

One can define a walled subalgebra B̃r,s(δ) of B̃r+s(δ) in precisely the same way
as Br,s(δ) was defined as a subalgebra of Br+s(δ). Now one can check that two

“walled diagrams” in B̃r,s(δ) multiply precisely as in Br,s(δ), i.e. their “symplectic
sign” equals 1. It is enough to check this on generators and with δ specialised to
2m, and one can also easily deduce it from the description of the sign in [22,

Sect. 3]. So we have B̃r,s(δ) = Br,s(δ) and the isomorphism (*) restricts to an

isomorphism θ : Br,s(−δ)
∼→ Br,s(δ). Now we could let Br,s(−n) act on V r,s via

this isomorphism and then we could define another version of the rational Schur
functor mod(S(n; r, s)) → mod(Br,s(−n)) for which the results would look like
those for the symplectic Schur functor. However, these results can also be obtained
from the present results by applying the equivalence of categories mod(Br,s(n))

∼→
mod(Br,s(−n)) given by θ. For example, when, for M an S(n, r′)⊗S(n, s′)-module,

we turn Ind
Br,s(n)
kSymr′,s′

M into a Br,s(−n)-module via θ, we obtain Ind
Br,s(−n)
kSymr′,s′

ksg⊗M .
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