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Medium- or large-amplitude oscillatory shear (MAOS and LAOS, respectively) is sensitive to polymer chain

structure, yet poses unsolved challenges for a priori structural characterization. We present a MAOS protocol

applied to near-monodisperse linear polymer melts, from which chain-stretch relaxation, a key structural feature,

is discernible. The third harmonics of MAOS frequency sweeps are decomposed into real and imaginary

components and found to obey time-temperature superposition. Significantly, these third harmonic features occur

at low frequency and are readily accessible with standard rheometers. For materials where phase transitions

restrict the use of time temperature superposition, this method has potential to greatly increase the scope of

rotational rheometry for structural analysis of polymers. However, the relationship between MAOS data and

characteristic relaxation times is complex, and to elucidate this, a modeling approach is required. The GLaMM

molecular tube-based model of linear entangled melt rheology and structure, which has no free parameters,

closely follows the form of our experimental results for the third harmonics and contains discriminatory features

which depend only on the polymer’s chain stretch relaxation time. However, we find fundamental differences

in magnitude and the frequency dependence of the third harmonics which must be resolved in order to fully

understand the molecular basis of the stress response and quantitatively study chain stretch.

DOI: 10.1103/PhysRevResearch.2.033457

I. INTRODUCTION

Oscillatory shear rheology is sensitive to the microstructure

of complex soft materials (e.g., polymers [1–3] or immiscible

blends [4]). The technique subjects a fluid sample to

oscillatory shear strain at a given amplitude and frequency,

γ (t ) = γ0 sin(ωt ), and analyzes the stress response. Medium-

or large-amplitude oscillatory shear (MAOS and LAOS

respectively, where MAOS is a special case of LAOS at

intermediate strains) is defined as having γ0 sufficient to

induce detectable levels of nonlinear stress response (for a

review see Hyun et al. [5]).

LAOS reveals microstructural information (additional to

that available from linear rheology) in a range of viscoelastic

Published by the American Physical Society under the terms of the

Creative Commons Attribution 4.0 International license. Further

distribution of this work must maintain attribution to the author(s)

and the published article’s title, journal citation, and DOI.

materials, e.g., gels and networks [6–8], wormlike micelles

[9], soft glasses [10], emulsions [11], particle suspensions

[12], and biological fluids [13].

For polymers in particular, LAOS is complementary to

small-amplitude measurements, and results are a complex

function of molecular architecture such as linear [14], star

[15], and comb architectures [16] and can be used to quan-

tify the level of branching in industrial resins such as

metallocene-catalyzed sparsely branched HDPEs [17,18] or

tubular-reacted randomly branched LDPEs [18,19]. However,

crucially, LAOS is not yet a standard analytical tool for char-

acterizing molecular architecture.

The stress response of a complex material in LAOS can be

characterized in several ways. The transient shear stress can be

plotted against time, and visual distortions from a sinusoidal

curve can be seen [20]. However, the shear stress is more

commonly plotted against strain to give Lissajous-Bowditch

curves [21,22], and these are grouped together for various fre-

quencies and strain amplitudes in Pipkin diagrams [13], which

give a visual “fingerprint” of a material. For more quantitative

analysis, the stress is typically decomposed into some series

2643-1564/2020/2(3)/033457(10) 033457-1 Published by the American Physical Society
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such as Fourier [5], Chebyshev polynomials [13], or graph-

ical interpretations [23]. It is worth noting that no dominant

methodology is established as a benchmark analysis method.

In this paper we focus on Fourier transform rheology

(FTR) because this has been shown to be a sensitive enough

technique to isolate small nonlinearities in the material stress

response, either from shear stress [5,24–27] or from the first

normal stress [28].

In FTR the shear stress response to the imposed sinu-

soidal shear rate is expressed as a Fourier series, σ FT
xy =

∑

n [I ′
n sin(nωt ) + I ′′

n cos(nωt )], where I ′
n and I ′′

n are the

Fourier coefficients. The complex dynamic moduli for the nth

harmonic are defined as G′
n = I ′

n/γ0 and G′′
n = I ′′

n /γ0. For n =
1 we recover the standard storage and loss moduli: G′ = I ′

1/γ0

and G′′ = I ′′
1 /γ0 as γ0 → 0.

Nonlinearities in LAOS are measured typically through the

third harmonics (n = 3) since by symmetry the even harmon-

ics are zero [29] (we use the second harmonic to measure the

noise).

Popular reported quantities are the absolute value of the

third harmonic I3 =
√

I ′
3 + I ′′

3 and its value as a ratio to the

absolute first harmonic, I3/1 = I3/I1, which is often plotted

as a function of increasing γ0 [27]. Secondarily considered

is the phase shift of the third harmonic �3 = φ3 − 3φ1, with

tan(φn) = G′′
n

G′
n

[18] and Q = I3/1γ
−2
0 , which plateaus to a con-

stant value (Q0) in the limit of small amplitude [30]. Q0 can

also be decomposed into Q′
0 and Q′′

0 [31].

Nonlinearities in the first harmonic have been used to char-

acterize behavior at high strains [32] and to predict the form

of the third harmonic [33]. However, we choose to focus on

the third harmonic where nonlinearities occur at small strains

and are experimentally accessible.

Of recent interest is the MAOS protocol (see, e.g.,

Ref. [29]), defined as the strain regime within which the

imposed γ0 is sufficient for nonlinearities in the stress to be

experimentally measured yet maintain the relation I3/1 ∝ γ 2
0 .

Interpretation of LAOS-FTR results relies on comparison

with some relevant constitutive theory, since this method does

not explicitly reveal a direct relationship between material mi-

crostructure and the subsequent higher harmonic dependency

(several are covered in Ref. [5]).

However, constitutive modeling of LAOS is comparatively

underdeveloped. Hyun [34] compared several constitutive

models such as the Giesekus, Phan-Tien Tanner, and Pom-

pom model. An example using the Giesekus model is

given in the Appendix. The model contains a nonlinear-

ity factor (α) which can be fitted to the medium-amplitude

oscillatory shear (MAOS) response but cannot capture all

flows (transient shear, extension, and MAOS) with a single

value. The Pom-pom model has been used to characterize

branching [17,18,20], which has been effective due to its

structure-based construction and parametrization. The molec-

ular stress-function (MSF) theory has also been shown to be

capable of capturing extensional and LAOS rheology simul-

taneously [19]. For the MAOS regime both the Pom-pom

and MSF theories have been shown to broadly capture the

intensity of I3/1 over a range of frequencies for a range of

materials from monodisperse linear and star-arm to randomly

branched polymers [14,15,17].

TABLE I. Material parameters for the polyisoprene samples at a

reference temperature of 25 ◦C.

Sample name Mw [kg/mol] PDI η∗
0 [Pa s] τd [s] Z

PI20k 21.5 1.02 126 0.000 58 5

PI100k 100 1.03 31 600 0.155 21

PI150k 145 1.02 113 000 0.55 30

PI400k 387 1.05 2 910 000 13.8 80

A limitation of all these approaches is that fitting is re-

quired to match theory to LAOS data; typically the parameters

are set by a different rheometric experiment and the fits are

“multimodal” in form. These factors obscure the true molec-

ular response and hence the ability of the LAOS technique to

inform on structure.

The aim of this paper is the following:

(1) To present the rich phase information that is contained

in the third harmonic and show that this can be meaningfully

used to characterize the molecular rheology of well-defined

materials (including parameters that can be extremely difficult

to obtain from linear rheology) and

(2) To compare these new results with theoretical mod-

elling, both via a fitted multimodal approach and the most

detailed truly molecular constitutive model currently avail-

able.

II. MATERIALS AND EXPERIMENTAL

Linear polybutadiene chains of defined molecular weights

were synthesized by standard living anionic polymerization

[35]. In Table I we detail the material parameters measured

using gel permeation chromatography (GPC) and standard

oscillatory rheology.

Rheological experiments were performed on a Discovery

HR-2 (TA Instruments) equipped with an environmental test

chamber supplied with liquid nitrogen. For linear rheology,

a 25 mm parallel plate geometry was used, and the dynamic

moduli were measured using frequency sweeps (10−2 Hz �

ω � 102 Hz and 1% � γ0 � 5%) at various temperatures be-

tween −30 ◦C and 50 ◦C. The results at each temperature were

shifted to a reference temperature of 25 ◦C using WLF theory

[36] and REPTATE software [37].

MAOS measurements were carefully made in seperate ex-

periments using a 25 mm, 4◦ cone. Frequency sweeps were

performed for strain amplitudes of 5% � γ0 � 20% and fre-

quencies under 5 rad/s to limit inertial and instrument effects.

Transient data were recorded, and the Fourier coefficients for

the stress were extracted from the transient stress data using

an in-house MATLAB program [38], which uses a fast Fourier

transform routine.

Care was taken during sample preparation and measuring

to ensure the accuracy of the LAOS results, with details of

these protocols given in the Appendix and in Ref. [39].

III. MODELING

We compare the polyisoprene rheology to a self-consistent

set of constitutive equations that transition from linear to non-

linear theory using the the same underlying concepts. First, the

033457-2
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FIG. 1. (a) Linear rheology for the four PI blends at 25 ◦C de-

tailed in Table I with comparison to Likhtman-McLeish linear theory.

(b) MAOS rheology for the four blends at 25 ◦C with a strain of 20%

where the open symbols are G′
3 and the closed = G′′

3’. For PI400k the

results are a TTS for temperatures in the range of 25 ◦C–50 ◦C.

Likhtman-McLeish linear theory [40] accurately describes the

full relaxation pathways of linear polymer chains subjected

to a linear deformation. This theory is then extended to the

GLaMM model [41,42], which considers nonlinear stress re-

sponse of the whole chain using a series of well-considered

approximations and closure assumptions. The GLaMM model

offers a sophisticated treatment of monodisperse linear poly-

mer melts that includes several relaxation mechanisms: chain

diffusion, chain stretch, convective constraint release, and

contour length fluctuations. Although the GLaMM model

captures nonlinear rheology without the need for fitting free

parameters, it is computationally expensive, and for simula-

tions with any spatial variance in the flow rates, it is more

convenient to use the coarse-grained version of the model: the

Rolie-Poly [43] model. This considers the chain as a single

end-to-end vector, as opposed to the contour dependence in-

cluded in the GLaMM model. We consider both a one-mode

model and a multimode model. The multimode version of

the Rolie-Poly model is used to restore the transient fea-

tures lost in removing higher frequency chain motion during

coarse graining of the GLaMM model. However, the multi-

mode Rolie-Poly model must be fitted either against GLaMM
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FIG. 2. Linear dynamic moduli predictions for PI100K at 25 ◦C,

using Likhtman-McLeish theory, GLaMM, and Rolie-Poly with one

and nine Maxwell modes. Details of the parameters used are pro-

vided in the Appendix.

predictions or experimental data for rheological linear and

nonlinear flows.

IV. RESULTS

We consider the linear and nonlinear oscillatory shear for

four molecular weights of polyisoprene. All the samples are

entangled: with one sample weakly entangled (number of

entanglements per chain, Z = 5), two samples moderately

entangled (Z = 21 and Z = 30), and one sample highly en-

tangled (Z = 80). Figure 1 shows the linear rheology of the

-1000

-500

 0

 500

 1000

 1500

 2000

100 101 102

G
3
' 
[P

a
] 

  
  
G

3
'' 

[P
a
]

Frequency [rad/s]

 PI100k (x10)

 1 mode RP

 9 mode RP

 GLaMM  

FIG. 3. GLaMM predictions of third harmonics compared to

Rolie-Poly with one and nine modes and experimental results. The

open symbols and solid lines are G′
3, and the filled symbols and

dashed lines are for G′′
3’.
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FIG. 4. GLaMM predictions of third harmonics with varied en-

tanglement number. The solid lines are G′
3, and the dashed lines are

G′′
3’.

four materials at 25 ◦C with properties given in Table I. For

all materials the terminal crossover was experimentally acces-

sible giving the reptation relaxation time τd , and for PI20K

and PI100k the high-frequency crossover was also measured,

giving the entanglement relaxation time τe. The only char-

acteristic difference between the samples is that the weakly

entangled PI20k shows no minimum in G′′. Also in this figure

are the predictions of the Likhtman-McLeish linear theory,

without adjustable parameters (lines), which gives an excel-

lent prediction of the linear rheology for all four samples with

the only parameter differentiating them being the molecular

weight.

In the bottom half of Fig. 1 the real and imaginary parts

of the third harmonic are plotted for each PI sample. PI20k–

PI150k were measured at 25 ◦C with a strain of 20% and

PI400k at higher temperatures (up to 50 ◦C) transposed to

25 ◦C with time-temperature superpostion. All sets of curves

follow similar qualitative behavior, with shifts in frequency

with molecular weight in a manner that tracks the linear

rheology. The key feature of the third harmonic curves is a

crossover in G′
3 and G′′

3 , which is always found at a lower

frequency than the crossover associated with the terminal re-

laxation time in the linear rheology (and orders of magnitude

lower than the frequency equal to the inverse chain stretch

time). For the moderately and highly entangled polymers,

the crossover occurs close to the peak value of G′
3 and the

inflection point of G′′
3 . However, the weakly entangled PI20k

has a different shape, with G′
3 rising to a higher maxima before

falling to crossover at the lower peak value of G′′
3 . A plot of

Fig. 1 with frequency normalized by τd (see Fig. 6) and details

of the TTS of PI400k are given in the Appendix.

V. DISCUSSION

The LAOS results in Fig. 1 show several nonlinear fea-

tures including a crossover between G′
3 and G′′

3 , and extrema

in both. These features move to lower frequencies with in-

creasing Mw. Plotting the results against Deborah number
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FIG. 5. Counterpart to Fig. 4. Variations in G3‘ and G3“ as a

function of Z with comparison to the dynamic moduli. Of partic-

ular note is the characteristic crossover frequencies for each set of

harmonics. In contrast to the experimental data the crossover for

the third harmonics occurs at a higher frequency than the standard

crossover.

FIG. 6. The analog to Fig. 1 plotted as a function of Deborah

number (frequency normalized by terminal relaxation time De =
ωτd ). The linear rheology superimposes in the terminal region for

both theory and experiment.
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FIG. 7. The linear rheology (a) and LAOS results (b) of PI400k

at various temperatures. The predictions of the Likhtman-McLeish

model are included: red, 50◦, orange, 45◦, aqua, 30◦, and blue, 25◦.

De = ωτd collapses the terminal linear rheology but not the

LAOS features (cf. Fig. 6 in the Appendix). Therefore, LAOS

features are associated with faster relaxation processes. The

crossover in G′
3 and G′′

3 moves to lower De with increasing

Mw and further occurs for De < 1, hence at lower frequencies

than the characteristic reptation rate. All the theories reported

here predict the third harmonic crossover to occur at De > 1.

To understand these complex rheological structures com-

pared with a nonlinear viscoelastic theory, which simulta-

neously describes the linear rheology, is essential. This will

(1) test our current understanding of the underlying polymer

physics and (2) allow these measurements to be used as an

analytical technique.

We now compare the previously introduced molecular rhe-

ology theories to the experimental results for the PI100k

sample at 25 ◦C (Fig. 2). We consider the GLaMM model, a

one-mode Rolie-Poly (1-RP) model, and a multimode Rolie-

Poly (9-RP) model with nine Maxwell modes.

Comparing the linear rheology predicted by Likhtman-

McLeish (LM) linear theory which nearly superimposes onto

the experimental data in Fig. 1, we see the nonlinear extension

of the LM model follows both moduli closely with a slight

deviation in G′′ near the crossover point. The one-mode RP

model is calculated with the moduli and reptation time taken

from LM theory and hence captures little of the linear rheol-

ogy except the correct scaling in the terminal region. Finally,

the nine-mode RP model (fitted to experimental data) closely

echoes the data over the complete frequency range until the

final mode at around 105 (rad/s).

In Fig. 3 we compare the nonlinear theories to the LAOS

data. We multiplied the modulus of the experimental data by

a factor 10 for it be discernible on the plot. While all theories

reproduce the qualitative shape of G′
3 and G′′

3 , it is clear that all

theories overestimate the amplitude of the third harmonic by

at least a factor 10. It is also clear that the crossover between

G3′ and G3′′ occurs at a significantly higher frequency for all

theories compared to experiment. We have checked various

parameters such as the convective constraint release (CCR)

rate, order one parameter (Rs), and the GLaMM discretization

(N) which have minor effects on the magnitude of the third

harmonics but show no qualitative differences from those pre-

sented here (cf. the Appendix). Changing the parameter Rs has

the effect of changing the stretch relaxation while preserving

the linear rheology. Even changing this parameter (effectually

reproducing Fig. 4) cannot bring the third harmonic crossover

below a frequency less than τ−1
d

and will have the detrimen-

tal effect of changing the rheological predictions in transient

shear and extensional flows.

We can see in Fig. 4 that there are clear trends in the

features of the third harmonics that are a function of molecular

weight (or Z). The theory predicts that with greater Z , we see

an increase in the magnitude of both the peaks in G′
3 and G′′

3

and the negative minima in G′′
3 , as well as a shift of all features

FIG. 8. Extensional rheology measured on a SER attachment at −30◦. Each subfipanel compares the extensional data to one of the theories

used in the main text: (a) GLaMM, (b) nine-mode Rolie-Poly, (c) one-mode Rolie-Poly.
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FIG. 9. The shear rheology predictions of the three models used in the main text. (a) The GLaMM model is compared to the linear rheology

and the η∗(t ) envelope can be observed; (b) the nine-mode Rolie-Poly model is compared to GLaMM predictions; and (c) the one-mode

Rolie-Poly model is compared to the GLaMM predictions.

to higher De. This is counter to the experimental observations,

which show the features moving to lower De with molecular

weight (seen in Fig. 6 in the Appendix) and decreasing or

remaining as constant magnitude. It is clear, however, that the

theories do capture the correct form of the experimental data,

capturing all of the features noted in experiment.

Although the single-mode Rolie-Poly model captures little

of the linear rheology, it reproduces all the features in the

MAOS sweeps, albeit with higher magnitudes. The simplic-

ity of this model means we can extract analytical forms for

the real and imaginary components of the third harmonic in

the limit of small strain amplitude (given in the Appendix).

Although complex, these expressions are dependent only on

the oscillation frequency and the Rouse time of the polymer.

This implies that the behavior we see, qualitatively captured

by this simple model, is driven by chain stretch. This is

significant because the frequencies used are well below the

inverse Rouse time of the polymers, and so no contribution

from Rouse behavior is expected in linear rheology. Moreover,

the Rouse behavior of these polymers is difficult to access at

all in linear rheological tests. (Here it required temperatures

of −30 ◦C.) MAOS therefore is a tool for probing Rouse

behavior at low frequency, which is beneficial for systems

where high frequencies are inaccessible, or for semicrystalline

polymers, where TTS is restricted to temperatures above the

melting point.

VI. CONCLUSIONS

We report a MAOS protocol alongside evidence that the

behavior of polymer melts in MAOS is driven by chain stretch.

This method makes polymer chain stretch behavior accessible

at low frequencies on standard torsional rheometers.

The standard dynamic moduli for well-entangled polymers

(Z � 10) superimpose for Deborah numbers De � 10. The

MAOS results show that the samples can be differentiated by

probing their weak nonlinear response at De � 1. The MAOS

results can differentiate these samples from their nonlinear

response, revealing more characteristic properties than linear

rheology alone.

The key characteristic flow timescales are the orientation

and stretch time (τd and τr respectively), and these are related

to the entanglement time and the number of entanglements.

The terminal relaxation crossover allows τd to be easily ob-

tained (along with Ge), and determining any of Z , τe, or τr

instantly gives the full rheological map of flow properties.

The MAOS measurements clearly access the faster nonlinear

relaxation mechanisms, usually measured at De ≫ 1, at Deb-

orah numbers O(1).

FIG. 10. (a) Variations in the third harmonics as a function of the Rolie-Poly parameter β ∈ [0, 1]. The amplitude of features in the third

harmonic is shown to increase with increasing β, which parametrizes constraint release. Notice that the crossover does not vary with the

amount of CCR. (b) The GLaMM third harmonic predictions shown with different discretization N = Z, 3Z, 5Z . Little difference is seen in

the GLaMM predictions with increased numerical accuracy.

033457-6



CHAIN-STRETCH RELAXATION FROM LOW-FREQUENCY … PHYSICAL REVIEW RESEARCH 2, 033457 (2020)

-1000

-500

 0

 500

 1000

 1500

 2000

100 101 102

G
3
' 
[P

a
] 
  
  
G

3
'' 

[P
a
]

Frequency [rad/s]

 PI100k (x10)
 1 mode RP
 9 mode RP

 GLaMM  
 Giesekus  

FIG. 11. Giesekus predictions for PI100k compared to GlaMM,

Rolie-poly, and experimental data. The solid lines are G′
3, and the

dashed lines are for G′′
3’.

An example of the potential of this approach is

for semicrystalline polymers where the temperature range

accessible in melt rheology is very limited. This restriction is

heightened by the often large difference between the glass-

transition temperature and the melt-transition temperature,

which reduces the effect of temperature change on viscosity

and therefore severely limits the effects of time-temperature

superposition theories. However, a modeling approach is re-

quired for quantitative study of this behavior, in order to fully

establish the complex relationship between this response and

the characteristic relation times.

We have shown a significant discrepancy in the predictions

of MAOS with Rolie-Poly and GlaMM models, the latter

notable for having no adjustable parameters. Qualitatively,

the behavior in MAOS is captured by both models, yet re-

markably neither quantitatively matches the experimental data

for these simple model materials. This indicates an addition

is required, even to the current gold standard in rheological

models, to fully capture MAOS data.

ACKNOWLEDGMENTS

The authors gratefully acknowledge financial support from

Michelin R&D (Material Performance and Processability) and

M. Oti for providing the materials.

APPENDIX

1. Details on sample preparation and measurement protocols

Samples were prepared for rheometry by pressing into

disks 1 mm thick and 25 mm in diameter under a force of

4 tonnes at room temperature followed by equilibration for at

least 10 minutes. The disk was loaded into the rheometer and

the geometry driven to the sample gap +5%. The normal force

was left to dissipate to �0.1N and the sample trimmed after

which the geometry was driven to the final sample gap and the

normal force again allowed to dissipate before measurement.

Care was taken to ensure the accuracy of the LAOS mea-

surements: (1) many cycles were averaged over (typically 100

plus five startup cycles which were discarded) to minimize

the noise in the system (measured using the second harmonic,

which should be zero by symmetry [27]), (2) the effects of

edge fracture and slip were avoided by monitoring the sample

and the magnitudes of the even harmonics and comparison of

G′ and G′′ with the linear rheology, and (3) superharmonic su-

perposition [44] was measured for the instrument and avoided

by performing measurements at frequencies under 5 rad/s.

2. Details on constitutive models used

The Likhtman-McLeish linear model [40] was compared

to the linear rheology of the PI samples in the main paper.

This was not solved directly but using REPTATE software. The

following equation was used from the LM model to relate the

entanglement time τe:

τd = 3Z3

(

1 − 2
C1√

Z
+

C2

Z
−

C3

Z3/2

)

τe, (A1)

where the coefficients are C1 = 1.69, C2 = 4.17, and C3 =
−1.55.

FIG. 12. Comparison of experimental data to the shear and extensional rheology predictions of GLaMM and the Giesekus model with

alpha = 0.5, showing that the Giesekus model cannot fit all flows simultaneously with a single value of alpha. (a) Comparison of GLaMM

to experimental extension; (b) comparison of Giesekus to experimental extension; and (c) GLaMM (solid lines) and Giesekus (dotted lines)

compared to experimental transient shear.
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We give an overview of the GLaMM model with full details

found in Refs. [41,42]. We calculate the stress tensor as

σ =
12Ge

5Z

∫ Z

0

f (s, s′) ds +
Ge

Z

∫ t

−∞

N
∑

p=Z

exp

×
[

−
2p2(t − t ′)

Z2τe

]

[K(t ′) + K(t ′)T ]dt ′, (A2)

where the first term in the rhs is the stress relaxation at length
scales larger than an entanglement and the second term is the

entanglement Rouse relaxation with relaxation time τe. Ge

is the modulus, Z is the number of entanglements, K is the

velocity gradient tensor, and p is the Rouse mode number. The

f (s, s′) tensor is a tangent correlation function,

fαβ (s, s′; t ) ≡
〈

∂Rα (s, t )

∂s

∂Rβ (s′, t )

∂s′

〉

, (A3)

which considers the conformation of the polymer chain de-

scribed by vector R(s, t ) between points s and s′ with {s, s′} ⊂
[0, Z]. The evolution of f (s, s′) is given by

∂

∂t
fαβ (s, s′; t ) = (καγ fγ β + fαγ κγ β ) +

1

3π2Zτe

[

Z

Z∗(t )

]2(
∂

∂s
+

∂

∂s′

)

D∗(s, s′)

λ(s, s′)

(

∂

∂s
+

∂

∂s′

)

fαβ + · · ·

+
3aν

2

[

∂

∂s

1

λ(s)

∂

∂s

(

fαβ − f
eq

αβ

)

+
∂

∂s′
1

λ(s′)

∂

∂s′

(

fαβ − f
eq

αβ

)

]

+
Rs

2π2τe

{

∂

∂s

[

fαβ

∂

∂s
ln λ2(s)

]

+
∂

∂s′

[

fαβ

∂

∂s′ ln λ2(s′)

]}

. (A4)

Equation (A4) contains four terms, which in order are convection, reptation, and contour length fluctuations, constraint release,

and retraction. The equation contains parameters for diffusion [D ∗ (s, s′)], and a retraction rate [λ(s)], with constants for CCR

(ν) and Rs, a geometric parameter of order unity. By considering the intersegmental motions of the chain in Fourier space, the

GLaMM equation can be simplified by considering only the first Fourier mode. This removes the s dependency, and the chain

becomes dumbbell-like. The resulting model is the Rolie-Poly model, which is given by

dσ

dt
= K · σ + σ · KT −

1

τd

(σ − I) −
2(1 −

√
3/trσ )

τr

[

σ + β

( trσ

3

)δ

(σ − I)

]

. (A5)

To recover the transient stress growth in both nonlinear shear and extensional flow tests we use the multimode Rolie-Poly

model. The faster modes are used to recover the correct viscoelastic envelope (cf. Figs. 8 and 9), and the nonstretch limit of the

Rolie-Poly equation is used for these “fast” modes (where stretch is relaxed essentially infinitely fast):

dσ

dt
= K · σ + σ · KT −

1

τd

(σ − I) −
2

3
tr(K · σ)[σ + β(σ − I)]. (A6)

The simplicity of the Rolie-Poly model [Eq. (A5)] allows some analytic progress to be made. If we expand the (dimensionless)

extra stress tensor in increasing powers of strain amplitude we can derive an expression of the Fourier coefficients I ′,′′
n that are

applicable in the MAOS regime of flow. More details can be found in Refs. [17,45], where a similar approach was performed on

the Pom-pom equations. Formulas for the third harmonics of the Rolie-Poly in limit of small strain amplitude with β = 0 (and

τd = 1 for clarity such that each component is dimensionless) are given by

I ′
3 = −

1

6

(36τrω
6 − 73τrω

4 − 39ω4 − 35τrω
2 − 13ω2 + 2τr + 2)ω3

144ω10τ 2
r + 376ω8τ 2

r + 72τrω8 + 36ω8 + 377τ 2
r ω6 + 170τrω6 + 85ω6 + 123τr2ω4 + 126τrω4 + 63ω4 + 19τ 2

r ω2 + 30τrω2 + 15ω2 + τ 2 + 2τr + 1
,

(A7)

and

I ′′
3 =

1

6

(96τrω
4 + 8τrω

2 + 18ω4 − 17ω2 − 15τr − 11)ω4

144ω10τ 2
r + 376ω8τ 2

r + 72τrω8 + 36ω8 + 377τ 2
r ω6 + 170τrω6 + 85ω6 + 123τr2ω4 + 126τrω4 + 63ω4 + 19τ 2

r ω2 + 30τrω2 + 15ω2 + τ 2 + 2τr + 1
.

(A8)

Indeed, Eqs. (A7) and (A8) give the same result as seen in

Fig. 3 for the one-mode Rolie-Poly, i.e., qualitatively similar

to the data but quantitatively different in amplitude and fre-

quency dependence. Clearly, the relationship between chain

TABLE II. Likhtman-McLeish theory parameters for polyiso-

prene at 25 ◦C that are common to all molecular weights.

Ge Me τe cν

5.9558 × 105 4.8158 1.321 × 10−5 0.1

stretch relaxation time and frequency is complicated and

would explain the previous difficultly in extracting molecular

information from LAOS.

The parameters used for Likhtman-McLeish and GLaMM

theories are shown in Tables II and III, respectively. The other

TABLE III. GLaMM theory parameters for simulations.

Ge τd Rs cν

1.0 1.0 2.0 0.1
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TABLE IV. One-mode Rolie-Poly Maxwell parameters for

PI100k (Z = 21) with β = 0.

Gi τdi
τsi

588844 1.570 × 10−1 0.0057

key parameter for the GLaMM simulations is the entangle-

ment number Z = Mw

Me
from which the entanglement time τe

is derived from Eq. (A1). We shift the GLaMM results to

dimensional numbers using the numbers from Table II and τd .

In Fig. 5 we plot a comparison of the first and third harmonics

as a counterpart to Fig. 4.

The two key observations are (1) that unlike the higher har-

monics there is little difference for De < 100 for sufficiently

entangled melts, Z � 20 and (2) the crossover between G′
3 and

G′′
3 occurs after the terminal time crossover, which is counter

to the experimental observations.

Figure 6 shows the equivalent plot for the experimental

data, plotted now against Deborah number. For PI400k we

used the Williams-Landel-Ferry (WLF) time-temperature su-

perposition (TTS) theory to increase the total flow regime

explored. The results for PI400k depicting the various tem-

peratures are shown in Fig. 7, and these were all shifted to

25 ◦C to match the data for other molecular weights. It should

be noted that GLaMM theory for Z = 5 deviates from the

behavior of PI20k for De > 1, which is expected since it is

a theory for well-entangled melts.

In Fig. 8 we present a comparison between nonlinear ex-

tensional experiments and the predictions of the nonlinear

constitutive theories used in the main text. We present data for

PI100k with measurements taken at −30 ◦C and TTS shifted

to 25 ◦C. We compare the GLaMM model whose parameters

are detailed in Tables II and III, the one-mode Rolie-Poly

model (Table IV), and the nine-mode Rolie-Poly model (Ta-

ble V). The GLaMM model (with no free parameters) and

the nine-mode Rolie-Poly model both fit the data excellently.

The one-mode Rolie-Poly model captures the strain hardening

only at the higher rates. In Fig. 9 we compare the transient

shear response of the models. The GLaMM model mimics the

linear viscoelastic envelope seen in the extensional data, and

in Auhl et al. [42] the model is shown to capture nonlinear

shear response excellently. The nine-mode Rolie-Poly model

compares reasonably to the GLaMM model for intermediate

TABLE V. Nine-mode Rolie-poly Maxwell parameters for

PI100k (Z = 21) with β = 0.

Gi τdi
τsi

170 661 1.493 × 10−1 0.005 628 8

75 449.2 3.316 × 10−2 –

69 829.9 7.365 × 10−3 –

52 453.8 1.636 × 10−4 –

58 903.4 3.632 × 10−4 –

66 145.8 8.066 × 10−5 –

154 820 1.791 × 10−5 –

316 517 3.978 × 10−6 –

2 103 720 8.834 × 10−7 –

rates but deviates from the transient response at higher rates.

The one-mode model fails to capture nearly every aspect of

the GLaMM model other than the general form.

We then show how the third harmonics vary with some

model parameters. In the left panel of Fig. 10 we show the

Rolie-Poly model (one-mode) for various values of β, the

convective constraint release parameter. The magnitude of

the third harmonics increases with increasing CCR; however,

the frequency dependence is unaffected. The right panel of

Fig. 10 compares the GLaMM model for various values of

the discretization parameter N , which is an odd multiple of

the entanglement number. Overall, there is little difference

for different discretization numbers, although the magnitude

increase with increasing N and the features move to slightly

lower De. The lowest value N = Z matches experiment with

the most accuracy. Also, for N = 105 simulations took around

3 days per individual frequency to complete and is the practi-

cal limit of the simulation time available. For both the above

reasons we choose to use N = Z in the main text.

Finally, we include a comparison to a single mode

Giesekus [46,47] prediction. Using a value of α = 0.5, this

gives slightly lower values of G′
3 and G′′

3 than Rolie-poly and

GLaMM (Fig. 11). However, it predicts similar magnitudes

for the peaks in G′
3 and G′′

3 , whereas the other models and

experimental data show G′
3 having a significantly larger peak.

Also, crucially, the predictions of transient shear and exten-

sional flows (Fig. 12) are compromised, and it is clear that

all three flows cannot be captured by the single nonlinearity

parameter in this model.
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