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A singular vorticity wave packet
within a rapidly rotating vortex:
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This paper considers a free vorticity wave packet propagating within a rapidly ro-
tating vortex in the quasi-steady régime, a long time after the wave packet strongly
and unsteadily interacted with the vortex. We study a singular, nonlinear, helical and
asymmetric shear mode inside a linearly stable, columnar and axisymmetric vortex on
the f -plane. The amplitude modulated mode enters resonance with the vortex at a
certain radius rc, where the phase angular speed is equal to the rotation frequency. The
singularity in the modal equation at rc strongly modifies the flow in the 3D helical critical
layer, the region around rc where the wave/vortex interaction occurs. This interaction
generates a vertically sheared 3D mean flow of higher amplitude than the wave packet.
The chosen envelope régime assumes the formation of a mean radial velocity of the same
order as the wave packet amplitude, leading to that the streamlines experience a spiral
motion in the neighborhood of the critical layer. Radar images frequently show such
spiral bands in tropical cyclones or tornadoes. Through matched asymptotic expansions,
we find an analytical solution of the leading-order equations inside the critical layer. The
generalized Batchelor integral condition applied to the quasi-steady 3D motion inside the
separatrices yields a leading-order non-uniform 3D vorticity. The critical layer pattern,
strongly deformed by the mean radial velocity, loses its symmetries with respect to the
azimuthal and radial directions, which makes the leading-order mean radial wave fluxes
non zero. Finally, a stronger wave/vortex interaction occurs with respect to the previous
studies where a steady neutral vortical mode or a larger-extent envelope was involved.

1. Introduction

Large-scale intense vortices are impressive and devastating coherent structures. They
intrigue researchers because they have not yet revealed their secrets regarding their
formation and evolution. The presence of asymmetric disturbances inside such vortices
is a possible intensification mechanism driven by the differential rotation. A set of spiral
rainbands for instance, is frequently observed in most of the tropical cyclones. The
evolutions of the eyewall and rainbands as well as their mutual interactions are believed
to play an important role in the vortex dynamics and its intensification (Houze et al.
(2006)). According to wave analysis, spiral bands could be partly explained by vorticity
wave dynamics (Guinn & Schubert (1993); Reasor et al. (2000); Wang (2002b); Chen
et al. (2003); Corbosiero et al. (2006); Judt & Chen (2010)).
In geophysical vortices, potential vorticity (PV) wave packets are emitted by PV

anomalies generated for instance, by latent heat release. These waves are stretched
by the radial rotational-wind shear into spiral bands and have been recently coined
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vortex Rossby waves (Montgomery & Kallenbach (1997); Chen & Yau (2001)). These
inwardly spiraling structures are localized areas of deep clouds in the lower and middle
atmosphere, providing heavy rains, strong winds and thunderstorms. Like eyewalls, they
are associated with local maxima of absolute vorticity, potential vorticity, convection,
upward and sometimes rotational winds, encountered in the vortex. Some rainbands
are likely to evolve into a secondary eyewall (Qiu et al. (2010); Didlake et al. (2018));
conversely, an eyewall can generate spiral bands (Corbosiero et al. (2006)).
Wave activity analysis in numerical hurricane-like vortex models shows that vortices

only interact with vorticity waves and that the related modes are continuous (Chen et al.
(2003)). Basic-state vortex radial shear increases their radial wavenumbers, which slows
down wave packet radial propagation. The latter ceases at the stagnation radius where the
radial group velocity vanishes. In the WKB approximation, this radius coincides with the
phase-velocity critical radius where the phase angular speed is equal to the basic-vortex
rotation frequency (Montgomery & Kallenbach 1997; Gao & Zhu 2016). These waves are
thus confined to the near-vortex region and cannot propagate to infinity. They locally
exchange kinetic energy and angular momentum with the vortex around the stagnation
radius. They can nevertheless transport energy out of the vortex core whereas wave
momentum fluxes can cause an inward transport of angular momentum, intensifying the
basic vortex (Montgomery & Enagonio 1998; Corbosiero et al. 2006; Houze et al. 2006).
This article focuses on the nonlinear dynamics of continuous vorticity modes embedded

in rapidly rotating vortices. Continuous modes are singular and neutral modes related to
resonating and propagating waves. The paper wishes to make progress in the understand-
ing of such waves in relation to vortex intensification. In particular, we wish to study
the wave packet/vortex interaction and the subsequent breaking through the nonlinear
critical layer (CL) theory. The vortical mode singularity is removed by introducing
nonlinearity in the CL motion equations, which is relevant to large Reynolds number
large-scale atmospheric motions. This theory also sounds relevant for tropical cyclone
or tornado intensification, firstly because the nonlinear CL development time scale is
faster than the intensification duration. Secondly, this weakly nonlinear approach may
give the right order of intensification magnitude; it indeed yields a higher intensification
than the traditional non-resonant interaction quadratic order obtained in the numerical
simulations that do not resolve the critical layer (Montgomery & Kallenbach 1997; Qiu
et al. 2010; Caillol 2015). When an asymmetric neutral mode is superimposed onto the
basic vortex, provided resonance occurs, a first linear stage starts characterized by the
CL formation and the beginning of the wave/mean-flow interaction (WMFI). Then, the
nonlinear critical layer settles down in a transition stage where the WMFI continues in
an unsteady but decelerated way. We assume the existence of a quasi-steady state when
the wave packet has become weakly singular; it keeps on interacting with the vortex but
in a more slowly way so that perturbation theory may be handled. The emergence of
a final quasi-steady state is related to the smoothness of the radial eigenfunction. The
weakly singular mode radial structure is indeed sufficiently smooth to enable it to resist
shear and store part of the basic-vortex angular momentum and subsequently to weaken
the vortex in this asymptotic stage (Nolan & Farrell 1999).
Caillol (2017) described a slowly space-time evolving asymmetric, singular, helical

and vorticity mode in a circular vortex with the same CL theory. This previous paper
will be referred to as C17. This amplitude modulated wave modeled a wave train
whose envelope had a O(ǫ−1) vertical extent for a dimensionless wave amplitude ǫ. He
derived the system of evolution equations governing the wave packet amplitude and the
wave/vortex interaction induced mean flow a long time after the interaction started. He
observed that the wave packet always broke and noticed that considering a wave packet
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instead of a single steady mode enhanced the wave/vortex interaction. The vortex was
however weakening in the long time asymptotic stage. We here consider a more compact
wave packet. The vertical envelope wavenumber is of order O(ǫ1/2), and we expect to
obtain a faster and stronger interaction in the quasi-steady stage. This regime usually
corresponds to a balance between nonlinear effects and dispersion characterized by a
coherent-structure (Leibovich 1970; Kivshar & Malomed 1989; Derzho & Grimshaw 2002;
Shagalov et al. 2009).
In a cylindrical geometry, the modulated amplitude slowly evolves over height and

time. Through the critical layer coupling, we assume the same space-time scales for the
CL induced mean flow around rc. This mean flow cannot be neglected because it is of
higher amplitude than the wave packet. Owing to the divergenceless-flow condition, the
presence of a mean radial velocity is necessary, which makes the flow asymmetric and
even more distorted in the CL neighborhood than in the steady-state assumption. The
stagnation line is not here axisymmetric any longer but is given by a spiral located near rc
that slowly varies in height and time in the same way as the wave modulation. To perform
the analysis, we use a stressed radius-like coordinate which uniquely parameterizes each
streamline (Davis 1969; Caillol & Grimshaw 2004). This variable takes into account
the deformed motion that streamlines experience in the CL neighborhood. Streamlines
deviate from the critical radius with a spiraling departure proportional to the mean radial
velocity. As a result, a secular azimuthal variable naturally arises to describe this spiraling
motion. Secularity is required to deal with the CL induced varying mean flow that thus
evolves over the rotational direction as well. The preceding wave packet study in C17
involved a secular time scale, which did not have a true physical sense. In the present
study, we argue that the existence of a 3D mean flow coupled with the wave packet
strongly affects the nonlinear wave dynamics. In the past quasi-steady 3D critical-layer
analytical studies, the induced mean flow was not however taken into account (Voronovich
et al. 1998a,b).
We assume that the critical layer forms in the outer vortex core where the mean abso-

lute axial vorticity is smaller than the absolute inertial frequency of the circular vortex,
which is relevant to large-scale rapidly rotating vortices (Caillol 2015). An azimuthal-
wavenumberm weakly singular vortical mode generates a CL pattern characterized by m
intersecting helical cylinders winding and spiraling along the vortex axis. These cylinders
are three-dimensional separatrices which bound two qualitatively distinct CL flows: the
flow outside them spans a 2π azimuthal range whereas the flow inside them spans a 2π/m
range (cf. figures 1-3). At each vortex height, a “cat’s-eye” pattern thus appears within
these cylindrical cavities exhibiting a recirculating flow.
The extended 3D Prandtl-Batchelor theorem predicts in the steady-state assumption a

leading-order uniform axial vorticity inside the separatrices (Caillol 2014); this result is no
longer valid here. A Galerkin method is required to integrate the motion equations within
the cat’s eye. A unique inviscid CL solution is found out at the non-trivial expansion
order by firstly, applying secularity conditions on both inviscid and viscous inner flows,
secondly matching both outer and inner flows on the CL edges, then matching the inner
flow on the separatrices (cf. figure 2). The second part of the study will be presented in
a separate paper. We will derive the system of the leading-order nonlinear PDEs that
governs the slowly evolving amplitudes of the wave packet and CL induced mean flow.
The numerical system resolution will bring about a lot of information on the wave packet
+ vortex evolution in the quasi-steady stage.
The paper is hence organized as follows. Section 2 displays the general outer-flow

perturbation and phase-averaged equations. Section 3 gives the low-order outer flow
asymptotic solutions through Frobenius series. Section 4 formulates the CL motion and
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gives the two first inner-flow orders. Section 5 examines the low-order CL induced mean
flow. Section 6 describes the first non-trivial inner-flow order strongly altered by the
presence of the leading-order mean radial velocity. Section 7 presents the CL numerical
results. At last, Section 8 offers the conclusion.

2. Formulation and main assumptions

We consider the motion of an unbounded, axisymmetric, columnar and linearly stable
vortex on the f -plane in a slightly viscous, incompressible and dry atmosphere. We use
the cylindrical coordinates (r, θ, z), the variable z being related to the height of the vortex
along its rotation axis, (u, v, w) being the velocity vector in these coordinates. Quantities
have been made dimensionless through characteristic velocity and length scales: the
maximum rotational wind of the vortex Vmw and the maximum wind radius Rmw. The
related Reynolds number is Re = VmwRmw/ν, where ν is the kinematic viscosity. The
inertial force fi due to the rotating framework is fi = v/r (v er − u eθ). The geopotential
(Earth’s rotation driven centrifugal force and gravity) with pressure p is inserted into the
gradient force to form the variable Γ defined by Γ = p+ gz − Co2/8r2 and erroneously
called geopotential. A constant value of the Coriolis parameter Co = (fRmw)/Vmw is
used throughout the study. The dimensionless equations governing this motion are the
momentum and mass conservation equations in the ground-based frame of reference

∂tu+ u · ∇u+ Co z× u = fi −∇Γ +
1

Re
∆u+ F, (2.1)

D∗u+
1

r
∂θv + ∂zw = 0 , D∗• = ∂r •+

1

r
• .

The velocities and geopotential are decomposed between the wave phase averaged flow
and the asymmetric perturbations under the following form

u = U(r,Θ, Φ) + ǫ Ur(ξ, r, Θ, Φ) , v = V (r,Θ, Φ) + ǫ Uθ(ξ, r, Θ, Φ), (2.2)

w =W (r,Θ, Φ) + ǫ Uz(ξ, r, Θ, Φ) , Γ = Γ (r,Θ, Φ) + ǫ P (ξ, r, Θ, Φ),

where the wave phase is ξ = kz + mθ − ωt, with k and m respectively the axial and
azimuthal wavenumbers. The overbar notation defines the phase-averaged quantity q,

q = 1/(2π)
∫ 2π

0 q dξ. The secular variable Θ = mθ characterizes the spiral motion. The
leading-order perturbation is namely an amplitude modulated, free vortical mode whose
small dimensionless amplitude is ǫ and whose real and slowly evolving frequency is ω.
The dimensionless wave phase tilt is denoted by ̟ = krc/m and is taken O(1) or smaller.
The mode is neutral and singular in the nonlinear theory while it is assumed stable in the
linear theory provided certain conditions are satisfied in the basic-state vorticity profile
(Caillol 2015). We consider that wave packets propagate episodically in the vortex when
they are excited by convective pulses. The mode is then supposed to be generated by an
initial, localized and short-time forcing: for examples an impulse or a step-like condition.
We assume a quasi-steady asymptotic state, so the fast time t only appears in the phase
ξ, the WMFI evolving at the slow time scales Ti = ǫi/2t, i = 1, 2, that are omitted in the
notations. The quasi-steady state assumption is not restrictive since it is often observed
among large-scale vortices due to a balance between the friction in the boundary layer
and sea-air exchanges (Emanuel (1985)). For the sake of simplicity, these effects will
not be however modeled in the following equations. We will study the WMFI above the
surface boundary layer in order to neglect the effects of the latter on the interaction and
to neglect the mean radial flow of the inflow layer (Zhang et al. 2011). We will simply
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introduce the body force F that permits to discard the viscous diffusion effect on the
basic-state vortex evolution without altering the inner flow, to the profit of the WMFI.
The critical layer imposes its proper scalings. The wave packet must be advected by

the leading-order O(ǫ1/2) CL induced mean vertical velocity, which leads to a time scale
T2 faster than the usual time T3 for the Korteweg-de-Vries equation (Leibovich 1970).
The amplitude modulation space and time variables are hence

Φ = ǫ
1

2

m

rc
z, and τ2 ≡ T2.

Note that for the larger wave envelope in C17, the scalings were slower (Φ ≡ ǫz, τ3 ≡ T3).
In this multiple-scale approach, the various partial derivatives are computed in this way

∂θ• = m(∂ξ •+∂Θ•), ∂z• = ǫ
1

2

m

rc
∂Φ •+k̃ ∂ξ•, ∂t• = ǫ

1

2 ∂T1
•+ǫ ∂T2

• −ω̃ ∂ξ • .

The modulation-modified wave number and frequency are: k̃ = k − m/rc ωΦ T1 and
ω̃ = ω + ǫ1/2ωT2

T1. In spite of the smaller wave envelope vertical scale with respect to
C17, the chosen régime is still the nonlinear critical layer, the wave packet linear effects
like dispersion do not prevail (Mallier & Maslowe 1999; Campbell 2004).
The system of equations (2.1) after the decomposition (2.2) yields two subsystems of

equations: the first describing the evolution of the perturbations, Eqs. (2.3:a-d) and the
second the evolution of the mean flow, Eqs. (2.4:a-d).

DUr

Dt
= ̺(r)Uθ −D[P + UUr]− (

Uθ

r
∂θ + Uz ∂z)U +

ǫ

r
(U2

θ − U2
θ ) (2.3a)

+ǫD∗[U2
r ] + ǫ ∂zUzUr +

1

Re

[

∆Ur −
Ur

r2
− 2

r2
∂θUθ

]

,

DUθ

Dt
= −Qz(r)Ur − UD∗[Uθ]−

∂θP

r
− (

Uθ

r
∂θ + Uz ∂z)V +

ǫ

r2
D[r2UrUθ] (2.3b)

−ǫ Uθ

r
Ur + ǫ ∂zUzUθ +

1

Re

[

∆Uθ −
Uθ

r2
+

2

r2
∂θUr

]

,

DUz

Dt
= Qθ(r)Ur − UD[Uz]− ∂zP − (

Uθ

r
∂θ + Uz ∂z)W + ǫD∗[UrUz] (2.3c)

+ǫ ∂zU2
z +

1

Re
∆Uz,

D∗Ur +
1

r
∂θUθ + ∂zUz = 0. (2.3d)

As for the mean flow, we have the set of equations

DU
Dt =V (Co+Ω)−D[Γ +

1

2
U

2
] + ǫ2(

U2
θ

r
−D∗[U2

r ])− ǫ
5

2

m

rc
∂ΦUzUr +

∆r

Re
U,(2.4a)

DV
Dt = −QzU − m

r
∂ΘΓ − ǫ2

r2
D[r2UrUθ]− ǫ

5

2

m

rc
∂ΦUzUθ +

∆r

Re
V + Fθ, (2.4b)

DW
Dt = QθU − ǫ

1

2

m

rc
∂Φ[Γ + ǫ2U2

z ]− ǫ2D∗[UrUz] +
1

Re
(∆rW (r) +

W

r2
), (2.4c)

D∗U + m
∂ΘV

r
+ ǫ

1

2

m

rc
∂ΦW = 0. (2.4d)

The azimuthal gradients related to the diffusion terms and to the mean rotational wave
momentum fluxes ∂ΘUθUr, ∂ΘU2

θ , . . . have been omitted in (2.3) and (2.4) because they
appear at high orders and they are negligible in this study. The system (2.3) is coupled
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with the following boundary conditions

r → ∞, (Ur, Uθ, Uz, P ) → (0, 0, 0, 0); (2.5)

r → 0, Uθ → 0, and if |m| 6= 1, Ur → 0.

The CL induced mean flow expands in two spiraling helical diffusion boundary layers
at either CL side, and far from rc vanishes. No boundary condition is specified in the
vertical direction. The circular vortex is characterized by the mean angular rotation
Ω(r) = V (r)/r, the absolute mean axial vorticity Qz(r) = 1/rD[rV (r)] + Co, the mean

azimuthal vorticity Qθ(r) = −W
′

(r) and the absolute inertial frequency ̺(r) = 2Ω(r) +
Co. The prime denotes the radial derivative of the phase-averaged quantities when it
is not precised, otherwise D denotes the radial differential operator. We also have the
different notations

D

Dt
• = ∂t •+ǫ [Ur∂r +

Uθ

r
∂θ + Uz ∂z] •+Ω ∂θ •+W∂z•, ∆r• = D[D∗[•]] + ǫ

m2

r2c
∂2Φ•,

D
Dt• = ǫ ∂T2

•+mΩ ∂Θ•+ǫ
1

2

m

rc
W∂Φ•, ∆• = D∗[D[•]]+ 1

r2
∂2θ•+∂2z•, and

1

Re
= λ ǫ

3

2 .

Here, the nonlinear CL theory shall be used, so we will assume that the Haberman
parameter λ, the cubic ratio of the viscous CL thickness to the nonlinear CL thickness,
is small: λ ≪ 1 when it is not indicated, which allows for a λ-expansion of the flow,
dividing it into an inviscid part and a smaller viscous part, e.g. for the radial velocity
U = Ur,i + λUr,v + o(λ). The perturbations of velocity, geopotential and vorticity are
expanded according to the square root of the wave packet amplitude, for instance for the
radial velocity

Ur = U (0)
r + ǫ

1

2 U (1)
r + ǫ U (2)

r + . . . , (2.6)

with the zeroth order characterizing the amplitude-modulated non-normal vorticity
mode. Although large vertical and radial velocities may occur in tropical cyclones above
the inflow layer, these are always smaller than the rotational velocities (Reasor et al.
2000), we will then assume that the basic-state vortex only contains a field of mean
azimuthal velocity. The WMF interaction will nevertheless yield induced mean vertical
and radial velocity fields. As a result, the mean radial, azimuthal and axial shear flows are
ǫ1/2-expanded in the same way, like the frequency ω(Φ) = ω0+ ǫ1/2ω1(Φ)+ ǫ ω2(Φ)+ . . .

U = ǫ U2(r,Θ, Φ) + ǫ
3

2 U3(r,Θ, Φ) + . . . , (2.7a)

V = V 0(r) + ǫ
1

2V 1(r,Θ, Φ) + ǫ V 2(r,Θ, Φ) + ǫ
3

2 V 3(r,Θ, Φ) + . . . , (2.7b)

W = ǫ
1

2W 1(r,Θ, Φ) + ǫW 2(r,Θ, Φ) + ǫ
3

2 W 3(r,Θ, Φ) + . . . , (2.7c)

Qz = Q0(r) + ǫ
1

2Qz,1(r,Θ, Φ) + ǫQz,2(r,Θ, Φ) + . . . , (2.7d)

Qθ = ǫ
1

2Qθ,1(r,Θ, Φ) + ǫQθ,2(r,Θ, Φ) + . . . . (2.7e)

The subscript 0 characterizes the O(1) phase averaged rotational flow at the end of the
transition stage, result from the strong interaction between the basic vortex and the wave
packet. As |r− rc| → ∞, the zeroth-order mean flow tends to the basic vortex. The body
force is thus Fθ(r) = −Q′

0(r)/Re. We also assume that Co expansion is restricted to the
first order: Co = Co0 + ǫ1/2Co1. The mean geopotential is determined by Eq. (2.4a) and
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Figure 1. Sketch of a few streamline envelopes projected on a horizontal plane, spiraling around
the critical radius rc (dotted line) at either side of the CL axis r = ra(ξ, Φ, Θ) (dotdashed line),
m = 6.

to the first orders, it is defined by the gradient wind balance

Γ 0 =
1

8
(̺20,c − Co20)r

2
c +

1

4

∫ r

rc

̺20(r) − Co20 rdr, (2.8a)

Γ 1 = Γ 1(rc) +
1

2

∫ r

rc

̺0̺1 − Co0Co1 rdr, (2.8b)

Γ 2 = Γ 2(rc) +
1

2

∫ r

rc

̺0̺2 +
1

2
(̺21 − Co21) rdr. (2.8c)

3. The outer flow

In this Section, we give the outer-flow asymptotic solution near rc, which will be useful
to determine the CL flow in a unique way through matchings with the outer flow.
The spiraling motion shifts the CL symmetry axis from the critical radius; this difficulty

is overcome here by introducing a coordinate η which is constant along a streamline (Davis
1969). As a result, the representation, in cylindrical coordinates, of a streamline is

r = rc + η + h(η, ξ, Θ, Φ),

where the deviation h from axisymmetry is assumed to be of order ǫ (cf. figures 1 and
2). Owing to the vorticity erosion inside the CL occuring during the WMFI, we assume
that the basic-vortex axial vorticity becomes zero on the CL axis ra = r(η = 0) a long
time after the beginning of the interaction but before the quasi-steady stage starts:

Q0 = 0 at r = ra(ξ, Θ, Φ) = rc + h(0, ξ, Θ, Φ).
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COF

EOF

CIF

EIF

CEF

Figure 2. The vortex + the wave packet m = 2 and the various regions (bounded by dashed
lines) in a horizontal plane: COF the core outer flow characterized by η < 0, CIF the core inner
flow defined by s = −, CEF the cat’s eye flow defined by Z 6 A, EIF the external inner flow
defined by s = + and EOF the external outer flow defined by η > 0. The CL involves the CIF
+ CEF + EIF. The dotted line represents the critical radius rc and the dotdashed line is the
CL symmetry radius ra.

3.1. The amplitude-modulated singular mode

The linearized, inviscid and stationary system (2.3) can be reduced to a single equation,
the Howard-Gupta modal equation generalized to the f -plane and related to the modal

radial velocity U
(0)
r (Howard & Gupta (1962)). This is expressed as L0(U

(0)
r ) = 0, namely

D[S(r)D∗U (0)
r ] + ∂2ξU

(0)
r +

(

(rD − 2)[S(r)Q0(r)] +
k2r2̺0(r)

mωD
0 (r)

S(r)Q0(r)
) mU

(0)
r

ωD
0 (r)r2

= 0.

(3.1)
The superscript D defines the Doppler-shifted frequency

ωD(r) = ω̃ −mΩ(r) − k̃ W (r) , S(r) =
r2

m2 + k2r2
.

The equation (3.1) is singular at the critical radius rc where the Doppler-shifted frequency
ωD
0 (r) vanishes, that is ω0 = mΩ0,c. But the solution is weakly singular around rc,

at the end of the strong vortex/wave packet interaction, since the local equivalent
Richardson number J(r) = (kr/m)2 ̺0(r)Q0(r)/[Q0(r) − ̺0(r)]

2 becomes small near
the CL symmetry axis ra, as the zeroth-order mean axial vorticity vanishes at ra. The
connection of this number with the linear stability of a rotating sheared flow is evoked
in Caillol (2014, 2015). The subscript c characterizes the critical radius.

The neutral-mode radial velocity evaluated on the streamline η is expressed by two
Frobenius series of the variable r − rc = η + h(η)

U (0)
r =

( a

rc
φa[η + h(η)] + φb[η + h(η)]

)

U0(Φ) sin ξ +
C

rc
φa[η + h(η)]U0(Φ) cos ξ, (3.2)
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where both Frobenius series φa and φb are expanded around rc in this way

φa(η) = η +

∞
∑

n=2

a0,nη
n, φb(η) = 1 +

∞
∑

n=2

b0,nη
n + b0φa(η) ln η

∗. (3.3)

The radius η inside the logarithm is normalized by η∗ = η/η0, where η0 = rc/
√
2. The

complex logarithmic function in (3.3) induces an additional and in phase quadrature
term in (3.2) as r < rc, caused by the logarithmic phase shift φ defining C as follows:

r > rc, C+ = 0 , and r < rc, C− = b0rcφ(λ) . (3.4)

The superscript s = − shall be used to characterize the vortex core where r < rc and
the superscript s = + the outer core where r > rc.

3.2. Order ǫ
3

2 outer flow

The first-order inviscid disturbance is decomposed in five contributions. The radial

velocity U
(1)
r,i can be then written

U
(1)
r,i = U

(1)
r,h + U

(1)
r,l + U

(1)
r,d + U

(1)
r,ad + U

(1)
r,ωd.

The first term constitutes a CL feedback into the outer flow. It is required while matching

the inner flow on the separatrices. The second term U
(1)
r,l is generated by the advection

of the mode by the first-order mean flow, the three next terms U
(1)
r,d , U

(1)
r,ad and U

(1)
r,ωd

are respectively created by the vertical gradients of the modal amplitude U0, the phase

jump a and the frequency ω1. The velocities U
(1)
r,h and U

(1)
r,ωd are not Θ-secular at the

lowest expansion order near η = 0. So their secularity can be neglected in the study. The
differentiation with respect to Θ in the system (2.3) leads to the presence of coupled sine

and cosine eigenfunctions. The U
(1)
r,i dependence on the phase ξ is hence as follows

U
(1)
r,i (r, ξ) = {[φ(1,1)l (r) + ω1,ΦT1 φ

(1,1)
ωd (r) + aΦφ

(1,1)
ad (r)]U0 + φ

(1,1)
d U0,Φ} sin ξ

+ {[φ(1,2)l (r) + aΦφ
(1,2)
ad (r)]U0 + φ

(1,2)
d (r)U0,Φ} cos ξ + φ

(1)
h (r)U0 cos(2ξ).

The feedback flow satisfies the homogeneous equation

L0(U
(1)
r,h ) = 0, with φ

(1)
h (η) =

γh,1
rc

φa(η) + κh,1φb(η). (3.5)

The other terms satisfy non-homogeneous linear equations. The second contribution U
(1)
r,l

satisfies the equation

L0(U
(1,1)
r,l ) = −L1,1(U

(0)
r )−L1,θ(U

(1,2)
l , P

(1,2)
l ), L0(U

(1,2)
r,l ) = −L1,2(U

(0)
θ )−L1,θ(U

(1,1)
l , P

(1,1)
l ),

(3.6)
with the operators L1,1, L1,2 and L1,θ defined by

L1,1(U) =

{

(rD − 2)
[

S(r)
(

Qz,1(r) −
kr

m
Qθ,1(r)

)]

+ kr
S(r)̺0(r)

ωD
0 (r)

(kr

m
Qz,1(r) +Qθ,1(r)

)

−ω
D
1 (r)

ωD
0 (r)

(rD − 2)
[

S(r)Q0(r)
]

+
k2r2

m

S(r)̺0(r)

ωD
0 (r)

[

̺1(r)

̺0(r)
− 2

ωD
1 (r)

ωD
0 (r)

]

Q0(r)

}

mU

ωD
0 (r)r2

, and

(3.7)
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L1,2(U) =
km̺0(r)

rωD2
0 (r)

S(r)U∂Θ[kV 1(r)−
m

r
W 1(r)]+

m

ωD
0 (r)

D
[S(r)

r
U∂Θ[kW 1(r)+

m

r
V 1(r)]

]

(3.8)

L1,θ(U, P ) =
m̺0(r)

ωD2
0 (r)

[Ω0(r) − ω0
m

r2
S(r)]∂ΘUθ −m

Ω0(r)

ωD
0 (r)

∂Θ∂ξUr

+ k
m

r

̺0(r)

ωD2
0 (r)

S(r)∂Θ [kP −mΩ0(r)Uz ]

+
mD

ωD
0 (r)

[

S(r)∂Θ

(m

r2
P +

ω0

r
Uθ + kΩ0(r)Uz

)]

.

The first-order Doppler shifted frequency is ωD
1 (r) = ω1 −mΩ1(r) − kW 1(r). The first-

order equivalent Richardson number, derived from (3.7) is given at r = rc by

J1,c =
̟

̺0,c
(̟Qz,1,c +Qθ,1,c)− (1 + 2̟2)ωD

1,c

rcQ
′

z,0,c

m̺20,c
. (3.9)

The radial velocities U
(1)
r,d , U

(1)
r,ad and U

(1)
r,ωd satisfy the equations

L0(U
(1,1)
r,d ) = −L1,θ(U

(1,2)
d , P

(1,2)
d ), L0(U

(1,2)
r,d ) = −L1,d(φ

(0))U0,Φ cos ξ−L1,θ(U
(1,1)
d , P

(1,1)
d ),

(3.10)

L0(U
(1,1)
r,ad ) = −L1,θ(U

(1,2)
ad , P

(1,2)
ad ), L0(U

(1,2)
r,ad ) = −L1,d(φa)aΦU0 cos ξ−L1,θ(U

(1,1)
ad , P

(1,1)
ad ),

(3.11)

L0(U
(1)
r,ωd) = −ω1,ΦT1L1,d(φ

(0))U0 sin ξ,

with L1,d(φ) =
2km

rc

[m

r

Q0(r)

ωD
0 (r)

−D
][

S2(r)
(m

r

Q0(r)

ωD
0 (r)

φ(r) + D∗[φ(r)]
)]

.

The Frobenius series related to each radial velocity have the same structure

φ
(1,1)
j (η) =

∞
∑

n=0

(

bj,1,n ln
2 |η∗|+cj,1,n ln |η∗|+dj,1,n

)

ηn+
αj,1

rc
φa+βj,1φb, j = l, d, ad, and ωd,

(3.12)

and φ
(1,2)
j (η) =

∞
∑

n=0

(

ej,1,n ln
2 |η∗|+fj,1,n ln |η∗|+gj,1,n

)

ηn+
γj,1
rc

φa+κj,1φb, j = l, d, and ad.

(3.13)
The coefficients of the first terms in the series (3.3,3.12,3.13) are given in Appendix A.
The integration of the equations (3.6), (3.10) and (3.11) is simplified owing to the Θ-
secularity assumption ; any physical quantity in both outer and inner flows is a polynomial
of the variable Θ. As a result, the quantity q(Θ) can be written exactly in a finite Taylor
expansion

q(Θ) = q(0) + ∂Θq(0)Θ +
1

2
∂2Θq(0)Θ

2 + . . .

From now on, any Θ-differentiation at Θ = 0 will be denoted qΘ(0).

4. Low-order inner flow

In this Section, we display the inner expansion, rescale the inner variables and solve
the two first orders.
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4.1. CL variables and equations

When the amplitude modulated neutral mode is weakly singular, the local equivalent
Richardson number at rc, Jc is small and is assumed to be O(ǫ1/2): Jc = J1,c ǫ

1/2+O(ǫ).
The critical-layer width is then maximum and of order O(ǫ1/2), we will thus take the
inner radial scaling r − rc = ǫ1/2R. The outer-flow expansion following R gives the way
with which the inner expansion must proceed

U = ǫ U2(ra) + ǫ
{

U (0) + ǫ
1

2 ln ǫ U (1) + ǫ
1

2 U (2) + . . .
}

,

V = Ω0(ra) r + ǫ
1

2Ω1(ra) r + ǫ
1

2

{

V (0) + ǫ
1

2 ln ǫ V (1) + ǫ
1

2 V (2) + . . .
}

,

W = ǫ
1

2W 1(ra) + ǫ
1

2

{

ǫ
1

2 ln ǫW (1) + ǫ
1

2 W (2) + . . .
}

,

P =
1

8
(̺20(rc)− Co20)r

2 + ǫ
{

P(0) + ǫ
1

2 ln ǫP(1) + ǫ
1

2 P(2) + . . .
}

.

In order to simplify the CL equations, let us make the following rescaling using the
zeroth-order mean flow evaluated at rc

X = ξ +
π

2
(1− si), R = rcR, τn = m̺0,cǫ

n/2t, si = −sgn[m̺0,cU0],

V (n) = ̺0,crc V̂
(n), W (n) = ̟̺0,crcŴ

(n), U (n) = sim̺0,crcÛ
(n), P(n) = si̺

2
0,cr

2
c P̂(n),

V n,c = Vn̺0,crc, Wn,c = ̟Wn̺0,crc, Un,c = mUn̺0,crc, Γn,c = Pn̺
2
0,cr

2
c ,

Γ
′

n,c = P
′

n̺
2
0,crc, ωn = m℧n̺0,c, Con = Con̺0,c, ̺n,c = Sn̺0,c,

Qz,n,c = Qz,n̺0,c, W
′

n,c = −Qθ,n̺0,c, rcQ
′

0,c = ζ̺0,c, rcQ
′

z,n,c = ζz,n̺0,c,

rcQ
′

θ,n,c = ζθ,n̺0,c, r2cQ
′′

0,c = ζ
′

̺0,c, r2cQ
′′

z,n,c = ζ
′

z,n̺0,c, r2cQ
′′

θ,n,c = ζ
′

θ,n̺0,c,

λ
′

=
λ

U0rc
, A(Φ, τ2) =

∣

∣

∣

U0(Φ, τ2)

m̺0,crc

∣

∣

∣
.

In the following analysis, the hat is dropped with the understanding that we are dealing
with the new variables. The rescaled wave amplitude A(Φ, τ2) is solution of a nonlinear
space-time evolution equation in the asymptotic quasi-steady regime, a long time after
the CL formation when the vorticity wave packet is slowly exchanging momentum and
kinetic energy with the basic-state vortex. In this regime, where the zeroth-order mean
axial vorticity is taken zero on the CL axis, the CL singularity strength is measured by
the axial vorticity radial gradient at rc, i.e. the dimensionless number ζ. The radius rc
and ζ are finite but rc > 1 while ζ is small, according to observations (Caillol (2015)).
If we consider the limit rc → 0, we suppose a critical layer in the eye of the tropical
cyclone or the tornado. The basic-vortex axial vorticity is nearly constant in the eye, so
vorticity waves are strongly damped there. Taking this limit would imply ζ → 0; the CL
interaction would be weaker since the leading-order CL equations would be postponed
to a higher order. If we now consider the limit rc → ∞, we suppose a critical layer
far away from the eyewall, where the basic radial gradient vorticity is quasi-zero and
vorticity waves are also strongly damped. Taking this limit would lead to ζ → 0 and a
weak WMFI as well, as the vorticity radial gradient fast decreases with r and rcQ

′

z,0 → 0.
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A general expression of the streamline radius R is inside the critical layer

R = siρ+H(ρ,X,Θ, Φ, τ2), (4.1)

the function H being expanded following ǫ1/2 : H = ǫ
1

2H2 + ǫH3 +O(ǫ
3

2 ).

We undertake the change of radial variables R → ρ. The radius ρ is a function of R, X ,
Θ, Φ and τ2 and its partial derivatives are

ρR =
1

si +Hρ
, ρX = − HX

si +Hρ
, ρΘ = − HΘ

si +Hρ
, . . .

The resulting system of inner equations is displayed in Appendix B.

4.2. Zeroth- and first-order CL solutions

The zeroth-order inner equations lead to the simple solution as follows:

U (0) = −siA sinX , V (0) = −siρ , P(0) =
1

2
[S1 − C0C1 − siρ]ρ+ siP2.

Two compatibility conditions arise from the angular and axial momentum inner equations

V
(2)
Θ = 0, W

(2)
Θ = 0. (4.2)

The first-order flow is straightforwardly deduced from the Frobenius series (3.3) and
(3.12)

U (1) =
1

2
[ζ(1 +̟2)ρ− si(cl,1,0 + cad,1,0aΦ)A− sicd,1,0AΦ] sinX

−si
2
[(fl,1,0 + fad,1,0aΦ)A+ fd,1,0AΦ] cosX,

P(1)

ρ
+
si
2
ζ
℧0

ρ
{[(βl,1,Θ + βad,1,ΘaΦ)A+ βd,1,ΘAΦ] sinX

+ [(κl,1,Θ + κad,1,ΘaΦ)A+ κd,1,ΘAΦ] cosX} =W (1) = V (1) =
ζ

2
A cosX.

The resonance condition ℧
D
1 = 0 results from the inner momentum equation solvability

conditions

℧1 = V1 +̟2W1, (4.3)

in addition to two other conditions

V
(4)
Θ =W

(4)
Θ =

ζ

2
{[(βl,1,Θ + βad,1,ΘaΦ)A+ βd,1,ΘAΦ] cosX

− [(κl,1,Θ + κad,1,ΘaΦ)A+ κd,1,ΘAΦ] sinX}.
The inner flow inside the separatrices is denoted by the superscript ⊙ while the jump and
the mean of a quantity q at either side of rc are respectively denoted by [q]+− = q+ − q−

and {q}+− = (q++q−)/2. The leading-order flow matchings on the separatrices show that

the flows are identical inside and outside the separatrices, so U (n,⊙) = U (n) , V (n,⊙) =
V (n) , . . . with n = 0, 1. A first consequence is the absence of jump for the mean flow at
rc: [V1]

+
− = [W1]

+
− = [U2]

+
− = [P2]

+
− = 0. The pressure continuity leads to

[(βl,1,Θ+βad,1,ΘaΦ)A+βd,1,ΘAΦ]
+
− = 0, [(κl,1,Θ+κad,1,ΘaΦ)A+κd,1,ΘAΦ]

+
− = 0. (4.4)

The radial velocity continuity implies

[(cl,1,0 + cad,1,0aΦ)A+ cd,1,0AΦ]
+
− = 0, and (4.5)
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[(fl,1,0 + fad,1,0aΦ)A+ fd,1,0AΦ]
+
− = 0. (4.6)

5. Low-order CL induced mean flow

In this Section, we characterize the O(ǫ1/2) and O(ǫ) induced mean flows in the CL
neighborhood by analysing the phase averaged system (2.4). We assume a CL confined
in a ring between r = r−B < ra and r = r+B > ra. The CL thickness is defined at leading
order by δcl = r+B − r−B = sirc(ρ

+
B − ρ−B) ǫ

1/2 + o(ǫ).

5.1. First-order mean flow

From respectively the equations (2.4d), (2.4c) and (2.4b), we get the Θ-independence
of the O(ǫ1/2) induced mean velocities and geopotential at r ≃ ra ≃ rc

V 1,Θ(r) = 0, W 1,Θ(r) = 0, Γ 1,Θ(r) = 0.

While differentiating (2.4b) and (2.4c) with respect to r, we obtain the same result for
the mean vorticities

Qz,1,Θ(r) = 0, Qθ,1,Θ(r) = 0.

The mean vorticity radial gradient is however Θ-dependent at the singularity r = rc.
After differentiating (2.4b) and (2.4c) a second time with respect to r and simplifying
with the above Θ-independence of the first-order flow, we get

mΩ0V
′′

1,Θ(r) = − ǫ
3

2

r2
D3[r2UrUθ]− 2ǫ

3

2D2[
1

r
UrUθ], mΩ0W

′′

1,Θ(r) = −ǫ 3

2D2[D∗[UrUz]].

(5.1)
The r.h.s of both equations (5.1) are made of the divergence of the vorticity radial gradient
mean radial wave flux that is singular at r = rc. The CL flow smooths this singularity
out; so we have to compute the flux expressed with the inner variables. The triple radial
gradient is O(ǫ−3/2) inside the CL; as a result, some nonlinear inner terms at the r.h.s.
are O(1). Next, rescaling and taking at the l.h.s. of (5.1) the upper CL limit r → r+a of
the outer flow, corresponding at the r.h.s. to the inner boundary ρ+B, we then have

℧0ζ
+
z,1,Θ = −[U (0)V

(2)
ρρρ](ρ

+
B , X), ℧0ζ

+
θ,1,Θ = ̟[U (0)W

(2)
ρρρ](ρ

+
B , X). (5.2)

Taking the lower limit yields similar relations, so the spiraling part of the first-order axial
vorticity radial gradient admits a jump across the CL since

℧0[ζz,1,Θ]
+
− = −{[U (0)V

(2)
ρρρ](ρ

+
B , X)− [U (0)V

(2)
ρρρ](ρ

−
B, X)},

with the similar relation for the azimuthal vorticity radial gradient ζθ,1,Θ.
The subsection 7.1 will show that the Θ-secular equations can be written at either CL
side in the general way

℧0ζ
s
z,1,Θ = Σs

q′
, ℧0ζ

s
θ,1,Θ = −̟Σs

q′
. (5.3)

As the zeroth-order flow must remain steady in the quasi-steady régime, in addition to
the laminar force F , we must assume the existence of an eddy force with azimuthal and
axial components, that prevents the basic-state vortex from being Θ-dependent

℧0Q
′′

z,0,Θ = −si [U (0)V
(2)
ρρρρ](ρ

+
B, X) + F+

ed = −si [U (0)V
(2)
ρρρρ](ρ

−
B , X) + F−

ed = 0, (5.4)

℧0Q
′′

θ,0,Θ = si̟ [U (0)W
(2)
ρρρρ](ρ

+
B , X)−̟F+

ed = si̟ [U (0)W
(2)
ρρρρ](ρ

−
B, X)−̟F−

ed = 0.
(5.5)

The eddy force ratio azimuthal/axial component is−̟ and the forcing Fed is undistorted.
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5.2. Second-order mean flow

Next, from (2.4b-d), we get the rescaled equations of the O(ǫ) induced mean flow at rc

P2,Θ + ℧0V2,Θ = 0, P1,Φ +̟℧0W2,Θ = 0, U ′

2 + U2 +̟W1,Φ + V2,Θ = 0.

Note that the geopotential axial gradient in (2.4c) generates a vertical wind at low orders.
This motion is however not relevant to the wave packet dynamics. The mean geopotential
is therefore assumed uniform to the first orders at rc: as a result, P1,Φ = P2,Θ = P2,Φ =
P3,Θ = 0. We thus obtain the Θ-independence of the second-order mean velocities

V2,Θ = 0, W2,Θ = 0,

while the radial-velocity radial gradient at rc is given by

U ′

2 = −U2 −̟W1,Φ. (5.6)

After r-differentiating the equation (2.4b), and simplifying with (2.4d) and (2.8c), we
obtain the Θ-secular equation for the axial vorticity Qz,2 evaluated at r ≃ ra

mΩ0(r)Qz,2,Θ(r) =
m

rc
Q0(r)W 1,Φ(r) −m[Ω1(r)Qz,1(r)]Θ −Q

′

0(r)U 2(r)

− ǫ

r2
{D[r2UrD∗[Uθ]]−D[(r2∂zUz +mr∂ΘUθ)Uθ]}+

ǫ

r3
D[r2UrUθ]−

m

rc
ǫ

3

2 ∂ΦD
∗[UzUθ].

The two first terms at the r.h.s. are negligible since Q0(r) ≃ 0, V 1,Θ(r) = 0 and
Qz,1,Θ(r) = 0. The fourth term at the r.h.s. is O(1) since the double radial gradient
is O(ǫ−1) inside the CL whereas the three following terms are negligible. Finally, two
terms remain at the r.h.s.: the third term is the divergence of the radial flux of the
axial vorticity Q0 by the radial velocity U2 and the fourth term is the divergence of the
leading-order mean radial wave flux of the axial vorticity. Next, introducing the inner
variables in the flux divergence, and taking the limit ρ→ ρ+B, then taking the upper CL
limit r → r+a for the other terms, and rescaling, we then have

℧0Q+
z,2,Θ = −ζU2 − si [U (0)V

(2)
ρρ ](ρ+B , X). (5.7)

As for the mean azimuthal vorticity, the Θ-gradient of the vorticity Qθ,2 is generated by
the divergence of the leading-order mean radial wave flux of the azimuthal vorticity and
the vertical gradient of the leading-order mean geopotential radial gradient, so we have,
after r-differenciating (2.4c), simplifying with (2.8b), and rescaling as r → r+a

℧0Q+
θ,2,Θ = V1,Φ + si̟[U (0)W

(2)
ρρ ](ρ+B , X). (5.8)

Subsection 7.1 will show that the second-order mean vorticity Θ-secular equation can be
written at either CL side in the general way

℧0Qs
z,2,Θ = Σs

q − ζU2, ℧0Qs
θ,2,Θ = V1,Φ −̟Σq. (5.9)

Subsection 7.1 will also prove that, for a symmetric CL extent such as ρ−B = −ρ+B, we
haveΣ−

q = Σ+
q . The second-order mean vorticity Θ-gradient thus admits no jump accross

the CL. Taking the mean radial eddy vorticity flux driven forcings into account in the
inner equations then comes down to consider altered zeroth-order mean vorticity radial
gradients at rc such as

℧0Qz,2,Θ = −ζ̂ U2, ℧0Qθ,2,Θ = V1,Φ − ζ̂θ,0 U2, (5.10)
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with the modifications of the vorticity radial gradients given by

ζ̂ = ζ − Σq

U2
, ζ̂θ,0 = ̟

Σq

U2
. (5.11)

As the first-order vorticity radial gradient and the second-order vorticity vary following
the azimuthal coordinate under the effect of the wave packet, they therefore evolve with
the wave modulation. So that the viscous diffusion may not damp these corrections,
the definition of the rescaled force F near rc has to be slightly modified and an axial
component has to be added

Fθ = siλ
′

(Q′
z,0(r)−

Σq

U2
)Aǫ

3

2 , Fz = siλ
′ Σq

U2
Aǫ

3

2 .

5.3. Evolution equations of the first-order mean velocity at rc

We now determine the τ2-evolution equations of V1 and W1, knowing that these
velocities are inviscidly undistorted and that they do not depend on Θ. The O(ǫ3/2)
momentum equations (2.4b) and (2.4c) evaluated at r near ra are

V 1,T2
+mΩ0V 3,Θ +

m

rc
W 1V 1,Φ = − ǫ

1

2

r2
D[r2UrUθ] −Qz,1U2 −mΩ1V 2,Θ − m

r
Γ 3,Θ,

(5.12)

W 1,T2
+mΩ0W 3,Θ +

m

rc
W 1W 1,Φ = − ǫ

1

2

r
D[rUrUz] +Qθ,1U2 −mΩ1W 2,Θ − m

rc
Γ 2,Φ.

(5.13)

The divergences of the mean radial wave momentum fluxes at the r.h.s of (5.12) and
(5.13) are O(1) inside the CL. Introducing the inner variables in these terms, taking the
limit r → rsa otherwise, assuming a uniform pressure at rc, rescaling, and eliminating
V2,Θ and W2,Θ, we obtain finally

V1,τ2 +̟W1V1,Φ = Σs
v −Qs

z,1U2 − ℧0Vs
3,Θ, (5.14)

W1,τ2 +̟W1W1,Φ = Σs
v +

Qs
θ,1

̟
U2 − ℧0Ws

3,Θ, (5.15)

where Σ±
v = −[U (0)V

(2)
ρ ](ρ±B , X). (5.16)

Let us decompose Qz,1 in an undistorted and another distorted terms so that one may
separate first and third-order velocity evolutions in (5.14) and (5.15)

Qs
z,1 = {Qz,1}+− +Qs

z,1,d, with Qs
z,1,d =

s

2
[Qz,1]

+
−.

By considering a symmetric CL thickness, ρ−B = −ρ+B, subsection 7.1 will show that
{Σv}+− = 0, so Σv = Σv,d. The third-order terms ℧0Vs

3,Θ and ℧0Ws
3,Θ are defined so that

they may remove the distorted terms in (5.14) and (5.15), we thus get

℧0Vs
3,Θ = Σs

v −Qs
z,1,d U2, ℧0Ws

3,Θ = Σs
v +

Qs
θ,1,d

̟
U2. (5.17)

As was done in the preceding subsection, the contribution of the mean wave momentum
flux is included inside the first-order mean vorticity. The modified vorticities at rc are
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then denoted of the following way

Q̂z,1 = Qz,1 −
Σv

U2
, Q̂θ,1 = Qθ,1 +̟

Σv

U2
.

The evolution equations of the CL induced velocity (V1,W1) are therefore

V1,τ2 +̟W1V1,Φ = −{Qz,1}+−U2, W1,τ2 +̟W1W1,Φ =
{Qθ,1}+−

̟
U2. (5.18)

The first-order mean velocity at rc, (V1,W1) is vertically advected by W1 and is driven
by the undistorted divergence of its radial flux generated by U2. The forcing Σv is
absent since it is antisymmetric, it appears in the definitions of V3 and W3. Jointly with
the distorted mean vorticities, it generates a Θ-secular growth of the third-order mean
velocities. In C17, the latter have a τ2-linear growth.

6. The second-order inner flow

This section gives the analytical expressions of the leading-order non-trivial inviscid
flow in the critical layer. The azimuthal velocity V (2) defined through the streamfunction-
like function ψ(2) is solution of the azimuthal-momentum equation (6.1):

V (2) =
1

2
ρ2 − siS1ρ+ V2 + ψ(2)

ρ ,

the vertical momentum equation (6.2) follows.

A sinXψ(2)
ρρ + ρψ

(2)
ρX −ψ

(2)
X = siψ

(2)
ρτ1 +(U2−℧0H2,Θ)(ψ

(2)
ρρ − siQz,1)+ si℧0[V

(5)−V3]Θ

+ siΣv + [P(2) − siP3]Θ + [(1− 2℧0)ρ−
si
2
(S1 − C0C1)]H2,Θ

+ λ
′

(ψ
(2)
i,ρρρ − ζ̂)A+Π2,X(X), (6.1)

A sinXW (2)
ρ +ρW

(2)
X −ψ(2)

X = siψ
(2)
ρτ1+(U2−℧0H2,Θ)(W

(2)
ρ +si

Qθ,1

̟
)+si℧0[W

(5)−W3]Θ

+ siΣv +
V1,Φ

̟
ρ+ λ

′

(W
(2)
i,ρρ +

ζ̂θ,0
̟

)A+Π2,X(X). (6.2)

The geopotential P(2) and the radial velocity U (2) are expressed as functions of ψ(2) and
W (2) via the radial momentum and mass conservation equations

P(2)(ρ,X) =
1

2
ρ3 − si

4
(3S1 + C0C1)ρ2 + [

1

4
(S2

1 − C2
1) + V2 −H2]ρ

+
si
2
(S1 − C0C1)H2 + ψ(2) +Π2(X) + siP3 , (6.3)

U (2)
ρ (ρ,X) = U ′

2 +A sinX − ψ
(2)
ρX −̟2W

(2)
X . (6.4)

The equations (6.1-6.4) are valid inside and outside the separatrices but yield distinct
solutions. Note that the forcing Σv appearing in both equations (6.1) and (6.2) results
from respectively substituting the evolution equations (5.14) and (5.15) for V1,τ2 and
W1,τ2 , it vanishes inside the separatrices since the related forcing is there equal to the
mean {Σv}+− = 0.
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6.1. Outside the separatrices

The CL flow is decomposed between a Θ-dependent spiraling contribution and a purely
oscillating one. For instance, for the fifth-order velocity V (5), we have

V (5) = V (5)
sp (ρ,X,Θ) + V (5)

os (ρ,X).

The matchings of V
(5)
sp and W

(5)
sp on the CL edges as ρ → ρ±B give the asymptotic

behaviours

V (5)
sp → 1

2
ζz,1,spρ

2 + si[Qz,2,sp + (ζ̂ + 2)H2]ρ+ ζ̂βl,1 ln |ρ∗|A cosX

+ V3,sp + V5,sp(X) + siζ̂A
cosX

ρ
H2 +O(ρ−2), (6.5)

W (5)
sp → −1

2

ζθ,1,sp
̟

ρ2 − si(Qθ,2,sp + ζ̂θ,0H2)
ρ

̟
+ ζ̂βl,1 ln |ρ∗|A cosX

+W3,sp +W5,sp(X) + siζ̂A
cosX

ρ
H2 +O(ρ−2), (6.6)

the expressions of V5,sp and W5,sp being displayed in Appendix C.

The radial advections: U2 ψ
(2)
ρρ and U2W

(2)
ρ , the spiraling motions P(2)

sp , V
(5)
sp ,W

(5)
sp and the

forcing Σv bring about a secularity with respect to the phase X in the angular and axial
momentum equations (6.1) and (6.2), which makes their integration uneasy. The second-
order outer flow gives a spiraling shift h2(η) = U2(η)/[mΩ0(η)]Θ. This deformation can
be found out heuristically. Indeed, an air particle located on a streamline η undergoes
a radius variation δr after a time interval δt such as δr = ǫδh2(η) = ǫU2(η)δt while it
rotates of an angle δθ = Ω0(η)δt. An expression for H2 can be determined by removing
the advection terms in (6.1) and (6.2)

H2(Θ) =
U2

℧0
Θ, (6.7)

which can be easily matched with h2 as η → 0: H2 = h2(0) in rescaled variables. The
deformation H2 has been found a second time in Appendix F while integrating the
streamline equations. Note that inside the separatrices, we have H⊙

2 = H2.

The remaining secularity must be eliminated by determining V
(5)
sp and W

(5)
sp properly.

Let us now define V
(5)
sp and W

(5)
sp in this way

V (5)
sp = ssiζz,1,sp K0,ρ−1A

1

2 + si(Qz,2,sp + 2H2)ρ+ V3,sp + V5,sp(X) + ψ(5)
sp,ρ, (6.8)

W (5)
sp = −ssi

ζθ,1,sp
̟

K0,ρ−1A
1

2 − si[Qθ,2,sp+(ζ̟̂+ ζ̂θ,0)H2]
ρ

̟
+W3,sp+W5,sp(X)+ψ(5)

sp,ρ.

(6.9)
The unknown function K0 A

1/2 must tend to |ρ| ≫ 1 as ρ → ρ±B. Substituting the
velocities (6.8) and (6.9) in the equations (6.1) and (6.2) simplifies the momentum
equations

A sinXψ(2)
ρρ + ρψ

(2)
ρX − ψ

(2)
X = siψ

(2)
ρτ1 + si℧0[ψ

(5)
sp,ρ + V5,sp]Θ

− ζ̂ U2ρ+ sΣq′K0,ρ−1A
1

2 + siΣv + λ
′

(

ψ
(2)
i,ρρρ − ζ̂

)

A+Π2,Θ +Π2,X , (6.10)
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Figure 3. Separatrices Z = A as functions of x, y and Φ, m = 2, ǫ = 0.1, ̟ = 2, rc = 2,
U2 = 1, ℧0 = 0.5, A(Φ) = [1 + cos(Φ)/2]2.

A sinXW (2)
ρ + ρW

(2)
X − ψ

(2)
X = siψ

(2)
ρτ1 + si℧0[ψ

(5)
sp,ρ +W5,sp]Θ − ζ̂ U2ρ

+ sΣq′K0,ρ−1A
1

2 + siΣv + λ
′

(

W
(2)
i,ρρ +

Σq

U2

)

A+Π2,X . (6.11)

A small equivalent Richardson number at rc enables one to uncouple the axial motion.
The vertical motion is thus absent from the equation (6.10), which models the leading-
order non-trivial dynamics inside a two-dimensional, cylindrical, steady and unstratified
critical layer (Haberman (1972); Caillol & Maslowe (2007); Caillol (2014)). This equation
however possesses extra terms, owing to the spiraling motion generated by the mean
radial velocity U2, which makes this CL flow more complex. Solving the equation (6.10)
gives the second-order azimuthal velocity, then the resolution of Eq. (6.11) yields the
axial velocity. To solve (6.10), a second change of radial variables
(ρ,X) → (Z, x) is performed where

Z =
1

2
ρ2 +A cosX. (6.12)

Each streamline is described by a unique value of the variable Z but one value of Z
yields two streamlines located at either side of the CL axis, each one characterized by
s = ± (cf. figure 2). The variable Z increases from Z = −A in the cat’s eye center to
Z = A on the separatrices, to reach large values on the CL edges. See in figure 3 the two
helical and spiraling sheets corresponding to the outer and inner separatrices for a m = 2
CL and for an arbitrary profile A(Φ). Inside the frame (ρ,X), the relationship (6.12)
characterizes the classic cat’s eye CL pattern. Inside the standard frame (r, θ), the CL
pattern is even more deformed with respect to the tangential basic flow; the symmetry
with respect to the axis r = ra is lost. The CL thickness δcl scales as δcl = 4rc σ(Aǫ)

1/2

with 1 ≪ σ ≪ ǫ−1/2; σ is the ratio of the CL thickness over the cat’s eye thickness,
whose value remains undetermined by the nonlinear CL theory. The radius ρ expressed
with the variables (Z, x) is denoted Zρ(Z, x) = ssi[2(Z −A cosx)]1/2, ρX stands for the

absolute value of ρ on the separatrix, ρX(x) =
√
2A[1−cosx]1/2. Putting the superscript

∗ A-normalizes ρX and Z: ρX∗ = ρX/A1/2 and Z∗ = Z/A.
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Differentiating (6.10) with respect to ρ and introducing the variables Z and x, we get

Zρ ψ
(2)
ρρx = si℧0ψ

(5)
sp,ρρΘ − ζ̂ U2 + sΣq′K0A

1

2 + λ
′

Zρ ψ
(2)
i,ρρρZ A. (6.13)

The average over x at constant Z of the quantity q is defined by: 〈q(Z)〉 =

1/(2π)
∫ 2π

0
q(Z, x) dx. Let us decompose ψ

(5)
sp,ρ between its x-averaged and oscillating

parts

ψ(5)
sp,ρ = 〈ψ(5)

sp,ρ〉+ δψ(5)
sp,ρH2. (6.14)

Using the antisymmetry property of the forcing generated by the mean radial wave flux
of the axial vorticity radial gradient : Σ−

q′
= −Σ+

q′
(cf. Section 7), the inviscid secularity

condition applied to (6.13) yields 〈ψ(5)
sp,ρ〉

∂Z〈ψ(5)
sp,ρ〉 = si

(

ζ̂ −
Σ+

q′

U2
A

1

2K0[Z
∗]
)

〈H2

Zρ
〉. (6.15)

The equation (6.13), after the ψ
(5)
sp,ρ substitution, admits the general inviscid solution

ψ
(2)
i,ρρ(Z, x) = F2(Z

∗) + si

∫ x

π

∂Zδψ
(5)
sp,ρ(Z, x1) + sΞ(Z∗)G5(Z

∗, x1)A
− 1

2 dx1 U2, (6.16)

where Ξ(Z∗) = ζ̂ −
Σ+

q′

U2
A

1

2K0[Z
∗], and G5(Z

∗, x) = SM[Z∗]− [2(Z∗ − cosx)]−
1

2 .

All mathematical functions needed in the paper are defined in the Appendix H.

The viscous secularity condition applied to equation (6.13) namely ∂Z〈ψ(2)
i,ρρρ〉 = 0,

as well as the inner axial vorticity matching with the outer flow permit to define F2,

F2(Z
∗) = ssiζ̂ K0[Z

∗]A
1

2 + siQ̂z,1, where K0[Z] =
√
2Z +K0[Z]. (6.17)

From Eqs. (6.5-6.6) and (6.8-6.9), the matching on the CL edges requires this asymptotic

behaviour for ψ
(5)
sp,ρ

ψ(5)
sp,ρ(ρ,X) → siζ̂

(

ρ+A
cosX

ρ

)

H2 −
1

2

Σq′

U2
cosX AH2 as ρ→ ρ±B.

According to Eq. (6.15), the x-average of ψ
(5)
sp,ρ asymptotes

〈ψ(5)
sp,ρ(Z)〉 → siζ̂

(

ρ+A
cosX

ρ
+O(ρ−3)

)

H2−
Σq′

U2

(1

2
ρ2+A cosX+O(ρ−2)

)

H2 as ρ→ ρ±B.

As a result, the expression of δψ
(5)
sp,ρ is firstly determined

δψ(5)
sp,ρ =

1

2

Σq′

U2
A cosx. (6.18)

Secondly, we deduce that the critical layer generates a small distorted and spiraling mean
outer flow near rc that opposes the Θ-gradient of the mean vorticity radial gradient
(ζz,1, ζθ,1)

V (r,Θ)

̺crc
=
W (r,Θ)

̟̺crc
= −1

2

Σq′

U2
(
r

rc
− 1)2H2(Θ) ǫ

1

2 ;

the resulting vorticity radial gradient (ζ̂z,1, ζ̂θ,1) is thus Θ-independent.

The vorticity ψ
(2)
i,ρρ is invariant by the transformations U2 → −U2 and x → 2π − x.

As a result, the CL study can be restricted to positive values of U2. The function F2 in
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(6.17) is similar to that used in Caillol & Maslowe (2007); Caillol (2012, 2014) because
it was again derived from the secularity condition applied to the viscous axial vorticity
equation. However, the axial vorticity radial gradient ζ̂ and the induced mean vorticity
Q̂z,1 are now corrected by the mean radial wave fluxes. In quasi-steady 3D helical or 2D
critical layers, each iso axial-vorticity contour was defined so far by a unique value of the
variable Z (Maslowe (1986); Caillol & Grimshaw (2007, 2012); Caillol (2014),C17). Here,
streamlines do not coincide with isovorticity lines because the CL flow has stronger 3D
features. The mean velocity U2 consideraby alters the inner axial vorticity. The expression
obtained in C17 is slightly different because it was derived from the inviscid secularity
condition appearing at the next-order axial-vorticity equation. The chosen inner variables
did not define weakly spiraling streamlines. As the leading-order mean radial velocity was
O(ǫ3/2), the present formulation applied to that study would imply to take H2 = 0 and
to define a first spiraling deviation: H3(Θ) = U3/℧0Θ. The same function F2 in (6.17)
would be then deduced but the integral in (6.16) would appear in the expression of the
O(ǫ) axial vorticity. The mean flow at rc would be however modified in the same way:

ζ̂ = ζ −Σq/U3, Q̂z,1 = Qz,1 −Σv/U3.

The function G5 is singular on the separatrices, indeed the average 〈1/Zρ〉 is infinite
there. The streamlines need be therefore regularized near the meeting points of the
separatrices. To do so, we consider that the corner angle made by both separatrices
is equal to 180◦ at this meeting point. For phases close to 0 [2π], that is for |x| 6 µ or
|2π − x| 6 µ, with µ ≪ 1, and for |Z − A| ≪ 1, we assume that the inner radius ρ has
the following behaviour

ρ = ssi
√
2[Z −A(1 − b x1+γ)]

1

2 , with b = (1− cosµ)µ−(1+γ) ≃ µ1−γ

2
.

Regularization requires an exponent γ 6 0. Integrating ψ
(2)
i,ρρ over ρ yields the second-

order azimuthal velocity

ψ
(2)
i,ρ (Z, x) = ζ̂

(

∫ Z∗

∞

K0[z] dz A

[2(z − cosx)]
1

2

+ [Z(Z −A cosx)]
1

2 +A cosx ln[Λ(Z, x)]
)

(6.19)

+ssi

∫ Z∗

∞

∫ x

π

G5(z, x1) dx1
Ξ(z) dz

Zρ(Az, x)
A

1

2U2 + siQ̂z,1Zρ + V2(x),with

Λ(Z, x) =
√
Z +

√
Z −A cosx and V2(x) = −[a+ 1− ζ̂

2
(1 + 3̟2)−̟ζ̂θ,0]

A cosx

1 +̟2
.

The solvability condition (4.2) implies ψ
(2)
ρΘ = 0, which leads to AΘ = aΘ = U2,Θ = 0.

The leading-order induced mean flow at rc: V1,W1,Qz,1,Qθ,1,P1, V2, W2, P2, and U2,
the phase jump a and the wave amplitude A are therefore Θ-independent. The mean
velocity is thus very weakly spiraling since it starts to be Θ-dependent at the third order
whereas the mean vorticity becomes Θ-dependent at the second order and the mean
vorticity radial gradient at the first order.
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Integrating once again over ρ gives ψ(2)

ψ
(2)
i (Z, x) = ζ̂

(ssi
6

(2Z)
3

2 + {Zρ ln[Λ(Z, x)]− ssi
√
2Z}A cosx

)

+ζ̂
(

Zρ

∫ Z∗

∞

K0[z] dz
√

2(z − cosx)
− ssi

∫ Z∗

∞

K0[z] dzA
1

2

)

A− si
2
Σq′ lnZ

∗A sinx

+ssi

(

Zρ

∫ Z∗

∞

∫ x

π

G5(z, x1) dx1
Ξ(z) dz

Zρ(Az, x)
−
∫ Z∗

∞

(

ζ̂ −
Σ+

q′

U2
A

1

2K0[z]
)

∫ x

π

G5(z, x1) dx1 dz

+
Σ+

q′

U2
A

1

2

∫ Z∗

∞

√
2z

∫ x

π

G5(z, x1) dx1 +
sinx

2z
dz

)

A
1

2U2 + siQ̂z,1(Z −A cosx) + V2(x)Zρ.

The matchings of the equations (6.10) and (6.11) on the CL edges give two distinct
expressions of the integration function Π2

Π2,X = si{Q̂z,1 sinX − 1

2
Σq′ ln(4A) cosX}A− si℧0V5,sp,Θ(X)− siψ

(2)
ρτ1 −Π2,Θ

= si{Q̂z,1 sinX − 1

2
Σq′ ln(4A) cosX}A− si℧0W5,sp,Θ(X)− siψ

(2)
ρτ1 . (6.20)

The pressure matching on the CL edges gives a third expression. Equating the three
expressions come down to determine the Θ-gradients of the first-order coefficients β
and κ. From the definitions of the Frobenius series terms in Appendix A, the third Π2

expression is

Π2(X) = −si{Q̂z,1 cosX +
Σq′

2
[ln(4A)− 2] sinX}A

+ si℧0∂Θ

[(

αl,1 − ϑβl,1 +̟ζ̂θ,1 + (1−̟ζ̂θ,0)
ζ̂z,1

ζ̂
+
̟℧

2
0(Ξ + 2)

6ζ̂(1 +̟2)
∂2Θ[̟ζ

′′

z,1 + ζ
′′

θ,1](0)
)

A

+ (αd,1 − ϑβd,1)AΦ + (αad,1 − ϑβad,1)aΦA
] sinX

1 +̟2

+ si℧0∂Θ

[(

γl,1 − ϑκl,1 −
℧0

ζ̂
(
ζ̂

2
̟2 +̟ζ̂θ,0 − 1)ζ

′

z,1,Θ(0) +
℧0

2
̟ζ

′

θ,1,Θ(0)

− ̟℧
2
0(Ξ + 2)

24ζ̂(1 +̟2)
∂3Θ

(

℧0[̟ζ
′′′

z,1 + ζ
′′′

θ,1] +̟[℧0ζ̂(1 +̟2) + 4(℧0 − 1)]ζ
′′

z,1

)

(0)
)

A

+ (γd,1 − ϑκd,1)AΦ + (γad,1 − ϑκad,1)aΦA
] cosX

1 +̟2
, (6.21)

with ϑ = ζ̂(2 + 3̟2) +̟ζ̂θ,0 − 1 and Ξ = ζ̂(1 −̟2)− 2̟ζ̂θ,0.

The double radial gradients of the first-order mean vorticity: ζ
′

z,1 and ζ
′

θ,1 cannot be
calculated here because they are deduced from the next-order radial wave fluxes. The
higher gradients ζ

′′

z,1, ζ
′′

θ,1, ζ
′′′

z,1 and ζ
′′′

θ,1 are calculated through higher-order wave fluxes.

As the Θ-dependence increases algebraically with the order, we then assume that ζ
′

z,1

and ζ
′

θ,1 have a quadratic dependence on Θ. We also assume that ζ
′′

z,1, ζ
′′

θ,1, ζ
′′′

z,1 and ζ
′′′

θ,1

have a Θ-dependence at least up to the fourth power. Removing a O(ǫ3/2/η) singular
outer radial velocity gives one condition on the fourth-order Θ-partial derivatives of ζ

′′

z,1

and ζ
′′

θ,1

∂4Θζ
′′

θ,1(0) = −̟∂4Θζ
′′

z,1(0). (6.22)

Supposing the first-order coefficients α, β, γ and κ linear in Θ, we deduce that Π2

is Θ-independent. Introducing the expressions of V5,sp and W5,sp, (C1) and (C2) of



22 P. Caillol

Appendix C in the equality (6.20), two relationships then appear, respectively involving
the coefficients β and κ

ζ̂(1 + ̟2)(ζ̟̂ + ζ̂θ,0)[βl,1 + βd,1
AΦ

A
+ βad,1aΦ]Θ =

℧
2
0

6
Ξ ∂3Θ[̟ζ

′′

z,1 + ζ
′′

θ,1](0), (6.23)

(ζ̟̂ + ζ̂θ,0)[κl,1 + κd,1
AΦ

A
+ κad,1aΦ]Θ =

℧0

2
∂2Θ

[

ζ
′

θ,1 − (ζ̟̂ + 2ζ̂θ,0)
ζ

′

z,1

ζ̂

]

(0)

− ℧
2
0Ξ

24ζ̂(1 +̟2)
∂4Θ

[

[℧0ζ̂(1 +̟2) + 4(℧0 − 1)]̟ζ
′′

z,1 + ℧0(̟ζ
′′′

z,1 + ζ
′′′

θ,1)
]

(0). (6.24)

Then, comparing (6.20) and (6.21), we find that the r.h.s of (6.24) vanishes and get

℧0ζ̂[βl,1 + βd,1
AΦ

A
+ βad,1aΦ]Θ = 0, (6.25)

if we take ψ
(2)
ρτ1 = −Σq′A cosx. The Θ-gradients of ζ

′

z,1, ζ
′

θ,1, ζ
′′

z,1 and ̟ζ
′′′

z,1 + ζ
′′′

θ,1 are
thus linked in this way

ζ̂(1 +̟2)∂2Θ

[

ζ
′

θ,1 − (ζ̟̂ + 2ζ̂θ,0)
ζ

′

z,1

ζ̂

]

(0)

=
℧0

12
Ξ ∂4Θ

[

[℧0ζ̂(1 +̟2) + 4(℧0 − 1)]̟ζ
′′

z,1 + ℧0(̟ζ
′′′

z,1 + ζ
′′′

θ,1)
]

(0). (6.26)

The second no-jump condition of (4.4) is trivially satisfied, but insuring the first no-jump
condition imposes the existence of a τ1-secular distorted evolution of the phase jump a

asτ1 = (1 +̟2)Σs
q′
. (6.27)

Next, combining (6.23) and (6.25) yields the same relationship (6.22) for the third-order
Θ-derivatives of ζ

′′

z,1 and ζ
′′

θ,1

∂3Θζ
′′

θ,1(0) = −̟∂3Θζ
′′

z,1(0). (6.28)

According to the expressions of the coefficients cj,1,0 and fj,1,0, j = l, d and ad in
Appendix A, the no-jump condition of (4.5) imposes

[J1,c]
+
− = 0, (6.29)

while the condition (4.6) is straightforwardly satisfied. In order to derive the most general
evolution equations, any dependence relationships must be avoided between A, AΦ and
aφA, which imposes

βj,1Θ = 0, and κj,1,Θ = 0, j = l, d and ad. (6.30)

The particular solution is obtained through the viscous secularity condition ∂Z〈W (2)
i,ρ −

ψ
(2)
i,ρρ + ζZρ〉 = 0 and the CL edge matching, the found axial velocity is then roughly

proportional to the azimuthal velocity, once again highlighting the helical motion inside
the nonlinear critical layer

W
(2)
i (Z, x) = ψ

(2)
i,ρ (Z, x) − ζZ − ssi

J1,c
̟2

K0[Z
∗]A

1

2 +W2. (6.31)
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The expression (6.4) of the radial velocity U (2) can be then calculated

U (2)(Z, x) = ζ̂(1 +̟2)
(

Zρ

∫ Z∗

∞

K0[z] dz A
3

2

|Zρ(Az, x)|3
+ {ln[Λ(Z, x)] + 1

2
}Zρ − ssi

√
2Z

)

A sinx

−ssi(1 +̟2)
(

Zρ

∫ Z∗

∞

Ξ(z)
G5(z, x)

Zρ(Az, x)
dz − Zρ

∫ Z∗

∞

∫ x

π

G5(z, x1) dx1
Ξ(z) dz

Zρ(Az, x)3
A sinx

−
∫ Z∗

∞

(

ζ̂ −
Σ+

q′

U2
A

1

2K0[z]
)

G5(z, x) dz +
Σ+

q′

U2
A

1

2

∫ Z∗

∞

√
2z G5(z, x) +

cosx

2z
dz

)

A
1

2U2

+
si
2
(1 +̟2)Σq′

(

(lnZ∗ − 2) cosx− sin2 x

Z∗

)

A+ [(1− ζ̟2)A sinx− (1 +̟2)V
′

2 (x) + U ′

2]Zρ

−ssiJ1,c
(

K1[Z
∗, x] + ln[Λ(Z, x)]

)

A sinx+ Υ2(x) + siU3.

(6.32)
The matching of U (2) with the outer flow gives the integration function

Υ2(x) = −si{[βl,1 + dl,1,0 + (βωd,1 + dωd,1,0)℧1,Φτ1]A+ (βd,1 + dd,1,0)AΦ

+ (βad,1 + dad,1,0)aΦA] sinx− si[(κl,1 + gl,1,0)A+ (κd,1 + gd,1,0)AΦ

+ (κad,1 + gad,1,0)aΦA] cosx− κh,1A cos(2x), (6.33)

the different coefficients dj,1,0 and gj,1,0, j = l, d, ad and ωd being given in Appendix A.
Owing to the extra terms in (6.16) generated by the velocity U2 and the mean radial

wave fluxes, the symmetry with respect to the CL axis is broken due to the appearance of

a Fourier sine series in ψ
(2)
ρρ (ρ, x), V (2) and W (2), which allows for non-zero leading-order

inviscid mean radial wave fluxes since the zeroth-order radial velocity is simply taken
U (0) ≡ A sinx. The wave/vortex interaction is thus enhanced in the quasi-steady régime
when the wave envelope is taken with a short height scale O(ǫ−1/2) whereas the scale
O(ǫ−1) postpones the appearance of the inviscid mean wave fluxes to the next order.

6.2. Within the separatrices

We here solve the second-order inner flow equations (6.1), (6.2) inside the cat’s eye and
match the solution with the preceding-subsection inner flow on the separatrices. Firstly,
we match the leading-order vorticity, then pressure and velocity. We will finally obtain
an unique inviscid CL solution at the first non-trivial order.
The second-order velocity inside the cat’eye is defined through the function ψ(2,⊙)

V (2,⊙) =
1

2
ρ2 − siS1ρ+ {V2}+− + ψ(2,⊙)

ρ .

An explicit and exact solution for the axial vorticity ψ
(2,⊙)
ρρ cannot be found. We then

seek an approximate solution through a Galerkin method. According to the symmetry

properties of ψ
(2)
ρρ , the vorticity ψ

(2,⊙)
ρρ is expanded as a Fourier sine series:

ψ(2,⊙)
ρρ (ρ,X) = F⊙

2 (Z,Φ) + Ξ(1)

∞
∑

n=1

bn(ρ) sin(nX)
U2

A
1

2

. (6.34)

The order n term bn is itself a weighted sum of odd Chebyschev polynomials of the
variable ρ = ρ/ρX . Applying the Prandtl-Batchelor theorem inside the cat’s eye (cf.
Appendix E) leads to the following restrictive condition

F⊙
2 (Z,Φ) = Q(2,⊙)(Φ).
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The fifth-order azimuthal and axial spiraling velocities are defined of the following way

V (5,⊙)
sp = si

(

2H2 + {Qz,2,sp}+−
)

ρ+ {V3,sp}+− + {V5,sp(x)}+− + ψ(5,⊙)
sp,ρ , (6.35)

W (5,⊙)
sp = −si

(

(ζ̟̂+ ζ̂θ,0)H2+{Qθ,2,sp}+−
) ρ

̟
+{W3,sp}+−+{W5,sp(x)}+−+ψ(5,⊙)

sp,ρ . (6.36)

Differentiating the equation (6.1) with respect to ρ and substituting the expression (6.35)

for V
(5,⊙)
sp , we obtain the axial-vorticity equation inside the separatrices in the frame

(Z, x)

Zρ ψ
(2,⊙)
ρρx = si℧0ψ

(5,⊙)
sp,ρρΘ − ζ̂ U2 + λ

′

Zρ ψ
(2,⊙)
i,ρρρZ A. (6.37)

The velocity ψ
(5,⊙)
sp,ρ is defined by introducing the function G⊙

5 such as

ψ(5,⊙)
sp,ρ (Z, x,Θ) = siζ̂ZρH2 + sΞ(1)

∫ Z∗

1

G⊙
5 (z, x) dzA

1

2H2 + V ⊙
5,sp(x,Θ), (6.38)

which results in the solution ψ
(2,⊙)
i,ρρ of (6.37)

ψ
(2,⊙)
i,ρρ (Z, x) = Q(2,⊙) + ssiΞ(1)

∫ x

π

G⊙
5 (Z

∗, x1) dx1
U2

A
1

2

. (6.39)

We identify G⊙
5 by differentiating with respect to x the expression (6.34) of ψ

(2,⊙)
ρρ :

G⊙
5 (Z

∗, x) = ssi

∞
∑

n=1

[

bn[ρ(Z
∗, x)] sin(nx)

]

x
, with ρ(Z∗, x) = ssi

(Z∗ − cosx

1− cosx

)
1

2

.

The inviscid secularity condition applied to (6.37) is then straightforwardly satisfied on
a streamline Z 6 A. The axial-vorticity matching involving the expressions (6.16) and
(6.34) leads to the determination of the terms bn(1):

bn(1) =
2

n
〈G5(1, x) cos(nx)〉, ∀n > 1. (6.40)

The same matching also yields the first-order mean-vorticity jump and the uniform cat’s
eye vorticity Q(2,⊙)

[Q̂z,1]
+
− = −2C ζ̂ A 1

2 , [Qz,1]
+
− = 2

Σ+
v

U2
− 2C ζ̂ A 1

2 , Q(2,⊙) = si{Qz,1}+−, (6.41)

where C = K0[1] =
√
2 +K0[1] ≃ 1.3788. The jump of Qz,1 is altered by the mean wave

flux induced corrections. The C17 jump is thus erroneous since the mean radial fluxes
were omitted. We shall see in Section 7 that this jump is still proportional to ζ A1/2 like
in previous studies (Caillol & Maslowe (2007); Caillol (2014)). The jump (6.41) again
shows the dynamical coupling between the induced mean flow and the wave packet,
coupling that has been omitted until now in wave packet studies in the presence of a
critical layer (Benney & Maslowe 1975). The uniform vorticity Q(2,⊙) is still the average
between the mean vorticities at either CL side. Moreover, the wave packet assumption
keeps unchanged the steady nonlinear CL logarithmic phase shift (Caillol (2014)); it is
proportional to λ

′

as follows

φ(λ
′

)

λ′
= 4si CA− 1

2 , λ
′ → 0.

After Eqs. (6.1) and (6.2), the inviscid axial velocity can be written in a general way
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within the separatrices

W
(2,⊙)
i (Z, x) = ψ

(2,⊙)
i,ρ (Z, x) − ζZ + J2(Z

∗) + {W2}+−, where (6.42)

ψ
(2,⊙)
i,ρ (ρ,X) = Ξ(1)

∞
∑

n=1

[

∫ ρ

1

bn(r) dr sin(nX)
]

ρX∗U2 +Q(2,⊙)ρ+ V ⊙
2 (X).

The function J2 must be s-independent owing to the continuity at ρ = 0 (see more details
in Caillol (2014)). Using Eq. (6.29), the azimuthal and radial vorticity matchings on the
separatrices yield the same results

J ′

2(1) = 0, J1,c = 0. (6.43)

The leading-order induced mean vorticities are then proportional in such a way that the
first-order local equivalent Richardson number is zero

Qθ,1 = −̟Qz,1. (6.44)

This relationship is identical to the previous studies: the steady vortical mode without
any mean radial velocity (Caillol 2014) and the O(ǫ3/2) mean radial-velocity wave packet
(C17). The equivalent Richardson number is therefore of order O(ǫ) at rc. Moreover, the
relationship (6.44) implies the same driven term at the r.h.s of the equations (5.18) of
evolution of V1 and W1. The trivial solution W1 = V1 +Cst arises, which orientates the
CL induced mean flow toward a helical motion perpendicular to the isophase lines, since
on a line ξ = Cst, axial and azimuthal velocities are linked by v ≡ −̟w at r ≃ rc. The
evolution equations are also identical to those in C17, the slow time τ2 is here faster.
Next, we match the pressure P(2) that is given inside the cat’s eyes by

P(2,⊙)
i =

1

2
ρ3 − si

4
(3S1 + C0C1)ρ2 + [

1

4
(S2

1 − C2
1) + {V2}+− −H2]ρ

+
si
2
(S1 − C0C1)H2 + ψ(2,⊙) +Π

(⊙)
2 (X) + si{P3}+−. (6.45)

The pressure continuity through the separatrices enables one to determine V ⊙
2 (x):

V ⊙
2 (x) = ζ̂

{

[1− cosx]
1

2 + cosx ln[Λ(A, x)] −
∫ ∞

1

K0[z] dz

|Zρ(Az, x)|
A

1

2

}

A

−
∫ ∞

1

∫ x

π

G5(z, x1) dx1
Ξ(z) dz U2

[2(z − cosx)]
1

2

+ [Q̂z,1]
+
−

ρX

2
+ {V2(x)}+−

+

∫ ∞

1

(

ζ̂−
Σ+

q′

U2
A

1

2K0[z]
)

∫ x

π

G5(z, x1) dx1
dz U2

ρX∗(x)
−Σ+

q′

∫ ∞

1

√
2z

∫ x

π

G5(z, x1) dx1+
sinx

2z

dz A
1

2

ρX∗(x)

+
Ξ(1)

2

∞
∑

n=1

[

∫ 1

−1

bn(r) rdr sin(nx)
]

ρX∗U2; (6.46)

it also yields the following jumps through the Π2 expression (6.21) jointly with the
relationships (6.26), (6.28) and (6.30)

[P3]
+
− = 2 ζ̂

(2
3

2

3
−
∫ ∞

1

K0[z] dz − C
)

A
3

2 , (6.47)

℧0

[

[αl,1 + αd,1
AΦ

A
+ αad,1aΦ]Θ

]+

−
= (1 +̟2)[ln(4A)− 2]Σ+

q′
, (6.48)
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and ζ̂
[

[γl,1 + γd,1
AΦ

A
+ γad,1aΦ]Θ

]+

−
= −℧0∂

2
Θ[ζ

′

z,1]
+
−

+
℧

2
0̟

12(1 +̟2)

{

̟[℧0ζ̂(1+̟2)+ 4(℧0 − 1)]
[

∂4Θζ
′′

z,1(0)
]+

−
+℧0

[

∂4Θ[̟ζ
′′′

z,1 + ζ
′′′

θ,1](0)
]+

−

}

.

(6.49)

Note that the ratios of the second and third double integrals in (6.46) over ρX are not
singular at x = 0 [2π]. The pressure continuity also permits to determine the function

Π
(⊙)
2 (x) = {Π2(x)}+− +

si
2
[V2(x) + V2]

+
−ρ

X .

Next, the rotational and axial velocity matchings on the separatrices yield the absences
of jump for the phase and the second-order mean velocity, then the value of J2(1)

[a]+− = 0, [V2]
+
− = 0, [W2]

+
− = 0, J2(1) = 0, (6.50)

as well as a second expression for V ⊙
2 (x)

V ⊙
2 (x) = ζ̂

{

[1− cosx]
1

2 + cosx ln[Λ(A, x)] −
∫ ∞

1

K0[z] dz

|Zρ(Az, x)|
A

1

2

}

A

−
∫ ∞

1

∫ x

π

G5(z, x1) dx1
Ξ(z) dz U2

[2(z − cosx)]
1

2

+ [Q̂z,1]
+
−

ρX

2
+ {V2(x)}+−. (6.51)

However, these matchings cannot be completed successfully since the distortion of a
secularly grows according to (6.27).
Equating (6.46) with (6.51), a second relationship constraining the series terms bn arises,
whose projection on the nth harmonics sin(nx) is

Ξ(1)

∫ 1

−1

[bn+1(r)+bn−1(r)−2bn(r)] rdr = 4〈
∫ ∞

1

(

ζ̂−
Σ+

q′

U2
A

1

2K0[z]
)

∫ x

π

G5(z, x1) dx1 dz sin(nx)〉

− 4
Σ+

q′

U2
A

1

2 〈
∫ ∞

1

√
2z

∫ x

π

G5(z, x1) dx1 +
sinx

2z
dz sin(nx)〉 n > 1. (6.52)

The equation (6.4) evaluated within the cat’s eye gives the radial velocity

U (2,⊙)(Z, x) = Ξ(1)(1 +̟2)

∞
∑

n=1

[ρ

2

∫ ρ

1

bn(r) dr [cos(n− 1)x− cos(n+ 1)x]

−
(

ρ

∫ ρ

1

bn(r) dr−
∫ ρ

0

bn(r) rdr
)

[2n cos(nx)−(n+1) cos(n+1)x−(n−1) cos(n−1)x]
]

A
1

2U2

+̟2

∫ Z∗

cos x

J ′

2(z) dz

Zρ(Az, x)
A sinx+[(1−ζ̟2)A sinx−(1+̟2)V ⊙

′

2 (x)+U ′

2]Zρ+Υ
⊙
2 (x)+si{U3}+−.

(6.53)

After a tedious calculation involving the equations (6.32), (6.51) and (6.53), the radial-
velocity continuity on the separatrices yields an equation determining J ′

2

2̟2

∫ cosx

1

J ′

2(z) dz

|Zρ(Az, x)|
A sinx =

1

2
(1 +̟2)Σ+

q′
A [1 + 4 cosx− cos(2x)]− [U3]

+
−

− si[Υ2(x)]
+
− − (1 +̟2)[Q̂z,1]

+
−A sinx, (6.54)
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and the integration function Υ⊙
2

Υ⊙
2 (x) = {Υ2(x)}+− − si

2
(1 +̟2)[V

′

2 (x)]
+
−ρ

X .

Averaging the equation (6.54) over x leads to the the third-order mean radial velocity
distortion while the projection of the same equation on cos(nx), n = 1, 2 gives, according
to the expressions of Υ2 in (6.33) and the terms gj,1,0, j = l, d, ad, in Appendix A,
the jumps of κh,1 and the sum of the O(ǫ3/2) outer flow coefficients κ. The latter is

a function of the mean radial wave flux Σ+
q′

and the jumps of ζ
′

z,1,Θ(0), ∂
3
Θζ

′′

z,1(0) and

∂3Θ[̟ζ
′′′

z,1 + ζ
′′′

θ,1](0).

[U3]
+
− =

1

2
(1 +̟2)Σ+

q′
A, [κh,1]

+
− =

si
2
(1 +̟2)Σ+

q′
, (6.55)

by using the relationships (6.28), (6.30) and (6.48), the jump of the sum of the coefficients
κ gets simplified in this way

ζ̂([κl,1]
+
− + [κd,1]

+
−

AΦ

A
+ [κad,Φ]

+
−aΦ) =

− {2ζ̂(1 +̟2) + [ζ̂(1 + 2̟2) +̟ζ̂θ,0][ln(4A)− 2]}Σ+
q′
− ℧0[ζ

′

z,1,Θ(0)]
+
−

+
̟℧

2
0

12(1 +̟2)

{

̟{℧0ζ̂(1+̟
2)+4(℧0−1)}

[

∂3Θζ
′′

z,1(0)
]+

−
++℧0

[

∂3Θ[̟ζ
′′′

z,1+ζ
′′′

θ,1](0)
]+

−

}

.

(6.56)

Θ-derivating (6.54) projected on cosx then gives a relationship between various θ-
derivatives of the mean flow distortion

(1 +̟2)∂2Θ[ζ
′

z,1(0)]
+
− = ̟

℧
2
0

12

[

∂4Θ[̟ζ
′′′

z,1 + ζ
′′′

θ,1](0)
]+

−

+̟2℧0

12
[℧0ζ̂(1 +̟2) + 4(℧0 − 1)]∂4Θ[ζ

′′

z,1(0)]
+
−, (6.57)

which yields, using (6.26), the link between the jumps of ∂2Θζ
′

z,1 and ∂2Θζ
′

θ,1

∂2Θ[ζ
′

z,1]
+
− = ̟∂2Θ[ζ

′

θ,1]
+
−. (6.58)

Finally, the projection of (6.54) on sinx gives the following integro-differential equation

2̟2

∫ cosx

1

J ′

2(z) dz

[2(z − cosx)]
1

2

= {[βl,1+dl,1,0+(βωd,1+dωd,1,0)℧1,Φτ1]
+
−+[βd,1+dd,1,0]

+
−

AΦ

A

+ [(βad,1 + dad,1,0]
+
−aΦ − (1 +̟2)[Q̂z,1]

+
−}A

1

2 . (6.59)

The previous matching conditions (6.43) and (6.50) imply the trivial solution J2(Z) = 0;
as a result, the r.h.s of (6.59) vanishes. The expressions of dj,1,0, j = l, d, ad and ωd, in
Appendix A, jointly with the relationships (6.30), (6.41), (6.44) and (6.49) leads to a first
continuous coefficient: [βωd,1]

+
− = 0, whereas the sum of the other coefficients β admits

a jump linked to the distortions of Q̂z,1, ζ̂z,1, ∂
2
Θζ

′

z,1, ∂
4
Θζ

′′

z,1(0), ∂
4
Θζ

′′′

z,1(0), ∂
4
Θζ

′′′

θ,1(0),

∂2Θ[̟ζ
′′

z,1 + ζ
′′

θ,1](0) and ∂
4
Θ[̟ζ

IV
z,1 + ζIVθ,1 ](0). The jump of the sum of the coefficients β is
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namely

ζ̂([βl,1]
+
− + [βd,1]

+
−

AΦ

A
+ [βad,1]

+
−aΦ) = [ζ̂z,1]

+
− − 2Cζ̂[ζ̂(2 + 3̟2) +̟ζ̂θ,0]A

1

2

− ℧0

[

℧0ζ̂[13 + 2a+ 2̟(̟2 − 3)ζ̂θ,0 +̟2(5 + 2a) + 2ζ̂(2 +̟2 +̟4)]− 2ζ̂(1 +̟2)

+ 2℧0[̟(3 − 2̟ζ̂θ,0)ζ̂θ,0 + ζ
′

(1 +̟2)]
] ∂2Θ[ζ

′

z,1]
+
−

2ζ̂(1 +̟2)
− ̟℧

2
0

3(1 +̟2)

[

∂2Θ[̟ζ
′′

z,1 + ζ
′′

θ,1](0)
]+

−

+
̟2

℧
2
0

120ζ̂(1 +̟2)2

(

ζ̂Mb+10℧0[ζ̂(1+2̟2)+̟ζ̂θ,0][℧0ζ̂(1+̟
2)+4(℧0−1)]

)[

∂4Θζ
′′

z,1(0)
]+

−

+
℧

4
0̟

12ζ̂(1 +̟2)2
[ζ̂(1 + 2̟2) +̟ζ̂θ,0]

[

∂4Θ[̟ζ
′′′

z,1 + ζ
′′′

θ,1](0)
]+

−

− ̟℧
3
0

120(1 +̟2)2

[

∂4Θ[Mc̟ζ
′′′

z,1 +Mdζ
′′′

θ,1](0)
]+

−
+

̟℧
4
0

60(1 +̟2)

[

∂4Θ[̟ζ
IV
z,1 + ζIVθ,1 ](0)

]+

−
.

(6.60)

The coefficients Mb, Mc and Md are given in Appendix A. Next, Θ-differentiating
(6.54) projected on sinx gives the jump relationship related to (6.28). The triple radial
gradients of the first-order mean vorticity ζ

′′

z,1 and ζ
′′

θ,1 are computed from higher-order

radial fluxes involving the O(ǫ2) inner rotational and azimuthal velocities and the O(ǫ5/2)
inner radial velocity.
The velocity V ⊙

5,sp in Equation (6.38) is determined in such a way that the velocities

V
(5,⊙)
sp and W

(5,⊙)
sp may not admit a jump on the CL axis at ρ = 0, that is

V ⊙
5,sp(x) = −sΞ(1)

∫ cosx

1
G⊙

5 (z, x) dz A
1/2H2. The expression of V ⊙

5,sp can be then deduced
from the relationship (6.52)

V ⊙
5,sp(x)

A
1

2H2

=
Σq′

U2
A

1

2

∫ ∞

1

√
2z G5(z, x) +

cosx

2z
dz − s

∫ ∞

1

(

ζ̂ −
Σ+

q′

U2
A

1

2K0[z]
)

G5(z, x) dz.

(6.61)

The matchings of the fifth-order azimuthal and axial spiraling velocities on the separa-

trices, that is the conditions V
(5)
Θ = V

(5,⊙)
Θ and W

(5)
Θ = W

(5,⊙)
Θ as Z = A, according to

the equations (6.8-6.9), (6.14), (6.35-6.36) and (6.38) are only possible if [V5,sp(x)]
+
− =

−Σ+
q′
/U2A ln(4A)H2 cosx, which is compatible with the relationships (6.48) and (6.49),

and if the mean velocities V3,sp, W3,sp are undistorted. However, the third-order mean
velocity distortion (5.17) implies

[V3,sp]
+
− = [W3,sp]

+
− = 2Cζ̂ A 1

2H2, (6.62)

which means that V
(5)
sp and W

(5)
sp are not matchable on the separatrices owing to the

presence of the third-order distorted induced mean flow. The matching can be carried
out by adding a boundary layer along the separatrices.
The choice of the radial variable ρ in (4.1) jointly with a secular azimuthal angle is

here very convenient because permits to describe the spiraling streamlines and to get rid
of the time secularity used in C17 where the induced mean flow secularly evolved over τ2
as soon as the first order for the mean vorticity (Qz,1,Qθ,1) and Q(2,⊙). The subsequent
CL blow up highlighted a wave breaking modeling weakness. The time secularity is not
nevertheless discarded. Indeed, the phase jump a evolves linearly over τ1 but in a very
slowly way since the growth is proportional to Σq′ . These variables structure all the
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other fields not modeled here like reflectivity, convection... in spiral bands as well. The
diffusion boundary layers located at either side of the nonlinear critical layer are strongly
coupled to the latter and similarly exhibit a helical motion as was proved in C17. The
same variables describe the spiraling motion in these layers.
Matching conditions have linked the Frobenius series term jumps with the mean flow

distortions. Those relationships will be relevant while deriving the evolution equations
because most of the coefficients of those equations are proportional to the mean flow
distortions.

7. Numerical computation of the CL flow

This section uses the analytical results obtained in the previous sections to evaluate the
relevant mean radial wave fluxes and to solve the Galerkin problem inside the separatrices
in order to quantitatively describe the leading-order flow inside the critical layer.

7.1. Computation of the mean radial wave flux induced forcings

7.1.1. Forcing Σq driven by the mean wave vorticity flux

According to Eqs. (5.7-5.8) and Section 6, the Θ-gradient of the second-order mean
vorticity is given for a CL symmetry with respect to the axis ra (ρ+B = −ρ−B), by

℧0Qs
z,2,Θ = sinXψ

(2)
ρρρ(ρsB, X)A− ζU2 = Σs

q − ζU2, (7.1)

℧0Qs
θ,2,Θ = V1,Φ −̟ sinXψ

(2)
ρρρ(ρsB, X)A = V1,Φ −̟Σs

q . (7.2)

We define ρB = |ρ+B| and the corresponding variable Z: ZB = 1/2ρ2B + A cosX . The

forcing is obtained after ρ-differenciating the axial vorticity ψ
(2)
ρρ in (6.16); its expression

(G1) is given in Appendix G, showing a first relationship between the forcings Σs
q and

Σs
q′
:

(1 +A3)Σ
s
q + s(A4 − B2)Σ

s
q′
A

1

2 = ζA3U2, (7.3)

where the various coefficients Ai and Bi are X-averages at constant ρB and are functions
of ρ∗B only. Their expression is displayed in the same Appendix G.

7.1.2. Forcing Σq′ driven by the mean wave flux of the vorticity radial gradient

After Eq. (5.2) and Section 6, the Θ-gradient of the first-order mean vorticity radial
gradient is given at either side of ra, for a symmetric CL, by

℧0ζ
s
z,1,Θ = si sinXψ

(2)
ρρρρ(ρsB , X)A = Σs

q′
, (7.4)

℧0ζ
s
θ,1,Θ = −si̟ sinXψ

(2)
ρρρρ(ρsB, X)A = −̟Σs

q′
. (7.5)

The calculation yields after twice ρ-differenciating ψ
(2)
ρρ in (6.16) the expression (G2) in

Appendix G. A second relationship between the forcings Σs
q and Σs

q′
is thus deduced:

s[ρ∗B +A4 − B2 + ρ∗3B (A6 + B3)]Σ
s
q′
A

1

2 + (A3 + ρ∗3B A5)Σ
s
q = ζ(A3 + ρ∗3B A5)U2, (7.6)

involving similar coefficients Ai and Bi expressed in Appendix G.
The forcings Σq and Σq′ are solutions of the linear system (7.3-7.6) whose variables

are only A, U2 and ρ∗B. For a symmetric CL extent, the rescaled radius ρ∗B is linked to
the CL thickness: δcl ≃ 2rcρ

∗
B (ǫA)1/2. This radius is roughly twice the ratio σ of the
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CL thickness over the cat’s eye thickness and is thus bounded such as ρ∗B > 2. The ratio
can be taken constant, that is we assume a CL extent that varies according to the wave
modulation, which is more realistic than a constant-extent CL. Both forcings are hence
only functions of the slow modulation scales Φ and τ2, namely

Σs
q′

U2
= sζ BA− 1

2 ,
Σq

U2
= ζ

A3

1 +A3
− ζ

A4 − B2

1 +A3
B, (7.7)

where B is a ratio of various coefficients Ai and Bi and whose long expression is given in
Appendix G. For a symmetric CL, the forcing Σq′ is antisymmetric vis-à-vis the CL axis

ra and proportional to ζU2 A
−1/2 whereas Σq is symmetric and proportional to ζU2.

The expressions of the first-order spiraling mean vorticity radial gradient and second-
order spiraling mean vorticity are now derived

ζsz,1,sp = sζ B
H2

A
1

2

, ζsθ,1,sp = −sζ̟B
H2

A
1

2

, (7.8)

Qz,2,sp = −ζ
(

1 + (A4 − B2)B
) H2

1 +A3
, (7.9a)

Qθ,2,sp = ζ̟
(

(1 +A3)
V1,Φ

ζ̟U2
−A3 + (A4 − B2)B

) H2

1 +A3
. (7.9b)

The leading-order mean radial velocity was determined in the second-order inner analysis
in C17 (U3 = V1,Φ/(ζ̟)) but in the present approach, it will be necessary to go to the
next order to find U2 out as a function of the first-order induced mean flow at rc. We
can heuristically determine a close value to U2 by introducing ζ̂ in the mean azimuthal
vorticity Θ-secular equation

℧0Qθ,2,Θ = V1,Φ −̟Σq = V1,Φ − ζ̟U2 + ζ̟̂U2.

Equating V1,Φ with ζ̟ U2 then permits to write the Θ gradient of the azimuthal vorticity

as a slight correction of the vertical rotational-velocity shear V1,Φ: ℧0Qθ,2,Θ = ζ̂/ζ V1,Φ.
Finally, we obtain the same result as in C17, the radial velocity is generated by the small
vertical wind shear, then we get the relationship Qθ,2,sp = −̟Qz,2,sp.
The advantage of taking the azimuthal variable as the secular variable is evident as soon
as the second order since V2 and Qz,2 quadratically vary over τ2 while Qθ,2 cubically
evolves over τ2 in C17. The dependence on τ2 fast algebraically increases with the
expansion order making the expansions divergent if the vertical shear is not assumed
very small.

7.1.3. Forcing Σv driven by the mean wave momentum flux

According to subsection (5.3) and Section 6, the forcing on the first-order velocity
(V1,W1) is given at either side of ra, for a symmetric CL, by

Σs
v = si sinXψ

(2)
ρρ (ρsB, X)A. (7.10)

Substituting the expression (6.16) for the axial vorticity ψ
(2)
ρρ , we straighforwardly get the

forcing (G3) in Appendix G. A relationship linking the forcing Σs
v to the two previous

ones: Σs
q and Σs

q′
is then found

Σs
v + sΣs

qA1A
1

2 +Σs
q′
(A2 + B1)A = sζA1A

1

2U2.
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We deduce the expression of Σs
v as a function of only ζ, A and U2 as well as of the

coefficients Ai and Bi (cf. Appendix G).

Σs
v

U2
= s

ζA1

1 +A3
[1 + (A4 − B2)B]A

1

2 − sζ(A2 + B1)BA
1

2 . (7.11)

The forcing is antisymmetric with respect to ra and is proportional to ζA1/2U2. As for
the first-order mean axial vorticity, its jumps follows after (6.41)

[Qz,1]
+
−

2ζA
1

2

= −C −A1

1 +A3
[1 + (A4 − B2)B]− (A2 + B1)B, (7.12)

this is a correction of the steady-state jump: −2CζA1/2 (Caillol 2014).
The eddy forcing Fed applied at rc in order to keep the double radial gradient of the
basic-state axial vorticity constant there, scales like ζU2/A. Let us write it in this way

Fed = ζ fed(ρ
∗
B)U2A

−1.

Exerting a constant forcing Fed at rc therefore links U2 and A proportionally

U2 =
Fed

ζ fed(ρ∗B)
A. (7.13)

The coefficients Ai and Bi being decreasing functions of the CL thickness, computation
shows that these are small for a value of ρ∗B > 2. As a result, in practice, the rescaled
forcings Σq′ /(ζU2)A

1/2, Σq/(ζU2) and Σv/(ζU2)A
−1/2 are small and they are actually

very small for a value of ρ∗B > 4. Figure 4 a) shows these forcings in a logarithmic scale
as a function of ρ∗B. Their magnitude steeply decreases with ρ∗B. The wave flux induced
vorticity radial gradient−Σq/U2 is thus a slight correction term with respect to the basic-
state vorticity radial gradient at rc, ζ in the expression of Qz,2,sp. The wave flux induced
vorticity −Σv/U2 is also a slight correction with respect to the mean vorticity Qz,1. For
examples, as ρ∗B = 3, Σq/U2 induces a 2% correction to ζ while Σv/U2 and Σq/U2 induce
a 0.6% correction to the axial vorticity distortion [Qz,1]

+
−. As ρ

∗
B = 4, the first correction

only reaches 0.6% and the second shrinks to 0.03%. The forcing Σq/U2 is negative, so ζ̂ &

ζ; the basic-state vortex stability at rc has then slightly disminished but the Θ-gradient
of the second-order mean vorticity has decreased. The forcing Σ+

v /U2 is positive, so
[Q̂z,1]

+
− . [Qz,1]

+
−; the first-order mean vorticity distortion is hence reduced. In literature,

the eddy contribution to vortex intensification is generally weaker than the axisymmetric
contribution. Numerical simulations of a full-physics model of a tropical cyclone-like
vortex examine the intensification generated by moist-convection driven vorticity waves
(Wang 2002a; Qiu et al. 2010). The mean rotational wind acceleration is observed near rc,
the mean wave fluxes bring about smaller contributions of one order of magnitude. The
critical layer was unfortunately not resolved in these numerical schemes; we wonder what
the eddy contributions would be if the CL was properly modeled. Time and azimuthally-
averaged absolute angular momentum budget was computed from mesoscale resolving
Doppler observations of Hurricane Guillermo (1997), the tendency also results in stronger
axisymmetric contributions (Reasor et al. 2009).

7.2. Resolution of the spectral method

The Fourier sine series in ψ
(2,⊙)
ρρ of (6.34) is truncated at n = N . Every bn, n =

1, . . .N is a weighted sum of the odd Chebyschev polynomials T1 and T3, whose weights
are computed by using both matching conditions (6.40) and (6.52). Note that these
weights are independent on ζ, A and U2. They mainly depend on the mathematical
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properties of the function G5. They also slightly depend on the CL boundary ρ∗B and on
the corner parameters γ and µ. As new matching conditions involving the series terms
bn are encountered at higher orders, new polynomials T5, T7 etc. must be added. The
computation shows that the series convergence is slow; the fundamental mode n = 1
is weakly dominating (cf. figure 4 b)). As N = 20, adding the next harmonics n = 21

changes the integrated series L2 norm [
∫ 1

0

∑N
n=1 b

2
n(r) dr]

1/2 by 5% for any ρ∗B > 3; as
N = 30, adding another harmonics changes this integrated norm by 3%. From now on,
we will take the truncature N = 20. If ρ∗B > 4, the effect of the CL thickness is negligible.
For example, with γ = 0, µ = 0.2, N = 20, the departure between the series computed
with distinct thicknesses: ρ∗B = 3 and ρ∗B = ∞ in the sense of the L2 norm is only 2%.

Figure 5 displays the contour lines of the axial-vorticity ψ
(2)
ρρ . In figure 5 a) the

radial velocity U2 is zero and in b) U2 = A. The isovorticity contours coincide with
the streamlines in a) and are symmetric with respect to the axis x = π. Inside the
separatrices, the axial vorticity is constant. The symmetry is broken in b) for the contours
outside and near the separatrix. Indeed, the new terms brought about by the mean radial
velocity only alter the flow near the separatrix. Far from the separatrix, the vorticity
is given by the radially monotonic function F2(Z) and the inner vorticity profile then
follows the basic-vorticity profile. We study a linearly stable basic-state vortex; as a
result, ζ < 0 and the inner axial vorticity decreases with the radius. However, near the
separatrix and inside the cat’s eye, the axial vorticity is no longer monotonic. Inside
the separatrices, the axial vorticity is quadripolar with one negative pole at x < π for
s = + and another one at x > π for s = − as U2 > 0; as a result, the fundamental
mode n = 1 is prevailing (sinx). Both upper poles are not of opposite strengths, the
negative pole is stronger. The CL emergence in the presence of a O(ǫ) mean radial
velocity has thus generated secondary vorticity extrema outside the eyewall. In spiral
rainbands, these extrema are usually associated in pairs of local positive and negative
PV anomalies (Chen & Yau 2001). The contours intersect the separatrix at an angle

x & π for U2 > 0. The contours ψ
(2)+
ρρ − siQ̂+

z,1 = −0.177,−0.152 penetrate the cat’s
eye at x > π, go out at x . 2π on forming a bend to fulfil the 2π periodicity at

x = 2π. The particular contour ψ
(2)
ρρ − siQ̂+

z,1 = −si/2[Q̂z,1]
+
− ≃ −0.138 starts at

x = 0, on the meeting point of the separatrices and crosses the separatrix at x = π,
it coincides with the vertical axis x = π inside the cat’s eye. This contour coincides with
the separatrix as U2 = 0 in figure 5 a). Two new branches depart at either side of this
axis in a nearly symmetric way and join both of the saddle points forming a closed lobe

at x < π. The contour ψ
(2)
ρρ − siQ̂+

z,1 = −0.198 has a first branch that does not cut
the separatrix. A second and closed branch is located at either side of the separatrix
for x > π. As the mean radial velocity U2 is stronger, isovorticity lines are even more
deformed as we can see in figure 6 a) where U2 = 10; more contours penetrate the cat’s

eye. The contour ψ
(2)+
ρρ − siQ̂+

z,1 = 0 starts on the separatrix near the corner and forms
a positive-vorticity lobe that cuts the separatrix a second time at x < π. The contours

ψ
(2)+
ρρ − siQ̂+

z,1 = −0.244,−0.198,−0.177 intersect the separatrix at x > π, go out and

bend at x . 2π. The contour ψ
(2)
ρρ − siQ̂+

z,1 = −0.339 has a branch that does not cut
the separatrix and another one that is located at either side of the separatrix at x > π.

The contour ψ
(2)
ρρ − siQ̂+

z,1 = −0.315 has an only branch that penetrates the cat’s eye at
x & π after making a large bend, goes out at x . 2π making a so large second bend that
quasi connects with the first. For a greater clarity, the part of the contour inside the cat’s
eye is not drawn. The level −0.315 is thus nearly the strongest negative-vorticity level
for which a 2π-range contour can penetrate the cat’s eye. Since A, ρ∗B and ζ have not
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changed in figures 5 and 6, the same contour ψ
(2)
ρρ −siQ̂+

z,1 = −0.138 divides the cat’s eye
at x = π into two parts in the same way. The vorticity extrema are higher in each pole,
of magnitudes greater than one, so they may be much stronger than the neighboring
basic-state vorticity.
Owing to the inner-flow distortions, the cat’s eye is not strictly symmetric with respect
to the level ρ = 0. As a result, though we have used a coordinate Z describing the
streamlines in a refined way, this variable Z only gives a first approximation of the
dividing-streamline location. A better variable, the stressed coordinate Z̃ is needed in
order to correctly describe the deformed trajectory of the streamlines inside the critical
layer. Thus, it is necessary to ensure that the tangential and axial velocities are linked
in the frame moving with the linear-wave vertical speed, at the core of the cat’s eye and
at the crossing point of the separatrices, by the relationship (D2), topological property
which has previously been overlooked, see for instance (Benney & Bergeron 1969;Maslowe
1986). The variable Z does not allow to satisfy (D2) as soon as the first inner-flow order.
As a result, Z is rescaled in an asymptotic expansion following Z̃; the method is explained
in Appendix D. The new fields, denoted by a tilde, are thus expanded in the following
way, for instance for the radial velocity

Ũ(Z̃, x) = ǫ [ Ũ (0) + ǫ
1

2 ln ǫ Ũ (1) + ǫ
1

2 Ũ (2) + . . .].

Using these analytical expressions of the 3D velocity field, we were able to analytically
compute the CL streamlines (cf. Appendix F). For instance, the characteristic pattern
associated to a nonlinear vorticity wave packet is shown in figures 6-9, in a horizontal
plane at a constant height Φ and in a vertical plane at a constant angle θ. For the
three lowest azimuthal wavenumbers, the charts exhibit dipolar, tripolar and quadrupolar
vortices whose satellites wind and spiral along the vortex axis and are asymmetric
with respect to both the critical radius, and the axis θ = 0 [2π/m], π/m [2π/m] (the
azimuthal angle being calculated from a reference axis passing by a meeting point
of the separatrices). These low azimuthal wavenumber patterns dominate asymmetric
disturbances in a rapidly rotating vortex (Reasor et al. 2000). The contours in these
figures are not the trajectories of air particles but their envelopes, the surfaces on
which particles slide but cannot cross, given by the radial coordinate Rst(x, Φ) in
the parameterized representation (Rst(x, Φ), zst(x, Φ)) of a 3D Zst-streamline. These
contours are drawn in the local referential moving with the vertical linear-wave speed
cz = ω̂/k = ω̃/k +W c/̟ωΦT1 ≡ ℧̃/̟ +W℧Φτ1.

The parameters ǫA, ζ̂, ̟2 and U2/A are crucial as for the asymptotic-expansion
convergence. If these are large in absolute value, expansions may diverge. Increasing
the phase tilt |̟| strongly reduces the values of ζ and/or the wave amplitude ǫA; for
example in figure 9 a) ̟ = 1/3, ǫA = 0.07 and ζ = 0.5, in b) ̟ = 20/3, ǫ and
ζ are then reduced to ǫA = 0.04 and ζ = −0.0125, in figure 6 b), ̟ = 20 so ζ is
shrunk to ζ = −0.0005 for ǫA = 0.1. We observe that the satellites become larger as |̟|
increases. This weakly nonlinear approach does not permit to model singular vorticity
waves with large phase tilts (see Caillol (2014, 2015) for more details about the limitations
on the parameter ̟). Small phase tilts are usually related to small-size intense vortices
with small vertical wavenumbers k and moderate rc > 1. For instance, the wavenumber
k = 1 in a tornado characterized by Rmw = 100 m is linked to a vertical wavelength
Lz ≃ 628 m. The wavenumber k = 10 in a hurricane with Rmw = 20 km is related to
a wavelength Lz ≃ 12.6 km. The critical radius is chosen rc > 1 since associated to the
outer eyewall edge where the rotational-wind profile is decreasing monotonically. The
plots of the rotational and axial velocity (not shown) reveal that the cat’s eye is not a



34 P. Caillol

a)

2 4 6 8 10

10-4

0.001

0.010

0.100

ρB
*

fo
rc

in
g

s

b)

1 2
3

10

20

0.0 0.2 0.4 0.6 0.8 1.0

-2

-1

0

1

2

3

ρ/ρX

b
n

Figure 4. a) Forcings: Σq/(ζU2) (solid line), Σ+

q
′ /(|ζ|U2)A

1/2 (dashed line) and

Σ+
v /(|ζ|U2)A

−1/2 (dotted line) as a function of ρ∗B. b) bn(ρ) as a function of ρ as ρ∗B = 5,

γ = 0, µ = 0.2 and N = 20, b) Forcings: Σq/(ζU2) (solid line), Σ+

q
′ /(|ζ|U2)A

1/2 (dashed line)

and Σ+
v /(|ζ|U2)A

−1/2 (dotted line) as a function of ρ∗B .
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Figure 5. Isovorticity lines: ψ
(2)+
ρρ − siQ̂

+
z,1 = Cst, A = 1, ζ = −0.1, si = 1, γ = 0, µ = 0.2,

ρ∗B = 5, a) U2 = 0, b) U2 = 1, Σ+

q
′ /U2A

1/2 = 1.957 10−4, Σq/U2 = −2.420 10−4. The vorticity

level is indicated on each curve.

velocity maximum location. The azimuthal velocity gradually decreases with the radius
inside the critical layer.
Figures 7 and 8 exhibit a vortex perturbed by a m = 2 vortical wave whose chosen

envelope is A = (1+ 0.5 cosΦ)2. Figure 7 shows the related tripole at various heights: a)
Φ = 0 where A = 9/4 is maximum and U2 = 0, b) Φ = π/2 where A = 1 and U2 = 2
is maximum. Figure 8 a) shows the horizontal plane Φ = π where A = 1/4 is minimum
and U2 = 0; the vortex is quasi-axisymmetric, both satellites are thin. For the heights
where U2 = 0, the CL pattern is symmetric vis-à-vis the axis θ = π/2 and π but not with
respect to the critical radius. These symmetries are broken in 7 b). Though A in figure 7
a) is more than twice as large as in b), the cat’s eye thickness is roughly equal; the radial
velocity U2 then affects the CL thickness too. Figure 8 b) shows a vertical cross-section at
θ = 0 that spans three vertical wave periods, from Φ = 0 up to Φ = 6π/̟ǫ1/2 > 2π. Note
that as the ratio: envelope period/vertical wave period = ̟ǫ−1/2 =

√
5 is here irrational,

the vertical pattern is then not periodical and all cat’s eyes have a distinct shape. For
0 < Φ < π [2π], the spiral extends cyclonically and, for π < Φ < 2π [2π] anticyclonically.
We can notice after the figures 6-9 that, though the critical layer is vertically un-

bounded and spiraling, the particles are trapped within the separatrices. As a result, a
generalization of the Batchelor integral condition applied to a steady and closed 2D flow
(Batchelor 1956) can be carried out here within the quasi-steady 3D cat’s eyes in order
to find a unique inviscid inner flow there.
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Figure 6. A = 1, si = 1, γ = 0, µ = 0.2, ρ∗B = 5, a) Isovorticity lines:

ψ
(2)+
ρρ − siQ̂

+
z,1 = Cst, ζ = −0.1, U2 = 10, Σ+

q
′ /U2A

1/2 = 1.957 10−4, Σq/U2 = −2.420 10−4.

The vorticity level is indicated on each curve. b) Mode: m = 1, ̟ = 20, ǫ = 0.1,

a = −1, ℧0 = 0.49, β+
l,1 + d+l,1,0 + (β+

d,1 + d+d,1,0)AΦ/A + (β+
ad,1 + d+ad,1,0)aΦ = 1.5A1/2,

κ+
l,1 + g+l,1,0 + (κ+

d,1 + g+d,1,0)AΦ/A + (κ+
ad,1 + g+ad,1,0)aΦ = 10−4Θ, mean flow: ζ = −0.0005,

Q+
z,1 = 0.001, S1 = 1, U2 = 1, U

′

2 = −2.04, Σq/U2 = −1.0299 10−6, Σ+

q
′ /U2A

1/2 = 9.783 10−7

and Σ+
v /U2A

−1/2 = 2.0 10−6. The critical radius rc = 2 is shown in dotted line.

a) b)

Figure 7. Mode: m = 2, ̟ = 0.5, ǫ = 0.05, ℧0 = 0.49, a = −1,
A = (1 + cosΦ/2)2, si = 1, β+

l,1 + d+l,1,0 + (β+
d,1 + d+d,1,0)AΦ/A + (β+

ad,1 + d+ad,1,0)aΦ = −2A1/2,

κ+
l,1+g

+
l,1,0+(κ+

d,1+g
+
d,1,0)AΦ/A+(κ+

ad,1+g
+
ad,1,0)aΦ = 10−4Θ, mean flow: ζ = −0.1, Q+

z,1 = A1/2,

S1 = 0.4A1/2 + 0.2, U2 = −0.1 sinΦ/(ζ̟), U
′

2 = −U2/℧0, ρ
∗

B = 5, Σq/U2 = −2.4198 10−4,

Σ+

q
′ /U2A

1/2 = 1.9566 10−4 and Σ+
v /U2A

−1/2 = 4.0085 10−4 a) Φ = 0 b) Φ = π/2. The critical

radius rc = 1 is shown in dotted line.

The vorticity wave packet/vortex CL interaction could partly explain the formation of
spiral rainbands. Indeed, the latter are strongly associated to vorticity wave dynamics.
Propagating PV waves characterized by spiral structures in PV fields in the mid-lower
troposphere are either neutral or nearly neutral discrete modes, or the continuous
modes described by the CL theory. The radial wind shear gradually axisymmetrizes
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Figure 8. Mode: m = 2, k = 1, a = −1, ℧0 = 0.49, ǫ = 0.05,
A = (1 + cosΦ/2)2, si = 1, β+

l,1 + d+l,1,0 + (β+
d,1 + d+d,1,0)AΦ/A + (β+

ad,1 + d+ad,1,0)aΦ = −2A1/2,

κ+
l,1+g

+
l,1,0+(κ+

d,1+g
+
d,1,0)AΦ/A+(κ+

ad,1+g
+
ad,1,0)aΦ = 10−4Θ, mean flow: ζ = −0.1, Q+

z,1 = A1/2,

S1 = 0.4A1/2 + 0.2, U2 = −0.1 sinΦ/(ζ̟), U
′

2 = −U2/℧0, ρ
∗

B = 5, Σq/U2 = −2.4198 10−4,

Σ+

q
′ /U2A

1/2 = 1.9566 10−4 and Σ+
v /U2A

−1/2 = 4.0085 10−4 a) Φ = π, b) θ = 0 between the

heights Φ = 0 and Φ = 6π/̟ǫ1/2 ≃ 2.68 π. The critical radius rc = 1 is shown in dotted line.

a) b)

Figure 9. Mode: m = 3, A = 1, si = 1, a = −1.5, ℧0 = 0.49,
β+
l,1 + d+l,1,0 + (β+

d,1 + d+d,1,0)AΦ/A + (β+
ad,1 + d+ad,1,0)aΦ = −1.5A1/2,

κ+
l,1 + g+l,1,0 + (κ+

d,1 + g+d,1,0)AΦ/A + (κ+
ad,1 + g+ad,1,0)aΦ = 10−4Θ, mean flow: Q+

z,1 = 0.2,

U
′

2 = −2.04, ρ∗B = 5, µ = 0.2, γ = 0, a) k = 1, rc = 1, ζ = −0.5, ǫ = 0.07, U2 = 0.5,

S1 = 1, Σq/U2 = −1.2099 10−3, Σ+

q
′ /U2A

1/2 = 9.7830 10−4 and Σ+
v /U2A

−1/2 = 2.0043 10−3

b) k = 10 , rc = 2, ζ = −0.0125, ǫ = 0.04, U2 = 1, S1 = −1, Σq/U2 = −3.025 10−5,

Σ+

q
′ /U2A

1/2 = 2.446 10−5 and Σ+
v /U2A

−1/2 = 5.0011 10−5. The critical radius rc is shown in

dotted line.

outward propagating PV waves that turn into circular filaments (Guinn & Schubert
1993; Montgomery & Enagonio 1998; Moller & Montgomery 2000; Wang 2002a,b; Wang
et al. 2018). Montgomery & Kallenbach (1997) suggested that PV waves are responsible
for the inner spiral rainband initiation. In the inner core, continuous modes decay to the
benefit of the vortex through the WMFI. Discrete unstable modes may be excited by
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the subsequent basic-state vorticity profile modification, favor the formation of unstable
inner spiral rainbands, mix vorticity between the eyewall and the eye and then lead to the
vortex weakening (Moller & Montgomery 1999; Ruan et al. 2014). Reasor et al. (2000)
found evidence in weakening Hurricane Olivia (1994) inner core of a m = 2 spiral PV
wave packet. Spiral rainbands detected by an enhanced reflectivity were observed in the
wave vicinity. The majority of inner vorticity bands observed in intensifying Hurricane
Guillermo (1997) were associated with enhanced reflectivity and all coincided with an
enhanced upward motion (Reasor et al. 2009). Inner spiraling rainbands in Katrina
(2005) were also vorticity wave manifestations (Judt & Chen 2010). Chen & Yau (2001)
detected inner spiral rainbands near spiral PV bands in their numerical intensifying
TC-like vortex model. A modal analysis inside the spiral rainbands showed that the
leading wave activity m = 1, 2 modes were continuous PV modes (Chen et al. 2003). No
discrete unstable PV mode was found in spite of the unstable vorticity profile. Inertia-
gravity waves had a smaller wave activity contribution, and their main components were
unstable. Their propagation velocity is much faster than the observed moving speed of
spiral cloud bands (Wang et al. 1998). An earlier modal analysis of a f -plane shallow
water vortex model showed that banded features were composed almost entirely of
vorticity modes (Guinn & Schubert 1993). Montgomery & Kallenbach (1997) suggested
as well that outer spiral rainbands could form around the stagnation radius, while the
basic flow is intensifying. In the numerical TC-like vortex simulations, Wang (2002b)
observed the presence of outer spiral rainbands at this radius. Radar-observation of
intensifying Hurricane Elena (1985) showed four inner convective bands whose azimuthal
and radial propagation speeds were consistent with vorticity-wave dispersion relationship.
They spiralled outward to a stagnation radius where they began to thin and lose their
convective signature (Corbosiero et al. 2006).
Spiral vorticity anomaly bands are here produced by the continuous vortex erosion

inside the critical layer. During the slowly evolving WMFI, the CL gradually expells
vorticity into the diffusion boundary layers. The erosion is generated by the presence of
hyperbolic points in the related Lagrangian flow located near the saddle points, where
the separatrices meet, in the quasi-steady regime. CL vorticity then flows away along the
unstable manifolds on forming filaments (Velasco Fuentes 2005). Owing to the nonlinear
CL coupling, the diffusion layers are also helical and elongated by the mean radial velocity.
They generate, far from the vortex center, through a slow viscous diffusion process,
long, thin and spiraling high-vorticity filaments. In the earlier, unsteady and stronger
vortex/wave interaction, the expelled vorticity rate is clearly higher but the mean radial
velocity is smaller, so filaments are not likely to be initially perfect spiraling helices.

8. Conclusions

The theory of the nonlinear critical layer has been extended to a quasi-steady state to
model the long-time asymptotic interaction between a compact and resonant 3D vorticity
wave packet, and a linearly stable, columnar, dry and rapidly rotating vortex.
The critical layer generates a mean flow of higher amplitude than the wave packet that

has created it and whose evolution is strongly coupled with the wave dynamics. Indeed,
the matching conditions of the CL flow on the separatrices and non-zero mean radial
wave fluxes at the critical radius show that the induced mean flow is modulated in the
same way as the wave.
Removing the secular terms generated by this mean flow in the motion equations

inside the critical layer is carried out by considering that the azimuthal angle is a secular
variable. The resulting complex CL motion, evolving with the wave modulation but
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also advected by its own induced mean flow, forms a spiraling and phase-oscillating helix
winding around the vortex axis. Handling a secular azimuthal angle is then more relevant
than the secular time scale previously used in the wave packet study C17 that causes
a CL flow blow-up, since spiral bands have been observed near a critical radius in the
presence of vorticity waves (Chen & Yau 2001; Wang 2002b).

The chosen envelope régime induces a mean radial velocity of same amplitude as the
wave. This velocity breaks two CL pattern radial symmetries. Small inviscid mean radial
wave fluxes result as soon as the leading order, and subsequently a larger WMFI occurs;
in C17, the mean radial fluxes appear at the next order and in the steady case, they are
viscous (Caillol 2014). In these previous cases, assuming a leading-order uniform axial
vorticity inside the cat’s eye at each vortex height was possible through the Prandtl-
Batchelor theorem but it is no longer possible here. The CL flow has stronger 3D features;
the streamlines and iso-axial vorticity lines do not coincide any longer at leading order.
They are therefore much more distorted within the wave packet CL than within a steady
CL or a large-extent wave packet CL, highlighting the vorticity wave packet breaking.
The first non-trivial order vorticity can be nevertheless matched on the separatrices.

The leading-order induced mean vorticities are still proportional in such a way that the
first-order equivalent Richardson number is zero at rc, the vorticity wave packet/vortex
interaction in the quasi-steady stage is still very weak as the amplitude-modulated neutral
vortical mode is very weakly singular like in the past CL steady or quasi-steady studies
in a vortex (Caillol (2014),C17).

The nonlinear critical layer theory could partly explain the formation of inner spiral
rainbands. Indeed, in spite of the absence of a moist convection modeling, spiral vorticity
bands are here produced by the vorticity wave packet CL breaking at either CL sides,
through the vortex erosion inside the critical layer.

A future work will consist of solving the inner-flow fourth and fifth orders and deriving
the leading-order phase-averaged outer-flow evolution equations so that the coupled
system including the wave packet with the leading-order induced mean flow may be
studied numerically. Dispersion should not appear in those evolution equations with
such an envelope scaling. A smaller envelope wavelength is required; that seems to be a
general result while handling waves resonating with a background shear flow (Voronovich
et al. (1998a); Caillol & Grimshaw (2008, 2012)). New nonlinear terms coming from the
mean radial wave fluxes will be likely to be present but should have a small amplitude.
The crucial effect of the small wind vertical shear on the wave dynamics will be examined;
the smaller shear in C17 leads the wave packet to break. An important issue will be to
know if the spiraling motion favors or opposes the breaking? if so, can it saturate it?
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A. The outer flow

This section gives the first terms of the Frobenius series, outer-flow solutions valid
around the critical radius rc.
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A1. Order ǫ

The first coefficients of φa and φb are
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B. Inner flow equations

The system (2.1) after the change of variables of Section 4 is turned into the following
inner momentum equations
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where ˜̟ = k̃rc/m.
The divergenceless condition stands for
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For simplicity sake, only the leading-order terms in the viscous diffusions are mentioned.

C. Particular CL velocities

The long functions of integration obtained by CL edge matching are listed in this
Section.
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2̟
ζ

′

θ,1,Θ(0)

− ℧
2
0(Ξ − 2̟2)

24ζ̟̂(1 +̟2)
∂3Θ

(

℧0[̟ζ
′′′

z,1 + ζ
′′′

θ,1] +̟[℧0ζ̂(1 +̟2) + 4(℧0 − 1)]ζ
′′

z,1

)

(0)
)

A

+ (χκd,1 − γd,1)AΦ + (χκad,1 − γad,1)aΦA
]Θ sinX

1 +̟2
, (C2)

where µ = ζ̂(1 + 2̟2) +̟ζ̂θ,0 − 1, and χ = ζ̟̂2 −̟−1ζ̂θ,0 − 1.

D. New parametrization of the streamlines

The meeting points MP of the separatrices and the centre points CP (the core of
the cat’s eye) are located on specific isophases: spiraling helices. The velocity at these
points must then satisfy certain relationships. The velocity field is expressed through the
strained coordinate Z̃ so that the latter may be satisfied, for the velocity defined with the
independent variable Z does not generally satisfy them. The variable Z is thus expanded
as follows

Z = Z̃ + ǫ
1

2 ln ǫ ϕ(1)(Z̃, x) + ǫ
1

2ϕ(2)(Z̃, x) + ǫ ln2 ǫ ϕ(3)(Z̃, x) + . . . (D1)

The deformation functions ϕ(i) describe how high the streamlines are deformed inside
the CL. A new radius ρ̃ can be then defined by analogy such as Z̃ = 1/2ρ̃2 +A cosx. In
the distorted frame (ρ̃, x), the MPs are defined by ρ̃ = 0 and x = 0 [2π] (Z̃ = A). From
the expression of the height z, we deduce the first relationship after time-derivating

z =
ξ −mθ + ωt

k
, w =

ω̃ +m/rcW cωΦT1
k

− m

k
θ̇.

The angular time-derivative θ̇ is linked to the azimuthal velocity at MP in this way
v(MP ) = r(MP ) θ̇. So, the axial and azimuthal velocities are constrained at MP by the
following relationship

w(MP ) = −m
k

(v(MP )

r(MP )
− ω̂

m

)

.

In the referential moving with the vertical speed ω̂/k, the relative vertical velocity is
proportional to the rotational velocity. At CP defined by ρ̃ = 0 and x = π [2π] (Z̃ =
−A), both velocities satisfy the same relationship that is written with the inner rescaled
variables

̟2W̃ − ℧̂+
Ṽ

1 + ǫ
1

2 (siρ+H)
= 0, with ℧̂ = ℧̃+̟W ℧Φτ1. (D2)

The deformation functions calculated from (D2) are defined by

ϕ(1)(Z̃, x) = ϕ(1,⊙)(Z̃, x) =
si
2
ζ̂(1 +̟2)Aρ̃ cosx,

ϕ(2)(Z̃, x) = siρ̃
(

V (2)(MP ) +̟2W (2)(MP )− ℧̂2

)

,

ϕ(2,⊙)(Z̃, x) = siρ̃
(

V (2,⊙)(Z̃, x0) +̟2W (2,⊙)(Z̃, x0)− ℧̂2

)

,
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where the phase x0 = arccos[Z̃∗] is the intersection of the Z̃-streamline with the new
CL axis ρ̃ = 0. The continuity of Z at either side of the separatrix implies ϕ(2,⊙)(A) =
ϕ(2)(A); this gives the condition

V (2,⊙)(MP ) +̟2W (2,⊙)(MP ) = V (2)(MP ) +̟2W (2)(MP ).

This condition is easily satisfied thanks to the matching conditions (6.50) and (6.51).

E. Prandtl-Batchelor extended theorem

Batchelor (1956) found a closure equation enabling him to determine the steady motion
in a unique way within a two-dimensional and closed domain: he proved that the vorticity
was a constant. That procedure has to be here adapted to the three-dimensionality of
the flow. The momentum equations are in the frame moving with the angular rotation
Ωc = Ωc,0 + ǫ1/2Ωc,1

∂tu+ ǫ
3

2 ∂T2
Ω1,c × r+Q× u+∇H =

1

Re
∆u+ F, (E1)

with the absolute vorticity Q = ∇ × u + (̺0,c + ǫ1/2̺1,c) ez and H = P + 1/2|u|2 −
(̺0,c+ ǫ

1/2̺1,c)
2r2/8. The air particles have coupled helical and spiral motions in the CL

neighborhood but inside the cat’s eye, their trajectory is trapped since they cannot cross
the surface Z̃ = Cst (cf. figures 6-9 and Appendix D). The sheet Z̃ = Cst is an envelope
of the air particle trajectories, has a funnel-like shape centered around the axis of the
vortex (see figure 3). Decomposing the motion into inviscid and viscous components, a
curvilinear integral is therefore performed over a line l, intersection of the sheet Z̃ = Cst
and, either the plane z = cst in which case θ varies over a bounded range smaller than
2π/m, or the plane θ = cst in which case z varies over a range smaller than 2π/k. We
then obtain two integral conditions on the cat’s eye viscous flow.

∮

[Qi × uv] · dl+
∮

[Qv × ui] · dl+ ǫ
3

2

∮

[∇×Qi +∆rV̄0eθ] · dl = −
∮

∂tuv · dl. (E2)

Both first integrands do not vanish like in Batchelor (1956) because l is not tangent
to a streamline.

E1. Condition (E2) in a horizontal plane

The axial-vorticity solution (6.34) is assumed inside the cat’s eye and one integrates
at constant z over θ on a Z̃-contour bounded by x = x0 and 2π− x0, (E2) then becomes

∫ 2π/m−x0/m

x0/m

ψ
(2,⊙)+
i,ρρρ (Z̃,mθ)− ψ

(2,⊙)−
i,ρρρ (Z̃,mθ) dθ = 0,

After the symmetry properties of the Sine Fourier series in (6.34), the above integral is
greatly simplified and we obtain

F⊙
′

2 (Z) = 0. (E3)

E2. Condition (E2) in a vertical plane

The axial-velocity solution (6.42) is assumed and one integrates this time at constant
θ over z on a Z̃-contour, (E2) thus becomes

∫ 2π/k−x0/k

x0/k

W
(2,⊙)+
i,ρρ (Z̃, kz)−W

(2,⊙)−
i,ρρ (Z̃, kz) dz = 0,
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we get the same condition (E3).

F. Streamlines

This section gives the radius of the parameterized CL streamline representation. In the
frame moving with the linear wave vertical speed ω̂/k, the streamlines obey the following
differential equations

dr

u
= r

dθ

v
=

dz

w − ω̂
k

. (F1)

The streamline geometry is here more complex than in the steady mode/vortex interac-
tion case. The streamline radius rst becomes a function of ξ and Θ since the streamlines
are generated by the coupling of the wave induced oscillatory motion and the mean flow
induced spiraling motion. The first equality in (F1) yields

v [(k
dz

dθ
+m)∂ξ +m∂Θ]rst = u rst. (F2)

Introducing dz/dθ from the second equality in (F1), the streamline radius rst is given by
the integration of the equation

[k rst (w − ω̂/k) +mv] ∂ξrst +mv ∂Θrst = u rst, (F3)

while the streamline height zst is given by

[k rst (w − ω̂/k) +mv] ∂ξzst +mv ∂Θzst = (w − ω̂/k)rst. (F4)

The rescaled inner radius Rst is expanded in this way

Rst = Rst,0 + ǫ
1

2 ln ǫRst,1 + ǫ
1

2Rst,2 + · · ·

The zeroth-order equation of (F3) is Rst,0Rst,0,x − si℧0∂ΘRst,2 = A sinx− U2,

whose solution is Rst,0 = R⊙
st,0 = ssi

√

2(Zst −A cosx), (F5)

in which the integration constant Zst uniquely defines each streamline. The U2 induced
spiraling motion appears in the Θ variation ofRst,2 which is integrated straightforwardly.
We obtain again the expression (6.7): Rst,2,sp = siH2(Θ).

The first-order solution of (F3) is Rst,1 = R⊙
st,1 =

si
2
ζ̂(1 +̟2)A cos x.

The second-order equation of (F3) is

[Rst,0Rst,os,2]x − si℧0∂ΘRst,5 = si[V
(2) +̟2W (2) − ℧̂2]Rst,0,x (F6)

+si(AR0,st sinx− U (2)) + (V1 − siRst,0)
U2

℧0
.

The terms in (F6) yielding a non-zero x-average at constant Zst are eliminated. They
generate the spiraling motion of Rst,5. The solution Rst,2,os is hence

Rst,2,os = si

{

1

3
R2

st,0(Zst, x)− ℧̂2 +R−1
st,0(Zst, x)

[

A

∫ x

0

V (2)(Zst, u)

Rst,0(Zst, u)
sinu du

+̟2A

∫ x

0

W (2)(Zst, u)

Rst,0(Zst, u)
sinu du−

∫ x

0

U (2)(Zst, u)− U ′

2Rst,0(Zst, u)− siU3 du

+ (U ′

2 +
U2

℧0
)

∫ x

0

〈Rst,0(Zst)〉 − Rst,0(Zst, u) du+ C(Zst)

]}

.
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The spiraling fifth-order motion is given by

℧0∂ΘRst,5 = ℧0∂ΘR⊙
st,5 = si(U3 −

V1

℧0
U2) + (U ′

2 +
U2

℧0
)〈Rst,0〉. (F7)

The integration constant C(Zst) is chosen so that the singularity at the meeting point of
the separatrices (Zst = A, x = 0 [2π]) may vanish. After passing to the stressed variable
Z̃st, we get simpler expressions

R̃st,0 = Rst,0(Z̃st, x), R̃st,1 = R̃⊙
st,1 = 0,

R̃s
st,2,os(x) =si

{

1

6
(1 + 2ζ̟2)R̃2

st,0 + si[(κl,1 + gl,1,0)A+ (κd,1 + gd,1,0)AΦ

+ (κad,1 + gad,1,0)aΦA]
sinx

R̃st,0

+
si
2
[βl,1 + dl,1,0 + (βd,1 + dd,1,0)

AΦ

A

+ (βad,1 + dad,1,0)aΦ]R̃st,0 + κh,1
A

2

sin(2x)

R̃st,0

+
si
2

[

sζ̂(1 +̟2)(2Z̃st)
1/2 − S1

]

R̃st,0

− ζ̟2(Z̃st −A) + (1 +̟2)

[

ζ̂ {cosx ln[Λ(Z̃st, x)]− ln(A
1

2 )}A+ V2(x) − V2(0)

+
si
2
Q̂s

z,1R̃st,0 + ssiζ̂

(
∫ ∞

0

K0[
1

2
u2 + 1] du−

∫ ∞

R̃∗

st,0

K0[
1

2
u2 + cosx] du

)

A+N1(Z̃
∗
st, x)U2

+
1

2
[2 − ln(Z∗)]Σ+

q′
A

sinx

|R̃st,0|
+
(Σ+

q′

U2
A

1

2N2(Z̃
∗
st, x)−N3(Z̃

∗
st, x)

) A
1

2U2

|R̃st,0|

]

+

∫ x

π

〈|R̃st,0(Z̃st)|〉 − |R̃st,0(Z̃st, x1)| dx1
(U ′

2 +
U2

℧0

)

|R̃st,0|

}

, (F8)

where N1(Z, x) =

∫ Z

∞

Ξ(z)

∫ x

π
G5(z, x1) dx1

[2(z − cosx)]
1

2

dz,

N2(Z, x) =

∫ Z

∞

√
2z

∫ x

π

G5(z, x1) dx1+
sinx

2z
dz, N3(Z, x) =

∫ Z

∞

(

ζ̂−
Σ+

q′

U2
K0[z]A

1

2

)

∫ x

π

G5(z, x1) dx1 dz,

and inside the separatrices

R̃⊙
st,2,os(x) =si

{1

6
(1 + 2ζ̟2)R̃2

st,0 + si{(κl,1 + gl,1,0)A+ (κd,1 + gd,1,0)AΦ

+ (κad,1 + gad,1,0)aΦA}+−
sinx

R̃st,0

+
si
2
{βl,1 + dl,1,0 + (βd,1 + dd,1,0)

AΦ

A

+ (βad,1 + dad,1,0)aΦ − S1}+−R̃st,0 + {κh,1}+−
A

2

sin(2x)

R̃st,0

+(1 +̟2)
[

2Ξ(1)

∞
∑

n=1

(

R̃st,0

∫ R̃st,0

1

bn(r) dr −
∫ R̃st,0

0

bn(r) rdr
)

sin(nx)
(1 − cosx)

R̃st,0

A
1

2U2

+ Ξ(1)

∞
∑

n=1

∫ 1

0

bn(r) dr sin(nx0)

√

2(1− Z̃∗
st)U2 +

Q(2,⊙)

2
R̃st,0 + V ⊙

2 (x)− V ⊙
2 (x0)

]

+

∫ x

π

〈|R̃st,0(Z̃st)|〉 − |R̃st,0(Z̃st, x1)| dx1
(U ′

2 +
U2

℧0

)

|R̃st,0|
}

. (F9)



46 P. Caillol

The radius R̃⊙
st,2 = 0 does vanish on the axis R̃st,0 = 0 as Z̃st = A cosx0. The matching

of R̃st on the separatrices, R̃⊙
st,2(A, x) = R̃st,2(A, x), is realized thanks to the appropriate

values of the deformation functions ϕ(2) and ϕ(2,⊙) (cf. Appendix D). Comparing R and
R̃st, we deduce that the departure of Z from Z̃st is Z = Z̃st +O(ǫ1/2).

G. The forcings and the related coefficients Ai and Bi

The expressions of the various forcings Σs
q , Σ

s
q′

and Σs
v are displayed here

Σs
q =

∫ X

π

∂ZG5(Z∗
B, x1) dx1 Ξ(Z∗

B) sinX ρ∗B U2

− sΣs
q′
A

1

2

∫ X

π

G5(Z∗
B, x1) dx1

sinX

SE[Z∗
B]
ρ∗B +

s

2
Σs

q′
A

1

2

sin2X

Z∗2
B

ρ∗B, (G1)

Σs
q′

= s

∫ X

π

∂ZG5(Z∗
B, x1) dx1 Ξ(Z∗

B) sinX
U2

A
1

2

−Σs
q′

∫ X

π

G5(Z∗
B, x1) dx1

sinX

SE[Z∗
B]

+ s

∫ X

π

∂2ZG5(Z∗
B , x1) dx1 Ξ(Z∗

B) sinX ρ∗2B
U2

A
1

2

− 2Σs
q′

∫ X

π

∂ZG5(Z∗
B, x1) dx1

sinX

SE[Z∗
B]
ρ∗2B

+Σs
q′

∫ X

π

G5(Z∗
B, x1) dx1

SM[Z∗
B]

SE2[Z∗
B]

sinXρ∗2B +Σs
q′

(1

2

sin2X

Z∗2
B

− sin2X

Z∗3
B

ρ∗2B

)

, (G2)

and
Σs

v

U2
= s

∫ X

π

G5(Z∗
B , x1) dx1 Ξ(Z∗

B) sinX A
1

2 − 1

2

Σs
q′

U2

sin2X

Z∗
B

A. (G3)

These expressions involve the following coefficients

A1 =

∫ X

π

G5(Z∗
B, x1) dx1 sinX, A2 =

∫ X

π

G5(Z∗
B, x1) dx1 K0[Z∗

B] sinX,

A3 =

∫ X

π

∂ZG5(Z∗
B, x1) dx1 sinX ρ∗B, A4 =

∫ X

π

∂ZG5(Z∗
B, x1) dx1 K0[Z∗

B] sinX ρ∗B

+

∫ X

π

G5(Z∗
B, x1) dx1

sinX

SE[Z∗
B]
ρ∗B, A5 =

∫ X

π

∂2ZG5(Z∗
B, x1) dx1 sinX,

A6 =

∫ X

π

∂2ZG5(Z∗
B, x1) dx1 K0[Z∗

B] sinX −
∫ X

π

G5(Z∗
B , x1) dx1

SM[Z∗
B]

SE2[Z∗
B]

sinX

+2

∫ X

π

∂ZG5(Z∗
B, x1) dx1

sinX

SE[Z∗
B]
, B1 =

1

2

sin2X

Z∗
B

=
1

4
ρ∗2B − 1

4

√

ρ∗4B − 4,

B2 =
1

2

sin2X

Z∗2
B

ρ∗B =
1

2

( ρ∗2B
√

ρ∗4B − 4
− 1

)

ρ∗B , B3 =
sin2X

Z∗3
B

=
4

(ρ∗4B − 4)
3

2

,

B =
A3 + ρ∗3B A5

(1 +A3)[ρ∗B +A4 − B2 + ρ∗3B (A6 + B3)]− (A4 − B2)(A3 + ρ∗3B A5)
.
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H. Special functions

The functions that we have used in the study are defined here:

• E[Z] is the complete elliptic integral,

• SE[Z] =
2

3

2

π
[Z + 1]

1

2E
[ 2

Z + 1

]

=
2−

1

2

π

∫ 2π

0

[Z − cosx]
1

2 dx,

• SM[Z] =
2−

3

2

π

∫ 2π

0

[Z − cosx]−
1

2 dx,

• K0[Z] =

∫ Z

∞

1

SE[z]
− 1√

2z
dz,

• K1[Z, x] = 2−
1

2

∫ Z

∞

1√
z − cosx

( 1

SE[z]
− 1√

2z

)

dz.
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