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Orbital Signaling in
Graves’ Orbitopathy

Mohd Shazli Draman1,2, Lei Zhang1*, Colin Dayan1 and Marian Ludgate1†

1 Thyroid Research Group, Cardiff University School of Medicine, Cardiff, United Kingdom, 2 KPJ Healthcare University

College, Nilai, Malaysia

Graves’ orbitopathy (GO) is a complex and poorly understood disease in which extensive

remodeling of orbital tissue is dominated by adipogenesis and hyaluronan production. The

resulting proptosis is disfiguring and underpins the majority of GO signs and symptoms.

While there is strong evidence for the thyrotropin receptor (TSHR) being a thyroid/orbit

shared autoantigen, the insulin-like growth factor 1 receptor (IGF1R) is also likely to play a

key role in the disease. The pathogenesis of GO has been investigated extensively in the

last decade with further understanding of some aspects of the disease. This is mainly

derived by using in vitro and ex vivo analysis of the orbital tissues. Here, we have

summarized the features of GO pathogenesis involving target autoantigens and their

signaling pathways.
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INTRODUCTION

Graves’ orbitopathy (GO) or thyroid eye disease is the most common overt thyroidal manifestation

of Graves’ disease (GD) with substantial morbidity and socioeconomic impact (1–4). Extensive

orbital tissue remodelling in GO is mainly shown as adipose tissue expansion and tissue edema via

increased adipogenesis and hyaluronan production, respectively. These pathogenetic processes

produce disfiguring proptosis and underpin all GO signs and symptoms. There is a close clinical and

temporal association between GD and GO suggesting an autoimmune response to common
antigen/s in the orbit and thyroid gland. The thyrotropin receptor (TSHR) is expressed in orbital

adipose tissue (OAT) (5–8) and virtually all patients with hyperthyroid GO have thyroid stimulating

antibodies (TSAB). Therefore, the TSHR is the most logical candidate (9), which is further

supported by the existence of TSHR-induced GO in an animal model (10). The incidence of GO

is estimated to be 16/100,000 in females and 2.9/100,000 in males (11). On the other hand, the

prevalence estimate is about 10/10,000 (12). A recent meta-analysis reported that current GD

patients have a milder phenotype than in the past; as a consequence, a smaller proportion display
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GO symptoms (13). As with other autoimmune conditions there

is female preponderance towards the condition with 6:1 female

to male ratio, although in GO the ratio is less skewed than in GD.

In addition, most patients with GO have reduced quality of life

(QOL) (14) and suffer long-term psychological distress due to

the disfiguring appearance of the proptosis, also known as
exophthalmos (15). Available treatments for GO are

unsatisfactory and more research is needed to address the

pathophysiology of the disease which may lead to early pre-

clinical diagnosis promoting preventative/early interventions.

This in turn will improve long-term morbidity and

socioeconomic impact.

ADIPOGENESIS

Adipogenesis is a process in which preadipocytes differentiate into

mature adipocytes to form adipose tissues. Our current

understanding of adipogenesis has been largely derived by using

the murine 3T3L1 cell line. This cell line can spontaneously

differentiate into adipocytes when maintained in a high
concentration of fetal calf serum for several weeks but the

process can be accelerated by employing adipogenic cocktails

including insulin, steroid and 3- isobutyl-1-methylxanthine

(IBMX) (16). Further components of the differentiation

cocktails may also include proliferation-activated receptor

gamma (PPARg) agonists such as pioglitazone and

indomethacin (17). Insulin, in common with insulin-like growth
factor-1 (IGF-1) activates PI3 kinase (18) and MAP (mitogen-

activated protein kinase) (19) pathways. Phosphorylation of

protein kinase B (PKB/Akt) in turn phosphorylates forkhead

box protein O1 (FOXO1) causing it to exit from the nucleus

leading to increased transcription of adipogenic genes (20).

Steroids induce the expression of the early adipogenic gene,
CCAAT enhancer binding protein delta (C/EBP-d). This

transcription factor contributes to an increase in PPAR-g
expression and production of prostacyclin leading to elevated

intracellular cAMP. IBMX is a nonselective phosphodiesterase

inhibitor whose presence further elevates levels of intracellular

cAMP and protein kinase A (PKA). IBMX is thus required for
transcriptional activation of the master regulator of

adipogenesis, PPARg.
Adipogenesis contributes to OAT expansion because a

fibroblast has an approximate diameter of 30 microns, whereas

the diameter of a mature adipocyte is approximately 150

microns, i.e. 5 times larger. The increased adipogenesis has

been demonstrated by using in vitro cultures of human
fibroblasts and analysis of ex vivo samples from patients with

GO (21). By using both in vitro lineage specific differentiation

protocols and flow cytometry, studies have indicated that orbital

fibroblasts (OF) possess mesenchymal stem cell (MSC)

properties including positivity for Thy-1 (CD90) which is a

marker of MSC (22–25). In the orbit, Thy-1 negative OF can
be induced to differentiate when cultured in appropriate

adipogenic medium whereas Thy-1 positive cells are more

likely to undergo differentiation to myofibroblasts and cause

fibrosis (23, 24). The orbital fibroblast is also able to undergo

neurogenesis, myogenesis, osteogenesis and chondrogenesis in

vitro, indicating their pluripotency (22, 25).

EXTRA-CELLULAR MATRIX

Several extracellular matrix (ECM) components are overproduced
in GO including collagens and glycosaminoglycans (GAGs). The

excess ECM accumulation in OAT and extraocular muscle (EOM)

lead to oedema with consequent proptosis and diplopia

respectively (26). The main GAG produced in GO is hyaluronic

acid, which is generated by three synthase enzymes (HAS1, HAS2

and HAS3) and broken down by hyaluronidases. Activation of

cAMP-protein kinase A signaling via the TSHR, increases cAMP
response element binding protein (CREB) at CREB binding sites

in the promoters of HAS1 and HAS2 genes, thereby enhancing

hyaluronan production (27).

TSHR INTRACELLULAR PATHWAYS

Several studies, including from our group, have shown that

activation of the TSHR in OF leads to an increase in
hyaluronan production and adipogenesis (20, 28). TSHR

expression has been shown to increase during adipogenesis (5).

We demonstrated that ‘neutral’ TSHR antibodies were capable of

binding but had no effect on traditional TSHR signaling

pathways (described below) (29). Indeed, TSHR signaling may

be far more complex than initially thought (30). Little is known

about the effects of TSHR activation at various stages during
differentiation. The downstream cascade triggered by TSHR will

depend on the types and abundance of guanine-nucleotide

binding proteins (G proteins) available in the cell (31). G

protein coupled receptors (GPCR) can exist as monomers or

oligomers. Oligomerization is the term used to describe dimeric,

tetrameric, or higher-order complexes between GPCR
monomers. The activation of different GPCR complexes will

have major influence on subsequent G protein signaling

pathways. The evidence that TSHR may exist in an oligomeric

state was initially provided by studies using antibodies (32) and

more recently by fluorescence resonance energy transfer (FRET)

technology (33). Interestingly, the presence of dimerization

influences TSHR behavior. Unstimulated TSHRs have been
shown to form oligomers that return to the monomer state

with TSH (34). TSHR autoantibodies with stimulating properties

are (TSAB) proposed to favor formation of TSHR dimers, whilst

TSHR blocking antibodies, are unable to bring about this

conformational change. After TSH binding, a constitutively

oligomeric TSHR dissociates into active monomers (or dimers
when TSAB bind). Subsequently the monomers or dimers are

recruited to the lipid rafts and interact with G proteins, thereby

initiating the signaling cascade. In the case of TSH, the signal is

rapid and brief because of faster movement of monomers into the

lipid rafts, in contrast to the slow motion of the dimers.

Multivalent blocking TSHR antibodies may cross-link the
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oligomers, thus preventing them from dissociating and impeding

their entry into lipid rafts (35). In cells with low levels of TSHR

expression, homo-heterodimer formation is less likely. This may

change during adipogenesis, as TSHR expression increases, and

may lead to activation of different signaling cascades from that

predominating in orbital fibroblasts.
TSHR is known to activate mainly the guanine-nucleotide

protein alpha stimulation (Gs)-cAMP pathway. In addition,

TSHR may activate several other G protein subtypes, as

detailed below (36, 37), non G protein pathways such as b-
arrestin-1 (38) and other signalling pathways (39, 40). When

TSH binds to its receptor, GTP replaces GDP in the
heterotrimeric G protein, which dissociates into Gsa and Gbg
subunits with the former activating all isoforms of adenylate

cyclase (41). This enzyme increases levels of cAMP in the cell and

activates PKA, also known as cAMP-dependent protein kinase.

The activated PKA phosphorylates multiple downstream target

proteins one of which is cAMP responsive element binding
protein (CREB). CREB then binds to its receptors on the

promoter region of the DNA exerting various gene

transcription processes including expression of thyroglobulin

(TG), thyroid peroxidase (TPO), sodium iodide symporter

(NIS), the thyroid transcription factors TTF1/NKx2.1, TTF2/

FoxE1, and PAX (42, 43). Every intermediary in the pathway

described above may additionally interact with different
molecules belonging to other pathways.

In human thyrocytes and rat FRTL-5, guanidine binding

protein alpha a/alpha 11 (Gaq/a11) coupling has been shown

to stimulate Protein kinase C (PKC) pathways by generating

phospholipase C (PLCb). The PKC pathways has been associated

with hyaluronan generation in GO (44). Activation of PKC
pathways requires supraphysiological TSH concentrations

although not all research agrees with this finding (45). PLC

catalyses hydrolysis of phosphatidylinositol in cell membranes

yielding di-acyl-glycerol (DAG) and inositol tri phosphate (IP3)

as second messengers. DAG directly stimulates PKC. IP3

increases cytosolic Ca+2 levels which act through a number of

effectors including PKC itself (46) and Nuclear Factor of
Activated T-cells (NFAT) transcription factor protein.

NFAT plays an important role in cytokine gene transcription

regulation (47). Calcium via calmodulin –a calcium sensor

protein - activates the serine/threonine phosphatase

calcineurin (inhibited by cyclosporin and FK506). This in turn

rapidly dephosphorylates NFAT proteins, resulting in a
conformational change that exposes a nuclear localization

signal leading to NFAT nuclear import (48). TSHR may also

couple to guanine nucleotide binding protein alpha inhibition

(Gai1), which inhibits adenylyl cyclase and decreases cAMP

levels. The accompanying Gbg dimers may induce multitudes of

other pathways, including adenylyl cyclase, PI3K/Akt (PKB)-

FOXO and PLC cascades (49–51). Others have reported that
TSHR activation of OF signals via p70s6 kinase (52). The finding

may explain our lack of success when using gain-of-function

mutants of the TSHR, which signal predominantly via Gsa, to
stimulate adipogenesis (28) and concurs with the study from van

Ziejl et al. who investigated TSH/TSAB induced hyaluronan

production (53). It contrasts with the studies of Neumann and

colleagues, who report increased M22-mediated cAMP, even at

baseline. However, these authors maintain their OF in a

semi-adipogenic medium which likely increases TSHR

expression (54).

Our previous work has demonstrated that adipogenesis and
HA production, are linked in the orbit. HA accumulation

increases in the orbit during adipogenesis but not in other fat

depots (55). In this study, adipogenesis in orbital preadipocytes

was accompanied by HA accumulation and significantly

increased HAS2 transcripts (but not HAS 1 and 3). In contrast,

adipogenic differentiation in subcutaneous preadipocyte-
fibroblasts significantly decreased secreted HA and HAS2

transcript levels. IGF-I alone did not increase HAS2 levels, but

inhibition of PKB/Akt increased orbitalHAS2 transcripts but not

subcutaneous preadipocytes. Furthermore, our study suggested

that mTORC1 negative feedback in IGF1–PI3K–Akt signalling is

absent in OF but present in subcutaneous adipose tissue (55).
The difference might be explained by the fact that human OF

originate from neural crest, while subcutaneous adipose tissue is

of mesodermal origin. In addition, our most recent studies

demonstrated a depot specific fatty acid-uptake driven

adipogenesis with unique gene signatures in OAT. These result

in hyperplastic-type expansion of adipocytes in GO (56, 57).

Taken together, these findings suggest a very distinctive
mechanism underlying the orbital adipogenesis process.

INSULIN LIKE GROWTH FACTOR -1

RECEPTOR SIGNALLING

While there is strong evidence supporting the role of TSHR in

GO, IGF1R is also likely to play a key role in the disease progress.

The IGF1R was first proposed by Weightman and colleagues

who demonstrated high affinity IGF1 binding sites in OF (58).
More recently extensive work from Terry Smith and his

colleagues has confirmed this finding and further showed that

TSHR and IGF1R co-localize to orbital cell membranes (59). The

same group has further reported a wide range of IGF1R mediated

effects in OF including increases in proliferation, GAG

production and cytokine production (60, 61). Our own study

demonstrated that activation of TSHR and IGR1R has additive
effect on HAS2 transcripts/HA production (62). Krieger et al.

found that M22 stimulation of HA secretion by OF involves cross

talk between IGF-1R and TSHR. The relationship relies on TSHR

activation per se rather than direct activation of IGF-1R which

leads to synergistic stimulation of HA secretion (63). TSH

induced ERK phosphorylation can be blocked by an IGF-1R-
blocking monoclonal antibody suggesting that IGF-1R might

mediate some TSH-provoked signalling. Further studies have

highlighted the importance of down stream factors of IGF1–

PI3K signalling and revealed that FOXOs, may mediate both

TSHR and IGF1R signalling pathways in GO (64). The notion is

further supported by recent successful trial of teprotumumab-

monoclonal antibody which blocks IGF1R - in reducing
proptosis in patients with GO (65, 66). Whilst effective medical
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treatment for GO is welcome, some concerns have been raised

about these trials including the lack of orbital imaging and the

fact that despite QOL scores being improved in the

teprotumumab group, all patients scores remained low (67).

Furthermore, the activation of Fibroblast Growth factor (FGF)

and its receptor has been shown to increase the expression of
Insulin like growth factor-2 (IGF-2) in mesenchymal stem cells

via IGF-2 and IGF1-R (68). The FGF signalling pathway has also

been shown to play a role in OAT expansion in GO (69). Our

most recent study used RNA-seq analysis to demonstrate that

FGFs, FGFR2, IGF-2 and IGF1-R were highly expressed in OAT

compared with white adipose tissue, supporting the
aforementioned successful trial of IGF1R inhibition in GO (56).

TSHR VARIANTS

To add to the complexity of the molecular events associated with

GO, several TSHR variants have been described which lack the

transmembrane domain. If the variants are expressed as protein,
they would yield soluble receptor products which could serve as

TSH/TRAB binding proteins or even as autoantigens. Early

northern blot analysis of thyroid tissue identified the expected

full-length transcript plus 2 additional transcripts at 1.3 and 1.6

kb (70); the transcripts were also detected in OF (71). Of interest,

the exon 1-8 variant is similar in structure to the TSHR A subunit

which is generated following cleavage of the full-length receptor
(72, 73). Furthermore, induced murine models of GD and GO

are more effective when immunizing with the A subunit than

with the complete TSHR (74, 75). We have reported that the 1.3

variant is expressed as a protein and can affect TSHR activation

(76). Thus, these variants could have impact on the pathogenesis

of GO by inducing further production of TSAB or protect against
GO by ‘neutralizing’ TSAB, respectively.

DISCUSSION

TSHR and IGF1 signaling are important in orbital tissues

(summarized in Figure 1) but more complex than generally

thought. Although these signals are mainly activated through G
protein signalling pathways, other cascades may also be involved.

FIGURE 1 | Cartoon summarizing orbital fibroblast signaling cascades in Graves’ orbitopathy (GO) and how they affect pathogenetic mechanisms (adipogenesis and

hyaluronan production). TSHR/TRAB and IGFR/IGF are shown in red with arrows indicating the possible crosstalk between the pathways in GO. thyrotropin receptor

(TSHR, serpentine structure); TSHR auto-antibodies (TRAB); Insulin-like growth factor 1 receptor (IGF-1R) and IGF1; protein kinase A (PKA); protein kinase B (PKB/

Akt); protein kinase C (PKC); phosphoinositide 3-kinase (PI3K); forkhead box protein O (FOXO); hyaluronan production (HA).
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As our understanding expands, additional extracellular or

intracellular factors, which regulate signaling, may be

identified. The abundance of the receptors may also dictate

which pathways are activated. The recent success of TSHR

extracellular domain crystallization is likely to catapult these

areas of research and may lead to further alternative treatment
strategies for GO (77).

As discussed above, a human monoclonal anti-IGF-1R-

blocking antibody, Teprotumumab has been approved by FDA

for treatment of patients with GO specifically in reducing

proptosis and has recently been reported to be highly effective

in active GO (65). The potential for treatments based on TSHR
antagonism, which have been demonstrated to be effective in

vitro, is keenly anticipated either with blocking antibodies or

small molecule antagonists which in theory could inhibit both

TSHR and IGF-1R related and/or unrelated pathways (78). The

beneficial effects on GD and GO following administration of a

monoclonal TSHR blocking antibody (TBAB) in a patient with

thyroid cancer has recently been described (79). Furthermore,

manipulating the two pathways concomitantly may provide even
more effective treatment for GO and merits investigation.
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