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Abstract 13 

The stabilization of soil organic carbon (SOC) promoted by conservation agriculture (CA) depends 14 

on soil aggregation. Aggregation protects SOC and creates heterogeneous microhabitats hosting 15 

diverse soil biota which in turn promote aggregation. A long-term experiment, studying the 16 

interaction of tillage with nitrogen (N) fertilization on a soybean-wheat rotation, was used to 17 

investigate eukaryotic community diversity, composition, and structure within small 18 

macroaggregates (sM) and occluded microaggregates (mM). Using high-throughput Illumina 19 

sequencing, we found (i) a different eukaryote diversity response to management intensification 20 

across soil aggregates and soil depths; (ii) a conserved core community composition of eukaryotes 21 

across CA treatments and aggregates at surface and subsurface layers; (iii) a different effect of 22 

tillage on eukaryotic community structure in sM and mM along the soil profile according to N 23 

availability; (iv) a positive association of protists, and fungi with the amount of sM and mM, and 24 

their SOC content; (v) a stronger complexity of within- and cross-domain networks (eukaryotes and 25 

eukaryotes-prokaryotes) in mM than in sM at surface layer. Overall, our findings demonstrated for 26 
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the first time that protists together with fungi play major roles in soil structuring and C cycling, and 27 

that Cercozoa represent hubs in soil biota aggregate networks.  28 

 29 

Keywords 30 

soil aggregates; soil eukaryotes; protists; Illumina sequencing; 18S rRNA gene amplicon; soil biota 31 

linkages.  32 
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1. Introduction 33 

Soil organic carbon (SOC) stability mainly depends on physical protection (Six et al., 2000; Six 34 

and Paustian, 2014), whereas molecular structure of plant residues and root exudates play a 35 

secondary role in SOC persistence (Schmidt et al., 2011; Lal et al., 2015). Organic carbon (C) is 36 

protected in soil aggregates by physically limiting the access of decomposers and enzymes and the 37 

diffusion of O2.  38 

According to the model of Tisdall and Oades (1982), primary particles (clay and silt particles, 39 

Ø <53 µm) are bound together by persistent bacterial, fungal, and plant debris into free 40 

microaggregates (Ø 53-250 µm). Free microaggregates are bound into macroaggregates (Ø > 250 41 

µm) by transient agents (i.e., microbial and plant polysaccharides) that are rapidly decomposed by 42 

microorganisms, and by temporary agents (i.e., roots, fungal hyphae and glomalin) that persist in 43 

the medium term. Labile SOC is mainly located in macroaggregates, while free microaggregates 44 

contain a more recalcitrant SOC pool (Elliott, 1986; Jastrow and Miller, 1998).  45 

Intensive agricultural practices, such as tillage and fertilization, shorten the life cycle of 46 

macroaggregates and diminish the formation rate of new microaggregates, worsening soil structure 47 

(Six et al., 2000). In no-tillage systems (NT), the slower turn-over of macroaggregates resulted in 48 

more sequestration of crop-derived C in microaggregates formed within macroaggregates (occluded 49 

microaggregates, mM; Ø 53-250 µm), and thus the amount of mM is crucial for the long-term C-50 

sequestration in soils (Six et al., 2000; Denef et al., 2007; Sheehy et al., 2015). In this context, the 51 

application of conservation agriculture (CA) practices (i.e., minimum tillage/NT, crop rotation and 52 

mulching) may allow the establishment of microhabitats with variable nutrient availabilities for a 53 

diverse soil biota, acting as efficient binding agent (Kong et al., 2011; Gupta and Germida, 2015; 54 

Totsche et al., 2018; Piazza et al., 2019). Moreover, CA practices may also produce yields 55 

equivalent to or even greater than conventional systems (Rusinamhodzi et al., 2011; Aune, 2012; 56 

Pittelkow et al., 2015; Himmelstein et al., 2016).  57 
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In boreal climates, long-term NT and minimum tillage (MT) have been shown to increase the 58 

amount of macroaggregates and mM as well as their SOC content in the shallow layer (surface soil 59 

within horizon A) in comparison to conventional tillage (CT) (Franzluebbers and Arshad, 1997; 60 

Sheehy et al., 2015). This was demonstrated under various soil textures and was more evident in 61 

clay, clay-loam and silt-loam soils. Similarly, in humid tropical climates and sandy loam soils, 62 

long-term application of MT significantly increased SOC content in large soil aggregates, whereas 63 

the reverse was reported under CT (Onweremadu et al., 2007). Accordingly, Denef et al. (2007) 64 

highlighted a promotion of mM fraction and mM-associated C stocks in NT and MT compared with 65 

CT under similar climate. Moreover, nitrogen (N) fertilization was reported to increase SOC in 66 

macroaggregates and free microaggregates by decreasing the activity of cellulolytic fungi and 67 

bacteria (Ghosh et al., 2019; Duan et al., 2021). Recently, in a cold and humid Mediterranean area 68 

and in a silt-loam soil, high N fertilization rates in combination with MT not only increased mM, 69 

but also promoted a shift to low level, but more efficient C-cycling microbial enzyme activities, 70 

which were correlated to a greater accumulation of SOC (Piazza et al., 2020). Overall, in four 71 

regions across Europe the intensification of agriculture was reported to consistently reduce soil 72 

biota diversity in bulk soil, making soil food webs less diverse and composed of smaller bodied 73 

organisms (Tsiafouli et al., 2015). 74 

Although the role of bacterial and fungal communities (including arbuscular mycorrhizal fungi, 75 

AMF) in soil aggregation and SOC stabilization is widely recognized to be fundamental (Six et al., 76 

2004; Lehmann et al., 2017; Bach et al., 2018), the diversity and potential role of other soil biota 77 

have received less attention. Soil biota diversity has indeed proved to be the major driver of C 78 

sequestration and nutrient cycling in bulk soil (De Vries et al., 2013; Wagg et al., 2019; Delgado-79 

Baquerizo et al., 2020). Many studies demonstrated that earthworms and bacterivore nematodes are 80 

directly involved in the formation of macroaggregates by incorporating fresh organic matter inside 81 

mM and thus promoting SOC accumulation (Six et al., 2004; Pulleman et al., 2005; Bossuyt et al., 82 

2006; Fonte et al., 2007; Zhang et al., 2013; Delgado-Baquerizo et al., 2020). Moreover, an indirect 83 
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effect on SOC accumulation by earthworms and bactrivorous nematodes was also reported and 84 

explained by the shift of soil microbial diversity through taxa regulating nutrient flow (Delgado-85 

Baquerizo et al., 2020). Thus, in this study, we investigate the diversity and related roles of the 86 

eukaryotic component of soil biota within small macroaggregates (sM) and mM across CA 87 

managements. Moreover, since a more connected soil biota network takes up more C (Morriën et 88 

al., 2017), the study was extended to elucidate how eukaryotes are connected among each other, and 89 

to the prokaryotic community. In this context, long-term CA field experiments in the Mediterranean 90 

area, such as the one used in this study, provide a great opportunity for improving the understanding 91 

of soil eukaryotic diversity and functionality in soil aggregates and C stocks.  92 

The following hypotheses were tested: (1) conservation tillage and N fertilization shift soil 93 

eukaryote community diversity, composition and structure, in soil aggregates along the soil profile; 94 

(2) soil aggregates differentially shape the diversity, composition and structure of soil eukaryotes; 95 

(3) some eukaryotic taxa are predictors for soil structuring and C stocks; (4) eukaryotes form 96 

structured assemblages and distinctive networks in soil aggregates (within-domain networks); (5) 97 

the traits of the eukaryotes-prokaryotes networks vary across aggregates (cross-domain networks), 98 

and some network traits can predict soil structuring and C stocks. 99 

 100 

2. Materials and Methods 101 

2.1. Field experiment 102 

A long-term CA field experiment on a bread wheat (Triticum aestivum L.) - soybean (Glycine 103 

max L. Merr.) rotation was set up in 1993 at the Centro Interdipartimentale di Ricerche Agro-104 

Ambientali Enrico Avanzi (Pisa, Italy; 43°40’ latitude N; 10° 19’ longitude E; 1 m above sea level) 105 

in an alluvial silt loam soil (131, 613 and 256 g kg-1 of sand, silt and clay, respectively). The 106 

experiment was conducted comparing two tillage intensities and two N fertilization levels. The 107 

tillage intensities were: conservation tillage (minimum tillage, MT: disk harrowing at 15-cm depth) 108 
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and conventional tillage (CT: mouldboard ploughing at 25-cm depth, disking and harrowing at 15-109 

cm depth). The N fertilization levels applied only to bread wheat were: 0 and 200 kg N ha-1 (N0 and 110 

N200, respectively). The soil is classified as Typic Xerofluvent by USDA system (Soil Survey 111 

Staff, 1975) and as Fluvisol by FAO (IUSS, 2006). Climate of the site is cold, humid Mediterranean 112 

(Csa), according to the Köppen-Geiger climate classification (Kottek et al., 2006). The experiment 113 

was arranged following a split-plot design, with tillage as main-plot factor and N fertilization as 114 

subplot factor and three replicate plots (dimension: 11.5 x 14.5 m). The N fertilizer treatment was 115 

applied as urea and the rate was split into three applications, before sowing (60 kg N ha-1), at the 116 

first detectable node (70 kg N ha-1), and 15 days after this stage (70 kg N ha-1). Under CT, almost 117 

100% of the residues were incorporated in the 0-25 cm soil layer, whereas under MT approximately 118 

50% of the crop residues were incorporated at 0-15 cm depth. Crops were managed applying pre-119 

emergence herbicide for weed control and no disease or insect treatments (Piazza et al., 2020). 120 

.  121 

2.2. Soil sampling and analysis of soil physical and chemical parameters 122 

 Soil sampling was carried out in Spring 2016 before soybean sowing. In each replicate plot, a 123 

homogenized sample was obtained by mixing four soil cores collected at two soil depths (surface 124 

layer: 0-15 cm; sub-surface layer: 15-30 cm). A total of twenty-four soil samples were collected (12 125 

at the surface layer; 12 at the subsurface layer). Once in the laboratory, each sample was air-dried, 126 

gently broken apart and then passed through an 8-mm sieve. The isolation of small macroaggregates 127 

(sM; 250-2000 µm) was done from 80 g of the sieved soil samples by the wet sieving method (Six 128 

et al., 1999). Occluded microaggregates (mM; 53-250 µm) were isolated from an additional 129 

isolation of sM (i.e., starting from 80 g of the sieved soil samples) and utilising a device designed 130 

and built by Piazza et al. (2020). Once collected, the fractions were freeze-dried (FreeZone 2.5 131 

Labconco, Kansas City, MO, USA) for 48-72 h for dry weight determination and chemical and 132 

molecular analyses. Both aggregate fractions of all samples were then analysed for SOC by CHN 133 
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combustion method (LECO, Italy) and SOC content was calculated and expressed in Mg ha-1 134 

(Bremner and Mulvaney, 1982; Piazza et al., 2020). 135 

 136 

2.3. Molecular analyses 137 

 DNA was extracted from 0.25 g of sM (n=24) and mM samples (n=24) using the DNeasy 138 

PowerSoil Kit (QIAGEN, Venlo, Netherlands). The DNA extracts were then quantified by a 139 

spectrophotometer (NanoDrop Technology, Wilmington, DE) and stored at -20 °C. PCRs were 140 

generated from 10 ng μL-1 genomic DNA in volumes of 25 μL with 0.125 U μL-1 of GoTaq® Hot 141 

Start Polymerase (Promega Corporation, WA, USA), 0.5 μM of each primer, 0.2 mM of each 142 

dNTP, 1 mM of MgCl2 and 1x reaction buffer, using the PTC-200 96-well Peltier Thermal Cycler 143 

(MJ Research, MA, USA). The primers were TAReuk454FWD1-ill (5’-144 

TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGANNNHNNNWNNNHCCAGCASCYGC145 

GGTAATTCC-3’) and TAReukREV3-ill (5’- 146 

GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTACTTTCGTTCTTGATYRA-3’) 147 

(modified from Stoeck et al., 2010). The primer pair has attached Illumina sequencing tags, and for 148 

the forward primer a 13 bp random sequence was included in order to improve cluster definition on 149 

the MiSeq slide. Primers target the hypervariable region V4 of the small subunit ribosomal RNA 150 

(SSU rRNA 18S) gene fragment. The thermal cycler was programmed as follows: 95 °C for 2 min, 151 

35 cycles at 94 °C for 30 s, 50 °C for 45 sec, 72 °C for 1 min and 30 s and a final extension step at 152 

72 °C for 10 min. PCR products were examined by electrophoresis through a 1% agarose gel in 0.5 153 

× TBE buffer, then purified with magnetic beads (Agencourt® AMPure® XP, Beckman Coulter, 154 

USA) and freshly prepared 80% ethanol, and quantified by fluorimetry with the use of Quant-iT™ 155 

dsDNA HS (High-Sensitivity) Assay Kit (Invitrogen by Thermo Fisher Scientific, CA, USA), 156 

following the instructions of the manufacturer. Cleaned and quantified amplicons of each library 157 

were adjusted in an equimolar ratio (10 ng/μL) for the required Illumina P5 and P7 sequences 158 
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addition along with index sequences in a new PCR step. Indexing was performed using primers 159 

from the Nextera® Index kit (sets A and D; Illumina Inc., CA, USA) and the resulting 160 

metabarcoding libraries were sequenced on an Illumina MiSeq sequencer (2 * 300 bp paired-end 161 

reads) at the Genomics and Bioinformatics Laboratory (Technology Facility, Department of 162 

Biology, University of York, UK). Details are given in the Supplementary Methods 1.  163 

 164 

2.4. Bioinformatic analyses 165 

 Raw data generated from the Illumina MiSeq sequencing run were processed and analyzed 166 

following the pipelines of QIIME 2 (2018.4) and USEARCH (v10.0.240) (Edgar, 2010; Caporaso et 167 

al., 2012). Forward and reverse paired-end sequences were assembled independently for each 168 

sample using -fastq_mergepairs USEARCH command. Primer sequences were then trimmed off by 169 

employing cutadapt plugin (2018.4) with default settings. To avoid potential errors in sequencing 170 

data, quality of sequence reads was checked by -fastq_eestats2 USEARCH command, using the 171 

expected number of errors in a read as a measure of quality for filtering (Edgar and Flyvbjerg, 172 

2015). Reads were then trimmed at the length where the “drop-off” point for the maximum 173 

expected error value occurred (250 bp). Quality filtered reads were de-replicated by -fastx_uniques 174 

USEARCH command, then Operational Taxonomic Units (OTUs) were generated using 175 

USEARCH by clustering sequence reads at the 97% similarity threshold. During the process, 176 

chimeric sequences and singletons were removed from the dataset. For the curation, the sequences 177 

were aligned using ClustalW and then Neighbor Joining (NJ) phylogenetic tree was built in 178 

MEGA7 (Kumar et al., 2016) (https://www.megasoftware.net). The most abundant sequence of the 179 

eukaryotic OTU in each cluster was selected, and used as representative sequence for that OTU 180 

after branch collapsing. For the curation, the sequences were aligned using ClustalW and then 181 

Neighbor Joining (NJ) phylogenetic tree was built in MEGA7 (Kumar et al., 2016) 182 

(https://www.megasoftware.net). The most abundant sequence of the eukaryotic OTU in each 183 
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cluster was selected, and used as representative sequence for that OTU after branch collapsing. The 184 

OTUs were phylogenetically assigned using the 18S SSU SILVA database (version 132, release 185 

date 13.12.2017) (Quast et al., 2012; Yilmaz et al., 2013) by clustering sequence reads at the 97% 186 

similarity threshold. After curation, the representative sequences were re-aligned using ClustalW 187 

and the phylogenetic tree was built in MEGA7 using the Neighbor Joining (NJ) analysis with 1 000 188 

boostrap replicates and the Kimura 2-parameter model (uniform rates).  189 

 The suitability of the eukaryotic community sampling was verified by rarefaction curves 190 

plotting the number of eukaryotic classes/phyla versus the number of sequence reads, while 191 

accumulation curves were calculated plotting the number of classes/phyla versus the number of soil 192 

samples using the package Vegan in R (Oksanen et al., 2013). Since there was a high variability in 193 

the number of reads per sample, sequencing depth per sample was standardized to the median 194 

number of reads across the samples in each data matrix using the same package in R (standardized 195 

datasets). All representative sequences were deposited in the NCBI GenBank database 196 

(SUB5948379 submission: MN178662-MN178794 accession numbers).  197 

Prokaryotic data were obtained from the same soil matrices and depths (Piazza, 2019) and were 198 

based on the V4 region of the 16S rRNA gene sequenced using a MiSeq Illumina approach 199 

(SUB5941754 submission: MN171543-MN172157 accession numbers). 200 

 201 

2.5. Statistical analyses 202 

 To test hypothesis 1 - Conservation tillage and N fertilization shift soil eukaryote community 203 

diversity, composition and structure in soil aggregates along soil profile - analysis of variance 204 

(ANOVA), Venn diagrams and permutational analysis of variance (PERMANOVA) were applied. 205 

Concerning diversity, richness, Shannon index (H’) and Simpson index (λ = 1- λ’) were calculated 206 

at class level and analysed by two-way ANOVA, according to the experimental design. These 207 

analyses were done in Vegan package in R and plotted by ggplot2 (Wickham and Chang, 2008). 208 
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Data were ln--transformed when needed to fulfil the assumptions of ANOVA. Post-hoc Tukey-B 209 

significant difference test was used for comparison among treatments. Concerning composition, 210 

Venn diagrams were drawn to visualize the OTUs unique to the treatments as well as the shared 211 

ones. The standardized datasets were used to generate the Venn diagrams by the online tool 212 

InteractiVenn (http://www.interactivenn.net; Heberle et al., 2015). Concerning structure, the 213 

relative abundances of eukaryotes were calculated at class level and the permutational analysis of 214 

variance (PERMANOVA) (Anderson and Braak, 2003) and the analysis of homogeneity of 215 

multivariate dispersion (PERMDISP) were used to test the effect of treatments (Togerson, 1958; 216 

Clarke and Gorley, 2006). Response data were square-root transformed to down-weight the 217 

dominant taxa and the Bray-Curtis index of dissimilarity was used to measure ecological distance. 218 

When PERMANOVA indicated a significant effect, the principal coordinate analysis (PCO) was 219 

carried out (Anderson et al., 2008) to visualize the most relevant patterns in the response data. In 220 

each PCO biplot, only the taxa with a strong correlation (r = 0.50-0.80) with the ordination scores 221 

on each PCO axis were displayed. P-values were calculated using the Monte-Carlo test and 222 

residuals were permuted according to the experimental model (Oksanen et al., 2013). Multivariate 223 

analyses were performed using PRIMER 6 and PERMANOVA+ software (Clarke and Gorley, 224 

2006; Anderson et al., 2008).  225 

 To test hypothesis 2 - Soil aggregates differentially shape the diversity, composition and 226 

structure of soil eukaryotes - eukaryotic richness, H’ and λ at phylum level and at both soil depths 227 

were analysed by one-way ANOVA, using soil matrix (sM vs mM) as fixed factor, and tillage and 228 

N fertilization as covariates. Analyses were performed in Vegan package in R and data were plotted 229 

by ggplot2. Data were ln-transformed when needed to fulfil the assumptions of ANOVA, and the 230 

post-hoc Tukey-B significant difference test was used for comparison among treatments. Moreover, 231 

the effect of matrix on composition and structure were analysed at phylum level using the Venn 232 

diagrams and PERMANOVAs, as described above.   233 
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 To test hypothesis 3 - Some eukaryotic taxa are potential predictors for soil structuring and C 234 

stocks - multiple regression analysis was applied using as independent variables the standardized 235 

relative abundances (calculated as described above) of eukaryotic taxa at class level. To account for 236 

the compositional nature of the data, an additive log-ratio transformation was applied (Gloor et al., 237 

2017). The dependent variables were sM and mM weights, and SOC content per unit of surface in 238 

sM and mM. The assumptions of the linear regression model were verified (Supplementary Method 239 

2) and the multiple linear regression analysis was applied using a stepwise method with the 240 

following probability criteria: P < 0.05 to accept and of P > 0.05 to remove a phylum or a 241 

within/cross-domain network traits. Multiple regressions were performed using the SPSS software 242 

package version 25.0 (SPSS Inc., Chicago, IL, United States). Details about regression analysis are 243 

reported in Supplementary Methods 2. 244 

 To test hypothesis 4 - Eukaryotes form structured assemblages and distinctive networks in soil 245 

aggregates - we built networks using the SParse InversE Covariance estimation for Ecological 246 

ASsociation Inference (SPIEC-EASI) package version 0.1 in R 247 

(https://github.com/zdk123/SpiecEasi/). SPIEC-EASI is a pipeline for inferring sparse inverse 248 

covariance matrix within and between multiple compositional datasets, under joint sparsity penalty 249 

(Kurtz et al., 2015). The within-domain analyses were performed on the standardized eukaryotic 250 

dataset at class level for each soil matrix and depth. The neighborhood selection (MB method) was 251 

applied as graphical inference model (Meinshausen and Bühlmann, 2010), since it has been shown 252 

to better perform than other available methods (e.g., CCREPE, SPARCC, SPIEC-EASI glasso) 253 

(Kurtz et al., 2015). The Stability Approach to Regularization Selection (StARS) was applied to 254 

select the optimal sparsity parameter (Liu et al., 2010), and the StARS variability threshold was set 255 

to 0.05 and n to 100 for all networks. We evaluated the weights of the edges in the networks using 256 

SPIEC-EASI (frequency versus edge weights = modularity), and we plotted the degree distributions 257 

of frequencies of the edges using adj2igraph (Kurtz et al., 2015). In the networks a node represents 258 

a connected taxon, an edge the connection between taxa, a singleton an unconnected taxon and a 259 
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dyad two connected taxa. For the eukaryotic networks (within-domain network) we calculated the 260 

following parameters: number of nodes excluding singletons, number of edges, number of 261 

singletons and dyads, number of subnetworks (a subnetwork is a network composed by at least 262 

three nodes), mean nodes per subnetwork, linkage density (complexity: the average number of 263 

edges per node), percentage of positive interactions and modularity. Moreover, in each network, we 264 

calculated the frequency of the phyla within the subnetworks, the mean of edges and nodes, and the 265 

percentage of positive edges for each phylum. Details about trait calculations are given in 266 

Supplementary Methods 3.  267 

 To test hypothesis 5 - The traits of the eukaryotes-prokaryotes networks vary across aggregates 268 

we inferred the associations between eukaryotes and prokaryotes domains by the cross-domain 269 

extension of SPIEC-EASI (Kurtz et al. 2015; Tripton et al., 2018). The same traits calculated for 270 

within-domain networks, except for the positive edges, were assessed (Supplementary Methods 3). 271 

In addition, the percentage of eukaryotes/prokaryotes per subnetwork was calculated and the 272 

number of subnetworks with only eukaryotes, only prokaryotes and with both domains were 273 

counted. The significance of the cross-domain relationships was tested by the Mantel test (Mantel 274 

and Valand, 1970) on the standardized read data that were centered and normalized and using the 275 

function Jaccard in PC-ORD 5 to build the resemblance matrix (Grandin, 2006) and also by the co-276 

Correspondence Analysis (CoCA) (ter Braak and Schaffers, 2004) in CANOCO 5 (ter Braak and 277 

Smilauer, 2012). To test if some network traits can predict soil structuring and C stocks - a multiple 278 

linear regression was performed after verification of the assumptions (Supplementary Methods 3). 279 

The analysis was performed using as independent variables the log(1+x)-transformed and 280 

normalized within- and cross-domain network traits in sM and mM (i.e., traits of eukaryotic 281 

networks and of eukaryotic-prokaryotic networks), and using as dependent variables sM and mM 282 

weights, and SOC content per unit of surface in sM and mM. Scripts for within and cross-domain 283 

network construction and analysis are available in Supplementary Methods 4. 284 

 285 
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 286 

3. Results and discussion 287 

3.1. Illumina sequencing information 288 

MiSeq sequencing yielded a total number of 2 940 322 reads from the 48 soil samples, and 289 

following quality-filtering a total of 2 884 052 sequence reads having a length of 392 bp were 290 

obtained. After BLAST against the 18S SSU SILVA database (Quast et al., 2012; Yilmaz et al., 291 

2013), we found 2 036 277 reads, ranging from 3 to 106 540 reads per sample that were assigned to 292 

a total of 4 211 OTUs. After sequence curation and the removal of Plantae sequences, 863 809 293 

reads, ranging from 6 421 and 46 429 reads per sample, were retrieved and assigned to 133 OTUs, 294 

56 classes and 27 phyla (Fig. S1, Fig. S2). The rarefaction and accumulation curves demonstrated 295 

that sampling effort was sufficient as the curves reached the asymptote (Fig. S3, Fig. S4). 296 

 297 

3.2. Effect of conservation management on eukaryotic diversity in soil aggregates 298 

To test if conservation tillage and N fertilization shift the diversity of soil eukaryotes in soil 299 

aggregates (hypothesis 1), richness and diversity indices were determined along the soil profile in 300 

small macroaggregates (sM) and occluded microaggregates (mM). A greater eukaryotic diversity in 301 

sM was consistently found at both soil layers under CT compared to MT, as shown by the 302 

significant increase of richness (+26%) and H’ and  (+9%) (Fig. S5). This higher eukaryotic 303 

diversity might be due to larger root development and higher availability of root exudates, organic 304 

matter (e.g., nutrients, organic acids), water and oxygen, reported under deep ploughing systems, 305 

and which have been shown to promote microbial growth and soil biota diversity/functionality 306 

(Guan et al., 2014; Edwards et al., 2015; Ercoli et al., 2017; Piazza et al., 2020), according to the 307 

response of individual taxonomic units to habitat and trophic conditions (van Capelle et al., 2012). 308 

At surface layer, N fertilization significantly increased under MT, suggesting an increase in 309 

number of relative abundances of taxa regulated by N availability Conversely, under CT, was 310 
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high and not modified by N fertilization, suggesting non-limiting N availability due to improved 311 

plant growth and higher mineralization rate of residues. A low eukaryotic diversity was previously 312 

found in bulk soil under N fertilization (Lentendu et al., 2014), and within soil aggregates a higher 313 

microbial diversity was found at low nutrient availability and NT compared with high nutrient 314 

availability and ploughing (Lagomarsino et al., 2012; Zhang et al., 2013; Bach et al., 2018).  315 

In mM an opposite pattern was found at surface layer, and no effect of N fertilization alone or 316 

in interaction with tillage was observed at both soil depths (Fig. S5). At surface layer, the 317 

eukaryotic diversity indices increased by 6% under MT compared to CT. Under tillage 318 

intensification, macroaggregates are indeed disrupted and occluded microaggregates became free in 319 

the soil (Six et al., 2000), potentially reducing diversity and C sequestration. This is supported by 320 

the highest SOC accumulation observed in mM under MT (Piazza et al., 2020), and by the high soil 321 

biota diversity found in the present study within mM.  322 

To test if soil aggregates differentially shape the diversity of soil eukaryotes (hypothesis 2), 323 

richness, H’ and were determined in sM and mM. Overall eukaryotic diversity was significantly 324 

higher in mM than in sM (Fig. S5) (i.e., at surface layerrichness +16%, H’ +6%, and +2%; at 325 

subsurface layer: richness +20 and H’ +5%). These results are in accordance with the higher 326 

richness and H’ of bacteria and fungi found in free microaggregates compared to large 327 

macroaggregates (Bach et al., 2018). Our findings support the fact that soil aggregates are distinct 328 

habitat spaces with eukaryotes adapted to SOM resources, pore-space network, and water and 329 

oxygen availability characteristic of sM and mM. 330 

 331 

3.3. Effect of conservation management on eukaryotic composition in soil aggregates  332 

To test if conservation tillage and N fertilization shift the composition of soil eukaryotes in soil 333 

aggregates (hypothesis 1) and how soil aggregates shape their composition (hypothesis 2), this 334 

parameter was evaluated along the soil profile in sM and mM. Across management practices and 335 

soil depths, the eukaryotic phyla Cercozoa (21%), Ciliophora (13%), Chlorophyta (11%), Nematoda 336 

Jo
ur

na
l P

re
-p

ro
of



15 

 

(11%) and Glomeromycota (9%) were predominant in sM, whereas in mM the predominant phyla 337 

were Ciliophora (19%), Cercozoa (18%) Chlorophyta (15%), and Ascomycota (11%) (Fig. 1a). The 338 

other phyla showed an abundance ≤ 8%. Sun et al. (2021) found that protists were the most 339 

dominant eukaryote (33.9% of the total eukaryotic sequences) in bulk soil. By contrast, Treonis et 340 

al. (2018) analysing the whole eukaryotic structure in bulk soil found a high abundance of fungi, 341 

Arthropoda, Nematoda and Anellida (40, 20, 20 and 11%, respectively), and a low abundance of 342 

protists (0.63%). Among protists, Rhizaria was the group with the highest relative abundance in 343 

arable soil, comprising as dominant taxa Cercozoa and Amoebozoa (Bates et al., 2013; Degrune et 344 

al., 2019a; Santos et al., 2020). Similarly, in another study, fungi were reported to be the most 345 

abundant (i.e., Ascomycota, Basidiomycota, fungi Incertae sedis and Glomeromycota), followed by 346 

Alveolata, Metazoa, Rhizaria, Stramenopiles, and Viridiplantae (Chen et al., 2012). Therefore, we 347 

can assume that the differences between bulk soil and soil aggregates depend on the variability of 348 

pH, moisture and organic nutrient availability that shift soil biota at multiple trophic levels.  349 

In both soil aggregates, the majority of taxa were common to all managements across soil 350 

depths, whereas some were unique to certain managements, as shown by the Venn diagrams at class 351 

resolution (Fig. 2b-c,e-f). This is also shown by the pie charts representing the proportion of the 56 352 

classes retrieved in each management (Fig. 2a,d). Moreover, focusing on the shared taxa between 353 

sM and mM, ca. 80% of eukaryotes were common to both soil aggregates, averaging soil depths 354 

(Fig. 3a,b). Accordingly, a large conserved core community of soil prokaryotes and fungi was 355 

found across managements at the same site in bulk soil (Piazza et al., 2019). This is also consistent 356 

with the findings obtained in other studies in different soil types and managements in bulk soil as 357 

well as in specific rhizocompartments (Lentendu et al., 2014; Edwards et al., 2015; Pershina et al., 358 

2018).  359 

However, the exclusive presence of some eukaryotic taxa in the different systems and soil 360 

aggregates (Fig. 2) suggests that long-term tillage and N fertilization may drive the development of 361 

communities of specialized taxa putatively having specific functions (e.g., soil aggregate and/or 362 
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SOC accumulation and nutrient cycling). As example, at the surface layer, in sM the classes 363 

Nassophorea and Perkinsea were exclusively found in MTN0, whereas Pezizomycetes and 364 

Gastrotricha in CTN0 (Fig. 2a,b), while many taxa were exclusively found in mM, such as 365 

Chlorophyta, Eutardigrada, Eurotiomycetes, Nassophorea and Thecofilosea in MTN0; Alveolata, 366 

Chilopoda and Rhabditophora in MTN200 and Dictyostelia and Pezizomycetes in CTN200 (Fig. 367 

2d,e). A more in-depth description of the eukaryotic composition and exclusiveness across 368 

managements and aggregates is reported in the Supplementary Results and Discussion 1. 369 

  370 

3.4. Effect of conservation management on eukaryotic community structures in soil aggregates 371 

To test if conservation tillage and N fertilization shift the structure of soil eukaryotes in soil 372 

aggregates (hypothesis 1), the relative abundance pattern of taxa was determined in soil aggregates. 373 

Despite the high degree of similarity among treatments in term of community composition, we 374 

highlighted a strong effect of the interaction between tillage and N fertilization on the eukaryotic 375 

community structures in sM at both soil layers, and in mM only at the surface layer (Table 1, Fig. 376 

1). Similarly, soil fungal community structure in bulk soil was strongly shaped by the interaction 377 

between tillage and N fertilization at surface and subsurface layers (Piazza et al., 2019). However, 378 

to our knowledge no studies have focused on the effect of the interaction of these practices on the 379 

eukaryotic communities in soil aggregates, whereas a huge number of studies was performed to 380 

assess the effect of tillage or N fertilization on the diversity/abundance and functionality of single 381 

eukaryotic group in bulk soil (e.g., fungi: Jansa et al., 2003; Wang et al., 2019; Zhao et al., 2019; 382 

micro-arthropods, nematodes and protozoa: Adl et al., 2006; Zhang et al., 2012; Briones and 383 

Schmidt, 2017; Cai et al., 2020; protists: Zhao et al., 2019; Sun et al., 2021). 384 

In the PCO plots, CTN0 and CTN200 showed similar community structures within sM at 385 

surface layer (Fig. 1b) that were characterised by Colpodea and OTU1Spirotrichea (Ciliophora, 386 

Alveolata) and Conoidasida (Apicomplexa, Alveolata). This supports that under ploughing N 387 
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availability is not limiting and the community structures are not affected by N fertilization. The 388 

class Colpodea is a well-known dominant clade of mainly bacterivorous protists (Foissner, 1998) 389 

and, according to our results, they were shown highly abundant in disturbed soils. By contrast, 390 

Spirotrichea were found in more stable environments (Lüftenegger et al., 1985), not supporting the 391 

large abundance found within sM under ploughed soils. This result not supported by literature may 392 

suggest a high resistance of Spirotrichea to natural and anthropogenic stresses. Moreover, 393 

Apicomplexa that are the third most abundant protistan group in soil, after Cercozoa and Ciliophora 394 

(Fierer, 2017) are described as putative parasites of invertebrates (Del Campo et al., 2019). This is 395 

in agreement with the lower occurrence of the invertebrates Chromadorea and Enoplea found in 396 

our study under CT compared with MT. In MT, N fertilization determined a strong shift at the 397 

surface layer (Fig. 1b), with community structure within sM under MTN200 characterized by a 398 

large abundance of taxa belonging to Cercozoa, Tubulinea (Lobosa, Amoebozoa) and Chromadorea 399 

(Nematoda) together with fungi, (i.e., OTU1Microbotryo: Microbotryomicetes, Ascomycota and 400 

Mortierellomycota), and under MTN0 characterized by a large abundance of taxa belonging to 401 

Imbricatea (Cercozoa), Enoplea (Nematoda) and OTU1Nassophorea (Ciliophora, Alveolata). The 402 

dominance of Ascomycota in sM under MTN200 is in accordance with their higher abundance in 403 

macroaggregates under mineral fertilization compared with no fertilization (Liao et al., 2018; Wang 404 

et al., 2021). This confirms the importance of fungi as binding agents in soil aggregates (Six et al., 405 

2000). Cercozoa were reported to be affected by several abiotic factors, as soil moisture, clay 406 

content and N availability (Lentendu et al., 2014; Fiore-Donno et al., 2019). However, although our 407 

analyses did not allow discrimination of which cercozoan classes were favoured under MTN200 408 

(Fig. 1b), the detection of Imbricatea within sM under MTN0 supports that N availability is a major 409 

driver of cercozoan communities. This class had unexpectedly high abundance in sM under MTN0 410 

(Fig. 1b), although it was shown to be highly favoured by organic fertilizers (Lentendu et al., 2014). 411 

According to our results (Fig. 1b), the heterotroph lineage Tubulinea are dominant in highly N-412 

fertilizer soils (Sun et al., 2021), and the ciliate Nassophorea, characterizing the community 413 

Jo
ur

na
l P

re
-p

ro
of



18 

 

structures of sM under MTN0, supports their role in energy transfer between trophic levels under 414 

low N availability (Gao et al., 2016). Finally, the dominance in sM under MT of Enoplea and 415 

Chromadorea known to be plant and animal nematode parasites is consistent with their general 416 

trend in soil aggregates (Jiang et al., 2017). Their abundance in N0 and N200, respectively, might 417 

be explained by specific predator-prey interactions occurring within intra-aggregate pores at 418 

differential N availabilities. 419 

At the subsurface layer (Fig. 1c), N fertilization drove a stronger shift of the eukaryotic 420 

community structure in sM under CT compared with MT that showed similar structures irrespective 421 

to N fertilization, highlighting an opposite pattern as compared with the one observed at surface 422 

layer (Fig. 1b). Under CTN0, sM was characterised by high abundance of Chilopoda (Arthropoda, 423 

Animalia) and Sarcomonadea (Cercozoa, Rhizaria), and under CTN200 by high abundance of 424 

Colpodea and Conoidasida (Alveolata) (Fig. 1c). Indeed, under ploughing, the subsurface layer is 425 

less compacted than under MT and shows a lower bulk density, resulting in an increase of pore size 426 

and aeration (Berisso et al., 2012). This may allow a larger root development under N fertilization 427 

and a higher variation in soil moisture and temperature compared with no fertilization (Piazza et al., 428 

2020). Small macroaggregates are inaccessible to living centipedes (Chilopoda), thus their 429 

abundance in this fraction under CTN0 can be only related to a role as binding agents or as dead 430 

biomass consumed by decomposers. By contrast, Sarcomonadea, previously found in soil as the 431 

dominant class within the phylum Cercozoa (Degrune et al., 2019b), are likely to play an active role 432 

also in sM at low N availabilities. The abundance of Colpodea in CTN200 at the subsurface layer 433 

(Fig. 1c) is consistent with their dominance at the surface layer (Fig. 1b) and can be explained by 434 

bacterial pray changes following N application, while no information is available on Conoidasida 435 

trophic functional role.  436 

In MTN0 and MTN200 at subsurface layer sM were characterized by Chromadorea 437 

(Nematoda), Vampyrellidea (Cercozoa), OTU1Nassophorea (Ciliophora, Alveolata) and many 438 

fungi (e.g., Glomeromycetes, Sordariomycetes) (Fig. 1c). The abundance of Choromadorea and 439 
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Nassophorea is consistent with surface layer observations. Moreover, Vampyrellidea, observed for 440 

the first time in sM, are fungivores that may control the parasitic rust fungus of wheat under MT 441 

(Adl and Gupta, 2006). Finally, the abundance of Glomeromycetes and Sordariomycetes confirms 442 

their crucial role in driving soil aggregates under undisturbed conditions (Rillig et al., 2015; Wang 443 

et al., 2021).  444 

In mM, a strong interaction effect between tillage and N fertilization was found on the 445 

eukaryotic community structures only at surface layer, consisting in a strong shift of the structure 446 

under CTN0 compared with the other treatments (Table 1, Fig. 1d). This effect is in line with the 447 

aggregate distribution of mM found by Piazza et al. (2020). The shifts of aggregate distribution and 448 

eukaryotic community structure toward more mM and distinct soil biota communities under CT at 449 

low N availability can be related to a lower sequestration of C within mM and thus in differences of 450 

the related functional soil biota. By contrast, the lack of effect at subsurface layer is unexpected 451 

since the percentage of mM was significantly decreased by tillage intensification (CT < MT; - 21%) 452 

(Piazza et al., 2020). However, this inconsistency could be due to the coverage of the V4 region 453 

primer set, its taxonomic resolution or limitation in amplifying rare taxa or taxa with lower 454 

proportions of template DNA in DNA extracts (Choi and Park, 2020). Moreover, considering 455 

aggregate pore size and animal body size, the presence of traces of animal DNA (i.e., nematodes, 456 

Arthropoda) within aggregates is likely not attributable to the occurrence of living animals, but to 457 

the process of aggregate formation which utilises organic decaying material as binding agent.  458 

Nitrogen fertilization determined a strong shift at the surface layer in the eukaryotic community 459 

structure of mM under CT (Fig. 1d) from Glomeromycetes (Glomeromycota), Imbricatea, 460 

Sarcomonadea and Vampyrellidea (Cercozoa) in CTN0 to OTU1Xantho (Ochrophyta), 461 

Oligohymenophorea (Ciliophora), Stramenopiles (Chromista) and the fungus Tremellomycetes in 462 

CTN200. This is the first time that Glomeromycota have been detected within mM fraction. 463 

Previously, using a cloning approach targeting the long-fragment SSU-ITS-LSU (Krüger et al., 464 

2009) we could not detect AMF within mM (data not shown), and this was also supported by 465 
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several works reporting their major roles only in macroaggregates (e.g., Miller and Jastrow, 2000, 466 

Rillig et al., 2002). However, in this study, the observed large proportion of Glomeromycota (14%) 467 

in mM under CTN0 supports the fact that tillage under unfertilized conditions may not negatively 468 

affect the development of the extraradical mycelium, potentially improving the production of 469 

glomalin and enhancing soil aggregate stability (Bedini et al., 2002). Similarly, the high abundance 470 

of Cercozoa in mM under CTN0 suggests for the first time that this phylum plays a major role 471 

within mM under ploughed and no fertilized conditions at surface layer. This is consistent with the 472 

findings of Degrune et al. (2019a) that highlighted under ploughing and at topsoil distinct cercozoan 473 

communities in microhabitats (i.e., drilosphere and rhizosphere) compared with bulk soil. 474 

Moreover, the distinct eukaryotic community found at surface layer in mM under CTN200 475 

additionally supports that, under ploughing, nutrient availabilities in microhabitats allow the 476 

dominance of functional protists (Alveolata: Oligohymenophorea; Chromista: OTU1Xantho and 477 

Stramenopiles), potentially contributing to OM decomposition and mineralization through several 478 

functional groups. In addition, scarce information is available on the functional roles in agricultural 479 

soils of Tremellomycetes, a heterogeneous group comprising saprotrophs, animal parasites, and 480 

fungicolous species.  481 

Similar community structures were observed at surface layer within mM in MTN0 and 482 

MTN200 [e.g., Sarcomonadea1 (Cercozoa), and fungi such as Dothideomycetes (Ascomycota) and 483 

OTU1Cystobasidio (Basidiomycota)] (Fig. 1d). These results support the hypothesis of a major role 484 

played by Cercozoa together with distinct classes of fungi also within mM under MT. However, it 485 

is well known that the 18S barcoding utilised in this work is less efficient compared with the ITS 486 

for detecting many groups of fungi (Schoch et al., 2012).  487 

To test if soil aggregates differentially shape the structure of soil eukaryotes (hypothesis 2), the 488 

relative abundance pattern of taxa was determined in sM and mM. Significant differences among 489 

matrices (sM vs mM) were found and supported by PERMANOVAs (Table 1). PCO biplots 490 

showed that at both soil layers more phyla were linked to mM as compared with sM (Fig. 3c,d). 491 
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Recently, Liao et al. (2018) and Wang et al. (2021) used an Illumina sequencing approach for 492 

studying at phylum and class level the bacterial and fungal community structures within soil 493 

aggregates across different fertilization treatments. Although differences in community structure 494 

were detected for both bacteria and fungi, fungal community in sM and free microaggregates 495 

differed more than bacteria (Liao et al., 2018; Wang et al., 2021). Our findings support that some 496 

unresolved taxa belonging to Glomeromycota and Ascomycota are positively associated with mM, 497 

as previously reported in free microaggregates for unclassified Ascomycota (Wang et al., 2021) and 498 

for a group of unclassified Glomerales (Lu et al., 2018). Similarly to the results of Jiang et al. 499 

(2017), the total abundance of nematodes increased with increasing aggregate size. Finally, the 500 

alveolate Apicomplexa, Ciliophora, and Dinoflagellata were preferentially found in mM, whereas 501 

the amoebozoan Conosa and Lobosa in sM. This result additionally confirms the functional role 502 

played by protists within microenvironments. Moreover, Mollusca in mM and Arthropoda and 503 

Anellida in sM at both soil layers can be considered as preferential binding agents for aggregate 504 

fractions. 505 

 506 

Eukaryotic taxa predictors for soil structuring and C stocks 507 

To test if some eukaryotic taxa are predictors for soil structuring and C stock (hypothesis 3) we 508 

utilised a multiple regression analysis that allowed to identify the eukaryotic taxa that were good 509 

predictors for the amount of sM and mM and their SOC content, irrespective of management and 510 

soil depth (Table S1). Specifically, Microbotryomycetes and Alveolata were moderately strongly 511 

related to the amount of sM, with Microbotryomycetes identified as best predictor. Similarly, 512 

Cercozoa and Chytridiomycetes were related to the amount of mM, with Cercozoa playing the 513 

major role. Moreover, Microbotryomycetes, Cercozoa and Alevolata were moderately related to 514 

SOC in sM, with Microbotryomycetes consistently found to be the best predictor. Finally, 515 

Chytridiomycetes and Cercozoa were moderately related to SOC in mM, with Chytridiomycetes the 516 

best predictor. Previously, Bach et al. (2018) identified bacterial and fungal indicators in free and 517 
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large macroaggregates. However, it is the first time that Microbotryomycetes and Chytridiomycetes 518 

have been shown to be correlated with the amount of sM and mM and their SOC content, 519 

respectively. Both fungal classes correlated with the pattern of C-cycling enzymes and SOC content 520 

in bulk soil (Piazza et al., 2019), and their abundance was high in sM and mM, respectively 521 

(Degrune et al., 2019b). Microbotryomycetes were also recently identified as good predictors of 522 

slow and passive SOC decomposition parameters (Hale et al., 2019). Our findings on the positive 523 

association of protists, Alveolata and Cercozoa, with the amount of sM and mM and their SOC 524 

content, support the multiple agroecological roles of protists found in bulk soil (Cavalier-Smith and 525 

Chao, 2003; Delgado-Baquerizo et al., 2020). Moreover, our results confirm previous works 526 

reporting that protists are shaped by pore size reduction and soil aeration (Berisso et al., 2012; 527 

Degrune et al., 2019a), features related to soil aggregates. Thus, we can assume that Alveolata are 528 

playing major role in soil, promoting sM formation and slowing down the decay of SOM within 529 

sM, while Cercozoa are crucial microorganisms in mM taking part to long-term sequestration and 530 

storing of SOC. 531 

 532 

3.6. How eukaryotes are interlinked among each other and to prokaryotes in soil aggregates, and 533 

network traits predictor for soil structuring and C stocks 534 

To test if eukaryotes form structured assemblages and distinctive networks in soil aggregates 535 

(hypothesis 4), and how eukaryotes are linked to prokaryotes (hypothesis 5), within- and cross-536 

domain networks were built for sM and mM. At the surface layer within- and cross-domain 537 

networks were more complex in mM than in sM, whereas at the subsurface layer they did not vary 538 

(Table 2, Fig. 4, Fig. S6). In the cross-domain networks, both sM and mM showed a general trend 539 

toward a higher percentage of eukaryotes per subnetwork compared to prokaryotes at the surface 540 

layer compared with the subsurface layer (Table 3, Fig. 4b,d). Moreover, at both soil depth, in the 541 

sM cross-domain networks the majority of subnetworks were composed of both eukaryotes and 542 
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prokaryotes, whereas in the mM cross-domain networks the subnetworks were half composed of 543 

eukaryotes and half of prokaryotes, and few subnetworks were mixed (Table 3). This is the first 544 

study that demonstrated that eukaryotes, components of soil biota communities usually studied 545 

separately, formed structured associations within each other and with prokaryotes in soil 546 

aggregates. Moreover, mM consistently had tighter connectivity compared with sM in both within- 547 

and cross-domain networks (Fig. 4, Fig. S6). This might be related to microhabitat conditions (i.e., 548 

wetter and more nutrient rich microhabitats) in mM that shift biotic interactions from facilitation to 549 

competition, leading to higher correlations between eukaryotic taxa or eukaryotic and prokaryotic 550 

taxa, as previously reported for fungi and bacteria in bulk soil and roots across land uses and 551 

agricultural managements with a gradient of nutrient availabilities (e.g., SOC, P levels) and pH (de 552 

Menezes et al., 2015; Banerjee et al., 2016, 2018; Wang et al., 2021). Other explanations could be a 553 

higher proportion of viable cells and spores and a lower niche heterogeneity (i.e., nutrients) in mM 554 

respect to sM, leading to tighter within- and cross-domain networks. Finally, a higher plant residue 555 

diversity in mM could also explain the within- and cross-domain mM network traits, as previously 556 

shown for plant community composition or host selectivity against microbial network complexity 557 

(Xiong et al., 2021).  558 

In the within-domain networks of sM and mM and at both soil layers, Cercozoa were highly 559 

co-occurring in the subnetworks respect to the other eukaryotic phyla, as shown by the network 560 

traits (Table 3, Supplementary Results and Discussions 2). It is noteworthy the high percentage of 561 

taxa belonging to Cercozoa (21%) involved in the largest subnetworks, composed of 33, occurring 562 

at surface layer in the within-domain mM networks. In addition, while fungi, mainly Ascomycota 563 

and Basidiomycota, were highly co-occurring in the within-domain sM subnetworks at both soil 564 

layer, protists, as Ochrophyta and Stramenopiles together with Chlorophyta, were co-occurring in 565 

the within-domain mM subnetworks at surface and subsurface layer, respectively (Table 2). 566 

Following the definition of keystone taxa by Banerjee et al. (2018), we can support the 567 

agroecological theory that some Cercozoa, as Sarcomondea and Vampyrillidea (Fig. 4c), can be 568 
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suggested as “hubs” (keystone taxa) within mM. Consistently, in the sM and mM cross-domain 569 

networks at the surface layer, Cercozoa can be considered as “hubs” as they are directly connected 570 

to prokaryotes in the largest subnetworks (Fig. 4b,d). Moreover, protists were involved in the 571 

largest subnetworks and showed variable direct connections (Fig. 4b,d, Fig. S6b,d). Indeed, the 572 

linkages of protists, according to their feeding versatility (Geisen, 2016), varied from direct 573 

connections to many prokaryotes, mainly belonging to Chloroflexi in the cross-domain sM 574 

networks (Fig. 4b, Fig. S6b), to direct linkages to other eukaryotes (e.g., fungi) or other protists in 575 

mM networks (Fig. 4d, Fig. S6d). So far, studies on the functional roles of soil biota in the 576 

formation of soil aggregates have mainly focused on the role played by a single functional group, 577 

e.g. AMF, earthworms, nematodes, termites and microarthropods (mites and collembolans) (e.g., 578 

Lee and Foster, 1991; Pulleman et al., 2005; Rillig and Mummey, 2006; Siddiky et al., 2012a,b; 579 

Zhang et al., 2016). However, only recently, Cercozoa and other protists, as Lobosa and Ciliophora, 580 

were shown to be positively related with ecosystem services, i.e. nutrient cycling and OM 581 

decomposition (Delgado-Baquerizo et al., 2020). Details about traits and taxa co-occurrences in 582 

within- and cross-domain networks and the significance of cross-domain relationships (Mantel test 583 

and CoCA) are given in Supplementary Results and Discussion 2, Fig. S7 and Fig. S8.  584 

To test if some network traits can predict soil structuring and C stocks, we utilized a multiple 585 

regressions analysis that identified the number of edges and mean nodes per network as predictors 586 

for the amount of sM and mM and their SOC content, irrespective of management and soil depth 587 

(Table S2). Although network analysis is now largely applied to study soil biota co-occurrence and 588 

plant-microbe associations across different treatments (e.g., de Menezes et al., 2015; Farrer et al., 589 

2019; Feng et al., 2019), little is known about soil biota networks within aggregates (Jiang et al., 590 

2015, 2017) and few studies have dissected the predictable power of the network traits (topological 591 

properties) on ecosystem services. Jiang et al. (2015, 2017) indicated that aggregate fractions (large 592 

and small macroaggregates, and free microaggregates) showed a strong effect on the association 593 

networks of nematodes and bacteria and using the topological properties they could identify large 594 
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macroaggregates network as organized soil food web, showing functional interrelationships 595 

between bacterivorous nematodes and bacteria. In accordance with our results, the topological 596 

properties of soil biota networks should be taken into consideration for dissecting soil structuring as 597 

well as C cycling. 598 

 599 

4. Conclusions 600 

We have shown that soil aggregation is essential for a complete ‘multifunctional’ perspective 601 

of soil biota. A full understanding of relationships between soil biota and soil functions requires 602 

analyses emphasizing the feedbacks between soil structure and soil biota, rather than a 603 

unidirectional approach simply addressing the roles of single key functional groups. Next 604 

generation sequencing tools have been confirmed in this study to be crucial in the understanding of 605 

eukaryotic structures and soil biota networks and have the potential to further reveal their 606 

contributions to soil functions. Indeed, our findings demonstrate for the first time that protists 607 

together with fungi play major roles in soil structuring and C cycling, and that Cercozoa represent 608 

hubs in the soil biota aggregate networks. This supports the fact that their conservation is 609 

fundamental to prevent soil degradation and to enhance SOC accumulation in agroecosystems.  610 
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Figure captions 951 

 952 

Fig. 1. Long-term effect of conservation management on community composition of eukaryotes in 953 

two soil matrices: small macroaggregates (sM) and occluded microaggregates (mM). Managements 954 

were: MTN0 (minimum tillage and 0 kg N ha-1), MTN200 (MT and 200 kg N ha-1), CTN0 955 

(conventional tillage and 0 kg N ha-1) and CTN200 (CT and 200 kg N ha-1). Neighbor-joining (NJ) 956 

tree of 56 eukaryotic taxon representative sequences (classes) found in (a) sM and (d) mM. NJ trees 957 

are based on the sequences obtained from the amplification of the V4 region (18 SSU rRNA gene). 958 

The eukaryotic taxa were assigned to Operational Taxonomic Unit (OTU) (at class phylogenetic 959 

resolution) by BLAST against the 18S SSU SILVA database by clustering sequence reads at the 960 

97% similarity threshold. For each OTU, the proportion of sequences retrieved in each management 961 

(MTN0, light green; MTN200, dark green; CTN0, light red; CTN200, dark red) and soil depth (0–962 

15 cm: light grey; 15–30 cm: dark grey) are shown in the pie charts. Venn diagrams of eukaryotic 963 

classes uniquely retrieved and shared across managements in sM at (b) 0-15 cm and (c) at 15-30 964 

cm, and in mM at (e) 0-15 cm and (f) at 15-30 cm.  965 

 966 

Fig. 2. Long-term effect of conservation management on relative abundances and community 967 

structures of eukaryotes in two soil matrices: small macroaggregates (sM) and occluded 968 

microaggregates (mM). Managements were: MTN0 (minimum tillage and 0 kg N ha-1), MTN200 969 

(MT and 200 kg N ha-1), CTN0 (conventional tillage and 0 kg N ha-1) and CTN200 (CT and 200 kg 970 

N ha-1). (a) Relative abundances of eukaryotes at phylum level across treatments, matrices and soil 971 

depths. (b) Principal Coordinates Analysis (PCO) biplots on the interaction of tillage and N 972 

fertilization on the eukaryotic community structure at class level in sM at 0-15 cm and (c) at 15-30 973 

cm, and (d) in mM at 0-15 cm. The output of the PCO biplots is based on the significant effect of 974 

Jo
ur

na
l P

re
-p

ro
of



40 

 

treatments following the permutational analysis of variance (PERMANOVA). We displayed only 975 

the taxa with a strong correlation (r = 0.50-0.70) with the ordination scores on each PCO axis. 976 

 977 

Fig. 3. Venn diagrams of eukaryotic phyla uniquely retrieved and shared in sM and mM at 0-15 cm 978 

(a) and at 15-30 cm (b). Principal Coordinates Analysis (PCO) biplots on effect of soil matrix 979 

(small macroaggregates sM vs occluded microaggregates mM) on eukaryotic community structure 980 

at phylum resolution at (a) 0-15 cm and at (b) 15-30 cm soil depth. The PCO biplots are based on 981 

the significant effect of soil matrix according to the permutational analysis of variance 982 

(PERMANOVA). In the biplots, only the taxa with a strong correlation (r = 0.50-0.70) with the 983 

ordination scores on each PCO axis were displayed. 984 

 985 

Fig. 4. Eukaryotic networks (within-domain networks) and eukaryotic-prokaryotic networks (cross-986 

domain Associations networks) (at class phylogenetic resolution) in small macroaggregates (sM) 987 

(a,b) and occluded microaggregates (mM) (c,d) at surface layer (0-15 cm soil depth). Within-988 

domain networks were built using the SParse InversE Covariance estimation for Ecological 989 

ASsociation Inference (SPIEC-EASI) package version 0.1 in R 990 

(https://github.com/zdk123/SpiecEasi/), while cross-domain networks were built by the cross-991 

domain extension of SPIEC-EASI (Kurtz et al., 2015; Tipton et al., 2018). Details about network 992 

construction are given in Material and Methods and Supplementary Methods 3, and R scripts are 993 

provided in Supplementary Methods 4. 994 
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Table 1   

Results of PERMANOVA and variation partitioning of the long-term effect of conservation management (tillage and N 
fertilization)  within small macroaggregates (sM) and occluded microaggregates (mM) and of the effect of matrix (sM 
vs mM) on eukaryotic community structure at 0-15 and 15-30 cm soil depths. 

  df Pseudo-F P (perm)   Variance 
explained 

  df Pseudo-F P (perm)   Variance 
explained 

0-15 cm   15-30 cm 

Eukaryotes at class level - sM                   

TIL† 1 2.24 0.025
‡
   11.96   1 4.02 0.003   22.69 

N fert 1 2.11 0.017   10.76   1 2.21 0.012   9.05 

TIL x N fert 1 1.99 0.024   19.13   1 2.55 0.019   23.20 

PERMDISP                       

TIL     0.693           0.071   

N fert     0.078           0.359     

Eukaryotes at class level - mM                   

TIL  1 4.60 0.003   19.94   1 1.05 0.411   - 

N fert 1 3.90 0.002   16.02   1 1.64 0.127   - 

TIL x N fert 1 3.79 0.006   30.85   1 0.90 0.569   - 

PERMDISP                       

TIL     0.237           -     

N fert     0.362           -     

Eukaryotes at phylum level - sM vs mM                 

Matrix§ 1 1.07  .0.001   38.31   1 11.18 0.001   42.51 

TIL x N fert 1 2.90 0.004   3.74   1 1.22 0.287   4.51 

N fert 1 1.54 0.140   10.69   1 2.36 0.014   2.84 

PERMDISP                       

Matrix     0.025           0.069     

†PERMANOVA was performed following a split-plot design with tillage (TIL) as main-plot factor and N fertilization 
(N fert) as subplot factor and with three replicate plots per treatment: TIL (minimum tillage and conventional tillage) 
and N fert (0 kg N ha-1 and 200 kg N ha-1). 
‡In bold statistically significant values (P ≤ 0.05). 
§PERMANOVA was performed using the matrix as fixed factor, TIL and N fert as covaribales and 12 replicate plots 
per matrix. 
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 2 

 
Table 2 
Traits of within- (eukaryotes) and cross-domain (eukaryotes - prokaryotes) network in macroaggregates (sM) and occluded 
microaggregates (mM) at 0-15 and 15-30 cm soil depth (for the network diagrams see Fig. 4 and S10). 

Traits sM 0-15 sM 15-30 mM 0-15 mM 15-30 

Eukaryotes       
Number of nodes excluding 
singletons 

37 33 46 39 

Number of edges 29 25 44 31 

Number of singletons 12 16 8 15 

Number of dyads 3 6 1 6 

Number of subnetworks 6 5 4 5 

Mean nodes per subnetwork 5.17 ± 0.60 4.20 ± 0.49 11.0 ± 7.34 5.40 ± 1.03 

Linkage density (complexity) 1.57 ± 0.11 a 1.51 ± 0.13 1.89 ± 0.14 b 1.56 ± 0.13 

% Positive interactions 78.4 75.8 95.7 79.5 

Modularity 3 5 4 5 

Identity of phyla with a frequency 
within the subnetworks ≥ 10% 

Basidiomycota 
15.9% Cercozoa 

16.8% 

Ascomycota 20% 
Basidiomycota 10% 

Cercozoa 11.7% 

Cercozoa 11.6% 
Ochrophyta 

16.7% 

Chlorophyta 12% 
Cercozoa 21.7% 

Stramenopiles 16.7% 

Eukaryotes - Prokaryotes     

Total number of nodes excluding 
singletons 

79 83 96 67 

Number of eukaryotic nodes 
excluding singletons 

37 38 49 30 

Number of prokaryotic nodes 
excluding singletons 

42 45 47 37 

Number of edges 74 72 109 54 

Number of singletons 22 18 6 36 

Number of dyads 3 8 2 5 

Number of subnetworks 7 4 8 11 

Mean nodes per subnetwork 10.43 ± 4.43 8.38 ± 2.74 23.50 ± 19.50 5.18 ± 0.70 

Linkage density (complexity) 1.87 ± 0.11 a 1.76 ± 0.11 2.26 ± 0.12 b 1.61 ± 0.11 

Modularity 9 9 11 9 

Percentage of eukaryotes per 
subnetwork 

68.39 ± 12.26 50.79 ± 12.03 74.70 ± 14.61 39.01 ± 14.69 

Percentage of prokaryotes per 
subnetwork 

31.61 ± 12.26 49.21 ± 12.03 25.30 ± 14.61 60.99 ± 14.69 

Number of subnetworks with only 
eukaryotes 

2 1 2 4 

Number of subnetworks with only 
prokaryotes 

0 1 0 5 

Number of mixed subnetworks 5 6 2 2 
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Table 3 
Traits of within- (eukaryotes) and cross-domain (eukaryotes - prokayotes) network in macroaggregates (sM) and occluded 
microaggregates (mM) at 0-15 and 15-30 cm soil depth (for the network diagrams see Fig. 4 and S10). 

Traits sM 0-15 sM 15-30 mM 0-15 mM 15-30 

Eukaryotes       
Number of nodes excluding 
singletons 

37 33 46 39 

Number of edges 29 25 44 31 

Number of singletons 12 16 8 15 

Number of dyads 3 6 1 6 

Number of subnetworks 6 5 4 5 

Mean nodes per subnetwork 5.17 ± 0.60 4.20 ± 0.49 11.0 ± 7.34 5.40 ± 1.03 

Linkage density (complexity) 1.57 ± 0.11 a 1.51 ± 0.13 1.89 ± 0.14 b 1.56 ± 0.13 

% Positive interactions 78.4 75.8 95.7 79.5 

Modularity 3 5 4 5 

Identity of phyla with a frequency 
within the subnetworks ≥ 10% † 

Basidiomycota 
15.9% Cercozoa 

16.8% 

Ascomycota 20% 
Basidiomycota 10% 

Cercozoa 11.7% 

Cercozoa 11.6% 
Ochrophyta 

16.7% 

Chlorophyta 12% 
Cercozoa 21.7% 

Stramenopiles 16.7% 

Eukaryotes - Prokaryotes     

Total number of nodes excluding 
singletons 

79 83 96 67 

Number of eukaryotic nodes 
excluding singletons 

37 38 49 30 

Number of prokaryotic nodes 
excluding singletons 

42 45 47 37 

Number of edges 74 72 109 54 

Number of singletons 22 18 6 36 

Number of dyads 3 8 2 5 

Number of subnetworks 7 4 8 11 

Mean nodes per subnetwork 10.43 ± 4.43 8.38 ± 2.74 23.50 ± 19.50 5.18 ± 0.70 

Linkage density (complexity) 1.87 ± 0.11 a 1.76 ± 0.11 2.26 ± 0.12 b 1.61 ± 0.11 

Modularity 9 9 11 9 

Percentage of eukaryotes per 
subnetwork 

68.39 ± 12.26 50.79 ± 12.03 74.70 ± 14.61 39.01 ± 14.69 

Percentage of prokaryotes per 
subnetwork 

31.61 ± 12.26 49.21 ± 12.03 25.30 ± 14.61 60.99 ± 14.69 

Number of subnetworks with only 
eukaryotes 

2 1 2 4 

Number of subnetworks with only 
prokaryotes 

0 1 0 5 

Number of mixed subnetworks 5 6 2 2 
† For details about the traits of within-domain networks for each eukaryotic phylum occurring in sM and mM at both soil 
depths see Table S5. 
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Highlights 

 

 Eukaryote diversity responded differently to managements across soil aggregates 

 A core community of eukaryotes was found across managements, aggregates and depths  

 Tillage shifted eukaryotic structure in sM and mM according to N availability 

 Protists and fungi positively correlated with the amount of sM, mM and SOC content 

 Within- and cross-domain networks of mM at 0-15 cm showed the highest complexity 
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