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Abstract
Let be an algebraically closed field of characteristic 2. We compute the
Weyl filtration multiplicities in indecomposable tilting modules and the decomposi-
tion numbers for the symplectic group over in terms of cap-curl diagrams under
the assumption that is bigger than the greatest hook length in the largest partition
involved. As a corollary we obtain the decomposition numbers for the Brauer alge-
bra under the same assumptions. Our work combines ideas from work of Cox and
De Visscher and work of Shalile with techniques from the representation theory of
reductive groups.

1 Introduction

The present paper concerns the symplectic group and the Brauer algebra. In the com-
panion paper [16] the analogous results for the general linear group and the walled
Brauer algebra are obtained.

Let Sp , 2 , be the symplectic group over an algebraically closed field
of characteristic 2, and let be the natural module. Since Williamson [18]
disproved Lusztig’s conjecture for SL and bigger than any linear bound in , it has
become more interesting to determine decomposition numbers of reductive groups
for special sets of weights. In the present paper we do this for Sp and dominant
weights for which is bigger than the greatest hook length.

The Brauer algebra is a cellular algebra and an interesting problem is to determine
its decomposition numbers. In characteristic 0 this was first done in [14] and in [5] an
alternative proof was given which included the analogous result for the walled Brauer

Rudolf Tange
R.H.Tange@leeds.ac.uk

Henry Li
mmzli@leeds.ac.uk

1 School of Mathematics, University of Leeds, LS2 9JT, Leeds, UK

Published online: 8 April 2022 

http://crossmark.crossref.org/dialog/?doi=10.1007/s00031-021-09685-6&domain=pdf
http://orcid.org/0000-0003-0867-1573
mailto: R.H.Tange@leeds.ac.uk
mailto: mmzli@leeds.ac.uk


H. Li, R. Tange

algebra. In [15] the decomposition numbers of the Brauer algebra were determined
in characteristic . All these results are in terms of certain cap (or cap-curl)
diagrams.

In characteristic 0 there is a well-known relation between certain representations
of Sp and the representations of the Brauer algebra , given by the double
centraliser theorem for their actions on . In characteristic such a connection
doesn’t follow from the double centraliser theorem and requires more work. This was
done in [8] by means of the symplectic Schur functor.

In the present paper we determine the Weyl filtration multiplicities in the inde-
composable tilting modules and the decomposition numbers for the induced
modules of Sp when has greatest hook length less than . Using the sym-
plectic Schur functor we then obtain from the first multiplicities the decomposition
numbers of the Brauer algebra under the assumption that is bigger than the great-
est hook length in the largest partition involved. Since we use the transposed labels,
our description of the decomposition numbers is considerably simpler than that of
[15]. Our main tools are the “reduced” Jantzen Sum Formula, truncation, and refined
translation functors.

Our approach is mainly based on [5] and [15], but the combinatorial ideas go
back, via work of Brundan-Stroppel, see e.g. [4], to work of Boe [1] and Lascoux-
Schützenberger [12]. In the latter two papers the combinatorial structures are bracket
expressions and trees, rather than cap diagrams. Our translation functors are modifi-
cations of those in [11, II.7]. The idea of translation functors is based on the linkage
principle and goes back to category , see [10, Ch 7].

The paper is organised as follows. In Section 2 we introduce the necessary notation
and state two results about quasihereditary algebras. In Section 3 we show that certain
terms in the Jantzen Sum Formula may be omitted. This leads to a “strong linkage
principle” in terms of a partial order , and the existence of nonzero homomorphisms
between certain pairs of induced modules, see Proposition 3.1. In Section 4 we prove
the two basic results about translation that we will use: Propositions 4.1 and 4.2. For
this we use refined translation functors defined on certain truncations of the category
of Sp -modules. In Section 5 we introduce arrow diagrams to represent the weights
that satisfy our condition, and we show that the nonzero terms in the reduced Jantzen
Sum Formula and the pairs of weights for which we proved the existence of nonzero
homomorphisms between the induced modules have a simple description in terms of
arrow diagrams, see Lemma 5.1. The order and conjugacy under the dot action
also have a simple description in terms of the arrow diagram, see Remark 5.1.1. In
Section 6 we prove our first main result, Theorem 6.1, which describes the Weyl
filtration multiplicities in certain indecomposable tilting modules in terms of cap-
curl diagrams. As a corollary we obtain the decomposition numbers of the Brauer
algebra under the assumption that is bigger than the greatest hook length in the
largest partition involved. In Section 7 we prove our second main result, Theorem 7.1,
which describes the decomposition numbers for certain induced modules in terms of
cap-curl codiagrams.
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2 Preliminaries

Throughout this paper is a reductive group over an algebraically closed field
of characteristic 2, is a maximal torus of and is a Borel subgroup
of containing . We denote the group of weights relative to , i.e. the group of
characters of , by . For we write if is a sum of positive
roots (relative to ). The Weyl group of relative to is denoted by and the set
of dominant weights relative to is denoted by . In the category of (rational)
-modules, i.e. -comodules, there are several special families of modules. For

we have the irreducible of highest weight , and the induced module
ind , where is the opposite Borel subgroup to and is the 1-

dimensional -module afforded by . The Weyl module and indecomposable tilting
module associated to are denoted by and . To each -module we
can associate its formal character ch dim , where
is the weight space associated to and is the basis element corresponding to
of the group algebra of over . Composition and good or Weyl filtration

multiplicities are denoted by and or . For a
weight , the character is given by Weyl’s character formula [11, II.5.10]. If
is dominant, then ch ch . The , , form a -basis of

. For a root and , let be the affine reflection of defined
by , where . Mostly we replace by a -
invariant inner product and then the cocharacter group of is identified with a lattice
in and 2 . We have and the affine Weyl group is
generated by the . We denote the half sum of the positive roots by and define the
dot action of on by . The lattice is stable under the
dot action. The linkage principle [11, II.6.17,7.2] says that if and belong
to the same -block, then and are -conjugate under the dot action. We refer
to [11] part II for more details.

Unless stated otherwise, will be the symplectic group Sp , 2 , given by

Sp GL , where
0

0
and is the transpose

of . Note that, since 2 , Sp implies that 1 and
therefore also . The natural -module is denoted by . We let
be the group of diagonal matrices in Sp , i.e. the matrices 1 with

1 for all 1 . Now is naturally identified with such that
the th diagonal coordinate function corresponds to the th standard basis element
of . We let be the Borel subgroup corresponding to the set of positive roots

, 1 , 2 , 1 . We can now identify the dominant weights
with -tuples 1 with 1 2 0, or with partitions with

, where denotes the length of a partition. We will also identify them
with the corresponding Young diagrams. Partitions with parts 10 may be written in
“exponential form”: 5 5 4 3 2 is denoted by 52432 , where we sometimes omit
the brackets. We denote the subgroup of generated by the , ,
1 or 2 , 1 by and we denote the subgroup
of generated by the , , 1 by . The group
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acts on by permutations and sign changes, and , where
even is the type root lattice and 1 . Note that

and , where
consists of the vectors in which are 0 at the positions , is generated
by the 0, , 1 or 2 , 1 , and
is generated by the , , 1 . The group acts by
permutations and an even number of sign changes. We have

1 1 .

It is easy to see that if are -conjugate and equal at the positions ,
then they are -conjugate. The same applies for the dot action.

To obtain our results we will have to make use of quasihereditary algebras. We
refer to [7, Appendix] and [11, Ch A] for the general theory. For a subset of and
a -module we say that belongs to if all composition factors have highest
weight in and we denote by the largest submodule of which belongs to
. For a quasihereditary algebra one can make completely analogous definitions. We

denote the category of -modules which belong to by . The following result is
part of the folklore.

Lemma 2.1 Let be a quasihereditary algebra with partially ordered labelling
set for the irreducibles. Let be a partial order on such that

0 or 0 implies . Then is also quasihered-
itary for and the (co)standard modules (and therefore also the tilting modules) are
the same as for .

Later on we will use this result as follows. Recall that a subset of a partially
ordered set is called saturated if and implies for all

. Now we first we choose a certain finite saturated subset 0 of
and form the quasihereditary algebra 0 , where is considered as -
module via the right multiplication action of on itself. Then we replace the partial
ordering by a suitable ordering and truncate the algebra to a smaller -saturated set
. For the resulting quasihereditary algebra the irreducible, standard/costandard

and tilting modules are the irreducible, Weyl/induced and tilting modules for with
the same label. So we will always have that . Fur-

thermore, we have for and the -injective hull of that
def

is the -injective hull of . Note that is the category of -modules.
We will need one more general result about quasihereditary algebras.

Lemma 2.2 Let be a quasihereditary algebra with partially ordered labelling set
for the irreducibles. Let and assume is maximal with .

Then dimHom .

Proof Using [7, Prop A.2.2(i)] and the argument in the proof of [11, II.6.24] we get
Hom Hom , where is the injective hull of .
The result now follows by taking dimensions.
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3 The Reduced Jantzen Sum Formula

In this section we study the Jantzen Sum Formula for the symplectic group Sp .
We want to strengthen the results from [8, Sect 3]. Assume for the moment that
is any reductive group. Jantzen has defined for every Weyl module of a
descending filtration 0 1 such that 1

and 0 for big enough. The Jantzen sum formula [11, II.8.19] relates the
formal characters of the with the Weyl characters , :

0

ch (1)

where the sum on the right is over all pairs , with an integer 1 and a
positive root such that 0, and is the -adic valuation. Here

0 if and only if 0 for some 0, and if 0,
then det , where is dominant for a unique . See
[11, II.5.9(1)]. We denote the RHS of (1) by .

Now return to our standard assumption Sp . For we have that
0 if and only if

0 for all 1 and

for all 1 with .

For the remainder of this section is a -core, unless stated otherwise. This means
that for all 1 and all integers 1, must occur in ,
provided it is 0.1

Lemma 3.1 Assume , 1 and ,
0. Then 0.

Proof We have , 0. Now
must occur in and it clearly can’t

occur in position or , so contains a repeat and 0.

Lemma 3.2 Let 1 be the set of roots , 1 for which
0, and let 2 be the set of roots 2 , 1 .

Furthermore, let 1 be the set of pairs such that 1, an integer 1,
0 and 0, and let 2 be the corresponding set for

2. Then there exists a map 1 2 such that:

(i) is a bijection from 1 onto 2.
(ii) .

Furthermore, if , 1 , and is an integer 1 such that
, 0 and 0, then 1.

1This is equivalent to the definition in [13, Ex I.1.8], but note that we work with a different .
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Proof Let 1. Write , 1 and put
. We have and

. Since 0, this value must
occur in a position in . If this position were , then would
contain a repeat up to sign. So 2 .

Now put 2 . Note that 2 . So
. Furthermore, is obtained from by changing

the sign of the th coordinate. This proves (ii) and that is an
injection from 1 to 2.

Now let 2 and write 2 . Then 0
and must occur in some position in . Put . Then

2 0, 2 0.
Furthermore, is obtained from by changing the sign of the th

coordinate. So 1 and . This proves (i).
We now prove the final assertion. Assume are as stated and put

. Note that 0. If 0, then it must occur in after
the th position, since and the last entries of form an inter-
val with smallest value 1. So would contain a repeat, which contradicts

0. If 0, then contains 0 which is also impossible.
Therefore, 0.

Example 3.1 If is not a -core, then there may be surviving contributions coming
from a root 2 . For example, when 5, 2 and 41 , then

1 21 , where the terms come from 1 2 and 2 1, both with 1. Since
21 1 , we get ch 21 .

If is a -core, then a root , 1 can make a surviving
contribution for one and a cancelling one for another . For example, take 3,

3 and 212 . Then 11 0 , where the
terms come from the -pairs 2 1 1 , 1 2 2 , 1 3 2 and 1 3 1 ,
respectively. Here the first contribution of 1 3 is surviving, since 3
2 1 0 and the second one cancelling, since 3 2 4 0.

By the previous two lemmas we may, when is a -core, restrict the sum on the
RHS of (1) to pairs with , 1 , ,

1 and 0 (and 0). We will refer to this sum as
the reduced sum and to the whole equality as the reduced Jantzen Sum Formula. For

we write when for all 1 , and we denote the
weakly decreasing permutation of by sort . The next lemma shows that, when
working with Weyl characters, the nonzero terms in the reduced sum have distinct
Weyl characters.

Lemma 3.3 Let , 1 , be a positive root with
, 1, 0 and 0. Then the entries of are

distinct and strictly positive. Put differently, for some (or all) , the
first entries of are distinct and . Now put sort .
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Then is a partition with which is -conjugate to under the dot
action. Furthermore, the map is injective.

Proof Since 0 it is clear that all entries of
are (distinct and) strictly positive. We have and therefore ,
since is weakly decreasing. All assertions, except the final one are now clear. The
set of values in is obtained by choosing two values in and strictly
lowering these to values which don’t occur in any of the other 2 positions in

. If two values disappear (and two new ones are introduced), then it is obvious
how to recover , , and from the value set of . If only one value
disappears and one new value is introduced, then , 2 and

2 and this gives us , and .

Example 3.2 In the reduced sum one can contribute with more than one -value.
Furthermore, may have composition factors with . For example,
take 3, 4 and 642 . Then is a -core and we have 12 0,

3221 0, 422 3221 , 42 422 3221
ch 422 , 62 12 42 422 ch 12 ch 42 2ch 422

ch 3221 , and 642 12 422 42 2 62 ch 42

2ch 422 ch 3221 2 62 12 . From the formula for 62 we know
that 12 occurs in 62 , so 2 62 12 is the character of a -module and

3221 must occur in 642 . Note that both 12 and 422 in 642
come from the root 1 2. Their -values are 4 and 5, respectively.

Note that 1 implies that is a -core, since 1 1 is the
greatest hook length. For the next result we need this stronger assumption. Define the
partial order on as follows:

if and only if there is a sequence of dominant weights 1 ,
1, such that for all 1 1 , 1 for some
Sym 1 , , 1 , and 1 with

1, and all entries of distinct and strictly positive.
Note that 1 and implies that and is -

conjugate to under the dot action, which, in turn, implies that .
For 1 put

1 and .

Assertion (i) below says that, when 1 , nonzero contributions of roots
, 1 are always surviving and have a unique -value.

Proposition 3.1 Let , i.e. with 1 .

(i) If , 1 , and are integers 1 such that
and 0, then 0 and 1.

(ii) If is -saturated, then the algebra is quasihereditary
with partially ordered labelling set and the Weyl and induced mod-
ules as standard and costandard modules. In particular, if or

is nonzero, then .
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(iii) If is maximal with respect to amongst the dominant weights for which
occurs in the RHS of the reduced Jantzen Sum Formula associated to or

amongst the dominant weights , then we have dimHom
0.

Proof (i). Since we cannot have 0.
Now assume 0. Then 0

, since 1 . In particular
and the last entries of form an interval with smallest

value 1. Now must occur in this interval and contains
a repeat up to sign. Contradiction. So 0. If 1, then
0 1 , since 1, and

would contain a repeat.

(ii). First we show that 0 implies . If , the assertion is
clear. Otherwise, must be a composition factor of rad and therefore
ch must occur in the reduced sum. So it must occur in some with

, . Clearly, 1 . So the assertion follows by induction
on . Now let be as stated. Let 0 be a finite -saturated subset of
containing . Define the partial order on by

if 1

if 1 .

The algebra 0 is quasihereditary with partially ordered labelling
set 0 and the Weyl and induced modules as standard and costan-
dard modules. By Lemma 2.1 and what we just proved, this algebra is
also quasihereditary for the partial order . Now we observe that and
coincide on and we can truncate further to . Finally, assume

0. Then we can take above and we
obtain that , i.e. .

(iii). If is maximal amongst the dominant weights , then, by the definition
of , (a nonzero multiple of) must occur in the reduced sum associated
to , say sort . Now write the reduced sum as a linear
combination of irreducible characters. By the maximality of the character
ch only occurs in the term , 1. It follows that 1
and 0. Put . Applying Lemma 2.2
to the quasihereditary algebra we get dimHom

0.

Example 3.3 In the reduced sum different ’s may have different -values when we
assume 1 . For example, when 5, 11 and 7261 we
have 631 725 , where the contributions come from 1 2 with

2 and 3 4 with 1. Further calculation yields 631 725
ch 625 and ch 631 ch 725 2ch 625 . There can’t be more
than two -values in the reduced sum when 1 , see Remark 5.1.2.
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4 Translation Functors

The results in this section are analogues of [5, Thm 3.2,3.3, Prop 3.4] and [11, II.7.9,
7.14-16]. Our results don’t follow from the ones in [11], see Remark 4.1.1. One
could try to reformulate/generalise these results in terms of and a type
alcove geometry similar to [6, Sect 5-7], but instead we will choose a “combinatorial”
approach similar to [5], using the notion of the “support” of a partition. This suffices
for our applications in Sections 6 and 7. Compared to [5] the notion of the support of
a partition arises from an application of Brauer’s formula [11, II.5.8] and the role of
the induction and restriction functors in [5] is in our setting played by the translation
functors.

Recall that the tensor product of two modules with a good/Weyl filtration has a
good/Weyl filtration, see [11, II.4.21, 2.13]. Let . Then we have by Brauer’s
formula that 1 Supp , where Supp con-
sists of all partitions of length which can be obtained by adding a box to or
removing a box from . Here we used the rules for to be nonzero from Section 3.
Since ch 1 , it follows that has a good filtration
with sections , Supp and has a Weyl filtration with sections

, Supp .
First we recall the definition and basic properties of certain ordinary translation

functors. For the projection functor pr -modules -modules
is defined by pr . Then pr where the sum is
over a set of representatives of the type linkage classes in , see [11, II.7.3].
Now let with Supp . Then we define the translation functor

-modules -modules by pr pr . So this is just a
special case of the translation functors from [11, II.7.6], since 1 is the dominant -
conjugate of and 1 1 . In particular, is exact and left
and right adjoint to . Note that, for , has a good filtra-
tion with sections , Supp , and the analogue for Weyl modules
and Weyl filtrations also holds.

We will actually work with certain refined translation functors which we define
now. Recall the definition of the set from Section 3. If is a -saturated
set, then, by Proposition 3.1(ii), the type linkage principle holds in . So if

belong to the same -block, then they are conjugate under the dot action
of . For we define the projection functor pr by
pr . Then pr where the sum is over a set of rep-
resentatives of the type linkage classes in . Note that pr is a direct summand
of pr . Now let with Supp and let be Serre subcategories
of with pr pr for all and pr pr
for all . Then we define the translation functors and

by pr pr and pr pr . Note

that if and , then has a good filtration
with sections , Supp . The analogue for Weyl modules and
Weyl filtrations also holds. If and have image in and , then they restrict to
functors and which are exact and each others left and right adjoint.
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Proposition 4.1 (Translation equivalence) Let with Supp and let
be -saturated sets. Assume

(1) Supp for all , and Supp for all
.

(2) Supp 1 Supp for all and
.

(3) The map given by Supp has image
, and together with its inverse it preserves the order .

Then restricts to an equivalence of categories with inverse

. Furthermore, with and as in (3), we have ,

, , and .

Proof Note that pr id on and pr id on . From (1) we deduce that, for
, pr . So pr is well-defined and, by (2) and (3), it

belongs to . The same holds with the roles of and reversed, so we can apply
the construction before the proposition.

The identities involving the induced and Weyl modules are now obvious. We have
an exact sequence

0 0 (2)

where all composition factors of satisfy . Applying gives the exact
sequence

0 0 . (3)

Using the order preserving properties of we see that for any all
composition factors of satisfy . So all composition factors

of satisfy . Therefore must have simple head and
all other composition factors satisfy . If , then

Hom Hom Hom 0

for some . This is clearly impossible, so . We can prove the
same for , and then we can deduce as in the proof [11, II.7.9] that id

and id . This implies the remaining assertions.

Proposition 4.2 (Translation projection) Let with Supp and let
be -saturated sets. Put

Supp . Assume

(1) Supp for all , and Supp for all
.

(2) Supp 1 for all , and Supp 2
for all .
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(3) The map given by Supp is
a 2-to-1 map which has image and preserves the order . For
we can write Supp with and then
Hom 0 and and .

Then restricts to a functor and restricts to a functor .

Now let . If , then 0. For with

as in (3), we have , , ,

0, and .

Proof The first assertion follows as in the proof of Proposition 4.1 and all identities
involving the induced and Weyl modules are obvious. Moreover, it is also clear that

0 when , since surjects onto and is 0. If ,
then ,

so we obtain as in the proof of Proposition 4.1. Now consider
(2) and (3) for . Since 0, we know
that occurs in . So occurs in and therefore not
in . If 0, then it would have simple head by (3). So

0. Note that ch 2ch for any which has a good
or Weyl filtration. Now the equality is proved as in [11, E.11],

replacing and by and . Finally,

Hom Hom (4)

is exact, so is injective in . Applying both sides of (4) to , for
, for and for , shows that has simple socle

and therefore equals .

Remark 4.1 1. The translated weight need not be in the facet closure of . For
example, when 5, 7, 2 and 22 21 or 21 12 ,
then it is easy to find affine reflection hyperplanes which contain , but not .

However, we can, for 22 and 21 1 , apply Propo-
sition 4.1 in the first case, and, for 21 1 and 12 , apply
Proposition 4.2 in the second case. We refer to Section 5 for how to express this
in terms of arrow diagrams.

2. As we will see later, the use of the type linkage principle is only needed for
moves from the 0-node. For most pairs we could just use the usual type

linkage principle, i.e. the usual translation functors. So we use the refined
translation functors to be able to deal with any move.

5 Arrow Diagrams

This section is based on the approaches of [5] and [15]. We use the “characteristic
wall” of [15], but at the same time we use the transposed labels (from the Brauer
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algebra point of view) as in [5]. Recall the definition of from Section 2. An arrow
diagram has 1 2 nodes on a (horizontal) line with labels: 0 and ,
1 1 2 . The th node from the left has top label 1 and a bottom
label 1. So the first node is the only node whose top and bottom label are the
same. Next we choose 1 min and put a wall between and 1
mod . So when 1 2 mod we can put the wall above or below the line,
otherwise there is only one possibility. Then we can also put in the values, one for
each label. A value and its corresponding label are always equal mod . We start with

immediately after the wall in the anti-clockwise direction, and then increasing
in steps of 1 going in the anti-clockwise direction around the line: 1

1. For example, when 5, 7 and 2, then 6 and we have
labels

(usually we omit the top labels), and values

For a partition with 1 we now form the ( -)arrow diagram by
putting in arrows ( or ) that point from the values 1 , or the
corresponding labels. In case of the label 0 we have two choices for the arrow. So in
the above example the arrow diagram of 12 is

In such a diagram we frequently omit the nodes and/or the labels. When it has already
been made clear what the labels are and where the wall is, we can simply represent
the arrow diagram by a string of single arrows ( , ), opposite pairs of arrows ( )
and symbols o to indicate the absence of an arrow. In the above example 12 is
then represented by oo and 32 is represented by o or o .

We can form the arrow diagram of by first lining all arrows up against the wall
and then moving them in the anti-clockwise direction to the right positions. The arrow
furthest from the wall (in the anti-clockwise direction) corresponds to 1, and the
arrow closest to the wall corresponds to . The part corresponding to an arrow equals
the number of labels without an arrow from that arrow to the wall in the clockwise
direction. From the diagram you can see what you can do with the wall, changing
but not : If there is an arrow immediately after the wall in the anti-clockwise

direction, i.e. , then you can move the wall one step in the anti-clockwise
direction, removing the arrow that you move it past. If there is no arrow immediately
after the wall in the clockwise direction, i.e. 1 , then you can move the wall
one step in the clockwise direction, putting an arrow at the label that you move it
past, provided .

More generally, we can for any 1 and with , put
arrows in the diagram pointing from the labels equal to 1

mod , allowing repeated arrows at a label. Then and with are
-conjugate under the dot action if and only if is even and the arrow

242



A Combinatorial Translation Principle and Diagram Combinatorics...

diagram of can be obtained from that of by repeatedly replacing an arrow by its
opposite, i.e. if and only if is even and the arrow diagrams of and have
the same number of arrows at each node. Furthermore, and with
are -conjugate under the dot action if and only if is even and the
arrow diagram of can be obtained from that of by repeatedly replacing two arrows
by their opposites, and possibly replacing an arrow with label 0 by its opposite.

From now on 1 min , unless stated otherwise. We put

1 .

Unless stated otherwise, we assume .
When we speak of “arrow pairs” it is understood that both arrows are single, i.e.

neither of the two arrows is part of an . So, for example, at the node of the first
arrow in an arrow pair there should not also be a . The arrows need not be
consecutive in the diagram.

We now define the cap-curl diagram of the arrow diagram associated to as
follows. All caps and curls are anti-clockwise, starting from the arrow closest to the
wall. We start on the left side of the wall. We first form the caps recursively. Find
an arrow pair that are neighbours in the sense that the only arrows in between
are already connected with a cap or are part of an , and connect them with a cap.
Repeat this until there are no more such arrow pairs. Now the unconnected arrows
that are not part of an form a sequence . We connect consecutive
(in the mentioned sequence) pairs with a curl, starting from the left. At the end
the unconnected arrows that are not part of an form a sequence or just
a sequence of ’s. Note that none of these arrows occurs inside a cap or curl. The
caps on the right side of the wall are formed in the same way. The curls now connect
consecutive pairs and are formed starting from the right. So at the end the uncon-
nected arrows that are not part of an form a sequence or just a sequence
of ’s. Again, none of these arrows occurs inside a cap or curl. For example, when

23, 17, 12 and 11 11 11 11 11 11 10 6 4 4 1 , then is

Note that the 10th node which has labels 9 and values 9 and 14, has no arrow.

Lemma 5.1 Let .

(i) The nonzero terms in the reduced Jantzen Sum Formula associated to cor-
respond in the arrow diagram of to the arrow pairs to the left or to the
right of the wall, and the arrow pairs to the left of the wall, and the arrow
pairs to the right of the wall.

(ii) is irreducible (equivalently, or ) if and only if there
are no caps or curls in .

(iii) If is obtained from by reversing the arrows in a pair as in (i) where
the arrows are consecutive (no single arrows in between), and there are no
single arrows to the left of a or to the right of a , then we have
dimHom 0.
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Proof (i). Write with 1 2 and 0. If the wall is above
the line ( 0, 1) the general form of a value is as indicated in the diagram
below

If the wall is below the line ( 0) the general form of a value is as indicated in the
diagram below

Here always satisfies 0 1 2. Note that the “opposite” value on the
other side of the line has the same in its general form. Put differently, the label
corresponding to the value is if the value is below the line and if it is above the
line.

Now let , 1 , and 1 such that
and 0. Put and . Note that and cannot
be opposite, because then we would have 0. Assume the wall is below the line.
Then the 12 candidate configurations of and in the arrow diagram of are:

Here it is understood that the opposite values of and are not present in the diagram
of , since otherwise would contain a repeat and would
be 0. Now it is easy to see that the only possible configurations are 3,4,7 and 11:

, which correspond precisely to the arrow pairs from

the assertion. For example, for configuration 1 we have 1
1 with 0 1 2. So , 2 1, and
equals in position and in position . However, the available

values for the labels are 1 and 1 . So this configuration is not
possible. Similarly, for configuration 8 we have 1 1
with 0 1 2. So , 2 1, and equals

in position and in position . However, the available values for the
labels are 1 and 1 . So this configuration is not possible.
As a final example, for configuration 9 we have 1
with 0 1 2. So , 2 1, and equals

1 in position and in position . However, the available values
for the labels are 1 and 1 . So this configuration is
not possible. The case when the wall is above the line is completely analogous.

Conversely, it is clear that if corresponds to one of the stated pairs, then the
entries of are distinct and strictly positive, so 0.

(ii). This follows easily from (i). For example, there is an arrow pair to the left
of the wall if and only if there is a cap to the left of the wall in (although
there will in general be more such pairs than such caps).
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(iii). Such a is maximal amongst the weights for which (a nonzero multiple of)
occurs on the RHS of the reduced Jantzen Sum Formula, so this follows

from Proposition 3.1(iii).

Remark 5.1 1. Let 1 min and let and . Then it
follows from the above lemma that if and only if and the arrow
diagram of can be obtained from that of by repeatedly replacing an arrow
pair to the left or to the right of the wall, or an arrow pair to the left of
the wall, or an arrow pair to the right of the wall, by the opposite arrow pair,
and possibly replacing an arrow with label 0 by its opposite.

Furthermore, are conjugate under the dot action of if
and only if the arrow diagram of is obtained from that of by replacing an
even number of single arrows to the left of the wall and an even number of single
arrows to the right of the wall by their opposites, and possibly replacing an arrow
with label 0 by its opposite. Finally, are conjugate under the dot
action of if and only if the arrow diagram of is obtained from that of by
replacing a number of single arrows to the left of the wall and an even number
of single arrows to the right of the wall by their opposites. This follows from the
fact that replacing an arrow on the left side of the wall by its opposite preserves
the parity of the coordinate sum and replacing an arrow on the right side of the
wall by its opposite changes the parity.

2. The -values corresponding to the configurations 3,4,7 and 11 from the proof are
2 1 2 2 2 2 2 1. The possible configurations when the wall is above

the line are: , with -values 2 1 2 2 2 1.

So in the reduced Jantzen Sum Formula associated to we only have two
possible -values.

We don’t know of any examples where satisfies the assumption from
[15] with more than one -value in the reduced sum. In particular, we don’t know of
any examples of ’s with such that there is a cap or curl on the left of the
wall and a cap or curl on the right of the wall in .

6 Weyl FiltrationMultiplicities in TiltingModules

Recall the definition of the set from Section 5. Let 1 min , let
, and let with . Then the arrow diagram of has its single

arrows and its ’s at the same nodes as the arrow diagram of . If the arrow diagram
of has an arrow at 0, then we assume that the parity of the number of ’s in the
arrow diagram of is the same as that for .2 This only requires a possible change
of an arrow at 0 to its opposite in the arrow diagram of . If there is no arrow at 0,
then these parities will automatically be the same, since is -conjugate to
under the dot action. Then we know, by Remark 5.1.1, that the arrow diagram of

can be obtained from that of by repeatedly replacing an arrow pair to the left

2Then the parity of the number of ’s in the arrow diagram of is of course also the same as that for .
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or to the right of the wall, or an arrow pair to the left of the wall, or an arrow pair
to the right of the wall, by the opposite arrow pair.

Recall the definition of the cap-curl diagram from the previous section. We now
define the cap-curl diagram associated to and by replacing each arrow in

by the arrow from the arrow diagram of at the same node. Put differently, we
put the caps and curls from on top of the arrow diagram of . We say that is
oriented if all caps and curls in are oriented (clockwise or anti-clockwise). It is
not hard to show that when is oriented, the arrow diagrams of and are the
same at the nodes which are not endpoints of a cap or a curl in . For example, when

11, 7, 5 and 6332 . Then 3 and is

The with are 6321 65232 65221 52432 52421 4332
4321 ,
with arrow diagrams o o o o

o o o . Only for the first three is oriented.

Theorem 6.1 Let 1 min , and . Then

1 if and is oriented,

0 otherwise.

Proof By Proposition 3.1(ii) we may assume . The strategy of the proof is
similar to that of the proof in [5, Sect 6]. The proof is by induction on the number
of caps and curls in . If there are no caps or curls in , then is oriented if and
only if , so the result follows from Lemma 5.1(ii). Otherwise, we choose a cap
or curl which has no cap or curl inside it. We will transform the cap or curl to a cap
for which the end nodes are consecutive via a sequence of moves which preserve the
orientedness of and the multiplicity . In the case of a cap we move
the end node closest to the wall one step towards the other end node. In the case of a
curl we will move the end node furthest away from the wall to the end (left or right)
and then turn it into a cap. In the proof below we will make use of two basic facts.
Let 1 . Firstly, if with and Supp with ,
then the -arrow diagram of is obtained from that of by moving one arrow in the
-arrow diagram of one step. Secondly, if and have length

, then the -arrow diagrams of and have the same number of arrows at each
node. See also Remark 5.1.1 for a version for the -action.

First we prove a general property of the moves we will make. Let and
Supp such that the move does not cross or pass the wall. Now

let and Supp . We show that . The move
from the arrow diagram of to that of goes between the same nodes as the move

, or between the values at the last node if this was true for . Assume
1. Then and there is no arrow immediately after the wall in

the anti-clockwise direction. We temporarily move the wall one step in the clockwise
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direction creating a new arrow immediately after the new wall in the anti-clockwise
direction.3 The move from the arrow diagram of to that of would move this new
arrow one step in the anti-clockwise direction and therefore cross the original wall.
But then the move would also cross or pass the original wall.

This is impossible, so . If 1 1, then 1 and the move
would pass or cross the wall. This would then also hold for the move

which is impossible. We conclude that .
First assume the cap or curl is to the left of the wall and assume it is a cap.

If , we choose , and

we put and . Let .
Assume Supp . Then we have seen that . More-
over, the move moves the arrow at the -node to the 1 -node. So
the property Supp determines a map

given by This map clearly preserves the order and -

conjugacy (under the dot action), so it has its image in . Similarly, the property
Supp determines a map given by reading

the above rule in the opposite direction and this map preserves and -
conjugacy. So these maps are each others inverse and Proposition 4.1 gives that

. Furthermore, since ’s and empty nodes don’t
really play a role in the cap-curl diagram, it is obvious that is oriented if and only

if is oriented. When . We

define and as before and similar arguments as above give a bijection

given by with the same properties as before. In this case we

move a unique arrow from the 1 -node to the -node to go from to , although
we think of the move as the arrow at the -node moving past the . So in this case
Proposition 4.1 again gives that . Furthermore, we
again have that is oriented if and only if is oriented.

In case of a curl to the left of the wall, we move the left end node repeatedly one
step to the left until it is the 0-node. These moves are completely the same as the two
types above (i.e. past an empty node or past an ), only the inverse of the
final move is slightly different. The point is that a at the 0-node could be replaced
by a without changing and then be moved to the 1-node. However, the condition
that Supp should be -conjugate to under the dot action singles
out precisely one of the two options. So the property Supp
determines a map given by where we assume

3At the label of the new arrow there may be one other arrow and there may be a cap or curl of passing
or crossing the new wall.
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that the parity of the number of ’s in the arrow diagram of is the same as that in
the arrow diagram of (which has a at the 0-node).

This map preserves and -conjugacy and has therefore image in .
Finally, we replace in the arrow diagrams of and the arrow at the 0-node by its
opposite. This turns the curl into a cap, doesn’t change the orientedness of , and

and stay the same. So after the final move and swap operation we again have
by Proposition 4.1 that .

The case that the cap or curl is to the right of the wall is completely analogous.
We now move the left end node of a cap to the right, and the right end node of a curl
to the last node.

There is no move where the type linkage principle is needed, and instead of
the final swap to turn a curl into a cap we have a move around the right corner given

by In more detail, we define and as before. Then and
Supp implies that and have the same number of arrows at each

node, since this is true for and . So is obtained from by changing the arrow
at the last node to its opposite and this determines a map given
by the above rule.

Finally, it is easy to check that the above map preserves . For example, when
is obtained from by replacing an arrow pair resp. to the right of the wall
with the second arrow at the last node by the opposite arrow pair, then is obtained
from by replacing an arrow pair resp. by the opposite arrow pair. Clearly,
this map preserves -conjugacy, so it has image in . Similarly, the property

Supp determines a map given by the same rule
and this map preserves and -conjugacy and therefore has image in . So
also for this move is oriented if and only if is oriented and Proposition 4.1
gives that .

Now we are reduced to the case of a cap for which the end nodes are con-

secutive. So , when the cap is to the left of the wall

and when the cap is to the right of the wall. Now we choose

. Define and as before. First assume 1 and let

and Supp . Then as we have seen, and is obtained
from by moving the arrow at the 1 -node to the -node. Furthermore, this
move can only be done when the arrows at the 1 -node and -node are not both
or both , i.e. when a cap connecting the two nodes is oriented. Let us denote the

set of with this property by . Then we obtain a map

given by and it not hard to see that this map preserves and
-conjugacy and therefore has its image in .4

When 1 we may have that Supp is not -conjugate
to . For example, we could have , o ,

4For the preservation of one can use functions like the in [5, Sect 8] and [4, Sect 5].
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, which all agree from the fourth node on. Then Supp ,
where o is not -conjugate to . So in this case we define the
map by the property Supp , where , the set of all
for which this intersection is nonempty. This map is then given by the same rule as

above, where we assume that the parity of the number of ’s in the arrow diagram of
is the same as that in the arrow diagram of .
Now let and Supp . Then by the general fact

at the start of the proof, and we see that , where resp. is obtained
from by moving the resp. at the -node to the 1 -node. So the above map
has image equal to . Furthermore, it is easy to see that implies
and . By Lemma 5.1(iii) we have that Hom 0. Since

we have by Proposition 4.2 that

when for some , i.e. , and 0 otherwise. Here we used
that for any finite dimensional -module with a Weyl filtration
dimHom . Finally, is oriented if and only if our cap is oriented in

and is oriented. So we can now finish by applying the induction hypothesis,
since has one cap or curl less than the original .

Let be an integer 1. For any one has the Brauer algebra ; see e.g.
[2, 3, 9] or [17] for a definition. It has a family of cell modules , labelled by the
partitions of 2 up to 0 or 1. If is -regular and when 0 and
even, then has a simple head which we denote by . We will assume that
is in the prime field, since otherwise is isomorphic to a direct sum of matrix

algebras over symmetric group algebras, see [8, Prop 1.2]. We denote the transpose
of a partition by .

Corollary Let be partitions with 0 and even and assume that
if is even and 0. Assume also that 1 . Choose such

that 2 mod and 1 min with . Then

1 if and is oriented,

0 otherwise.

Proof Let be the set of partitions with even and 0. To any such
we associate and write 2 . Denote the Specht module for the
symmetric group Sym associated to by , and, for -regular, denote the irre-
ducible by . Define the twisted cell and irreducible modules and as
in [8, Sect 1.2]. Note that in [8] the transpose of a partition is denoted by . Since
sg and have the same composition factors with multiplici-
ties, and the functor Sym is exact, we must have that and have
the same composition factors with multiplicities. Furthermore, ,
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for -regular and when 0 and even, where is the Mullineux
involution defined by sg .

It follows that for with -regular
and when 0 and even. Now 1 implies that is a -core,
which, in turn, implies that and are -regular.

So is irreducible and .
Using the symplectic Schur functor we have, by [8, Prop 2.1(iii)] and the above,

. So the result follows from the
previous theorem.

7 Decomposition Numbers

Let . Choose 1 min with . First we define the
cap-curl codiagram of the arrow diagram associated to as follows. All
caps and curls are clockwise, starting from the arrow closest to the wall.

We start on the left side of the wall. We first form the caps recursively. Find an
arrow pair that are neighbours in the sense that the only arrows in between are
already connected with a cap or are part of an , and connect them with a cap.
Repeat this until there are no more such arrow pairs. Now the unconnected arrows
that are not part of an form a sequence . We connect consecutive
(in the mentioned sequence) pairs with a curl, starting from the left. At the end
the unconnected arrows that are not part of an form a sequence or just
a sequence of ’s. The caps on the right side of the wall are formed in the same
way. The curls now connect consecutive pairs and are formed starting from the
right. So at the end the unconnected arrows that are not part of an form a sequence

or just a sequence of ’s. Note that none of these arrows occurs inside a
cap or curl. For example, when 23, 17, 12 and 8776321 , then

is

Let with . If necessary, we change (and the arrow diagram of
, and ) to make sure that . Then the arrow diagram of has its single

arrows and its ’s at the same nodes as the arrow diagram of . If the arrow diagram
of has an arrow at 0, then we assume that the parity of the number of ’s in the
arrow diagram of is the same as that for . This only requires a possible change
of an arrow at 0 to its opposite in the arrow diagram of . If there is no arrow at 0,
then these parities will automatically be the same, since is -conjugate to
under the dot action. Then we know, by Remark 5.1.1, that the arrow diagram of

can be obtained from that of by repeatedly replacing an arrow pair to the left
or to the right of the wall, or an arrow pair to the left of the wall, or an arrow pair

to the right of the wall, by the opposite arrow pair. Now we define the cap-curl
codiagram associated to and by replacing each arrow in by the arrow
from the arrow diagram of at the same node. Put differently, we put the caps and
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curls from on top of the arrow diagram of . We say that is oriented if all
caps and curls in are oriented (clockwise or anti-clockwise). It is not hard to
show that when is oriented, the arrow diagrams of and are the same at the
nodes which are not endpoints of a cap or a curl in .

For example, when 11, 7, 5 and 4321 . Then 3 and
is

Consider two dominant weights with : 6332 and 52432
with arrow diagrams o and o . Only for the last is oriented.

Note that for the first we are not allowed to change the at the 0-node to a , because
then the parity of the number of ’s in the arrow diagram of would not be the same
as that in the arrow diagram of .

Theorem 7.1 Let 1 min , and . Then

1 if and

0 otherwise.

Proof The proof is by induction on the number of caps and curls in and is com-
pletely analogous to the proof of Theorem 6.1. The role of is now played by . We
leave the details to the reader. The final argument involving the projection is as fol-
lows. By Lemma 5.1(iii) we have that Hom 0. Since
we have by Proposition 4.2 that

when for some , i.e. , and 0 otherwise.

Define the involution † on by letting † be the partition whose arrow diagram
is obtained from that of by replacing all single arrows by their opposite. Note that
† reverses the order .

Corollary Let . Then † † .

Proof This follows from Theorems 6.1 and 7.1, since is obtained form † † by
replacing all single arrows by their opposite and reflecting all caps and curls in the
horizontal axis.
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Remark 7.1 In view of [7, Lem A4.6] and the above corollary it is natural to conjec-
ture that, for the intersection of with a -orbit under the dot action,
the algebra † is the Ringel dual of .
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